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Correlation energy in a triplet state of a two-electron spherical quantum dot
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Correlation energies in the (1s-1p) triplet state of a two-electron spherical QD with square-well potential
confinement are estimated for dots of different radii. The results are presented taking GaAs dot as an example.
Our results show that the correlation energies are i) negative in a triplet state in contrast to the singlet state,
ii)approaches zero as the dot size approaches infinity, and iii) the “fictitious crossing” of the singlet and triplet
state energies at a particular dot size is explained on the basis of Hund’s rules.
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1. INTRODUCTION

Energy levels of the carrier in a QD exhibit discrete spectra
as in an atom. Hence QD is called an artificial atom [1,2].It
has been shown that electron correlation plays a significant
role in QD’s. Such correlations lead to interesting phenom-
ena such as Coulomb blockade [3], which is exploited in
single electron transistors [4]. There have been consider-
able efforts on the estimation of correlations in few elec-
tron QD’s [5,6]. Though most of these works are on QD
with parabolic confinement [7], some authors have inves-
tigated the correlation effects under square well confine-
ment also [8]. Recently Sivakami et al. [9] have consid-
ered electron correlation in a singlet ground state of a two
electron spherical QD with finite barrier square well confine-
ment. Unlike certain works which involve extensive numer-
ical work, these authors obtain closed analytical expressions
by treating electron correlations by a perturbation method,
which utilizes the evaluation of certain integrals by the mean
value theorem [10].

The purpose of the present work is two-fold. The first is
that we are treating a triplet state(1s-1p) by extending the
calculations of reference [9]. Secondly we point out that the
crossing of the singlet and triplet state energies at a particular
dot radius as observed in Szafran et al. [7] is not fictitious but
has a physical basis.

The plan of the presentation of the present work is as fol-
lows. In Section 2 we present the mathematical models and
the details of calculations. The results obtained are presented
in Section 3 with a detailed discussion of the results. Con-
clusions are presented in Section 4.

2. MODELS AND CALCULATIONS

2.1. Single electron in a spherical quantum dot

Here we consider a single electron in a Spherical QD in
the finite barrier model. In the absence of impurity, within
the effective mass approximation, the Hamiltonian is given
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by

H1 = − �
2

2m∗ ∇2 +VD (r) (1)

where m∗ is the effective mass of the electron at the conduc-
tion band minimum, which is 0.067m0 for GaAs [11], where
m0 is the free electron mass. In our numerical calculations
we use atomic units in which m0 = e2 = �

2 = 1. The confin-
ing potential VD(r) is given by,

VD(r) =

∣∣∣∣∣∣
0 r < R

V0 = Qc∆Eg(x) r > R
(2)

where V0 is the barrier height, Qc is the conduction band off-
set parameter which is taken as 0.658 [12]. The band gap
difference depends of the concentration of Al. In our case
Ga1−xAlxAs is the barrier medium in which GaAs dot is em-
bedded. The total energy difference [13] between the well
and barrier media, as a function of x, is given by

∆Eg(x) = 1.155x+0.37x2 eV (3)

In the present work we have chosen x = 0.2, and the value
of V0 turns to be 161.73 meV . Two lowest lying bound states
are given by

ψ1s(�r) =

∣∣∣∣∣∣∣∣
N1

sin(α1r)
α1r

r ≤ R

A1
e−β1r

β1r r ≥ R and

(4)

ψ1p (�r) =

∣∣∣∣∣∣∣∣∣∣
N2

[
sin(α2r)

(α2r)2 − cos(α2r)
(α2r)

]
cosθ r ≤ R

iA2

[
1

β2r + 1
(β2r)2

]
e−β2r cosθ r ≥ R

(5)

where N1 and N2 are normalization constants and α1 and β1
are given by α1 =

√
2m∗E and β1 =

√
2m∗ (V0 −E). Match-

ing the wave function and their derivatives at the boundary
r = R,we get

A1 = N1 sin(α1R)eβ1R (6)

A2 = −iN2

(
β2

α2

)2( sin(α2R)−α2Rcos(α2R)
β2R+1

)
eβ2R (7)
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The energy eigenvalues are determined by imposing the
Ben Daniel and Duke boundary condition [14]

− i�
m∗

1

∂ψ
∂r

(r ≤ R)
∣∣∣∣
r=R

= − i�
m∗

2

∂ψ
∂r

(r ≥ R)
∣∣∣∣
r=R

We obtain

α1R+β1R tan(α1R) = 0 for s-states and
(8)

cot(α2R)
α2R

− 1

(α2R)2 =
1

β2R
+

1

(β2R)2 for p-states (9)

If m∗
1 = m∗

2 =m*, solving these transcendental equations nu-
merically, the confined energies En

l (n= 1,2,3. . . ;� =0,1) are
obtained. For other excited states similar equations may be
obtained when � =2,3,. . . The confined energy for the first two
states are given in Table 1.

TABLE 1: Confined electron energies (meV ) in the spherical QD
Confined Energy (meV)

Dot

Radius(nm) (E1s) (E1p) E1s+E1p

Correlation

Energy

(meV)

Total

Confined

energy  (meV)

10 39.33 81.49 120.82 -9.97 110.85 

15 19.66 40.80 60.46 -6.31 54.15 

20 11.73 24.28 36.01 -4.62 31.39 

25 7.79 15.90 23.69 -3.63 20.06 

30 5.53 11.31 16.84 -3.00 13.84 

2.2. Two electrons in a spherical quantum dot

The Hamiltonian of the system with interaction is given
by

H =
p2

1
2m∗ +

p2
2

2m∗ +VD

(→
r1

)
+VD

(→
r2

)
+

e2

ε0

∣∣∣→r1−→
r2

∣∣∣ (10)

H = H1 +H2 +H1, with H1 = e2/ε0 |�r1 −�r2|

In the two-electron system we calculate the correlation en-
ergy using the perturbation method. Here H1 is the perturba-
tion term and ε0 is the static dielectric constant. In our prob-
lem we have considered one electron in the ground state (i.e.
1s-state) and another in the excited state (1p-state).Therefore
we may obtain a triplet state and the total spin of the system
is 1. In this situation the wave function of the triplet state is

ψA(�r1,�r2) =
1√
2

[ψ1s(�r1)ψ1p(�r2)−ψ1s(�r2)ψ1p(�r1)] (11)

This is spatially anti-symmetric. In Eq. (11) ψ1s(ri) and
ψ1p(ri)are (with i=1,2) as given in equations (4) and (5). We
obtain

Z
ψ∗

A(�r1,�r2)ψA(�r1,�r2)dτ1dτ2

=
(

3R
2α2

1
− 3sin(2α1R)

4α3
1

− 3 · e−2β1R

2β3
1

)
∗

⎛
⎜⎝ 2

R2

(
R

2α4
2
− sin(2α2R)

4α5
2

)
−

√
2

R

(
1−cos(2α2R)

2α4
2

)
+ R

2α2
2

+ sin(2α2R)
4α3

2
+ e−2βR

β3
2

(
1
2 + 1√

5β2R
+ 1

10β2
2R2

)
⎞
⎟⎠ (12)

2.3. Correlation Energy

We calculate the Columbic interaction energy by using
perturbation method. The first-order energy is given by

∆E(1) =
Z

ψ∗
A(�r1,�r2)

e2

ε0|�r1 −�r2|ψA(�r1,�r2)d�r1d�r2 (13)

were ψA(�r1,�r2)is given in Eq. (11). After a lengthy and
straight forward algebra we obtain,the first-order correction,
using

∆E(1) =
(ψ,H1ψ)
(ψ,ψ)

(14)

which is given in Eq. (15).

∆E(1) =
4πe2

3ε0

(
Nr.
Dr.

)
(15)

Where Nr.=Term1+Term2, with Term 1 = ∑12
i=1 CNi and

Term 2 = ∑15
i=13 CNi ,Here,

CN1 = (1−C3)
(

0.0922
α2

1 ·DS
− 0.1611

α2
2 ·DS

− 0.0443
α2

1 ·α2
2

)
×

×
(

1
α2

1 ·α2
2 ·R3

)

CN2 = (1−C4)
(

0.0649
AS

− 0.1768
AD

) (
1

α2
1 ·α4

2 ·R3 ·AD

)

CN3 = (1− CD)
(

0.0806
α2

1 ·α4
2 ·R3 ·AD2

)

CN4 =
((0.1768)

(
C2

2 −S2
2
)−0.0962−0.0806 ·CS

)
α2

1 ·α4
2 ·R3 ·AS2

CN5 = 0.1287 ·
((

1−CS
AS3

)
−
(

1−CD
AD3

))
×
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×
(

1
α2

1 ·α3
2 ·R3

)

CN6 =
0.0101((C3 +C4)−0.4944)

α2
1 ·α2

2 ·R ·DS

CN7 =
(
−0.0833 ·

(
SS

AS3 +
SD

AD3

)
·
(

1
α2

1 ·α2
2 ·R2

))

CN8 =
(0.1616+0.0050 ·CS)

α2
1 ·α2

2 ·R ·AS2

CN9 =
(0.1616+0.0050 ·CD)

α2
1 ·α2

2 ·R ·AD2

CN10 = 0.0704 ·
(

SD
AD2 − SS

AS2

)
·
(

1
α2

1 ·α3
2 ·R2

)

CN11 =2 ·S1·C1·
(

0.0576
DS

−0.25 ·α1

α2
2 ·AD

− 0.125
AS2 − 0.125

AD2

)
×

×
(

1
α3

1 ·α2
2 ·R2

)

CN12 = 2 ·S2 ·C2 ·
(

0.4424
DS

− 0.125
AD2 − 0.375

AS2

)
×

×
(

1
α2

1 ·α3
2 ·R2

)

CN13 =
(

F1

AS
+

F3

AD

)
·
((

F4 ·
(
α−1

2 −AD−1
)

R ·AD

)
−
(

F2 ·
(
α−1

2 −AS−1
)

R ·AS

)
+
(

F1

AS
+

F3

AD

))
·
(

0.3333
α2

1 ·α2
2 ·R

)

CN14 =
(

F4

AD
− F2

AS

)
·
((

F4

α2 ·R ·AD
− F4

AD2 ·R
)
−
(

F2

α2 ·R ·AS
+

F2

R ·AS2

)
+
(

F1

AS
+

F3

AD

))
·
(

0.3849
α2

1 ·α3
2 ·R2

)

and

CN15 = E1 ·E2 ·
(

0.0211+
0.109
β2 ·R +

0.1
R ·BS

+
0.045

β2 ·R2 ·BS

)
Dr. is given by

Dr.=D1[D2-D3+ D4+D5+D6]

Where

D1 =
(

3R
2α2

1
− 3S1

4α3
1
− 3E1

2β3
1

)
,

D2 =
2

R2

(
R

2α4
2
− S2

4α5
2

)
,

D3 =

(
1−C2√
2 ·α4

2 ·R

)

D4 =
(

R
2α2

2

)
, D5 =

(
S2

4α3
2

)
and

D6 =
E2

β3
2

(
0.5+

0.45
β2R

+
0.1

β2
2R2

)

In the above expression. Si = sinαiR, Ci = cosαiR, Ei =
exp(2βiR)with i=1 and 2

C3 = cos(2α1R) ,C4 = cos(2α2R) ,

AD = α1 −α2,AS = α1 +α2,BD = β1 −β2,

BS = β1 +β2,DS = α2
1 −α2

1,SD = sin(2AD ·R) ,

SS = sin(2AS ·R) ,

CD = cos(2AD ·R) ,CS = cos(2AS ·R) ,

F1 = cos(AS ·R) ,

F2 = sin(AS ·R)“F3 = cos(AD ·R) ,F4 = sin(AD ·R)”

We have used the rms values
√

2
R for 1

r1
and 1

r2
in certain in-

tegrals by using the mean value theorem [10] as in Ref. [9].
The correlation energies are obtained for different dot radii
as shown in Table 1.

3. RESULTS AND DISCUSSION

From Table 1 we find that as the dot size increases, the
confinement energy decreases for both the states. Also we
find that the confinement energy of the p-state is approxi-
mately twice as that of the s-state, as in Ref[9].We also no-
tice that the confinement energy decreases as the dot size
increases, which is well known in the literature [7,9]. We
have also shown the correlation energy. The magnitude of
the first-order correction decreases as the dot size increases
showing that correlation is important in nanosystems.

TABLE 2: Comparison of singlet and triplet state energies.

Confined energy 

(meV)

Correlation energy 

(meV)
Total confined energy 

(meV)

Dot

Radius

(nm)

singlet triplet singlet triplet singlet
†

Triplet

10 78.66 120.82 15.56 -9.97 94.23 110.85 

15 39.32 60.46 10.38 -6.31 49.70 54.15 

20 23.46 36.01 7.78 -4.62 31.24 31.39 

25 15.58 23.69 6.23 -3.63 21.81 20.06 

30 11.06 16.84 5.19 -3.00 16.25 13.84 

†
 From Ref.[9] 

The correlation value is negative as expected. This is
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a consequence of the exchange interaction in the triplet
state which is Columbic in origin and has no classical ana-
logue.This interaction arises because of the antisymmetric
nature of the wave functions Eq. (11). The spin part,though
not considered explicitly here, should be symmetric for
fermions,and corresponds to a triplet state.There is no ex-
change interaction among electrons of opposite spin orien-
tations. This interaction is attractive as in ferromagnetism
via Heisenberg model which uses spins explicitly. It is a di-
rect confirmation of the Hund’s rule which favors parallel
arrangement of spins in the various atomic sub-shells con-
sistent with maximum spin value. In contrast, in the singlet
state, the correlation energy is repulsive as seen in Fig. 1.

FIG. 1: Correlation Energy Vs Dot Radius for Singlet and Triplet
States.

When we compare the magnitudes of the correlation ener-
gies of the triplet state with the singlet state, it is seen from
Table 2 that the singlet state energies are lower than the cor-
responding triplet state energies. The singlet state energies
are taken from Ref. [9].

The first-order correction itself is negative and is small
(about 8%).So the second-order correction is negligible and
the evaluation is also tedious. Even if it is possible for dots
of larger radii, the correlation is still smaller, as seen from
Table 1.

We notice that the confined energy difference between the
singlet and triplet states for narrow dots is about 17%.This
is in agreement with the results of Ref. [15] where another
quantum well system with parabolic confinement is consid-
ered. For larger dots the percentage of confinement also de-
creases and it seems to be more or less the same for both the
states.

The confined energies for the singlet and triplet states for
different dot radii are shown in Fig. 2. From this figure it fol-
lows that for dot radii less than 20nm,the singlet state has the
lowest energy, in support of the general principle that the en-
ergy of the system should be the lowest; for dot radii greater

than 20nm, the triplet state has the lowest energy. This is
because as the dot radius increases the energy separation be-
tween the 1s and 1p-states reduce and 2E1s ≈ E1s +E1p. But
the exchange energy is attractive. Hence the triplet state en-
ergy lies lower.

FIG. 2: Confined energy for the two electron system in a QD.

It is found that the singlet state confined energy is lower
than that of the triplet for narrow dots which agrees with the
quantum Monte Carlo EMA(Effective Mass Approximation)
calculation as in Ref. [16]. The results show that the corre-
lation effects are important for smaller dots and should be
considered in the studies on all the low dimensional semi
conducting systems.

The crossing of the singlet and triplet state energies at R �
20nm, from Fig. 2 is consistent with the Hartree-Fock calcu-
lation of Szafran et al. [7]. It is termed as “fictitious crossing”
which is attributed to numerical accuracies [7]. At the point
of crossing, 2E1s +∆Esc = E1s +E1p +∆Etc, where ∆Esc and
∆Etc are correlation energies in the singlet and triplet states.
It immediately follows that E1p −E1s = ∆Esc −∆Etc. Not-
ing that ∆Etc is negative, E1p > E1s as expected. However,
as R → ∞,E1p → E1s and ∆Esc → ∆Etc. In fact, the corre-
lation energies themselves approach zero as is evident from
Fig. 2. Since the 1s and 1p states energies are degenerate as
R → ∞, whether a singlet state is favoured or a triplet state?
By Hund’s rule, a triplet state is expected without violating
the Pauli principle. We believe that a spin flip Raman scat-
tering experiment may throw more light on the nature of the
ground state for R > 20nm dots [17,18].

4. CONCLUSIONS

The important conclusions that emerge from the present
work are the following. a) The triplet state correlation energy
is negative which is to be expected since the anti-symmetric
spatial part of the wave function corresponds to the exchange
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interaction among the electrons. b)Both the singlet and the
triplet energies decreases in magnitude as the dot radius ap-
proaches infinity. c) For smaller dots of radii lesser than
20nm the singlet state is favoured as it corresponds to the
lowest energy state for the two electron system. However, for
dot radii greater than 20nm, the triplet state is favoured con-

sistent with the Pauli’s exclusion principle and Hund’s rules.
d) A similar behaviour in the triplet and singlet state ener-
gies was observed in Szafran et al. [7] which they attributed
to inaccuracies in the calculations. However, as we have ex-
plained above this crossing does not seem to be fictitious but
has a physical basis.
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