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Abstract

We investigate the correlation functions of the one-dimensional Asymmetric Simple
Exclusion Process (ASEP) with open boundaries. The conditions for the boundaries
are made most general. The correlation function is expressed in a multifold integral
whose behavior we study in detail. We present a phase diagram of the correlation
length. For the case the correlation length diverges, we further give the leading terms
of the finite-size correction.

1 Introduction

As we all appreciate, exactly solvable models have been playing important roles for under-
standing nonlinear physics in various areas. They make it possible to calculate physical
quantities exactly so that we can enjoy arguments beyond approximation. What is more,
the integrability of models often serves a deeper mathematical structure. For one thing, we
consider the one-dimensional Asymmetric Simple Exclusion Process (ASEP). The ASEP
is an exactly solvable model of stochastic process regarded as a primitive model of kinetics
of biopolymerization, traffic flow, and so on. The model is known to have nonequilibrium
properties in the stationary situation and is studied extensively for the nonequilibrium
statistical mechanics [16, 17, 19, 23, 24, 25, 22]. In the mathematical aspect, it has a
connection with the theory of the q-orthogonal polynomial [21, 4, 26].

The nonequilibrium statistical mechanics has attracted a renewed interest among physi-
cists these days. Numerical experiments are more available than before and a lot of in-
teresting applications are found out. Despite of these developments, the central principle
of the nonequilibrium statistical mechanics is still unclear. In order to unveil the central
principle, we need to look for basic concepts and clarify mathematical structures. There
are some attempts ongoing for this end such as a construction of thermodynamics for the
steady state which is far from equilibrium [20]. At the same time, we may have recourse to
reliable exactly solvable models and analyse the behaviors in detail. On the way, we can
define quantities which are essential for the general theory. For example, for the ASEP we
find a definition of the partition function which really is a generating function of the bulk
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quantities as is familiar in the standard equilibrium statistical mechanics. In this sense,
exact analytical arguments for individual models are of great value also in the study of
the nonequilibrium statistical mechanics.

Physically and mathematically, boundary conditions are important. In the case with
open boundaries, an interesting feature of the ASEP is the connection with the Askey-
Wilson polynomial. The Askey-Wilson polynomial is a one-variable q-orthogonal poly-
nomial. There is a set of lists called the Askey-scheme where many other orthogonal
polynomials are recovered by parameter reduction from the Askey-Wilson polynomial
[1, 11, 15]. As to physics, the Askey-Wilson polynomial also appears in various integrable
models; the problem of Bloch electrons in a magnetic field on a lattice called the Azbel-
Hofstadter problem which is closely related with the quantum Hall effect [27], the XXZ
model with open boundaries [12], the sine-Gordon model with a boundary and the more
general algebraic formulation manipulating them [2, 3]. Through the connection with
such a mathematical structure, we can obtain more information about the systems than
we expect.

The physics of the ASEP is rich. Because of the nonlinearity, the formation of shock
profile happens [10]. In fact, macroscopically the ASEP obeys the noisy Burgers equation.
In the setting of an infinite system, the current fluctuation can be calculated based on
the Random Matrix Theory through the statistics of the Young diagram [13, 18]. The
Random Matrix Theory is a theory of universality classes. It is found that the current
fluctuation of the ASEP belongs to the KPZ nonequilibrium universality class [14]. For a
system with open boundaries, by the boundary effect there occurs phase transitions even
in the one-dimensional system. In contrast, according to the Mermin-Wagner theorem,
a phase transition does not take place in a one-dimensional equilibrium system. We can
give a lot of fascinating phenomena like this.

The aim of this paper is to study the correlation functions for the steady state of the
ASEP with open boundaries. The ingredient of our analysis is the integral expression of
the n-point function. The organization of the paper is as follows. In section 2, the model
and related quantities of the ASEP are introduced. In section 3, based on [26], some known
results are briefly summarized. It is remarked that the n-point function is expressed as
a multifold integral. In section 4, the correlation functions for the steady state of the
ASEP are studied and a phase diagram for the correlation length is presented. For the
case where the correlation length diverges, we further inquire the integral representing the
correlation function and obtain the leading terms of the finite-size correction. Section 5 is
given for conclusion.

2 Asymmetric Simple Exclusion Process (ASEP)

We introduce the model of the one-dimensional Asymmetric Simple Exclusion Process
(ASEP). Roughly speaking, the model describes randomly hopping particles with exclusion
interaction on a one-dimensional lattice. The term ”asymmetric” refers to the asymmetric
hopping of particles and ”simple exclusion” refers to their hard-core exclusion interaction.
We consider a finite system of size L with open boundaries at both left and right sides.
On each site i = 1, · · · , L of the lattice there can be only up to one particle, that is, if
we denote by τi the particle number at site i, each site is either occupied by one particle
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τi = 1 or empty τi = 0. A particle hops to the nearest right (resp. left) site with the
probability pRdt (resp. pLdt) during an infinitesimal time dt if the target site is empty.
By rescaling time, we can set pR = 1 and pL = q. At the boundaries, a particle enters
the system at the left (resp. right) boundary with rate α (resp. δ) if the site 1 (resp. L)
is empty, and leaves at the left (resp. right) boundary with rate γ (resp. β) if the site 1
(resp. L) is occupied. The boundary conditions are made most general containing four
independent parameters α, β, γ and δ. Figure 1 illustrates the setup of the system. It is
known that the system behaves very differently for the symmetric hopping case q = 1 and
the asymmetric case q 6= 1. We only consider the asymmetric case in the following. We
can restrict q < 1 because particle-hole exchange simply gives q > 1.
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Figure 1. The ASEP with open boundaries. Black circles and boxes represent particles and

lattice sites, respectively.

The state of this system is labelled by the configuration of particles {τi} = (τ1, τ2, · · · , τL)
where τi = 1, 0. Then, the time evolution of the probability distribution P ({τi}; t) is gov-
erned by the master equation

d

dt
|P ({τi}; t)〉 = H|P ({τi}; t)〉. (2.1)

Here we used the bra-ket notation. The time evolution operator H is a matrix whose
elements are the transition probability rates, and is defined explicitly by

H =

L
∑

i=1

[

qσ+
i σ−

i+1 + σ−
i σ+

i+1 −
q

4
(1 − σz

i )(1 + σz
i+1) −

1

4
(1 + σz

i )(1 − σz
i+1)

]

+ ασ+
1 + γσ−

1 − α

2
(1 + σz

1) −
γ

2
(1 − σz

1) + δσ+
L + βσ−

L − δ

2
(1 + σz

L) − β

2
(1 − σz

L)

(2.2)

where σa
i (a = x, y, z) is the Pauli matrix acting on the i-th site in the basis τi = 1, 0 and

σ±
i = (σx

i ±
√
−1σy

i )/2. From the general properties of the time evolution operator, there
exists a unique steady state: the state which is stationary under the time evolution, or the
highest eigenstate of H with eigenvalue zero. In this paper, we focus on the steady state.

As is obvious from the explicit form of the time evolution operator, the one-dimensional
ASEP can be regarded as a non-hermitian generalization of spin chain models in which the
spin-flip occurs asymmetrically. There are a lot of techniques to solve spin chain models.
For example the Bethe ansatz method is the representative one. For our purpose, the
matrix method is useful [9]. According to the matrix method, the probability distribution
of the steady state which we denote by P ({τi}) is expressed in the matrix product form:

P ({τi}) =
1

ZL
〈W |

L

−→
∏

i=1

(τiD + (1 − τi)E)|V 〉. (2.3)
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Here D and E are matrices; D (resp. E) corresponds to the occupation (resp. emptiness)
of a particle. 〈W | and |V 〉 are vectors; 〈W | (resp. |V 〉) corresponds to the left (resp.
right) boundary. One can show that (2.3) gives the exact steady state of the system if the
matrices and the vectors satisfy [9]

DE − qED = D + E, (2.4)

〈W |(αE − γD) = 〈W |, (2.5)

(βD − δE)|V 〉 = |V 〉. (2.6)

The normalization constant ZL in (2.3) is given by

ZL = 〈W |CL|V 〉 (2.7)

where C = D + E. We call ZL the partition function and C the transfer matrix. The
reasons are as follows. In the similar way to the standard statistical mechanics, the bulk
quantities of the system can be calculated from ZL. More precisely, if we introduce the
fugacity λ and define ZL(λ) = 〈W |(λD+E)L|V 〉, the density ρ and the density fluctuation
∆ρ2 are obtained from

ρ =
1

L
λ

∂

∂λ
log ZL(λ)

∣

∣

∣

∣

λ=1

, (2.8)

∆ρ2 =

(

1

L
λ

∂

∂λ

)2

log ZL(λ)

∣

∣

∣

∣

λ=1

. (2.9)

The definition of the matrix C implies that it has all information on the possibility at each
site, occupation and emptiness of a particle. Since it is also site-independent, the partition
function is calculated from the eigenvectors of C. Furthermore, the partition function is
dominated by the contribution of the largest eigenvalue of C in the thermodynamic limit
L → ∞. Interestingly, phase transitions occur when the set of eigenvalues of C varies
qualitatively. We shall come back to this point later.

Among other physical quantities we are interested in the n-point functions. For exam-
ple, the one-point function and the two-point function are respectively written as

〈τi〉 =
1

ZL
〈W |Ci−1

DC
L−i|V 〉, (2.10)

〈τiτj〉 =
1

ZL
〈W |Ci−1

DC
j−i−1

DC
L−j|V 〉. (2.11)

Here the bracket in the LHS means the average over the steady state distribution (2.3).
An important nonequilibrium quantity, the particle current J , is defined by the two-point
function: J = 〈τi(1− τi+1)− q(1− τi)τi+1〉. In terms of the matrix product expression, we
have

J =
ZL−1

ZL
. (2.12)

Indeed, the current J takes nonzero value even in the steady state. Therefore, the ASEP
is considered to be a nonequilibrium model.
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3 Known results

We briefly review known results for the steady state of the ASEP with open boundaries.
Most of them are found in [26]. There, the Askey-Wilson polynomial plays a chief role. The
Askey-Wilson polynomial Pn(x) = Pn(x; a, b, c, d|q), n ∈ Z+ is a q-orthogonal polynomial
with four parameters a, b, c, d besides q. It is regarded as the most general one in the
hierarchy of the one-variable q-orthogonal polynomial family in the Askey scheme [1, 11,
15]. The orthogonality relation for Pn(x) is

1

2π

∫ 1

−1

w(x)√
1 − x2

Pm(x)Pn(x)dx +
∑

f=a,b,c,d

∑

k:1<|fqk|≤|f |
wf

kPm(xf
k)Pn(xf

k) = hnδmn

(3.1)

where, by using the notation of the q-shifted factorial (a1, · · · , as; q)n =
∏s

r=1

∏n−1
k=0(1 −

arq
k),

w(cos θ) =
(e2iθ, e−2iθ; q)∞

(aeiθ, ae−iθ, beiθ, be−iθ, ceiθ, ce−iθ, deiθ, de−iθ; q)∞
, (3.2)

hn

h0
=

(1 − qn−1abcd)(q, ab, ac, ad, bc, bd, cd; q)n
(1 − q2n−1abcd)(abcd; q)n

, (3.3)

h0 =
(abcd; q)∞

(q, ab, ac, ad, bc, bd, cd; q)∞
, (3.4)

xf
k =

fqk + (fqk)−1

2
, (3.5)

wa
k =

(a−2; q)∞
(q, ab, ac, ad, a−1b, a−1c, a−1d; q)∞

(1 − a2q2k)(a2, ab, ac, ad; q)k
(1 − a2)(q, ab−1q, ac−1q, ad−1q; q)∞

( q

abcd

)k
,

(3.6)

and similarly for f = b, c, d. In the theory of the orthogonal polynomial, the three-term
recurrence relation and the orthogonality relation are fundamental objects. The three-
term recurrence relation is represented by an infinite-dimensional matrix called the Jacobi
operator T as an eigenvalue equation,

T|P (x)〉 = x|P (x)〉 (3.7)

where |P (x)〉 = t(P0(x), P1(x), · · · ). The fact is known as the spectral theorem that the
spectrum of the Jacobi operator corresponds to the support of the orthogonal measure of
the orthogonal polynomial (see for example [5]). From (3.1) we can read off the spectrum of

T as [−1, 1] ∪ {xf
k , f = a, b, c, d

∣

∣1 < |fqk| ≤ |f |, k ∈ Z+} for the Askey-Wilson polynomial.
For the steady state of the ASEP, we found in [26] that the transfer matrix C is directly

related to the Jacobi operator of the Askey-Wilson polynomial T:

C = 2 + 2T (3.8)

with parameters being set

a = κ+
α,γ , b = κ+

β,δ, c = κ−
α,γ , d = κ−

β,δ, (3.9)



Correlation Function of ASEP with Open Boundaries 681

where

κ±
α,γ =

1

2α

[

(1 − q − α + γ) ±
√

(1 − q − α + γ)2 + 4αγ
]

, (3.10)

κ±
β,δ =

1

2β

[

(1 − q − β + δ) ±
√

(1 − q − β + δ)2 + 4βδ
]

. (3.11)

Therefore, the eigenvector |x〉 of C is written in terms of the Askey-Wilson polynomials

and the spectrum of C is determined as [0, 4]∪{2 + 2xf
k , f = a, b

∣

∣1 < |fqk| ≤ |f |, k ∈ Z+},
noticing that |c|, |d| < 1. In fact the partition function (2.7) is calculated to be in the
integral form,

ZL =

∮

C

dz

4πiz

(z2, z−2; q)∞[(1 + z)(1 + z−1)/(1 − q)]L

(az, a/z, bz, b/z, cz, c/z, dz, d/z; q)∞
(3.12)

where the integral contour C is a closed path which encloses the poles at z = aqk, bqk, cqk,
dqk (k ∈ Z+) and excludes the poles at z = (aqk)−1, (bqk)−1, (cqk)−1, (dqk)−1 (k ∈ Z+).
This integral is actually the moment integral with respect to the weight function of the
Askey-Wilson polynomial.

Although the integral of (3.12) is difficult to evaluate, physically important thermody-
namic limit L → ∞ makes it possible to obtain the leading contribution. In this limit, the
largest eigenvalue of C dominates the contribution to the partition function. Indeed, it is
clear if we expand

〈W |CL|V 〉 =
∑

x

〈W |CL|x〉〈x|V 〉

=
∑

x

〈W |x〉xL〈x|V 〉

≃ const.xL
max.

Taking account of the largest eigenvalue, we find that there are three phases. The bulk
quantities for each phase are eventually obtained as the following.
(A) a > 1 and a > b: xmax = (1 + a)(1 + a−1),

ZL ≃ (a−2; q)∞
(q, ab, ac, ad, a−1b, a−1c, a−1d; q)∞

[

(1 + a)(1 + a−1)

1 − q

]L

, (3.13)

J ≃ (1 − q)
a

(1 + a)2
, ρ ≃ 1

1 + a
, ∆ρ2 ≃ a

(1 + a)2L
. (3.14)

(B) b > 1 and b > a: xmax = (1 + b)(1 + b−1),

ZL ≃ (b−2; q)∞
(q, ba, bc, bd, b−1a, b−1c, b−1d; q)∞

[

(1 + b)(1 + b−1)

1 − q

]L

, (3.15)

J ≃ (1 − q)
b

(1 + b)2
, ρ ≃ b

1 + b
, ∆ρ2 ≃ b

(1 + b)2L
. (3.16)

(C) a < 1 and b < 1: xmax = 4,

ZL ≃ (q; q)2∞
(a, b, c, d; q)2∞

4√
πL3/2

(

4

1 − q

)L

, (3.17)

J ≃ 1 − q

4
, ρ ≃ 1

2
, ∆ρ2 ≃ 1

8L
. (3.18)
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Note that a phase transition occurs when the largest eigenvalue xmax of the transfer matrix
C changes from one to the other.

Now, let us consider the correlation functions. We have the following integral formula
for the n-point function,

〈τj1 · · · τjn〉 =
1

(1 − q)LZL
lim

ξ1,··· ,ξn→1

[

n+1
∏

m=1

∮

Cm

dzm

4πizm

]

×

n+1
∏

m=1

(z2
m, z−2

m ; q)∞[(1 + zm)(1 + 1/zm)]jm−jm−1−1

(az1, a/z1, cz1, c/z1, bzn+1, b/zn+1, dzn+1, d/zn+1; q)∞

×
n
∏

m=1

[

1

(z2
m, z−2

m ; q)∞
δ(zm+1 − zm)

+
(q; q)2∞(zm+1 + 1/zm+1 − ξmzm − ξm/zm)

(ξmzmzm+1, ξmzm/zm+1, ξmzm+1/zm, ξm/zmzm+1; q)∞

]

(3.19)

where j0 = 0, jn+1 = L + 1 in the product. Regularization parameters ξm’s are included
since otherwise this integral becomes a singular integral. The contour Cm(m = 2, · · · , n+
1) encloses the poles at zm = ξm−1zm−1q

k, ξm−1z
−1
m−1q

k (k ∈ Z+) and excludes the poles

at zm = (ξm−1zm−1q
k)−1, (ξm−1z

−1
m−1q

k)−1 (k ∈ Z+). In addition, for m = 1, C1 encloses
the poles at z1 = aqk, cqk (k ∈ Z+) and excludes the poles at z1 = (aqk)−1, (cqk)−1

(k ∈ Z+). Also, Cn+1 encloses the poles at zn+1 = bqk, dqk (k ∈ Z+) and excludes the
poles at zn+1 = (bqk)−1, (dqk)−1 (k ∈ Z+). In the thermodynamic limit, the second
largest eigenvalue also comes into the game. For the two-point function (2.11), we have
an expansion

〈W |Ci−1
DC

j−i−1
DC

L−j|V 〉
≃ xL−2

max 〈W |xmax〉〈xmax|D|xmax〉〈xmax|D|xmax〉〈xmax|V 〉

+ xL−2
max

(

x2nd

xmax

)i−1

〈W |x2nd〉〈x2nd|D|xmax〉〈xmax|D|xmax〉〈xmax|V 〉

+ xL−2
max

(

x2nd

xmax

)j−i−1

〈W |xmax〉〈xmax|D|x2nd〉〈x2nd|D|xmax〉〈xmax|V 〉

+ xL−2
max

(

x2nd

xmax

)L−j

〈W |xmax〉〈xmax|D|xmax〉〈xmax|D|x2nd〉〈x2nd|V 〉.

From this expansion, it is found that the ratio x2nd/xmax determines the decay scale of the
correlation. However, the second largest eigenvalue is defined only for the phases (A) and
(B) since the spectrum of C is continuous for the phase (C). For this reason we investigate
in detail the correlation functions in the thermodynamic limit in the subsequent section.

4 Correlation functions

We will study the n-point function. In the following, suppose that the site numbers are of
order or suborder L, and take a thermodynamic limit L → ∞.
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First, the phases (A) and (B). In these cases, the second largest eigenvalue of C is
separated from the largest one and can be explicitly read off from the spectrum. It
is not necessary to touch the integral (3.19) directly. The correlation functions decay
exponentially and the correlation length is determined by ξ = (ln xmax/x2nd)−1. The
phase (A) is further classified into three sub-phases.
(A1) aq > 1, aq > b,

xmax = (1 + a)(1 + a−1), x2nd = (1 + aq)(1 + (aq)−1). (4.1)

(A2) a > b > aq, b > 1,

xmax = (1 + a)(1 + a−1), x2nd = (1 + b)(1 + b−1). (4.2)

(A3) a > 1 > aq, b < 1,

xmax = (1 + a)(1 + a−1), x2nd = 4. (4.3)

Because of the particle-hole symmetry, the phase (B) is classified in the same way except
a ↔ b in the above.

Next, the phase (C). As mentioned before, since the spectrum of the transfer matrix C

is continuous, the second largest eigenvalue is not defined. Thus, we should take care of the
integral representation. The behavior of the correlation function turns out to be something
different from the exponential decay. We can identify the correlation length with infinity
in this case, and finally we obtain a phase diagram with respect to the correlation length
as Figure 2. The horizontal (resp. vertical) axis corresponds to the left (resp. right)
boundary. As 1/a increases, the input from the left boundary tends to increase; as 1/b
increases, the output into the right boundary tends to increase. The special case γ = δ = 0
was argued and a similar phase diagram was obtained in [21].

We consider the finite-size correction of the correlation functions. Taking a close look
at the integral (3.19), we can verify a decomposition

〈τj1 · · · τjn〉 =

n
∑

k=0

∑

{i1,··· ,ik}⊂{j1,··· ,jn}
ρn−k〈δτi1 · · · δτik〉. (4.4)

By definition, 〈δτi1 · · · δτik〉 is the term represented by some integral which depends only
on {i1, · · · , ik} out of {j1, · · · , jn} and is independent of n. These terms come from the
existence of the boundaries. Therefore, we can identify them as the finite-size corrections.
The n-point correction term of the correlation functions is written in the following integral
form,

〈δτj1 · · · δτjn〉 =
(q; q)2n

∞
(1 − q)LZL

×
[

n+1
∏

m=1

∫ π

0

dθm

2π

]

n+1
∏

m=1

(e2iθm , e−2iθm ; q)∞(2 + 2 cos θm)jm−jm−1−1

(aeiθ1 , ae−iθ1 , ceiθ1 , ce−iθ1 , beiθ1 , be−iθ1 , deiθ1 , de−iθ1 ; q)∞

×
n
∏

m=1

(2 cos θjm+1
− 2 cos θjm)

(ei(θjm+θjm+1
), ei(θjm−θjm+1

), e−i(θjm−θjm+1
), e−i(θjm+θjm+1

); q)∞
(4.5)
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Figure 2. Phase diagram for the correlation length. The solid lines distinguish the three phases

(A), (B) and (C). The dashed lines separate the three sub-phases in (A) and (B).

where j0 = 0, jn+1 = L + 1 in the product. In the thermodynamic limit, the contribution
to this integral is concentrated on θm = 0,m = 1, · · · , n + 1 due to the presence of
(2+2 cos θm)jm−jm−1−1. Approximating (4.5) around this point by the saddle point method
and substituting the result (3.17), we arrive at a simpler expression,

〈δτj1 · · · δτjn〉 ≃ L3/2

√
π

(2π)n+1

n+1
∏

m=1

∫ ∞

0
dθm

n+1
∏

m=1

θ2
m exp

[

−1

4
(jm − jm−1 − 1)θ2

m

]

n
∏

m=1

(θ2
m − θ2

m+1)

.

(4.6)

The integrands have singularities at θm = θm+1, but this multifold integral should have a
certain finite value because we are evaluating a finite-valued physical quantity. To clarify
this point, we rewrite the integral in the RHS; in fact it is equivalent to another form,

In(ξ1, · · · , ξn+1)

= −
(√

π

2

)n+1 n+1
∏

m=1

(

∂

∂ξm

) n
∏

m=1

[

∫

∑m
k=1

ξk−
∑m−1

k=1
ηk

0

dηm√
ηm

]

1
√

∑n+1
k=1 ξk −∑n

k=1 ηk

(4.7)

with ξm = (jm − jm−1 − 1)/4, m = 1, · · · , n+1. In turn, the integral in (4.7) is integrable
and definitely has a finite value. Rewriting of the integral is performed as follows. First
of all, we have the Gaussian integral

∫ ∞

0
e−η(θ2−ϕ2)dθ =

√
π

2
√

η
eηϕ2

.
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Then, integrating the above over η from 0 to ξ yields

−
∫ ∞

0

e−ξ(θ2−ϕ2)

θ2 − ϕ2
dθ +

∫ ∞

0

dθ

θ2 − ϕ2
=

∫ ξ

0

√
π

2
√

η
eηϕ2

dη.

The second term of the LHS is equal to π2

2 δ(ϕ). Now multiplying e−ξϕ2

on both sides and
then differentiating by ξ, we have

∫ ∞

0

θ2

θ2 − ϕ2
e−ξθ2

dθ =
∂

∂ξ

[

e−ξϕ2

∫ ξ

0

√
π

2
√

η
eηϕ2

dη

]

.

Note that we can drop ϕ2e−ξϕ2

δ(ϕ). Applying this formula to the integral of θ1, then θ2,
· · · , θn, we get

n+1
∏

m=1

∫ ∞

0
dθm

n+1
∏

m=1

θ2
m exp

[

−ξmθ2
m

]

n
∏

m=1

(θ2
m − θ2

m+1)

=

(√
π

2

)n n
∏

m=1

(

∂

∂ξm

) n
∏

m=1

[

∫

∑m
k=1

ξk−
∑m−1

k=1
ηk

0

dηm√
ηm

]

×
∫ ∞

0
θ2
n+1 exp

[

−
(

n+1
∑

k=1

ξk −
n
∑

k=1

ηk

)

θ2
n+1

]

dθn+1.

Finally, performing the θn+1 integral, we obtain (4.7). After all, we have the following
result.

〈δτj1 · · · δτjn〉 ≃ L3/2

√
π

(2π)n+1
In

(

j1 − 1

4
,
j2 − j1 − 1

4
, · · · ,

jn − jn−1 − 1

4
,
L − jn

4

)

.

(4.8)

From this expression, it is found that the correlation functions are independent of the
boundary parameters a, b, c, d and q. Moreover, one can show that the n-point correction
〈δτj1 · · · δτjn〉 is of order L−n/2 if j1, · · · , jn are of order L.

We obtain exact expressions for the n-point corrections by calculating (4.7) explicitly.
We show the first few examples:

〈δτi〉 ≃ − 1

L1/2
√

π

i − L/2
√

i(L − i)
, (4.9)

〈δτiδτj〉 ≃ − 1

2π

[

L−1/2

√
j − i(−i2 + (j − i)2 + i(L − j) − (L − j)2)

2
√

i(L − j)j(L − i)

+L−13

2
arctan

√

i(L − j)

(j − i)L

]

, (4.10)
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〈δτiδτjδτk〉 ≃ − 1

22π3/2

[

L−1/2

√

(j − i)(k − j)

2
√

i(L − k)j(L − j)k(L − i)

×
{

i3 + i2(j − i) − i(j − i)2 − (j − i)3 − i(j − i)(k − j) − (j − i)2(k − j)

+(j − i)(k − j)2 + (k − j)3 − i2(L − k) − i(j − i)(L − k) + i(k − j)(L − k)

+(j − i)(k − j)(L − k) + (k − j)2(L − k) + i(L − k)2 − (k − j)(L − k) − (L − k)3
}

+L−3/2 (L − k)2 + 6k(L − k) − 3k2

2
√

L − kk3/2
arctan

√

i(k − j)

(j − i)k

−L−3/2 i2 + 6i(L − i) − 3(L − i)2

2
√

i(L − i)3/2
arctan

√

(j − i)(L − k)

(k − j)(L − i)

]

. (4.11)

Correlation functions for the special case q = 0 were studied in [8] (α = β = 1, γ = δ = 0)
and [7] (γ = δ = 0). The work [8] dealt with the one-point function and the two-point
function. Our results (4.9) and (4.10) agree with them. In [7], another kind of integral
expressions for the n-point correction terms 〈δτj1 · · · δτjn〉 were obtained by a different
method. They have apparently different form but in principle equivalent to our results
(4.8) since (4.8) are independent of the boundary parameters a, b, c, d and the asymmetry
parameter q even for general parameter settings, as we have just noticed.

Physically, fluctuation of the correlation function is related to the connected part,

〈δτj1 · · · δτjn〉conn =
〈

(δτj1 − 〈δτj1〉) · · · (δτj1 − 〈δτj1〉)
〉

. (4.12)

Figure 3 illustrates the behavior of the connected three-point correction term 〈δτiδτjδτk〉conn

for large L. It is interesting that there can be a maximal or minimal point for the par-
ticle occupation according to the positions of the other particles. One also notices that
〈δτiδτjδτk〉conn vanishes at the boundary. This is a physical consequence of the fact that
particles are in equilibrium with the reservoir at the boundary. We can show in general
that the connected n-point functions vanish at the boundaries. From (4.7), we directly
have

In(ξ1, · · · , ξn+1) =
√

π

2

[

1√
ξ1
In−1(ξ2, · · · , ξn+1) +

∫ ξ1

0

dη√
η

∂

∂ξ1
In−1(ξ1 + ξ2 − η, · · · , ξn+1)

]

.

Note if we take ξ1 → 0, only the first term of RHS is singular and the second term vanishes.
Then, we have limi→0〈δτiδτj · · · δτk〉 − 〈δτi〉〈δτj · · · δτk〉 = 0 because 〈δτi〉 ∼ 1

2
√

πi
, i → 0,

and furthermore limi→0

〈

δτi(δτj − 〈δτj〉) · · · (δτk − 〈δτk〉)
〉

− 〈δτi〉
〈

(δτj − 〈δτj〉) · · · (δτk −

〈δτk〉)
〉

= 0 , which establishes

lim
j1→0

〈δτj1 · · · δτjn〉conn = 0. (4.13)

Similarly, 〈δτj1 · · · δτjn〉conn vanishes also in the limit jn → L.
What we have calculated here are the leading terms of the finite-size corrections of

〈δτj1 · · · δτjn〉conn. It is also possible to have 1/L-expansion of it by elaborating approxi-
mations of (4.5) and (3.17).
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L3�2<∆Τi∆Τj∆Τk>conn

Figure 3. The connected part 〈δτiδτjδτk〉conn for large L. The two curves are plotted as a function

of the position of the leftmost particle i with the position of the middle particle j and that of the

rightmost one k fixed at the place of the small black circles and the big black circle respectively.

The solid line is for j = 0.1L and k = 0.5L. The dashed line is for j = 0.4L and k = 0.5L.

5 Conclusion

We have investigated the correlation functions for the steady state of the ASEP with open
boundaries in the thermodynamic limit. Main results are summarized as follows: 1) a
phase diagram is given with respect to the correlation length ξ, 2) for the case ξ = ∞, the
leading terms of the finite-size corrections are calculated accurately.

For the future problem, we are interested in the time-correlations of the ASEP. In order
to calculate the time-correlations, one should know all the eigenvalues and eigenvectors
of the time evolution operator H. At present, we have an exact information only for the
steady state. It would be possible to solve the eigenvalue problem for H by means of the
Bethe ansatz method and evaluate the time-correlation functions for the ASEP with open
boundaries.

In the nonequilibrium statistical mechanics, we like to have the general theory for the
relations among nonequilibrium quantities. For the purpose, the study of the current
fluctuation is primarily important. An attempt to calculate the current fluctuations of
the ASEP with open boundaries was made for the symmetric case q = 1 [6]. There, the
authors considered a hierarchy of equations for the correlations without directly solving
the eigenvalue problem for H. Whether their approach is applicable to the asymmetric
case q 6= 1 is one of open questions.
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