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1. Introduction

With the advent of readily-accessible high-power computers it has become rel-
atively easy to produce simulations of interesting spatial ecologies. Even at
this early stage these have demonstrated that there is a range of new, interest-
ing and important biological phenomena to be discovered in such systems (see
Matthew Keeling’s paper in this volume for references). These phenomena had
previously been undiscovered because they are due to space, stochasticity and
discreteness and because of the concentration on mean-field models. In such
models fluctuations and correlations are ignored because it is assumed that
not only does everyone behave like the mean individual but also all individuals
perceive the same environment.

With the benefit of hindsight, some of the new phenomena found in spa-
tial individual-based systems are relatively intuitive: for example, coexistence
and diversity are easier, epidemics are less violent and have more realistic per-
sistence and critical community size (Keeling 1995, Keeling et al. 1997),
evolutionary velocities are often much slower (Rand et al. 1995) and it is often
much easier for cooperative and altruistic behaviour to invade (Matsuda et al.
1992, Nakamaru et al. 1996, van Baalen & Rand 1997). Others are more
surprising or more difficult to understand: e.g. parasites can drive huge spatial
genetic host diversity in sexual species (Rand & Keeling 1995), spiral waves
can remove the parasites that destroy hypercycles (Boerlijst & Hogeweg

1991) and host-parasite systems can have a critical state towards which they
evolve (Rand et al. 1995). What these phenomena have in common is that
they cannot occur in mean-field systems. They all rely on the presence of space
and most of them also depend on the fact that individuals are discrete and that
there are relatively strong stochastic effects so that fluctuations or correlations
or both are important.
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Unfortunately, these explicit spatial population models, which usually are
some form of probabilistic cellular automata, are notoriously difficult to anal-
yse. Thus, while being excellent for developing intuition and formulating con-
jectures, as models they suffer from a number of deficiencies. Most importantly,
we lack real mathematical understanding of them and, in most cases of interest,
cannot say whether the behaviour we see is reasonable or not. Moreover, their
formulation usually deviates considerably from biological realism and it is dif-
ficult to estimate the significance of this or to compare their structure to data.
Finally, because of the absence of theory, one is often reduced to simulation
alone which is not very satisfactory.

In this chapter I want to address this problem and introduce a class of
general models which, while allowing us to address questions raised by space,
discreteness and stochasticity, are nevertheless much more tractable and con-
trollable and also can be more directly connected with biological data. They
will enable an analytical approach. I refer to them as correlation equations

because the basic idea is to derive stochastic differential equations for the time
evolution of certain low-order correlations. This approach has its foundation in
certain areas of physics (such as statistical mechanics and the theory of weak
turbulence) where correlation equations are derived to describe the statisti-
cal structure of complex fields which are defined stochastically or by pdes. It
has also been used to model chemical reactions (ben-Avraham et al. 1990,
Tretyakov et al. 1994). For applications in ecology, evolution and epidemi-
ology, the derivation can be justified directly from biological hypotheses rather
than being deduced from some more basic system of equations. This is because
such biological dynamics are dominated by interactions between individuals
which can be nicely captured by low order correlations and also because the
stochastic background of biological systems even more effectively destroys high-
order correlations. Moreover, such models are more robust to the assumptions
underlying their derivation and these assumptions are more susceptible to ex-
perimental verification.

Many interesting biological systems are well-described by what I call pair

approximations which give the simplest correlation equations extending the
mean-field equations. In these a closure is used which gives a system of stochas-
tic differential equations for the second-order moments or pair numbers. These
can work very well. One reason for this is that many biological systems are
dominated by pairwise interactions which introduce important correlations and
fluctuations. Two good examples are sexually transmitted diseases and evolu-
tionary games played between individuals such as the Prisoner’s Dilemma (see
Sections 4 and 5). Moreover, as we will see, in many systems, the higher-order
correlations can be approximated or modelled as stochastic noise.

Such pair approximations have been developed for a range of systems such
as simple host-parasite models (Satō et al. 1994, Keeling 1995, Keeling

& Rand 1996), epidemics (Keeling 1995, Keeling & Rand 1996, Mor-

ris 1997), plant dynamics (Harada & Iwasa 1994, Satō & Konno 1995,
Bolker & Pacalla 1996), spatial games (Morris 1996, Nakamaru et al.
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1996) and the evolution of altruism (Matsuda et al. 1992, Harada et al. 1995
and van Baalen and Rand 1996). They were pioneered by the Japanese
school which includes Ezoe, Harada, Iwasa, Kubo, Matsuda, Matsuda, Naka-
maru, Ogita, Sasaki, and Satō and extensively studied by Keeling and Morris
in their Warwick theses (Keeling 1995 and Morris 1997). Bolker and
Pacalla also made an important contribution with a related study of some
simple ecological systems in continuous space (Bolker & Pacalla 1977).

My aim in this discussion is twofold. Firstly, to survey some interesting
examples and applications. Here I cannot claim to be exhaustive and must
admit to a strong bias towards my own interests. Secondly, to provide a toolkit
that will help others to apply these ideas to their own problems. This aim
forces a more detailed approach to the mathematical underpinnings.

In this paper I proceed as follows. In Section 2 I discuss the derivation of
such equations from the underlying stochastic process starting with the cal-
culation of the master equation and then discussing its closure to obtain a
differential equation. In particular, I give a careful discussion of the various
pair approximation and closure procedures. This section may seen unduly
mathematical to the more biologically minded but I believe that, firstly, it is
important to understand the underlying principles and, secondly, on the prac-
tical side, this section lays down a clear procedure for deriving such equations
that can then be applied to a very wide range of biological systems.

In Section 3 I start the applications by discussing a range of applications
in infectious diseases and host-parasite systems. Including pair correlations
can tell us a lot about previously unexplored phenomena. Firstly, I discuss
the spatial SIR model and, in particular, consider how the establishment and
maintenance of a disease depends upon spatial structure. Secondly, I use the
pair approximation to analyse the evolution to criticality in the host-parasite
systems of Rand et al. 1995 and also consider the host-parasite system of Satō
et al. 1994. Finally, I consider a model for measles from Keeling et al. 1997
that gives a much improved fadeout structure and critical community size which
compares well with data.

In Section 4, which depends strongly upon Morris 1997, I consider spatial
games. An important aspect of this section is the careful comparison between
the pair approximation and the observed behaviour of stochastic simulations on
regular and irregular, static and dynamic networks. Section 5 is about altruism
and cooperation. Regarding, cooperation, I consider reciprocal altruism in the
prisoner’s Dilemma game and discuss a model of Nakamaru et al. 1996 in
which, in contrast to mean-field models, cooperative strategies can invade non-
cooperating resident populations. For unconditional altruism, the principle
current approach concerns trait groups and relies upon fluctuations in local
population structure to succeed. Following Matsuda et al. 1992 and van

Baalen & Rand 1997, I explain a new and, I believe, more natural model
in which correlations rather than fluctuations enable altruists to invade non-
altruistic populations.

Unfortunately, through lack of space, I am unable to treat all the applica-
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tions I would have liked to. Ecological applications have suffered most, notably
the treatment of vegetative propagation versus seed production in plant sys-
tems by Harada & Isawa 1994, the pair approximation Lotka-Volterra system
(Matsuda et al. 1992, Nakamaru et al. 1996) and the treatment of Bolker

& Pacalla (1996) of a similar approach to pair approximation in a continuous
2-dimensional space.

Finally, I would like to point out that many of the calculations in this paper
were computed using Maple and I have made some of the worksheets available
via my web page http://www.maths.warwick.ac.uk/∼dar/. From this you can
also get many of the differential equation that I have had to leave out because
of lack of space.

2. Deriving the correlation equations

In the framework I consider, space is represented by a network of sites x. These
sites represent either individuals or empty sites that individuals can occupy.
The edges e join neighbouring sites. This mathematical structure is used to
capture the idea that two individuals are neighbours if they regularly interact
with each other. This relation may coincide with geographical proximity so that
the network is essentially two dimensional or it may represent some more com-
plex interaction structure such as that seen in childhood diseases like measles
or sexually transmitted diseases like HIV/AIDS. There, although the global
structure is two dimensional, the local structure can be higher-dimensional.

The states of each site are finite in number. Typically, they are either empty
(∅) or correspond to occupation of the site by an individual in some state or
of some type. In a simple host-parasite system the individuals might have two
states, susceptible and infected, in a spatial game the states of the individuals
will correspond to the strategies being played and in a simple predator-prey
system the sites might either be empty or occupied by a predator or a prey.

The state of the system σ = {σx}, often called a configuration, is determined
when we associate to each site x in the network a state σx.

2.1. Notation

Before I proceed to discuss how to calculate correlation equations from the
event structure I need to introduce some basic notation and conventions that
will be used throughout the paper. Assume that we have a given configuration
σ. I use the following notation:

σx and σe denote respectively the state of the site x and the edge e. Thus
σx = i and σe = ij mean that the state of x is i and one site of e is in state
i while the other is in state j. In this case ei and ej denote the sites of the
edge e which are respectively in states i and j.

Qx denotes the number of neighbours of a site x. I use Q to denote the space-
average of this. Very often, in particular applications, Qx is assumed to be
independent of x.
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Qx(i) = Qσ
x(i) denotes the number of neighbours of x which are in state i. Al-

though Qx(i) depends upon the configuration σ, for notational convenience
I drop the reference to σ. The reader should keep this dependence in mind.
In particular, since σ varies with time, so do the Qx(i) and I will derive
equations of motion to describe this.

[i], [ij] and [ijk] denote the number of sites, edges and triples in states i, ij
and ijk respectively.

ρi and ρij denote the density of sites and edges in states i and ij respectively.
Thus, if Q is the average number of neighbours and N the total population
size, ρi = [i]/Q and ρij = [ij]/QN .

Q(i | j) and Q(i | jk) denote the space-averaged values of the number of i neigh-
bours of respectively a j site and a j site in a jk edge i.e.

Q(i | j) =
1

[j]

∑

σx=j

Qx(i) and Q(i | jk) =
1

[jk]

∑

σe=jk

Qej
(i).

Note that

Q(i | j) =
[ij]

[j]
and Q(i | jk) =

[ijk]

[jk]
+ δik. (1)

ηx(i | j) and ηej
(i | jk) are the local fluctuations from these average values i.e.

ηx(i | j) = Qx(i) − Q(i | j) and ηej
(i | jk) = Qej

(i) − Q(i | jk). They satisfy

∑

σx=j

ηx(i | j) = 0 and
∑

σe=jk

ηej
(i | jk) = 0. (2)

It is important to adopt a consistent convention about how to count edges. I
will distinguish between the edge from x to y and the edge from y to x. This
convention has the consequence that edges in state ii are counted twice. It
is this that accounts for the fact that there are often factors of two in our
equations.

2.2. Events and the master equations

I now discuss these various steps in the calculation of the correlation equations.
The first step, the derivation of the master equation, is only quickly discussed
in abstract here because our main aim is to discuss the various pair approx-
imations. As a consequence, to really understand this you should probably
read the following Sections 3, 4 and 5 on the various applications alongside this
discussion.

All processes are assumed to be local: the immediate fate of an individual
is affected only by its neighbours. Generally speaking, the state of a neigh-
bourhood determines the rates at which certain events occur that transform
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the neighbourhood from its present state to a new one. This defines the dy-
namics. A crucial notion to get clear is that of an event i.e. a change of state
of some particular site or edge, typically a biological event such as birth, death
or infection at that location.

The basic equation which allows us to do this is the following. Consider a
function f(σ) which gives us the expectation of some average quantity of the
configuration σ. For example, f might be the expected total number [i] of sites
in some given state i or the total number of edges [ij] in state ij. The rate
of change of f(σ) is then given by summing over all events ε the rate rσ(ε) at
which that event occurs multiplied by the change δf(ε) the event causes in f
i.e.

df

dt
=

∑

events ε

rσ(ε) δf(ε). (3)

Both rσ(ε) and δf(ε) will depend upon the configuration σ. I refer to (3) as
the master equation for f .

To derive the correlation equations for a particular biological system I will
proceed as follows:

1. Calculate the contribution of each event type to the sum in the master
equation (3) for f = [αβ].

2. Use this to get an exact expression for d[αβ]/dt involving the pair numbers
[ij], the local densities Q(i | jk) and the correction terms of the form below.

3. (Pair Closure.) Determine an approximation (usually of the form Q(i | jk) ≈
κQ(i | j)) so that Q(i | jk) can be replaced in the expression for d[αβ]/dt
by terms involving pair and singleton numbers only.

4. (Stochastic Closure.) Incorporate any biases in the correction terms into
the expression for d[αβ]/dt trying to ensure that the remainder can be
well-modelled by random noise. In this way the pair approximation for the
system which is a stochastic differential equation is obtained.

5. If this equation does not capture the right behaviour consider also including
differential equations for crucial higher-order correlations.

2.3. Steps 1 and 2: Calculating the master equation for f = [αβ].

If the discussion that follows is not clear to the reader I suggest that he or she
works through the simple derivation of the differential equations in Section 3.2
and equations (13) and (14) in Section 4.2.

The basic events are either associated to a given site x or to an edge e
connecting two neighbouring sites. The important thing about the site events
is that for some states i and j they transform a site x in state i into state
j at a rate r(x) that is only dependent on the state of x’s neighbourhood
and therefore their contribution to df/dt can be written as a sum of the form
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∑

σx=i r(x) δf(x) where δf(x) is the change in f caused by this event at x. An
example would be a constant rate death event where r(x) = d is independent
of x. Similarly, for an edge event which transforms ij edges into state i′j′, the
contribution to df/dt can be written as

∑

σe=ij r(e) δf(e). An example of such
an edge event would be a migration where the states of the vertices in an edge
are interchanged.

Many events can be considered as either site or edge events. An example
is birth of an i-individual. This can be associated with empty sites and then
the rate of the births is given by summing rates over all the i neighbours able
to give birth into the site. On the other hand, it can also be considered as
associated with an edge e in state i∅ with the birth event corresponding to the
change i∅ → ii. Then the rate is just determined by the neighbourhood of
the i individual in the pair. The second approach, regarding the event as an
edge event, is preferable in this case because the first event is composite, since
several sites can be the cause of the birth, whereas the second is a simple birth
only involving birth from the occupied site of the edge. If the edge approach is
adopted the contribution of these birth events is written as a sum over edges
in state i∅. Of course, this choice is only a matter of convenience and does not
affect the answer. In the applications in this paper, I consider births, infections,
migrations and replacement as edge events and the only site events are constant
rate death and infectious recovery events.

If f = [αβ] then typically for a site event both r(x) and δf(x) will be
simply calculated functions of the Qx(k). While for an edge event as above
r(e) and δf(e) may also involve the Qei

(k). If the resulting expression for the
contribution to df/dt is linear in these then, because of eq. (2), one can replace
them in the sum by their average values Q(k | i) and Q(k | ij) defined above
in Section 2.1. Otherwise, in the nonlinear case, replacing the terms of form
Qx(k) and Qei

(k) with Q(k | i) and Q(k | ij) introduces correction terms which
are often correlations of the form

Γ(k | i | l) =
1

[i]

∑

σx=i

ηx(k | i)ηx(l | i) (4)

or

Γ(k | ij | l) =
1

[ij]

∑

σe=ij

ηe(k | ij)ηe(l | ji)

where ηx(k | i) and ηx(k | ij) are as in Section 2.1. See Sections 3, 4 and 5 for
examples.

2.4. Regular and irregular networks

There are two complications in the case of an irregular network where Qx varies
from site to site. The first is that one cannot use the relations Q[i] =

∑

j [ij],
which only hold for regular networks, to reduce the number of equations. One
does have that Qi[i] =

∑

j [ij] where Qi is the average of the Qx over the i-
sites, but this is obviously much less useful. The second complication is more
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important. If the Qx’s and Qx(i)’s only enter the master equation in a linear
way then it is straightforward and exact to replace them by the average values
Q, Q(i | j) and Q(i | jk) in much the same way as for regular networks. Luckily,
this is the case for quite a wide range of systems such as the epidemiological
ones I am about to consider: irregularity does not introduce such nonlinearities
and we can deal with both regular and irregular systems together. However, if
they enter the master equation in a nonlinear way, as is the case for our models
for games and for altruism and cooperation, then this cannot necessarily be
done and there can then be genuine differences in the dynamics for regular and
irregular networks. An example is given in Section 4.2 (see Figure 5).

2.5. Pair Closure

The expressions for d[α]/dt and d[αβ]/dt that are obtained in this way are of
the form

d

dt
[α] = Xα([i]; [ij];Q(i | jk)) + ξα(t) (5)

d

dt
[αβ] = Xαβ([i]; [ij];Q(i | jk)) + ξαβ(t) (6)

where the ξα and ξαβ are the correction terms. Note that I have emphasised
their dependence upon time t because they are functions of the spatial config-
uration σt at time t. Let us now consider how to close these equations so as
to put them into the form of a differential equation or a stochastic differential
equation involving only the [i] and [ij].

Our approach to this closure involves (a) approximating the Q(i | jk) by
functions of the [i] and [ij], (b) keeping track of all the correction terms and
(c) a strategy for dealing with the correction terms usually incorporating any
biases into the deterministic part of the equation so that their mean is zero
and then replace them with random noise which approximates the statistical
structure of their fluctuations due to the time-dependence of the configuration.

Approximating the Q(i | jk). Note that [ijk] is the sum of Qx(i)(Qx(k) − δik)
over all x such that σx = j where δij is 1 if i = k and 0 otherwise. Thus
Q(i | jk) = Q(i | j) + Q(k | j)−1Γ(i | j | k) where Γ(i | j | k) is given in (4). This
calculation only makes sense if both [ij] and [jk] are non-zero and is indepen-
dent of whether or not i = k.

It is easy to see that in general the corrections Γ(i | j | k) will have a non-zero
mean. This occurs both because of the existence of non-zero triple correlations
and also because knowing that the j site has a k neighbour constrains the
number of i neighbours. I show an example of this in Figure 8 for a simulation
of a spatial game. It is therefore necessary to adopt a more sophisticated
strategy to approximate the Γ(i | j | k) than just putting them equal to zero.

In certain simulations one finds that the Qx(i), σx = j, are either Poisson
distributed or distributed as in Bernoulli trials. In these cases one gets good
approximations as follows.
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Poisson statistics. In approximating Q(i | jk) consider separately the cases
i = k and i 6= k. In the first case, if it is assumed that the Qx(i) are Poisson
distributed over j sites x then the mean Q(i | j) equals the variance which is
Γ(i | j | i). In the second case, if it is assumed that i 6= k and Qσ

x(i) and Qσ
x(i) are

independently Poisson distributed over j sites with means Q(i | j) and Q(k | j),
then, by the independence, the covariance Γ(i | j | k) is zero. In either case one
deduces that the approximation to take is

[ijk] ≈
[ij][jk]

[j]
or equivalently Q(i | jk) ≈ QP (i | jk) = Q(i | j) + δik.

Bernoulli trial statistics. In this case I assume that the number of i-neighbours
of a j at x is chosen from Qx ≡ Q repeated independent trials with the proba-
bility of choosing an i being given by a = Q(i | j)/Q. To approximate Q(i | ji)
note that the average number of successes is Qa and the variance Γ(i | j | i)
is Qa(1 − a). A longer calculation using the multinomial distribution gives
Γ(i | j | k) when i 6= k. In both cases one deduces the following approximation:

[ijk] ≈ κ
[ij][jk]

[j]
or equivalently Q(i | jk) ≈ QB(i | jk) = κQ(i | j) + δik

where κ = (Q − 1)/Q. This is the meaning of κ throughout the paper. It is
worth noting for future reference that this approximation is equivalent to the
assumption

Γ(i | j | k) ≈ Q(i | j)

(

δik −
Q(k | j)

Q

)

(7)

and that, with this approximation, the sums
∑

σx=j

Qx(i)Qx(k) and
∑

σe=jk

Qej
(i)Qek

(l)

are approximated by [ij]QB(k | ji) and [jk]QB(i | jk)QB(l | kj).
We have studied three types of networks: lattices with a constant number of

neighbours, random networks with a globally two-dimensional structure (typ-
ically obtained by a connecting all points in a random distribution of points
on the plane which are within a given distance of each other) and dynamic
networks where births and deaths destroy and create sites. In a wide range of
systems of the first two types, the Bernoulli approximation is good, while the
Poisson distribution is more relevant for the dynamic networks (see Sections
2.4 and 4.2).

Clumped network structures. Minus van Baalen and Andrew Morris (Morris

1996) have made the following very interesting observation. Note that if there
is a high probability ϕ that two neighbours of a given site are themselves
neighbours (i.e. there are lots of triangles in the network) then one should
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expect that the Q(i | jk) will need further corrections because the site in state
i is likely to be connected to that in state k. The approximation to take in this
case is

[ijk] = κ
[ij][jk]

[j]

{

(1 − ϕ) +
ϕN

Q

[ik]

[i][k]

}

. (8)

Let me try and justify eq. (8). Firstly, let us consider the open triples i.e.
the triples xyz where there are edges from x to y and y to z but no edge from
z to x. Let [ijk]open denote the number of such open triples in state ijk and
[i · k]open denote the number of those with σx = i, σz = j and y in any state.
Let [ijk]∆ and [i · k]∆ denote the analogous numbers for triples that are in
triangles. The basic assumption that I will make is that

[ijk]∆
[i · k]∆

≈
[ijk]open

[i · k]open
. (9)

The idea behind this is that these ratios will depend weakly on the absence or
presence of an edge connecting the i-site to the k-site since this is not directly
connected to the j-site. This approximation is supported by simulations.

Firstly, consider [i · k]open. Since the i-site is not directly connected to the
k-site and the intermediate site is free, it is reasonable to estimate [i · k]open by

[i · k]open ≈
∑

open triples

ρiρk = (1 − ϕ)
Q(Q − 1)

N
[i][j].

Secondly, note that the arguments justifying the Bernoulli approximation above
give us that one can approximate [ijk]open by (1−ϕ)κ[ij][jk]/[j]. Thirdly, note
that [i · k]∆ is the number of triangles containing a ik pair. It is therefore rea-
sonable that the ratio of [i · k]∆ to the total number of triangles is approximated
by the proportion of all edges in state ik. The number of pairs is QN and the
number of triangles is ϕQ(Q − 1)N . Putting all this together with equation
(9) gives the approximation (8).

One can regard ϕ and Q as parameters that can be varied. For a given
fixed value of Q one can regard increasing ϕ as increasing the clumping of
the sites in the network because if it is near one then the only way it can
be compatible with the given value of Q is if there are clumps in which ϕ is
large but which are only weakly connected to each other so as to get the right
average number of neighbours. Thus using the substitution given in equation
(8) allows us to model different network structures. I will consider this again
in Section 3.3 in connection with epidemics and host-parasite systems. A nice
example is measles (see Section 3.6) where the change in structure between
school vacations and term-time can be modelled by an increase in both ϕ and
Q (Keeling et al. 1997).

Corrections from triple correlations. Suppose we have a situation where the
Bernoulli trials approximation is expected to work. Then our estimate of [ijk]
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is Eijk = κ[ij][jk]/[j]. Although, in simulations one often finds that [ijk] ≈
Eijk in some significant cases Tijk = [ijk]/Eijk fluctuates about some mean
which is significantly different from one. It is not surprising that the largest
divergences seem to occur when i = k. This is the case for example in the host-
pathogen system discussed in Section 3.4. In these cases it is necessary to take
triples into account but only in the sense that Eijk/[ijk] is a time-independent
constant different from one. To obtain the correct behaviour from the pair
model it may be crucial to allow for this. Thus another substitution scheme is
[ijk] ≈ κTijk[ij][jk]/[j] where the factors Tijk are estimated from simulations
or data.

Pair closure. Having chosen the appropriate substitutions scheme and substi-
tuting into eq. (5) to replace the terms of form Q(i | jk), a set of equations of
the following form is obtained:

d

dt
[α] = Xα([i]; [ij]) + ξα(t) (10)

d

dt
[αβ] = Xαβ([i]; [ij]) + ξαβ(t) (11)

where, if the job has been done properly, the corrections ξα(t) and ξαβ(t) can
be regarded as low amplitude random noise with zero mean. This is what I
call the pair approximation. It is different to what some other authors call the
pair approximation because they tend to restrict it to the equivalent to the
approach described for Bernoulli trials.

We now forget that the correction terms come from the fluctuations in
the configuration and replace them with random noise with approximating
statistical structure. Thus one obtains a stochastic differential equation to
investigate. If the deterministic part of the equation has as its attractor just
a stable fixed point, then it is likely, provided the noise is of low amplitude,
that the only effect of the noise is to cause the state to have small fluctuations
around the deterministic equilibrium. Thus the noise terms can be ignored and
set to zero. However, there are biological situations where the noise can play a
very significant role and the behaviours with and without it are very different.
An example of this is given in Section 3.6. It is therefore necessary to treat the
question of how to handle the noise terms case by case.

3. Simple infection dynamics

I start the discussion of applications by considering some very simple infection
dynamics because these illustrate most clearly the way in which pair approxi-
mations are derived and some very simple examples give rise to interesting new
phenomena. Throughout the discussion of this section I will assume that the
networks are regular i.e. Qx ≡ Q. As explained in Section 2.4 this assumption
does not affect the form of the equations (because the master equation depends
linearly on the Q’s for these systems), but does enable us to reduce the number
of them.
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3.1. The contact process.

Although, because of lack of space, I will not discuss it in any detail, I must men-
tion the so-called contact process (Durrett 1988, Bezuidenhout & Grim-

mett 1990). This is the simplest mathematical model of an infective process
that one can think of. In it sites of a lattice represent hosts who are either
uninfected and susceptible (S) or infected (I). Infected individuals infect their
susceptible neighbours at a given rate β which is the transmissibility of the
disease. They can also recover, becoming susceptible again at the rate ν. The
contact process can also be thought of as an ecological model in which infection
corresponds to birth and recovery to death.

A most interesting fact about the contact process is that there is a criti-
cal transmissibility βc below which the infection dies out (Bezuidenhout &

Grimmett 1990). At the critical βc, long-range correlations become important
and the pair approximation is therefore poor. The contact process therefore
gives insight into the way in which the approximations can fail because of
important long-range correlations.

The contact model was analysed using a pair approximation in Matsuda

et al. 1992. A comparison between the the mean-field and pair approximations
gives that both their equilibria are greater than the true value for the contact
process but that the pair approximation is substantially more accurate provided
β is greater than the true critical value and is very accurate for relatively large
values. Both the mean field and pair models underestimate βc but the pair
model does substantially better than the mean-field model.

3.2. Standard SIR equation

In this system, which can be regarded as a simple extension of the contact
process, recovery leads to an immune recovered state R instead of S. These
immune individuals can die in which case they are replaced by a susceptible.
Thus including infection and recovery the events are as shown symbolically
below. I shall in future adopt a similar format for describing the models and
represent them in the following form:

(i) infection: at edge e, SI
β
→ II at rate β constant

(ii) recovery: at site x, I
ν
→ R at rate ν constant

(iii) simultaneous death and birth: at site x, I or R
µ
→ S at rate µ constant

I now calculate the pair approximation for this system. Since the number
of singletons and pairs are respectively N and QN and Q[i] =

∑

j=S,I,R[ij] it
suffices to find the equations for the [i] and [ij] with i and j equal to S or I.

As an illustration let us calculate the SI term in some detail. We consider

the contribution from the various events. The notation
eventtype

+= used below
means that this term is the contribution from the given event type to the
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master equation. Using this notation:

d

dt
[SI]

recovery
+=

∑

σx=I

−νQx(S) = −ν[SI]

infection
+=

∑

σe=SI

β(QeS
(S) − QeS

(I)) = β([SSI] − [ISI] − [SI])

death/birth
+=

∑

σx=I,R

µQx(I) −
∑

σx=I

µQx(S) = µ(Q[I] − 2[SI]).

Note that since all the Q’s enter in a linear fashion the equations for this
system are at this point exact i.e. there are no correction terms. One of the
pair approximations for the triples discussed in Section 2.5 can now be used to
close this equation.

As in Sections 2.3 and 2.5 one can similarly calculate the rest of the equa-
tions which, together with their Bernoulli pair approximations, are as follows:

d

dt
[S] = µ(N − [S]) − β[SI],

d

dt
[I] = −(µ + ν)[I] + β[SI ]

d

dt
[SS] = 2µ([SI] + [SR])

−2β[SSI] ≈ 2 µ ([SI] + [SR]) − 2βκQ(S |S)[SI]

d

dt
[SI] = µ(Q[I] − 2[SI]) + β([SSI] − [ISI] − [SI]) − ν[SI]

≈ µ (Q[I] − 2[SI]) + βκ [SI] (Q(S |S) − Q(I |S)) − (β + ν)[SI]

d

dt
[II] = −2µ[II] + 2β([ISI] + [SI]) − 2ν[SI]

≈ −2 µ [II] + 2β [SI] (κQ(I |S) + 1) − 2[II].

Establishment and invasion. One of the basic problems of epidemiology is to
determine the criteria for establishment of a disease i.e. when will a small
number of infecteds give rise to long-term persistence of the disease. For the
systems I consider this is equivalent to the condition that the trivial equilibrium
with [I] = 0 is unstable.

The non-trivial equilibrium values for the pair approximation can be cal-
culated exactly, for example by Maple (see the worksheets mentioned in the
Introduction). The critical transmissibility is given by βc = σ/Q̃ where Q̃ =
Q − 2 − 2µ/σ and σ = µ + ν. For β > 0 less than this, the trivial solution
[I] = 0 is stable and the non-trivial equilibrium above is negative and unstable.
As β is increased past βc, the non-trivial solution becomes positive and the
trivial equilibrium exchanges its stability with it. In Figure 1 I show how the
singleton and pair numbers change as β passes through βc and compare this
with a Q-neighbour mean-field model.

In fact, the usual SIR model (see Section 6.1 of Anderson & May 1992) is
the mean-field model derived using the assumption that the whole population is
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Figure 1. A plot of the proportions of singleton and pairs for the SIR Bernoulli

pair approximation as β passes through the critical value. The parameter values are

β = 100, µ = 0.02, ν = 1 and Q = 4. Note how small [SI] is compared to ρSρI . For

comparison, the equilibrium of the Q-neighbour mean-field system is also shown.

homogeneously mixed. Its critical transmissibility is βc = σ/N and for β > βc

it gives the number of infectives as [I] = µ
(

Nσ−1 − β−1
)

. Thus the pair
approximation gives radically different predictions from this. This, however,
is not the mean-field model that is discussed in Figure 1. In this I assume
that each individual only interacts with Q neighbours and all see the same
environment so that Qx(I) = Q(S | I) = Q[S]/N . Thus this model has built
into it that each individual only interacts with a small subset of the population,
but assumes this subset has the same statistical structure as the population as
a whole. In this case [SI] is approximated by Q[S][I]/N to give a differential
equation for [S] and [I] whose critical value is given by βc = σ/Q and whose
equilibrium number of infectives is given by [I] = µN(σ−1 − (Qβ)−1). Thus
in the pair approximation the onset of the disease as measured by the critical
transmissibility is considerably delayed in comparison to the mean-field models
and, above this, the levels of infection are generally lower. Below in Section 3.3
I consider further how this depends upon network structure.

Vaccination and spatial structure of invasion. I have already calculated βc

above but now I show how to also to calculate the correlation structure of the
infecteds as they invade. Because of this one can start to ask sophisticated
questions, about vaccination strategies for example, and below I will use a
similar approach to show that the network structure can have a profound effect
upon establishment.

Let ~n denote the vector ([I], [SI], [II]). Then ~n = [I](1, Q(S | I), Q(I | I))
and, the equations above involving I together with the Bernoulli trials approx-
imation can be written as

d~n

dt
= M · ~n
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where

M =





−σ β 0
µQ βκq − β − σ − µ 0
0 2βκ(Q(I |S) + 1) −2σ



 ,

σ = µ + ν and q = Q(S |S) − Q(I |S).
To study invasion of a purely susceptible population one would take Q(S |S) =

Q. However, I would also like to consider the case where the population con-
tains a proportion of immune individuals so as to study the effects, for example,
of vaccinating a proportion of the population or the reinfection of a previously
infected population in which the infection has died out. Thus I will assume
that Q(R |S) is externally fixed at invasion. Since initially Q(I |S) = 0 this
means that q = Q(S |S) = Q − Q(R |S) and so I shall regard q as being fixed
in this way.

It is clear that the eigenvalues of M are the two eigenvalues of the 2 × 2
matrix M0 given by the four upper-left entries of M and in addition −2σ
(corresponding to the eigenvector (0, 0, 1)). Since the latter is negative I am
only interested in the other two eigenvalues. These are given by the trace tr M0

and the determinant detM0 of M0 and the dominant eigenvalue is zero when
trM0 ≤ 0 and detM0 = 0. A simple calculation shows that the real parts of
these are negative and hence that the uninfected equilibrium is stable provided
β < βc(q) where

βc(q) =
σ(σ + µ)

σκq + µQ − σ
.

While if β is larger than this then the largest eigenvalue λ+ has a positive
real part and hence the infection will be established. This critical value is a
decreasing function of q and its minimum value is the critical transmissibility
βc = σ/Q̃ given above, as one would expect.

As well as deriving the invasion criteria the correlation structure of the spa-
tial population which invades can also be found. The invading population will
have associated with it the exponentially growing vector ~n(t) but this will be ap-
proximately given by ~n0 expλ+t where ~n0 is the eigenvector associated with λ+.
But as we saw above ~n = [I](1, Q(S | I), Q(I | I)) Thus, (1, Q(S | I), Q(I | I)) is
an eigenvector with eigenvalue λ+. This eigenvector for our particular problem
is easily calculated and it follows from this that at invasion

Q(S | I) =
α + σ

β
and Q(I | I) =

2(σ2 + ασ − Qβ)

σκq − Qβ + (β − ν)σ

where α = χ +
√

(χ2 + 4σκnq − (β + µ + σ)) and χ = (β(κq − 1) − µ − 2σ).

3.3. SIR on clumped networks and critical transmissibilities.

Now I want to consider the dynamics of such a disease on a network which
has a clumped structure as described in Section 2.5. We will see that lots
of clumping in the network radically changes the transmission of the disease.
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To study this I use the the clumped network approximation given by eq. (12)
instead of the Bernoulli trials approximation. The resulting pair approximation
which replaces that in eq. (12) is given in the worksheets mentioned in the
Introduction.

Critical transmissibilities. For a fixed Q the clumping is increased by increasing
ϕ as explained in Section 2.5. We will find that there is a critical ϕ = ϕc at
which βc diverges to infinity i.e. the disease is unable to establish.

By standard structural stability theory, for small ϕ > 0 the onset of the
disease is qualitatively like that for the standard pair-approximation above
except that onset of the disease is slightly delayed (i.e. βc is larger (see Figure
2)(a)) and the number of infectives is reduced.

In particular as β passes through βc the trivial solution exchanges stability
with the nontrivial solution. This is characterised by the fact that one of the
eigenvalues of the linearised system about the trivial solution becomes zero and
hence by the fact that the determinant of the matrix M giving the linearised
system is zero.

As in the previous section the correlation structure of the invading popula-
tion is determined by the eigenvector ~n0 = ([S]0, [I]0, [SS]0, [SI]0, [SS]0) with
eigenvector zero at β = βc. This satisfies M ·~n0 = 0 and it follows immediately
from the resulting linear equation that, at invasion, Q(S | I) = [SI]0/[I]0 =
σ/β. Substituting this into the equation detM = 0 gives a quadratic equation
of the form aβ2 + bβ + c = 0 where a, b and c are functions of ϕ and the other
parameters but not β. This has an appropriate solution of the form βc = βc(ϕ)
for 0 ≤ ϕ < ϕc where ϕc is given by the equation a = 0. This can readily be
solved and gives

ϕc = 1 −
σ − µQ

σ(Q − 1)
.

As one would expect, ϕc → 1 as Q → ∞. The dependence of βc on ϕ for a
variety of Q values is shown in Figure 2. Notice what a massive effect this is
for small Q values. Thus the situation is radically different from that for the
standard SIR equation and the Bernoulli pair approximation SIR equation.

One can easily image that such a network structure will arise in situations
where there are significant social structures involving families, schools or other
groups. Applying these ideas to a realistic structures of this form is the next
step. The importance of what I have explained here is twofold. Firstly, that
such structure can have very significant effects and secondly that it is often
quite amenable to precise mathematical analysis. The calculations for this
model are available as a Maple worksheet from my web site as explained in the
Introduction.

Clumped networks and oscillations. In contrast to the classical mean-field SIR
equation, in certain parameter ranges the clumped pair-approximation displays

344



Q = 32

Q = 16

Q = 8

Q = 4

0

10

20

30

40

0.5 0.6 0.7 0.8 0.9 1phi

00.20.40.60.81

0.2

0.4

0.6

0.8

1

0

0.05

0.1

0.15

0.2

0.25

0.3

transmissibilityvirulence

pr
op

or
tio

n 
pa

ra
si

te
 d

en
si

ty

(a) (b)

Figure 2. (a) A plot of βc against ϕ for various values of Q showing the divergence

of βc to ∞. (b) The density of pathogens in stochastic simulations of the host-parasite

system of Section 3.4 plotted against both V and τ averaged over a number of runs

and including both those where the pathogen survived and where it died out.

limit cycle behaviour. In fact, for the parameter values of Figure 1, as ϕ is in-
creased past 0.21 the infected equilibrium solution undergoes a Hopf bifurcation
in which it hands over its stability to a limit cycle which grows out of it (Mor-

ris 1997). This raises the question of whether or not this is a real phenomenon,
at least to the extent that it is reflected in stochastic simulations. This is dis-
cussed in Morris 1997 where it is shown that the corresponding lattice system
(with N = 10, 000) does indeed oscillate with an amplitude close to that of the
pair-approximation though with a slightly greater period.

3.4. Evolution to criticality in the host-parasite system of Rand et al. 1995

In the paper Rand et al. 1995 the authors studied a simple generic spatial,
individual-based host-parasite system in which a number of interesting effects
were observed. In particular, they studied evolution of virulence and transmis-
sibility in this system. Among the biologically interesting phenomena found
were the following:

(i) Compared to the corresponding mean-field models, selective pressure
is substantially reduced. Evolution is much slower and there is more
stability to invasion by mutant hosts and pathogens. This suggests
that artificial removal of pathogens by processes designed, for example,
to promote host health can lead to faster evolution and can reduce
evolutionary stability.

(ii) Critical transmissibility. Unlike the mean-field models, there exists an
upper critical transmissibility βc above which the pathogen dies out.

(iii) Self-evolved criticality. If the transmissibility β is allowed to mutate,
it evolves to the critical value βc. Thus the system evolves so as to put
itself at the boundary of where it can exist.
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There is also a lower critical transmissibility βc,0 whose existence is easy to
explain. The pathogen persists when βc,0 < β < βc. The critical transmissibil-
ities are functions of the other parameters of the model such as the virulence V .
I now analyse this model using a pair approximation and show that the above
phenomena are accessible to direct mathematical analysis. Pair approximation
techniques were first applied to this system in Keeling 1995 although he did
not derive the equations or calculate the evolution.

The system studied is a synchronously updated probabilistic cellular au-
tomaton and therefore the corresponding pair approximation is a map. It is
more natural biologically to consider the asynchronously updated case. Luck-
ily, the analyses of either case applies directly to the other and the results for
the two systems are the same. Therefore, since the asynchronous case fits in
with this exposition, I only treat that here.

In addition to the susceptible (S) and infected (I) states, sites are also
allowed to be empty (∅). Infected hosts die at a rate V and uninfected hosts
give birth into a neighbouring empty site at rate b. The events are:

(i) birth: at edge e, S∅
b
→ SS at rate b

(ii) death: at site x, I
V
→ ∅ at rate V constant, V is called virulence

(iii) infection: at edge e, SI
β
→ II at rate β constant, β is called transmis-

sibility

(iv) recovery: at site x I
ν
→ S at rate ν constant

Mean-field system. I do not consider here the fully homogeneously mixed sys-
tem but the more appropriate Q-neighbourhood mean-field system where it is
assumed that each individual has a neighbourhood of size Q and the neigh-
bourhood ratios Q(i | j) are the same for each neighbourhood and hence equal
ρiQ. The nontrivial equilibrium [I] = bσ(α − 1)/(bσ + βV )α exists provided
β > βc,0 = σ/Q. Here σ = V + ν and α = Qβ/σ. Moreover, the selective pres-
sure is ds = β−1σdβ − dV − dν (see Rand et al. 1995). This means that if the
system is invaded by parasites whose parameters β, V and ν differ from those
of the resident by dβ, dV and dν then the exponential rate of growth of the
invader (the invasion exponent) is given by ds up to terms which are quadratic
in dβ, dV and dν and therefore very small. Thus the mean-field system should
evolve so as to maximise β and minimise σ = V + ν.

Pair approximation. In Keeling 1995, it was discovered that in simulations
of the PCA, the following triple correlations which occurs in the master equa-
tion did not satisfy the Bernoulli trials approximation but instead was well-
approximated by the following:

[ISI] = 1.4κ
[SI]2

S
.
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The use of such approximations was discussed in Section 2.5. For all the other
triples that occur in the master equation the Bernoulli trials approximation was
acceptable. With this and assuming constant neighbourhood size and ν = 0
one arrives at the following pair approximation:

d

dt
[S] = −β[SI] + b[∅S]

d

dt
[I] = β[SI] − V [I]

d

dt
[SS] = b[∅S] (κQ(S | ∅) + 1 − βκQ(S |S))

d

dt
[SI] = bκQ(S | ∅)[∅I] + (β (κQ(S |S) − 1.4κQ(I |S) − 1) − V ) [SI]

d

dt
[II] = β (1, 4κQ(I |S) + 1) [SI] − V [II]

By direct solution one finds that there is an equilibrium with positive par-
asite density provided β > βc,0 where

βc,0 =
V (b(Q − 2) + V )

(Q − 2)(b(Q − 1) + V )
.

This is the lower critical transmissibility. The number of infecteds can be solved
for but the expression is too unwieldy to include here. Its qualitative form
is similar to the example shown in Figure 3. Note how the parasite numbers
remain bounded away from zero in this figure as β approaches the upper critical
transmissibility βc (which for this example is 0.5140671 . . . ).
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Figure 3. (a) A plot of the equilibrium value of [i] against β for the host-parasite

model. (b) A plot showing the way in which the solution oscillates when β is slightly

bigger than the upper critical value. This solution has been started very close to the

equilibrium value which became unstable at the Hopf bifurcation.

The upper critical transmissibility βc. In this model what determines the upper
critical transmissibility βc is an inverted Hopf bifurcation. When β is slightly
less than βc the above solution is linearly stable. However, close to it is an
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unstable limit cycle. As β passes through βc this limit cycle coincides with the
equilibrium solution destroying its stability. The equilibrium solution continues
to exist but is now unstable. As a result the orbit of any initial condition close
to it spirals away and comes arbitrarily close to [I] = 0. An example of this
happening just above criticality is shown in Figure 3(b). I believe that these
oscillations are seen in the simulations of the cellular automaton.

Evolution to criticality. Figure 4(b) shows the upper boundary of the domain
of existence of the parasites for the parameters used in Rand et al. 1995. Now I
want to address the question of the evolution of the parasite transmissibility and
virulence by drawing the selective pressure ds for this system onto this diagram.
To do this one calculates at each point (β, V ) the straight line through this point
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Figure 4. (a) The values sβ (solid) and sV (dotted) of the selective pressure in the β

and V directions respectively. The selective pressure 1-form is then s = sβ dβ+sV dV .

(b) This plot shows the upper-β boundary in the (β, V )-parameter given by the upper

critical transmissibility and a sample of the selective pressure kernels along it. The

perpendicular arcs with circular ends show the direction of positive pressure. The

ESS is where the kernels become tangent to the boundary curve.

which is tangent at (β, V ) to the curve of those points which have a zero invasion
exponent with respect to the resident population with parameters (β, V ). This
can be calculated using the formalism for selective pressure given in Rand et
al. 1994. These kernels are also shown in Figure 4(b). I have calculated the
selective pressure in the β and V directions and show the answers in Figure
4(a).

It thus remains to remains to add to the diagram which of the two direction
corresponding to the perpendiculars to these kernels corresponds to the direc-
tion of positive selective pressure. To do this it is only necessary to do a rough
calculation using the data in Figure 4(a) and the answer is shown in Figure
4(b). Straight away we see the following two important facts. Firstly, that for
the birth and recovery rates considered there is a single point (VESS, βESS)
on the curve at which the kernel is tangent. This is marked with a circle in
Figure 4. Secondly, that any population starting in the interior of the existence
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domain will evolve to the boundary given by the curve of upper critical trans-
missibities and then to (VESS, βESS). This is because evolution having driven
the state to the critical curve will evolve along the curve in the direction which
is positive with respect to these kernels. On this curve, if V < VESS then there
is selective pressure to increase V and if V > VESS to decrease it. Thus, for
this system the virulence and transmissibility evolve to definite intermediate
values with the virulence close to 1. This is very different from the behaviour of
the mean-field system. In previous models to obtain evolution to intermediate
values one would be forced to postulate the existence of constraints between V
and β.

3.5. Host-parasite system of Satō et al. 1994.

This model was considered in Satō et al. 1994. The states are the same as in
the previous model but the model differs in that hosts do not recover but can
die and it is assumed that the death rate is independent of infection. Moreover,
only susceptibles can give birth. Thus the infection affects the birth rate but
not the death rate. The events are therefore

(i) death with replacement by susceptible: at site x, S or I
r
→ S at rate

d = 1 constant

(ii) birth: at edge e, S∅
b
→ SS at rate b = mS/Q constant

(iii) infection: at edge e, SI
β
→ II at rate β = mI/Q constant

In simulations of this model Satō et al. find that Q(I | ∅∅) is substantially
less that κQ(I | ∅). They thus propose to use an approximation of the form
Q(I | ∅∅) ≈ εQ(I | ∅) which they call an improved pair approximation. The
value of ε to use must be chosen ad hoc and they estimate it as follows.

Consider the case where [I] = 0 i.e. there is no infection. For persistence of
the S population they need β > βc = Q/ε(Q − 1). But βc should also be the
critical value λc for ergodicity of the true contact process. For a 2-dimensional
square lattice (Q = 4), λc ≈ 0.4119 so as an estimate one can take ε ≈ 0.8093.
In this case Satō et al. find that the parameter space of transmissibility β and
relative fecundity mI/mS is divided into three regions so that if β−1 is fixed at
a value less than approximately 0.61 then for small mI/mS the disease dies out.
For slightly larger mI/mS the disease is endemic and for even larger values all
individuals become infected and so the pathogen drives the extinction of the
host.

3.6. Measles

So far all the pair approximations considered have had either a fixed point
or limit cycle as their attractors. Now I discuss a case where one can obtain
chaotic attractors and where the residual noise coming from the corrections can
play a significant dynamical role. I briefly consider the dynamics of measles
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epidemics following Keeling et al. 1997. Not only is an understanding of
measles dynamics very important from a public health perspective (it is still
major killer outside the developed world), but it has also become a testbed for
epidemiological ideas because as well as possessing complex dynamics, it has
a very simple natural history and, in comparison to other ecological systems,
there is lots of good data (see references in Keeling & Grenfell 1997).

One of the main stumbling blocks to a more complete understanding of the
disease is the inability of models to match the existence of relatively violent
seasonally driven epidemics with persistence at the critical population size of
around three to five hundred thousand (Bartlett 1960 and Black 1966). I
consider what light pair approximations can throw on this and the related issue
of persistence.

The basic mean-field model for this system is the SEIR equations which
model the proportions of susceptible, exposed, infectious and resistant individ-
uals in the population (Anderson and May 1992). Other, more complicated
and more realistic systems such as the RAS model (Schenzle 1984) are based
on these. Therefore, I start by considering the pair approximation correspond-
ing to the SEIR equation. This involves an extra state: exposed E which
corresponds to an individual who has been infected but is not yet infective to
others. The events are as follows:

(i) death = replacement by susceptible: at site x, S,E, I,R
m
→ S at rate m

where m ≈ (50yr)−1

(ii) infection: at edge e, SI
β
→ EI at rate β described below,

(iii) onset of infectiousness: at site x, E
a
→ I at rate a where a−1 is the

latent period of the infection (approximately 8 days),

(iv) recovery: at site x, I
g
→ R at rate g where g−1 is the infectious period

(5 days)

The values for the rates given here are from Anderson and May 1992
The effective contact and transmission rate β used in the SEIR equations is

often modelled as seasonally varying, β = 4.93 (1 + 0.28 cos(2πt)) day−1 where
t is the time in years (values are from Olsen and Schaffer 1990). This time
dependence is supposed to be due to the annual cycle of new recruitment of
students to schools. It therefore corresponds to a periodic modulation of the
structure of the interaction network of the population. Here it is modelled di-
rectly as such. It will be assumed that for a school child during term time not
only is the neighbourhood size Q larger but also, since the class is highly inter-
connected, the proportion of triangles ϕ is increased. Thus the transmissibility
β is kept fixed and the network structure varied instead.

The following equations follow from the master equation. I have omitted
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the correction terms.

d[SS]/dt = 2m ([SE] + [SI] + [SR]) − 2τ [SSI],

d[EE]/dt = −2m[EE] + 2τ [ESI] − 2a[EE]

d[SE]/dt = m ([EE] + [EI] + [ER] − [SE]) + τ ([SSI]

−[ESI]) − a[SE]

d[SI]/dt = m ([EI] + [II] + [IR] − [SI]) − τ ([ISI] + [SI])

+a[SE]− g[SI] (12)

d[SR]/dt = m ([ER] + [IR] + [RR] − [SR]) − τ [RSI] + g[SI]

d[EI]/dt = −2m[EI] + τ ([ISI] + [SI]) + a ([EE] − [EI]) − g[EI]

d[ER]/dt = −2m[ER] + τ [RSI] − a[ER] + g[EI],

d[II]/dt = −2m[II] + 2a[EI] − 2g[II]

d[IR]/dt = −2m[IR] + a[ER] + g ([II] − [IR])

To obtain the appropriate pair approximation I use the clumped pair approxi-
mation for the triples given by eq. (12). Both Q and ϕ are periodic functions
of t.

The inclusion of correlations has a strong impact on the dynamics. Al-
though age structure has been ignored it is still possible to reproduce regular
biennial epidemics reminiscent of the dynamics in developed countries as well as
annual cycles and chaotic transients that are stabilised by the residual stochas-
tic corrections as in Rand & Wilson 1991 (Morris 1997). The troughs are
much less deep than those of the standard SEIR model. Such dynamics are
shown in Figure 5. The inclusion of pairwise correlations has a dampening
effect on the spread of the disease because it keeps track of the relatively high
level of I-I correlations which inhibit spread. In addition, keeping track of the
network limits each infective to at most Q susceptibles to infect and, moreover,
the absence of connections implied by a high value of ϕ for a given Q means
that large reservoirs of susceptibles can persist.

One can approximate the nine-dimensional system (12) by a four-dimensional
system by using the fact that the correlation CSE = N [SE]/Q[S][E] is well-
approximated by κCSS = κN [SS]/Q[S]2 (Keeling et al. 1997). Upon be-
coming infectious the new infected takes over the whole neighbourhood of the
exposed and if the infection does not last too long compared to the time that
typical neighbours are susceptible then there is not much time for this correla-
tion to decay. These models lack the refinements that arise when age structure
is included, but demonstrate the strong stabilising effects that pair correlations
confer.

It is generally accepted that the inclusion of age-structure into models for
measles is vital to understand and predict the dynamics (Schenzle 1984,
Bolker 1992). The resulting RAS (realistic age structured) model is a consid-
erable improvement on the original SEIR equations, predicting realistic biennial
cycles. With this in mind an Age-Structured Pair (ASP) model of equation (12)
was considered in Keeling et al. 1997.
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Figure 5. Output from the seasonally forced SEIR pair-approximation. The at-

tractor a period two orbit. (figures (a) and (b)) The attractor. Figures (c) and (d):

Typical transient behaviour at times of 100 and 430 years. This will be stabilised by

noise as in Rand & Wilson 1991. (From Morris 1997)

This network for this model has four age classes (pre-school, primary, sec-
ondary and adult) and has connections within and between these classes. Within
classes the connections are defined so as to add some rudimentary family struc-
ture. In particular, the single set of parameters τ , Q and ϕ are replaced by
multiple neighbourhoods each with a common transmissibility. For example, a
school child may be a member of two sub-networks, a school sub-network where
the number of neighbours and triangular connections are large, and a family
sub-network where transmission rates are higher but the number of neighbours
far less. The network within schools may be further subdivided so that hetero-
geneities in the number of contacts can also be modelled.

Within the range of reasonable parameters two year cycles reminiscent of the
RAS model and longer more complex cycles are possible all of which correspond
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well to the England and Wales data set. As in the RAS model it is found that
the majority of the dynamics is within the primary school layer where the
fluctuations in the number of cases are the largest. This is in agreement with
the age structured data from developed countries. It also appears that when
the dynamics are most erratic it is the slower transmission within the pre-school
layer that forms a reservoir of the disease, maintaining the epidemics through
the troughs. This would imply that it is the family structure, which accounts
for the majority of contacts being pre-school and primary school, that enables
measles to persist.

The important improvement upon the RAS model comes about when one
considers critical community size and levels of fade out. For this one has to
use a stochastic version of the equation taking into account the fluctuations
that are removed from the deterministic version. The stochastic RAS model
does not reproduce observed behaviour (see the references in Keeling and
Grenfell 1997): for example, the critical community size exceeds 20 million.

The stochastic ASP model does much better. For example Figure 6(a) which
shows the average number of fadeouts (defined as three or more consecutive
weeks without infection) per year for the parameters used in Keeling et al.
1997 and compares the result to the England and Wales data and to the RAS
model. For the biennial parameters the number of fadeouts is even lower with
the overall behaviour being consistent.
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Figure 6. Results from a stochastic version of the pair-wise model. Graph a is the

average number of fadeouts per year, the solid line is the best exponential fit to the

pre-vaccination England and Wales data, the circles are the results from a stochastic

version of the RAS model and the crosses are from the pair-wise model. The pair-wise

model predicts a lower critical community size, and is an extremely good fit for small

populations. Graph b shows the power-law behaviour for the size of an epidemic in a

small isolated community; population size 25 thousand, with on average 3 infectious

individuals introduced every 4 years. There are three distinct sections of power-law

scaling, within family, within school and between school.
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Moreover, the ASP model predicts a critical community size of around one
million which is far less than is found with the RAS or SEIR models. This can
be attributed to the presence of correlations between infectious and susceptible
individuals and the above-described effect of this.

Even more striking than the lower critical community size, which could
be obtained from large meta-population models or other modifications to the
RAS model (Keeling and Grenfell 1997), is the agreement between the
ASP model and data for small populations. This would indicate that the pair
model is capturing the essential local features of epidemics, although it may be
failing to reproduce all the larger scale heterogeneities.

Finally, I want to mention that the ASP model has interesting power law
scaling for the size of epidemics in small, isolated communities (see Figure 6 and
Keeling et al. 1997). Such laws have previously been discussed by Rhodes

and Anderson (1996a and 1996b) in the context of an explicit spatial model
for island communities, but without the multiple scaling regimes seen here.

4. Spatial Games

We move on to consider some simple spatial games. It is here that there has
been one of the most extensive studies of how well the pair approximations
describe lattice and network simulations (Morris 1997). A discussion of this
will help put the above theoretical discussion into context.

I consider games in which individuals playing pure strategies play against
their neighbours. There are a number of ways of formulating the basic stochas-
tic process corresponding to different biological and social interactions and de-
pending upon whether the dynamics operate through survival and reproduction
or by learning.

4.1. The game rules

Let Eij denote the payoff to an individual playing strategy i from a contest with
an individual playing j. Then, the fitness Fx of the individual at x is defined
to be the average payoff to the individual against its neighbours. Examples of
game processes include:

– Replacement by fit strategies where individuals playing a given strategy are
replaced by individuals playing alternatives strategies in the neighbourhood
at a rate proportional to the fitness of the alternatives. This could be
because the individuals die and are replaced by the offspring of neighbours
or because individuals change their strategies regularly according to their
fitness. The events are then just pair events of the form

• replacement: at edge e, ij
r
→ jj at rate r = Fej

– Learning where individuals x adopt the strategy of a more fit neighbour y
at a rate proportional to the excess fitness of the neighbour:

• learning: at edge e, ij
r
→ jj at rate r = Fej

− Fei
if Fej

> Fei
.
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– Replacement by death where the fitness of an individual x playing i deter-
mines its death rate and where, upon death, the individual is replaced by
an offspring of one of the neighbours chosen randomly. If the death rate is
given by dx = exp (−αFx) then the events are:

• replacement through death: at site x, i
r
→ j at rate r = q(j | i)dx where

q(j | i) = Q(j | i)/Q.

I will mainly consider the first of these processes here but the latter process
will be used to study the evolution of cooperation in the Prisoner’s Dilemma
in Section 5. The situation where individuals play mixed strategies is also easy
to model in this way but is not considered here because of lack of space.

4.2. Calculating the pair approximation

In the first part of this section my main aim is to compare pair models and
simulation. Therefore I will restrict attention to games involving only two
strategies which I denote by 1 and 2. Also I consider the first replacement pro-
cess described above. I will take a little trouble here to calculate the equations
partly to illustrate the technique but mainly because it will be important in
our discussion of the differences between regular and irregular networks.

In what follows if i is one of the strategies 1 or 2, then i′ denotes the
other strategy. Assuming a regular network, it is clearly enough to calculate
the differential equations for [i] and [ii] for i = 1, 2. In a ii′ pair the i strategy
replaces i′ at rate Fei

. Let Fi denote the mean fitness Q(i | ii′)Eii+Q(i′ | ii′)Eii′ .
Then the master equation gives

d

dt
[i] =

∑

σe=ii′

Fei
− Fe′

i
(13)

Qx≡Q
= Q−1 (Fi − Fi′)

d

dt
[ii] =

∑

σe=ii′

Fei
Qei′

(i) − Fei′
Qei

(i) (14)

Qx≡Q
≈ Q−1 (FiQ(i | i′i) − Fi′Q(i | ii′))

where the equality and approximation marked accordingly are only true when
Qx ≡ Q is independent of the site x (see 4.3). The approximation of the last
line neglect the correction terms of the form

∑

σe=ii′ ηe(k | ii′)ηe(l | i
′i) where k

and l are i or i′. Because i 6= i′ we expect these to be small.
If the Bernoulli trials approximation is used and the correction terms ig-

nored then the following pair approximation is obtained:

d

dt
[ii] = 2Q−1[ii′] ((Eii − Ei′i)κQ(i | i) (κQ(i | i′) + 1) (15)

+ Eii′ (κQ(i′ | i) + 1) (κQ(i | i′) + 1)

−Ei′i′κ
2Q(i | i)Q(i′ | i′)

)

This gives all equations because 2[12] = NQ− [11]− [22] and Q[i] = [ii] + [ii′].
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4.3. A hawk-dove game

Following Morris 1997 let us now consider the Hawk-Dove game. Hawks
escalate the contest until injured or until the opponent retreats whereas doves
display but then retreat at once if the opponent escalates. If the resource
competed for has a value v and injury reduces fitness by an amount c then
using the simplest assumptions one obtains the payoffs given in table 1. I am
only considering here the most interesting case where v < c. Recall that w0

must be such that all the payoffs are positive. I choose the minimal such value
w0 = (v − c)/2. Then if all the payoffs are scaled by 2/c (which only changes
the time-scale) the payoffs are EHH = 0, EHD = 1 + s, EDH = 1 − s and
EDD = 1 where s = v/c.

Player B
Hawk H Dove D

Hawk H w0 + 1

2
(v − c) w0 + v

Player A
Dove D w0 w0 + v/2

Table 1. The payoffs to player A in a contest against player B when A and B play

the strategies shown. I denote by Eij the payoff to player A when player A plays

strategy i and player B plays strategy j.

Regular networks Assume now that the network is regular with Qx ≡ Q. The
pair approximation for this system is given in eq. (15) and the equilibria for
this are given by one of [H] = 0, [D] = 0 or

[D] =
N(Q − Qs − 1)

Q − 2
, [H] =

N(Qs − 1)

Q − 2
, [HH] =

Q2Ns(Qs − 1)

(Q − 2)(Q − 1)
,

[DD] =
Q2N(1 − s)(Q − Qs − 1)

(Q − 2)(Q − 1)
, [HD] =

QN(Q − Qs − 1)(Qs − 1)

(Q − 2)(Q − 1)
.

The coexistence equilibrium only exists between s = Q−1 and s = 1 − Q−1.
Inside this interval it is stable and as s passes out of this interval there is an
exchange of stability with one of the trivial solutions [H] = 0, [D] = 0. Thus
[H] = 0 if s < Q−1 and [D] = 0 if s > 1 − Q−1.

For regular networks these agree very well with full spatial simulations
(Morris 1997) as illustrated by Figure 7. The validity of the Bernoulli trial
pair approximation can be checked in some detail using the simulation. Re-
call from Section 2.5 that the important thing here was our estimates for
the correlation Γ(i | j | k). In our case all of these equal either ±Γ(D |D |D)
or ±Γ(H |H |H) because Γ(i | j | k) = Γ(k | j | i) and, if i 6= j, Γ(i | j | k) =
−Γ(j | j | k) since η(i | j) = −η(j | j) as there are only two species. A typical
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time series of Γ(D |D |D) and Γ(H |H |H) in a simulation is shown in Figure
8. Note that these settle down to equilibrium values that are quite far from
zero. The noisy fluctuations about the equilibrium levels are very small and
scale as one would expect. I now consider the equilibrium levels.
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Figure 7. A comparison of the data from a simulation of the game and The

straight line is a plot of the equilibrium value of the number of doves vs. s for the pair

approximation (15). This is compared to the equilibrium values found in a simulation

on a regular lattice of size N = 2500. Also shown is the fraction of hawk-dove pairs

for both the pair approximation and the simulation. (From Morris 1997)

In equilibrium

Q(i | i) =
[ii]

[i]
=

{

κ−1Q(1 − s) if i = D

κ−1Qs if i = H

so assuming Bernoulli trials it follows from eq. (7) that

Γ(i | i | i) = Q(i | i)

{

1 −
Q(i | i)

Q

}

=

{

κ−1Q(1 − s)
{

1 − κ−1(1 − s)
}

if i = D

κ−2(Q − Qs − 1)s if i = H.

Thus if Q = 4 then the equilibrium levels of Γ(D |D |D) and Γ(H |H |H) are
respectively 16/25 and 224/225 when s = 0.4 and 8/9 and 16/18 when s = 0.5
which is in general agreement with the observed values shown in Figure 8. Thus
in this case the Bernoulli trials approximation is good. The correction to it is
well-modelled by low-amplitude, zero mean noise.

Irregular networks In the case of an irregular network where Qx varies from site
to site one cannot use the same pair approximation because although equations
(13) and (14) are correct the equations for all other pair types do not follow
from these unless Q is constant. More importantly, the equalities marked
Qx ≡ Q are no longer valid. If this is the case then the factors 1/Qei

in
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Figure 8. (a) Times series of both independent Γ(i | j | k) for a simulation of the
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(b). Both time series eventually settle to small fluctuations about an equilibrium

value. The labels give the value of ijk. (From Morris 1997)

Fe(i) introduce an essential nonlinearity into the equations and because of
this, for this example, the behaviour of regular networks with Qx ≡ Q differs
significantly from irregular networks as shown in Figure 9. This compares a
simulation of the irregular network system with the equilibrium levels for the
regular network pair approximation for varying s. The coexistence equilibrium
for the irregular system now has a significantly smaller range of existence and
the equilibrium level has a strong dependence upon s. Thus the nonlinearities
introduced by the irregularity have some real effects. Luckily in many systems,
such as the epidemiological ones considered previously, irregularity does not
introduce such nonlinearities and both regular and irregular systems can be
dealt with together. In some applications with nonlinearities one can assume
that the Qx are Poisson distributed with mean Q and make some progress in
deriving equations but that is beyond the scope of this paper.

5. The evolution of altruism and cooperation

In this section I discuss the role of spatial correlation in enabling altruism and
cooperation. In particular, we will see that when correlations are taken into
account it is possible for altruism and cooperation to invade non-altruistic or
non-cooperating populations.

Darwin already realised that the evolution of both altruism and cooperation
either within or between species was an obvious problem for his theory. To
explain this he argued that

“this difficulty, though appearing insuperable, disappears when it is
remembered that selection may be applied to the family, as well as the
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Figure 9. Equilibrium composition of the population plotted against s for (a) a

fixed random network and (b) a random dynamic network where births and deaths

create and destroy sites in the network. Both have Q = 12.6. The light grey curve

is the corresponding graph for a regular lattice with Q = 12.6. The simulations were

run for 100,000 events on a lattice with N = 2500. (From Morris 1997)

individual ...”.

The problem is that while altruists get the benefit from other altruists, they
must also pay the costs of altruism whereas nonaltruists get the benefit but
do not have to pay the costs. Early on the concept of intergroup selection
was widely adopted to explain social behavior in all kinds of animal groups.
However, by the mid-60s the opponents of this view, the individual selectionists,
had won the day by arguing that, firstly, there are few populations that have
the kind of group structure required of intergroup selection and, secondly, that
even if such selection could exist, it was bound to be weaker than individual
selection because groups displace each other within populations more slowly
that individuals displace each other in groups.

This left open the question of how to explain altruism and cooperation.
Leaving aside the possibility that they do not exist there are three current
approaches to a solution associated with three different types of altruism.

1. Kin altruism. Kin selection may favour altruistic acts between related
individuals because there is a reasonable chance that that they carry a
copy of each others genes (Hamilton 1964, Maynard Smith 1964). The
main result (Hamilton’s Rule) is that such altruism will evolve provided
that relatedness times benefit averaged over the population must be greater
than the cost of altruism.

2. Reciprocal altruism. Under reciprocal altruism altruistic behavior evolves
by reciprocity among non-related individuals (Trivers 1971, 1985, Axel-

rod & Hamilton 1981). This could account for cooperation distributed
widely throughout a population. It is only expected to arise when individ-
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uals have a long association with each other and can discriminate between
those that reciprocate and those that do not. The dominant model for
this is the Prisoner’s Dilemma game although there are other approaches
(Connor 1995).

3. Unconditional altruism. In this case individuals behave so as to contribute
a benefit to all other individuals in the population that interact with them
independently of whether they act in a similar way or not. In general, the
altruist will have to bear a cost. An example might be a bacterium that
acts altruistically by providing an enzyme that breaks down some substrate
that can then be used for food by all its neighbours.

To work reciprocal altruism requires (i) repeated interactions between each
pair of interacting individuals, (ii) each participant must be able to retaliate
against defection by the other and (iii) either individual recognition must be
possible or the number of partners with whom an individual interacts must be
small and preferably only one.

Even when these severe conditions are satisfied one has to face a basic
problem with the theory which is that in mean-field approaches cooperation can
never invade a non-cooperating resident population. It is quite reasonable that
ensembles of cooperating strategies should be stable once they have become
established at a high frequency in the population. However, because it requires
a reciprocating partner to work, reciprocal altruism confers little fitness when
reciprocators are rare. A number of authors have considered spatial approaches
to this and related problems (Nowak & May 1992, Hutson & Vickers, 1995
Ferriere & Michod 1996 and references therein). I claim that correlations
provide a solution to this problem and below I consider a model to illustrate
this due to Nakamaru, Matsuda and Iwasa (1996) (see 5.2). This shows
that provided the memory of past interactions is not too weak, cooperation can
invade.

The primary explanation for the evolution of unconditional altruism in-
volves trait groups (Wilson 1975). This essentially relies on the assumption
that at some stage in their life-cycle individuals are associated with small sub-
groups of the population and it is there that selection acts. It is assumed that
the fitness of an individual in such a group depends upon the group’s makeup
in such a way that the mean fitness of a given type in the population (say an
altruist) is not the average of their fitnesses in each of the trait groups. Then
because these groups are small there will be fluctuations in their composition
and some will be dominated by altruists which can use the nonlinear fitness to
maintain their number.

The problem with this explanation is that apparently very few populations
have the structure and nonlinear fitness of the type required to make it work. I
will discuss an approach with, I believe, much more realistic populations struc-
tures. Whereas the trait group approach destroys correlations by selecting the
groups randomly from the population in each generation and depends solely
upon the fluctuations of the trait groups, the approach I consider depends upon
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the buildup of spatial correlations. The altruists form mutually beneficial clus-
ters which the correlation equations can track and quantify. Such an approach
was first discussed by Matsuda et al. 1992 and the approach to invasion by
altruists that I discuss is due to van Baalen and Rand 1997.

Another problem is that although an altruistic individual will benefit from
altruistic neighbours, when dispersal is limited it will compete with them as
well. On the basis of simulations of cellular automaton models, Wilson, Pol-

lock & Dugatkin (1992) found that altruism is favoured only in what they
considered to be a very limited and therefore unrealistic subset of the parame-
ter domain. Taylor (1992) has shown that if the ‘spatial scale of competition’
is equal to the ‘spatial scale of dispersal’ the benefit of altruism and the cost
of local competition cancel out exactly and he claims that this is the case for
viscous populations, effectively ruling out the evolution of altruism. In the
model considered here this is not the case.

5.1. Unconditional altruism in viscous populations

The basic process that we consider has states empty (∅), nonaltruist (N) and
altruist (A) and, for i = N or A, the events are:

(i) i-death at site x, i
di→ ∅ at rate di;

(ii) i-birth, at edge e, i∅
bi→ ii at rate bi;

(iii) i-migration, at edge e, i∅
mi→ ∅i at rate mi.

In these definitions the rates di, bi and mi can depend upon i and the number
of neighbouring altruists and nonaltruists. I shall assume here that the birth
and death rates depend linearly on the number of altruists neighbouring the
individual and involves the cost of altruism so that, for an i-individual at x, bi =
b0+b1Qei

(A)−ci and di = d0−d1Qei
(A)−ki where cN = kN = 0 and cA and kA

represent the cost of altruism. Also, one can envisage natural modifications that
further advance altruism. I will, for example, consider an assumption whereby
the migration rate increased with the number of neighbouring nonaltruist i.e.
mA = m0 + m1Qx(N).

The master equation gives the following equations in which I have neglected
any mention of the correction terms. In these i is N or A and i′ is the other.

d

dt
[i] = (biQ(∅ | i) − di)[i],

d

dt
[∅i] = (ai(Q(∅ | ∅i) − Q(i | ∅i) + 1) − ai′Q(i′ | ∅i) − δi∅ − bi)[∅i] (16)

+δi′i[ii
′] + δii[ii]

d

dt
[ii′] = (ai + ai′)[i

′∅i] − (δii′ + δi′i)[ii
′] and

d

dt
[ii] = 2 (aiQ(i | ∅i) − ai + bi) [∅i] − 2δii[ii]
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In these equations, ai and δij are respectively the rates of arrival of i-individuals
into an empty site per i∅ pair and departure of them (to ∅’s) from ij pairs per
ij pair.

We consider now whether a very small population of altruists can invade a
resident population of nonaltruists. If we solve for the equilibrium of the above
equation when altruists are absent we obtain ρN = Λ/∆, ρ∅N = d0Λ/b0∆
and ρ∅∅ = p0d

2
0/b0∆ where p0 = b0 + m0κ, Λ = (d0 − Qb0)p0 + b2

0 and ∆ =
b0(Qp0 − b0 − d0/Q).

Let ~n = ([∅A], [NA], [AA]). From the Bernoulli approximation to (16) this

satisfies that differential equation ~̇n = M · ~n where

M =















aA(Q − 2Q(A | ∅A)) − (αN + αA)Q(N | ∅)

−δA − bA δN δA

(αN + αA)Q(N | ∅) −δA − δN 0

2αAQ(A | ∅A) + 2bA 0 −2δA















where Q = κQ, Q(i | j) = κQ(i | j), Q(A | ∅A) = Q(A | ∅A) − 1 and αi and
δi are the Bernoulli approximations to ai and δij above i.e. αi = bi + mα

i ,
δi = di + mδ

i Q(∅ | i), bi = b0 + b1Q(A | i) and di = d0 + d1Q(A | i). I give the
expressions for mα

i and mδ
i below. Let α0 and δ0 denote respectively the values

of αN and δN in the resident population i.e. when altruists are absent.
Note that M depends upon both Q(N | ∅) and Q(A | ∅). These terms arose

as approximations to Q(N | ∅A) and Q(A | ∅A) and therefore they must be re-
garded as being the appropriate values for the invading population alone and
not for the whole population. For the whole population Q(A | ∅) will be approx-
imately zero at invasion but may be positive within the invading population
which will early have its own local structure. The value of Q(N | ∅) can be de-
termined by noting that as bA, bN → b0 and dA, dN → d0, Q(∅ |A) → Q(∅ |N)
so that δA, δN → δ0 and therefore detM → 0. Solving detM = 0 when
αA = αN = α0, δA = δN = δ0 and bA = bN = b0 gives Q(N | ∅) = Q −
Q(A | ∅) − δ0/κα0.

If we neglect the stochastic terms at invasion ~n(t) ≈ ~n0 expλt where λ is the
dominant eigenvalue of M and ~n0 is the corresponding eigenvector. A straight-
forward calculation gives that for ~n0 one can take (δ0, α0(Q − Q(A | ∅A)) −
δ0, α0Q(A | ∅A) + b0). Since ~n = [A](Q(∅ | ∅), Q(N |A), Q(A |A)) we deduce
that, at invasion, if B0 = α0Q−m0 = α0Q+b0 and C0 = α0(Q−Q(A | ∅A))−δ0,

Q(∅ |A) = Q
δ0

B0

, Q(N |A) = Q
C0

B0

and

Q(A |A) = Q
α0Q(A | ∅A) + b0

B0

.

(17)
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The invasion exponent is the eigenvalue λ which, up to terms which are quadratic
in dαA and dδA (and therefore very small), is

λ =
δ0 + α0(Q − Q(A | ∅A))

α0Q + δ0 + b0

Λ ≈

(

1 −
α0Q(A | ∅A) + b0

α0Q

)

Λ (18)

where Λ = α−1
0 δ0 dαA −α0 dδA and the approximation neglects terms that

are proportional to 1/Q2. Thus we deduce that invasion will occur provided
dαA/dδA > α0/δ0. Consequently, evolution acts so as to increase the ratio
αA/δA. This has the interpretation given above as a ratio of arrivals to depar-
tures.

In deriving this result we neglected the stochastic correction terms. When
one takes these into account the effect is to change the statement that condition
λ > 0 implies successful invasion to the statement that it implies that there is
a positive probability that the invasion will be successful. If the challenge by
altruists is repeated often enough they will eventually invade.

For a moment let us assume that the migration rate mA = mN = m0 is
assumed constant. Then mα

i = mδ
i = m0. From (18) it is clear that if only

either the birth rate or the death rate is allowed to mutate (so that either
bA = b0 + b1Qx(A) − c or dA = d0 − d1Qx(A) − k) then the conditions for
invasion are respectively

b1Q(A |A) > c and d1Q(A |A) > k.

Note the similarity of these to Hamilton’s condition for kin selection. In our
condition, the altruist-altruist correlation Q(A |A) replaces the relatedness in
Hamilton’s condition. Similarly, one easily obtains an invasion condition when
they are allowed to mutate simultaneously.

This raises the question of how large Q(A |A) is. It is given by eq. (17). A
detailed calculation shows that Q(A | ∅) is small so that Q(A |A)−1 ≈ κ(α0/b0)+
Q−1 ≥ 1 implying Q(A |A) ≤ 1. If the migration rate is very small it is ap-
proximately one.

The invasion condition can also be used to understand the evolution of
other traits. For example, I suggested above that certain migration could aid
altruism. Consider, for example, a situation where as well as the birth rate
or death rate being allowed to mutate as above, also a behavioral mutation
is possible that encourages higher migration when a mutant is surrounded by
many non-altruists. Assume for example that mA = m0 + m1Qx(N). Then
the migration term in δAA changes to (m0 + m1κQ(N |AA))Q(N |AA) and
similarly for δAN . The factor of κ arises because one should approximate
∑

σe=AA QeA
(N)QeA

(∅) by κQ(N |AA)Q(N |AA)[AA]. Thus, the approxima-
tion to use for both in δA is mδ

A = (m0 +m1κQ(N |A))Q(∅ |A). The migration
term in αA is (m0[∅A] + m1[NA∅])/[A∅] which should be approximated by
mα

A = m0 + m1κQ(∅ |A). Since we are assuming that the resident nonaltruists
have a constant migration rate mα

N = mδ
N = m0.
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Consider the term Λ. By (18), this determines whether or not λ > 0.
The term dαA can be written as a sum dα1

A + dαm
A where the second term

correspond to the contribution due to the change in migration and the first
from births and deaths. Similarly for dδA. But, by the expressions for mα

A and
mδ

A, dαm
A = m1κQ(∅ |A) and dδm

A = m1κQ(N |A)Q(∅ |A). Substituting in the
value of Q(∅ |A) given by (17) we obtain that the extra contribution to λ due
to this migration is given by

λm = m1κδ0b0Q(N |A)/(α0Q + b0) ≈ m1δ0(1 − (b−1
0 δ0 + 1)Q−1 − κb−1

0 m0)

where the approximation is correct up to terms which either proportional to
Q(A | ∅) or quadratic in Q−1 and m0. Thus we see that dµm is always positive
and is not small. Thus the adoption of this behavior simultaneously with the
change in the birth and death rates can significantly enhance the invasion of
altruists.

The overall important point is that the effect of spatial correlation coming
from the population dynamics can be powerful enough to allow altruists to
overcome the cost of their behavior and invade non-cooperating populations.

5.2. Cooperation in viscous populations

Now we follow the discussion of Nakamaru et al. 1996 to consider the effect
of correlations in the Prisoner’s Dilemma game. The payoffs for the Prisoner’s
Dilemma game are described in table 2. In this two players interact an indefinite
number of times. After each interaction there is a probability w of a further one.
A defection against a cooperator gets the greatest payoff T and cooperation
against a defector the least. On the other hand, joint cooperation pays more
than joint defection. If the precise number of games is finite and known then
it pays to adopt the self-explanatory strategy always defect which we denote
by AD. On the other hand, Axelrod has shown that in indefinitely repeated
games the strategy Tit For Tat (denoted TFT ) is very successful in simulated
tournaments. A player playing this strategy cooperates on the first game and
then plays whatever the opponent played on the previous game.

Player B
Cooperate C Defect D

Cooperate C R S
Player A

Defect D T P

Table 2. The payoffs satisfy T > R > P > S. It is also assumed that 2R > T + S;

this ensures that the payoff is greater to each of two players who cooperate than to a

pair that alternatively cooperate and defect. We denote by Eij the payoff to player

A when player A plays strategy i and player B plays strategy j.
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In a sufficiently large randomly mixing population the payoff to TFT and
AD individuals are respectively

WTFT = W0 +
R

1 − w
ρT +

(

S +
wP

1 − w

)

ρD

WAD = W0 +

(

T +
wP

1 − w

)

ρT +
P

1 − w
ρD

where ρT and ρD denote respectively the proportions of the population playing
TFT and AD. Therefore, WTFT > WAD precisely when ρT > ρ0 = (1 −
w)(P −S)/((S +T −2P )w+R−ST +P ) and thus ρT → 0 if the initial density
of individuals playing TFT is less than ρ0.

Consequently, in such populations, for a given value of w, a small population
of individuals playing TFT can never invade a resident population playing AD
if its size is below some threshold. The question we address is whether TFT
can invade in a spatial population when we take account of correlations. In the
underlying stochastic process used by Nakamaru et al. 1996 the only states are
T and D corresponding to TFT and AD and the events are as follows:

(i) replacement by TFT, at site x D
r
→ T , at rate r = MD(Qx(T ))

(ii) replacement by AD, at site x T
r
→ D, at rate r = MT (Qx(T ))

where MD(n) = qx(T ) exp(−αPn(D)) and MT (n) = qx(T ) exp(−αPn(T )) where
Pn(D) = nEDT +(Q−n)EDD and Pn(T ) = nEDT +(Q−n)EDD are the payoffs
to respectively a D and a T when it has n T -neighbours.

A simple calculation using the above formalism and the Bernoulli trials
substitution gives the following equation in which we neglect all the correction
terms:

ρ̇T = −ρT νTD(νTT + νTD)Q−1 + ρDνDT (νDT + νDD)Q−1 (19)

˙ρTT = −2κρTνTT νTD(νTT + νTD)Q−2 (20)

+2ρDνDT {νDT + νDD} (νDT + νDD)Q−2

where νij = q(i | j) exp(−Eij). The other equations are determined by the
relations ρD + ρT = 1, ρDD + 2ρDT + ρTT = 1 and ρT = ρDT + ρTT and
ρD = ρDT + ρDD.

This system is degenerate in the sense that all points on the line ρTT = ρT

are equilibria. The analysis of Nakamaru et al. 1996 showed that for the
given values of the payoffs and Q = 8, if the initial condition is interior then
(a) if 0 ≤ w < 0.49 all trajectories converge to ρT = 0, (b) if w > 0.77 then
ρT → 1 and Q(T |T ) → Q and (c) for intermediate values of w the system was
bistable with convergence to one of the two attractors given in (a) and (b).
Thus, according to the model, TFT can invade a cooperating model provided
w is large enough. Nakamaru et al. compared the quantitative prediction with
simulations carried out on a lattice using the Moore neighbourhood and found
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that, while the mean-field approximation did badly, the pair approximation
and simulations were consistent.
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