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1 Introduction

Lattice contact models form an important class of interacting particle systems
with rich mathematical properties and many essential applications, see, e.g.,
[14]. A continuous version of these models was introduced recently in [10]. In
the latter paper the existence problem for corresponding spatial Markov process
was analyzed in details. This process is a special case of the general birth-and-
death processes in the continuum. Namely, we consider configurations, i.e.,
locally finite subsets γ ⊂ Rd as values of the process. During the stochastic
evolution the points of a configuration independently create new ones distributed
in the space according to a dispersion probability density 0 ≤ a ∈ L1(Rd)
which is an even function. Any existing point has an independent exponentially
distributed random life time. The contact process generator is given then on
proper functions F (γ) by the expression

(LF )(γ) :=
∑
x∈γ

[F (γ \ x)− F (γ)] + κ
∫

Rd

∑
y∈γ

a(x− y)[F (γ ∪ x)− F (γ)]dx,

where κ > 0 is a birth intensity parameter.
The main problem considered in the present paper concerns asymptotics

properties of the contact process. First of all, we construct the time evolution of
correlation functions for the contact process starting with an initial distribution
from a large class of initial states. Corresponding infinite system of evolution
equations for correlation functions has a recurrent form and admits a simple
analysis. We note, that the intensity parameter has a critical value κ = 1. For
all other values of this parameter the density of the system tends to∞ or 0 with
the time and we cannot expect an appearing of a limiting invariant state.

For the critical value κ = 1 and the dimension d ≥ 3 we prove the exis-
tence of a continuous family of invariant measures parameterized by the density
values. These invariant measures are described by a simple recurrent relation
between their correlation functions and create a concrete class of random point
fields which, up to our knowledge, never before was considered in the literature.
A specific point of this class is an extremal growth w.r.t. the number of corre-
lation functions. Actually, this growth is a maximal possible one such that the
uniqueness of the corresponding measure is still valid. We show that, starting
with an admissible initial state, the critical contact process converges to the
equilibrium measure uniquely defined by the density of the initial state.

Let us note, that the contact models in the continuum may be used in the
epidemiology to model an infection spreading process as well as in the spatial
plant ecology where they describe independent growth of a population with a
given mortality rate. In such ecological models the case d = 2 has a special
concrete motivation. As we have mentioned above, invariant measures for our
model for d = 2 do not exist and the root of this effect is very easy. Namely, in
the two-dimensional case correlations between population members are growing
in time too fast and the limiting correlation function of second order will diverge
to the infinity. To avoid this divergence we may include an additional free
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Kawasaki dynamics for points of the configuration (see [5]). This dynamics
includes an independent random walk in Rd for each population member. Then,
assuming long tail jumps for the individual random walk process, we can assure
the existence of invariant measures for such infinite particle stochastic dynamics.
The resulting contact model with Kawasaki dynamics may be used naturally
for the study of plankton stochastic dynamics, cf. [19]. Detailed analysis of the
discussed model will be given in our forthcoming paper [7].

2 Preliminaries

We consider the Euclidian space Rd. By B(Rd) we denote the family of all Borel
sets in Rd. Bb(Rd) denotes the system of all sets in B(Rd) which are bounded.

The space of n-point configuration is

Γ(n)
0 = Γ(n)

0,Rd :=
{
η ⊂ Rd

∣∣ |η| = n
}
, n ∈ N0 := N ∪ {0},

where |A| denotes the cardinality of the set A.
The space Γ(n)

Λ = Γ(n)
0,Λ for Λ ∈ Bb(Rd) is defined analogously to the space

Γ(n)
0 . As a set Γ(n)

0 is equivalent to the symmetrization of

(̃Rd)n =
{

(x1, . . . , xn) ∈ (Rd)n |xk 6= xl if k 6= l
}
,

i.e. to the (̃Rd)n/Sn, where Sn is the permutation group of {1, . . . , n}. Hence,
one can introduce the corresponding topology and Borel σ-algebra, which we
denote by O(Γ(n)

0 ) and B(Γ(n)
0 ), respectively.

The space of finite configurations

Γ0 :=
⊔
n∈N0

Γ(n)
0

is equipped with the topology O(Γ0) of disjoint union. Let B(Γ0) denotes the
corresponding Borel σ-algebra.

A set B ∈ B(Γ0) is called bounded if there exists Λ ∈ Bb(Rd) and N ∈ N
such that B ⊂

⊔N
n=0 Γ(n)

Λ .
We would like to emphasize that due to the structure of Γ0, any function on

Γ0 can be interpreted as a system of symmetrical functions on each component
Γ(n)

0 of Γ0.
The configuration space

Γ :=
{
γ ⊂ Rd

∣∣ |γ ∩ Λ| <∞, for all Λ ∈ Bb(Rd)
}

is equipped with the vague topology O(Γ). It is a Polish space (see e.g. [6]).
B(Γ) denotes the corresponding Borel σ-algebra. The filtration on Γ with a base
set Λ ∈ Bb(Rd) is given by

BΛ(Γ) := σ
(
NΛ′

∣∣Λ′ ∈ Bb(Rd), Λ′ ⊂ Λ
)
,

3



where NΛ : Γ0 → N0 is such that NΛ(η) := |η ∩ Λ|. For brevity we write
ηΛ := η ∩ Λ.

For every Λ ∈ Bb(Rd) the projection pΛ : Γ→ ΓΛ :=
⊔
n≥0 Γ(n)

Λ is defined as

pΛ(γ) := γΛ

One can show that Γ is the projective limit of the spaces {ΓΛ}Λ∈Bb(Rd) w.r.t.
this projections.

In the sequel we will use the following classes of function on Γ0:
• L0(Γ0) - the set of all measurable functions on Γ0;
• L0

ls(Γ0) - the set of measurable functions with local support, i.e. G ∈ L0
ls(Γ0)

if there exists Λ ∈ Bb(Rd) such that G �Γ0\ΓΛ= 0;
• L0

bs(Γ0) - the set of measurable functions with bounded support, i.e. G ∈
L0

bs(Γ0) if there exists Λ ∈ Bb(Rd) and N ∈ N such that G �
Γ0\

FN
n=0 Γ

(n)
Λ

= 0;
• B(Γ0) - the set of bounded measurable functions
• Bbs(Γ0) - the set of bounded functions with bounded support ;

On Γ we consider the set of cylinder functions FL0(Γ), i.e. the set of all
measurable functions G ∈ L0(Γ) which are measurable w.r.t. BΛ(Γ) for some
Λ ∈ Bb(Rd). These functions are characterized by the following relation:

F (γ) = F �ΓΛ (γΛ).

Those cylinder functions which are measurable w.r.t. BΛ(Γ) for fixed Λ ∈ Bb(Rd)
we will denote by FL0(Γ, BΛ(Γ)).

Next we would like to describe some facts from the harmonic analysis on the
configuration space based on [4].

The following mapping between functions on Γ0, and functions on Γ, plays
the key role in our further considerations:

KG(γ) :=
∑
ξbγ

G(ξ), G ∈ L0
ls(Γ0) γ ∈ Γ,

see e.g. [12, 13]. The summation in the latter expression is taken over all finite
subconfigurations of γ, which is denoted by the symbol ξ b γ.

K-transform is linear, positivity preserving, and invertible, with

K−1F (η) :=
∑
ξ⊂η

(−1)|η\ξ|F (ξ), F ∈ FL0(Γ) η ∈ Γ0. (1)

It is easy to see that for any Λ ∈ Bb(Rd) and arbitrary F ∈ FL0(Γ, BΛ(Γ))

K−1F (η) = 11ΓΛ(η)K−1F (η), ∀η ∈ Γ0. (2)

The map K, as well as the map K−1, can be extended to more wide classes of
functions. For details and further properties of the map K see, e.g. [4].
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One can introduce a convolution

? : L0(Γ0)× L0(Γ0) → L0(Γ0) (3)
(G1, G2) 7→ (G1 ? G2) (η)

:=
∑

(ξ1,ξ2,ξ3)∈P3
∅(η)

G1(ξ1 ∪ ξ2) G2(ξ2 ∪ ξ3),

where P3
∅ (η) denotes the set of all partitions (ξ1, ξ2, ξ3) of η in 3 parts, i.e., all

triples (ξ1, ξ2, ξ3) with ξi ⊂ η, ξi ∩ ξj = ∅ if i 6= j, and ξ1 ∪ ξ2 ∪ ξ3 = η. It has
the property that for G1, G2 ∈ L0

ls(Γ0)

K (G1 ? G2) = KG1 ·KG2.

Due to this convolution we can interpret the K-transform as the Fourier trans-
form in configuration space analysis, see also [1].

Let M1
fm(Γ) be the set of all probability measures µ which have finite local

moments of all orders, i.e. ∫
Γ

|γΛ|nµ(dγ) < +∞

for all Λ ∈ Bb(Rd) and n ∈ N0.
A measure ρ on Γ0 is called locally finite if ρ(A) <∞ for all bounded sets A

from B(Γ0). The set of such measures is denoted by Mlf(Γ0).
A measure ρ ∈Mlf(Γ0) is called positive definite if∫

Γ0

(G ? G)(η)ρ(dη) ≥ 0, ∀G ∈ Bbs(Γ0),

where G is a complex conjugate of G.
A measure ρ is called normalized if and only if ρ({∅}) = 1.
One can define a transform K∗ : M1

fm(Γ) → Mlf(Γ0), which is dual to the
K-transform, i.e., for every µ ∈M1

fm(Γ), G ∈ Bbs(Γ0) we have∫
Γ

KG(γ)µ(dγ) =
∫

Γ0

G(η) (K∗µ)(dη).

The measure ρµ := K∗µ is called the correlation measure of µ. As shown in [4]
for µ ∈M1

fm(Γ) and any G ∈ L1(Γ0, ρµ) the series

KG(γ) :=
∑
ηbγ

G(η), (4)

is µ-a.s. absolutely convergent. Furthermore, KG ∈ L1(Γ, µ) and∫
Γ0

G(η) ρµ(dη) =
∫

Γ

(KG)(γ)µ(dγ). (5)
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Fix a non-atomic and locally finite measure σ on (Rd,B(Rd)). For any n ∈ N
the product measure σ⊗n can be considered by restriction as a measure on (̃Rd)n

and hence on Γ(n)
0 . The measure on Γ(n)

0 we denote by σ(n).
The Lebesgue-Poisson measure λzσ on Γ0 is defined as

λzσ :=
∞∑
n=0

zn

n!
σ(n).

Here z > 0 is the so-called activity parameter. The restriction of λzσ to ΓΛ

will be also denoted by λzσ. We write λz instead of λzσ, if the measure σ is
considered to be fixed.

The Poisson measure πzσ on (Γ,B(Γ)) is given as the projective limit of the
family of measures {πΛ

zσ}Λ∈Bb(Rd), where πΛ
zσ is the measure on ΓΛ defined by

πΛ
zσ := e−zσ(Λ)λzσ.

A measure µ ∈ M1
fm(Γ) is called locally absolutely continuous w.r.t. πzσ iff

µΛ := µ ◦ p−1
Λ is absolutely continuous with respect to πΛ

zσ = πzσ ◦ p−1
Λ for all

Λ ∈ Bb(Rd). In this case, ρµ := K∗µ is absolutely continuous w.r.t λzσ. Let
kµ : Γ0 → R+ be the corresponding Radon-Nikodym derivative, i.e.

kµ(η) :=
dρµ
dλzσ

(η), η ∈ Γ0.

Remark 2.1 The functions

k(n)
µ : (Rd)n −→ R+ (6)

k(n)
µ (x1, . . . , xn) :=

{
kµ({x1, . . . , xn}), if (x1, . . . , xn) ∈ (̃Rd)n
0, otherwise

are the correlation functions well known in statistical physics, see e.g [17], [18].

For the technical purposes we also recall the following result:

Lemma 2.1 Let n ∈ N, n ≥ 2, and z > 0 be given. Then∫
Γ0

. . .

∫
Γ0

G(η1 ∪ . . . ∪ ηn)H(η1, . . . , ηn)dλzσ(η1) . . . dλzσ(ηn) =

=
∫

Γ0

G(η)
∑

(η1,...,ηn)∈Pn(η)

H(η1, . . . , ηn)dλzσ(η)

for all measurable functions G : Γ0 7→ R and H : Γ0× . . .×Γ0 7→ R with respect
to which both sides of the equality make sense. Here Pn(η) denotes the set of
all ordered partitions of η in n parts, which may be empty.

This lemma is known in the literature as Minlos lemma (cf., [9], [15]) and it will
be crucial for calculations in many places in the next sections.
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3 Generators. The symbol of the generator on
the space of finite configurations

Let the activity parameter z be equal to 1 and let 0 ≤ a ∈ L1(Rd) be an arbitrary
even function such that ∫

Rd

a(x)dx = 1.

We consider a Markov pre-generator which corresponds to the contact model
on the configuration space Γ, the action of which is given by

(LF )(γ) :=
∑
x∈γ

D−x F (γ) + κ
∫

Rd

∑
y∈γ

a(x− y)D+
x F (γ)dx, F ∈ FL0(Γ),

where D−x F (γ) = F (γ \ x)− F (γ), D+
x F (γ) = F (γ ∪ x)− F (γ) and κ > 0.

Proposition 3.1 The image of L under the K-transform (or symbol of the
operator L) on functions G ∈ Bbs(Γ0) has the following form

(L̂G)(η) := (K−1LKG)(η) = −|η|G(η)+

+κ
∫

Rd

∑
y∈η

a(x− y)G((η \ y) ∪ x)dx+ κ
∫

Rd

∑
y∈η

a(x− y)G(η ∪ x)dx

Proof. According to the definition of the operator L̂ we have

(L̂G)(η) = I1(η) + I2(η),

where

I1(η) := K−1

(∑
x∈·

[KG(· \ x)−KG(·)]

)
(η) =

= K−1

∑
x∈·

 ∑
ξ⊂(·\x)

G(ξ)−
∑
ξ⊂·

G(ξ)

 (η) =

= K−1

∑
x∈·

− ∑
ξ⊂(·\x)

G(ξ ∪ x)

 (η) =

= −
∑
ζ⊂η

(−1)|η\ζ|
∑
x∈ζ

∑
ξ⊂ζ\x

G(ξ ∪ x) = −
∑
ζ⊂η

(−1)|η\ζ|
∑
x∈ζ

K (G(· ∪ x)) (ζ \ x).

Changing summation in the last expression we get

I1(η) = −
∑
x∈η

∑
ζ∈η\x

(−1)|η\(ζ∪x)|K (G(· ∪ x)) (ζ) =

= −
∑
x∈η

K−1 (KG(· ∪ x)) (η \ x) = −
∑
x∈η

G(η) = −|η|G(η);
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Now we compute the second term of L̂

I2(η) := K−1

(
κ
∫

Rd

∑
y∈·

a(x− y) [KG(· ∪ x)−KG(·)] dx

)
(η) =

= κ
∑
ζ⊂η

(−1)|η\ξ|
∫

Rd

∑
y∈ζ

a(x− y)
∑
ρ⊂ζ

G(ρ ∪ x)dx.

Using the fact that∑
y∈ζ

a(x− y) = K
(
a(x− ·)11{|·|=1}(·)

)
(ζ)

we obtain

I2(η) = κ
∫

Rd

K−1
(
K
((
a(x− ·)11{|·|=1}(·)

)
? G(· ∪ x)

))
(η)dx =

= κ
∫

Rd

((
a(x− ·)11{|·|=1}(·)

)
? G(· ∪ x)

)
(η)dx.

By the definition of the convolution, the latter expression can be written as
follows

κ
∫

Rd

∑
(ξ1,ξ2,ξ3)∈P3

∅(η)

(
a(x− ·)11{|·|=1}(·)

)
(ξ1 ∪ ξ2)G(ξ2 ∪ ξ3 ∪ x)dx.

Now, we note that there are only two cases when summands in the last expres-
sion are not equal to zero. These cases are |ξ1| = 1, ξ2 = ∅ and ξ1 = ∅, |ξ2| = 1.
Therefore,

I2(η) = κ
∫

Rd

∑
y∈η

a(x−y)G((η\y)∪x)dx+κ
∫

Rd

∑
y∈η

a(x−y)G((η\y)∪y∪x)dx.

The latter fact proves the assertion of the proposition. �

4 Construction of the contact process associated
with the generator L

4.1 The adjoint operator to the symbol of L

Let a measure ρ ∈Mlf(Γ0) be absolutely continuous with respect to the Lebesgue-
Poisson measure λ. By k(η), η ∈ Γ0 we denote the corresponding density.

Proposition 4.1 Assume that

k(η) ≤ C |η||η|!, η ∈ Γ0 (7)

for some C > 0. Then, L̂(Bbs(Γ0)) is a subset of L1(Γ0, ρ).
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Proof. Let G ∈ Bbs(Γ0) be arbitrary and fixed. A direct application of Lemma
2.1 to the calculation of L1-norm of L̂G with respect to the measure ρ gives us
the necessary result. �

The operator L̂∗ adjoint to the operator L̂ on the space of correlation func-
tions is defined via the following duality

〈L̂G, k〉 :=
∫

Γ0

L̂G(η)ρ(dη) =
∫

Γ0

L̂G(η)k(η)λ(dη) = 〈G, L̂∗k〉.

In the next proposition we give an explicit representation of the adjoint
operator of L̂.

Proposition 4.2 The adjoint operator L̂∗ of L̂ on the space of functions which
satisfy (7) has the following form:

(L̂∗k)(η) = −|η|k(η)+κ
∑
x∈η

k(η\x)
∑
y∈η\x

a(x−y)+κ
∑
x∈η

∫
Rd

a(x−y)k((η\x)∪y)dy.

Proof. Using the same notation as in Proposition 3.1 we get∫
Γ0

I1(η)k(η)λ(dη) = −
∫

Γ0

|η|G(η)k(η)λ(dη) =
∫

Γ0

G(η) [−|η|k(η)]λ(dη).

For the second part of L̂ we have∫
Γ0

I2(η)k(η)λ(dη) = J1 + J2,

where
J1 := κ

∫
Γ0

∫
Rd

∑
y∈η

a(x− y)G((η \ y) ∪ x)dxk(η)λ(dη),

and
J2 := κ

∫
Γ0

∫
Rd

G(η ∪ x)
∑
y∈η

a(x− y)k(η)dxλ(dη).

Using Lemma 2.1 we obtain

J1 = κ
∫

Γ0

∫
Rd

k(η ∪ y)
[∫

Rd

a(x− y)G(η ∪ x)dx
]
dyλ(dη) =

= κ
∫

Γ0

∫
Rd

G(η ∪ x)
[∫

Rd

a(x− y)k(η ∪ y)dy
]
dxλ(dη).

Using Lemma 2.1 again for the last expression and for the integral J2, finally
we get

J1 = κ
∫

Γ0

G(η)

[∑
x∈η

∫
Rd

a(x− y)k((η \ x) ∪ y)dy

]
λ(dη).
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J2 = κ
∫

Γ0

G(η)

∑
x∈η

k(η \ x)
∑
y∈η\x

a(x− y)

λ(dη).

This concludes the proof of the proposition. �

4.2 Time evolution of correlation functions

In this subsection we investigate the evolutional equation associated with the
operator L̂∗. It has the following form

∂kt
∂t

(η) = L̂∗kt(η) = −|η|kt(η) + κ
∑
x∈η

kt(η \ x)
∑
y∈η\x

a(x− y)+

+κ
∑
x∈η

∫
Rd

a(x− y)kt((η \ x) ∪ y)dy.

Having in mind the relation between functions on the space of finite configura-
tions and collection of symmetrical functions on each component Γ(n)

0 , n ≥ 0,
we rewrite this equation as a system of equations:

∂k
(n)
t

∂t
(x1, . . . , xn) = −nk(n)

t (x1, . . . , xn)+

+κ
n∑
i=1

k
(n−1)
t (x1, . . . , x̌i, . . . , xn)

∑
j: j 6=i

a(xi − xj)+

+κ
n∑
i=1

∫
Rd

a(xi − y)k(n)
t (x1, . . . , xi−1, y, xi+1, . . . , xn)dy =

= L̂∗nk
(n)
t (x1, . . . , xn) + f

(n)
t (x1, . . . , xn), n ≥ 1,

where
L̂∗nk

(n)
t (x1, . . . , xn) := −nk(n)

t (x1, . . . , xn)+

+κ
n∑
i=1

∫
Rd

a(xi − y)k(n)
t (x1, . . . , xi−1, y, xi+1, . . . , xn)dy, n ≥ 1

and

f
(n)
t (x1, . . . , xn) := κ

n∑
i=1

k
(n−1)
t (x1, . . . , x̌i, . . . , xn)

∑
j: j 6=i

a(xi − xj), n ≥ 2,

f
(1)
t ≡ 0.

Let n ∈ N be arbitrary and fixed. We consider the linear Cauchy problem

∂k
(n)
t

∂t
(x1, . . . , xn) = L̂∗nk

(n)
t (x1, . . . , xn) + f

(n)
t (x1, . . . , xn), t ≥ 0, (8)
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k
(n)
t (x1, . . . , xn)

∣∣∣
t=0

:= k
(n)
0 (x1, . . . , xn),

in the Banach space Xn, defined as L∞((Rd)n, σ⊗n), where σ is the Lebesgue
measure on Rd and σ⊗n is the product measure on (Rd)n.

Remark 4.1 The operator L̂∗n in Xn can be also written in another way

L̂∗nk
(n)(x1, . . . , xn) = n(κ − 1) k(n)(x1, . . . , xn) +

n∑
i=1

Liak
(n)(x1, . . . , xn),

where for each 1 ≤ i ≤ n,

Liak
(n)(x1, . . . , xn) =

= κ
∫

Rd

a(xi − y)
[
k(n)(x1, . . . , xi−1, y, xi+1, . . . , xn)− k(n)(x1, . . . , xn)

]
dy

is a generator of a Markov process on (Rd)n (see [2]), which describes the
jump of the particle placed at the point (x1, . . . , xi, . . . , xn) ∈ (Rd)n to the point
(x1, . . . , y, . . . , xn) ∈ (Rd)n with an intensity equal to a(xi − y).

Lemma 4.1 Let a ∈ L1(Rd) be a nonnegative even function. Then, for any n ≥
1, the operator L̂∗n is a bounded linear operator in Xn as well as in L1((Rd)n).
Moreover, for each 1 ≤ i ≤ n, the operator Lia is a generator of a contraction
semigroup on Xn and L1((Rd)n).

Proof. The first part of this theorem is trivial. The second one in the case of
the space Xn follows directly from Remark 4.1 and in the case of L1((Rd)n) it
is a consequence of Beurling-Deny criterion, see e.g. [16]. �

This Lemma in its turn implies the following result (see e.g. [3]).

Proposition 4.3 Let n ≥ 1 be arbitrary and fixed. The solution to the Cauchy
problem (8) in the Banach space Xn is given by

k
(n)
t (x1, . . . , xn) = en(κ−1)t

[
n⊗
i=1

etL
i
a

]
k

(n)
0 (x1, . . . , xn) + κen(κ−1)t× (9)

×
∫ t

0

e−n(κ−1)s

[
n⊗
i=1

e(t−s)Li
a

]
n∑
i=1

k(n−1)
s (x1, . . . , x̌i, . . . , xn)

∑
j: j 6=i

a(xi − xj)ds.

Next proposition establish a priori estimates for the evolution of correlation
functions

11



Proposition 4.4 Let a ∈ L1(Rd) ∩ L∞(Rd) be an arbitrary nonnegative even
function. Suppose that there exists a constant C > 0 (independent of n) such
that for any (x1, . . . , xn) ∈ (Rd)n

k
(n)
0 (x1, . . . , xn) ≤ n!Cn, for all n ≥ 0.

Then, for any t ≥ 0 and almost all (a.a.) (x1, . . . , xn) ∈ (Rd)n w.r.t. the
Lebesgue measure

k
(n)
t (x1, . . . , xn) ≤ κ(t)n(1 + ||a||L∞(Rd))

nen(κ−1)t(C + t)nn!, (10)

where
κ(t) := max

[
1, κ, κe−(κ−1)t

]
holds for all n ≥ 0.

Proof. The proof uses mathematical induction with respect to n. The first in-
duction step (the fulfilment of (10) in the case of n = 1) follows from Proposition
4.3. Now assume that for any t ≥ 0 bound (10) holds for n− 1. Using formula
(9) and Remark 4.1 we get

k
(n)
t (x1, . . . , xn) ≤ en(κ−1)tCnn!+

+κ(n− 1)n!(1 + ||a||L∞)n
∫ t

0

en(κ−1)(t−s)κ(s)n−1e(n−1)(κ−1)s(C + s)n−1ds ≤

≤ en(κ−1)tCnn!+

+κ(n− 1)n!(1 + ||a||L∞)nκ(t)n−1en(κ−1)t

∫ t

0

e−(κ−1)s(C + s)n−1ds.

Using the estimate

e−(κ−1)s ≤ max{1, e−(κ−1)t}, for all s ∈ [0, t], κ > 0

we obtain

k
(n)
t (x1, . . . , xn) ≤ κ(t)n(1 + ||a||L∞)nen(κ−1)t(C + t)nn!,

which concludes the proof of this proposition. �
With the help of the previous proposition, we can approximate solutions of

the Cauchy problem (8) for a with unbounded support by the solutions of (8)
for a with bounded support:

Corollary 4.1 Let 0 ≤ a ∈ L1(Rd)∩C(Rd) be an arbitrary even function such
that ∫

Rd

a(x)dx = 1 and a(x)→ 0, |x| → ∞

and let k(n)
t, a be a solution to the Cauchy problem (8) in Xn. Suppose, that

the conditions of Proposition 4.4 are fulfilled. Then there exists a sequence
{al}l≥1 ⊂ C0(Rd) such that

k
(n)
t, al
→ k

(n)
t, a in Xn as l→∞.

12



Proof. There exists a sequence {al}l≥1 ⊂ C0(Rd) such that

al → a, in X1 and L1(Rd) as l→∞. (11)

We will give the rest of the proof of the corollary using mathematical induction.
For n = 1 the statement is trivial. Now, using induction step (n − 1) → n we
estimate the L∞-norm of the difference

k
(n)
t, al

(x1, . . . , xn)− k(n)
t, a(x1, . . . , xn) = (12)

= en(κ−1)t

([
n⊗
i=1

etL
i
al

]
k

(n)
0 (x1, . . . , xn)−

[
n⊗
i=1

etL
i
a

]
k

(n)
0 (x1, . . . , xn)

)
+

+κen(κ−1)t×∫ t

0

en(1−κ)s

[ n⊗
i=1

e(t−s)Li
al

]
n∑
i=1

k(n−1)
s, al

(x1, . . . , x̌i, . . . , xn)
∑
j: j 6=i

al(xi − xj)−

−

[
n⊗
i=1

e(t−s)Li
a

]
n∑
i=1

k(n−1)
s, a (x1, . . . , x̌i, . . . , xn)

∑
j: j 6=i

a(xi − xj)

 ds.

Due to Proposition 4.3 the first term on the right hand side of (12) converges
to 0 in Xn. Indeed, in our case the strong convergence of semigroups in L∞

space with bounded generators follows from the corresponding convergence of
generators. But the latter fact is trivial because of the convergence (11).

In order to check the convergence of the second term of (12) to 0 in Xn, let
us note that

n∑
i=1

k(n−1)
s, al

(x1, . . . , x̌i, . . . , xn)
∑
j: j 6=i

al(xi − xj)

converges to
n∑
i=1

k(n−1)
s, a (x1, . . . , x̌i, . . . , xn)

∑
j: j 6=i

a(xi − xj),

in Xn as l→∞.
Due to Proposition 4.4∣∣∣∣∣∣

∣∣∣∣∣∣
[

n⊗
i=1

e(t−s)Li
al

]
n∑
i=1

k(n−1)
s, al

(x1, . . . , x̌i, . . . , xn)
∑
j: j 6=i

al(xi − xj)

∣∣∣∣∣∣
∣∣∣∣∣∣
Xn

and the same expression with al replaced by a are uniformly bounded in s ∈
[0, t]. The latter two facts imply the convergence of the second term of (12) to
0 in Xn. �

Next we solve the following problem: suppose that (k(n)
0 )n≥0 is a system

of correlation functions, i.e., there exists a probability measure µ0 ∈ M1
fm(Γ),

13



locally absolutely continuous with respect to the Poisson measure, whose cor-
relation functions are exactly (k(n)

0 )n≥0. We would like to investigate now
whether the evolution of (k(n)

0 )n≥0 in time preserves the property described
above. Namely, whether (k(n)

t )n≥0, at any moment of time t > 0, is a system
of correlation functions or not. In order to answer this question, one can ap-
ply, for example, the result about the reconstruction of probability measures by
correlation functions, which has been proposed by A. Lenard in [11] (see also
[4]). For the readers’ convenience below we give the conditions which have to
be checked

• (Lenard positivity) for any G ∈ Bbs(Γ0) with KG ≥ 0∫
Γ0

G(η)ρ(dη) ≥ 0, (13)

where ρ ∈M(Γ0) is a correlation measure which corresponds to the system
of correlation functions (k(n))n≥0 and additionally it is supposed to be
locally finite and normalized, i.e ρ({∅}) = 1.

Remark 4.2 Lenard positivity ensures the existence of µ ∈ Mfm(Γ) such that
the corresponding correlation measure ρµ = ρ.

• (moment growth) for any bounded set Λ ⊂ Rd and j ≥ 0

∞∑
n=0

(
mΛ
n+j

)− 1
n =∞,

where
mΛ
n := (n!)−1

∫
Λ

· · ·
∫

Λ

k(n)(x1, . . . , xn)dx1 . . . dxn.

Remark 4.3 The moment growth condition ensures the uniqueness of µ ∈
Mfm(Γ) such that the corresponding correlation measure ρµ = ρ.

Further steps will be devoted to the verification of the latter conditions.

Lemma 4.2 Let 0 ≤ a ∈ L1(Rd) ∩ C(Rd) be an arbitrary even function such
that ∫

Rd

a(x)dx = 1 and a(x)→ 0, |x| → ∞.

Then, at any moment of time t > 0, the function kt (see (9)) is positive in the
sense of (13).

Proof. See Appendix 1.
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Remark 4.4 The moment growth condition for the system of functions
{
k(n)

}
n≥1

is fulfilled if there exists a constant C > 0 (independent of n) such that

k(n)(x1, . . . , xn) ≤ n!Cn, for all n ≥ 0.

Proof. The statement of the remark follows from direct calculations.

The class of all probability measures whose system of correlation functions
satisfies the bound given in Remark 4.4 will be denoted by M1

C, fac(Γ).
For any system of functions (k(n))n≥0 we define the generating functional

Lk : Fk → C:

Lk(θ) :=
∞∑
n=0

1
n!

∫
Rd

· · ·
∫

Rd

θ(x1) . . . θ(xn)k(n)(x1, . . . , xn)dx1 . . . dxn, (14)

where Fk is the set of all functions θ for which (14) exists.

Remark 4.5 Let us define for an arbitrary δ > 0

U1
δ :=

{
θ ∈ L1(Rd) | ||θ||L1(Rd) ≤ δ

}
.

If the system of functions (k(n))n≥0 satisfies the assumption of Remark 4.4, then
the functional Lk is holomorphic in U1

δ for some δ > 0.

Remark 4.6 Assume that the system of functions (k(n))n≥0 is a system of
correlation functions for some measure µ ∈M1

fm(Γ). In this case, there exists a
connection between generating functional (14) and the measure µ (see e.g. [4]),
given by

Lk(θ) =
∞∑
n=0

1
n!

∫
Rd

· · ·
∫

Rd

θ(x1) . . . θ(xn)k(n)(x1, . . . , xn)dx1 . . . dxn =

=
∫

Γ

K

(∏
x∈γ

θ(x)

)
µ(dγ) =

∫
Γ

∏
x∈γ

(1 + θ(x))µ(dγ), θ ∈ Fk.

The latter functional

Lµ(θ) :=
∫

Γ

∏
x∈γ

(1 + θ(x))µ(dγ), (15)

is called the Bogoliubov functional of the measure µ.

Now, we set

M1
hol(Γ) :=

{
µ ∈M1(Γ)

∣∣ ∃ δ > 0 : Lµ(θ) is holomorphic in U1
δ

}
.

Remark 4.7 Remark 4.5 implies that M1
C, fac(Γ) ⊂M1

hol(Γ)
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Theorem 4.1 Let 0 ≤ a ∈ L1(Rd) ∩ C(Rd) be an even function such that∫
Rd

a(x)dx = 1 and a(x)→ 0, |x| → ∞.

Then, for any µ ∈ M1
C, fac(Γ) there exists a Markov function Xµ

t ∈ Γ with the
initial distribution µ associated with the generator L, such that for any t > 0,
the corresponding distribution of Xµ

t is given by µt ∈M1
hol(Γ).

Proof. Using the result of A. Lenard about the reconstruction of probability
measures by correlation functions (see [11]), Lemma 4.2, Proposition 4.4 and
Remark 4.4 we are able to define evolution on M1(Γ). This gives us the possi-
bility to determine all finite dimensional distributions of Xµ

t . �

4.3 Invariant measures

In this subsection we would like to describe the invariant measures of the contact
process on Γ constructed in the previous subsection.

In order to explain the expected time asymptotics for the correlation func-
tions of our model let us consider the translation invariant case and the evolution
of the first correlation function. Namely, we will assume that the first correlation
function does not depend on x ∈ Rd:

k1
t (x) =: ρt, for all t ≥ 0.

The function ρt is called density. In this case, due to the results in the previous
subsection, the time evolution of the first correlation function is given by

∂ρt
∂t

= (κ − 1)ρt,

ρt|t=0 = ρ0.

The solution to this equation can be written as follows:

ρt = exp {(κ − 1)t}ρ0.

We will distinguish the following cases:

1. Subcritical (κ < 1): ρt → 0, as t tends to ∞;
2. Supercritical (κ > 1): ρt →∞, as t tends to ∞;
3. Critical (κ = 1): ρt = ρ0 = ρ.

Remark 4.8 For the case κ < 1, the bound in Proposition 4.4 implies

k
(n)
t → 0 in Xn as t→∞,

for any n ∈ N.
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Now, coming back to the purpose of this subsection, it becomes clear that
invariant measures may exist only in the critical case. Moreover, due to Theorem
4.1, all invariant measures of the contact process can be described in terms of
the corresponding system of correlation functions as positive solutions to the
following system of equations

L̂∗nk
(n) + f (n) = 0, n ≥ 1, k(0) ≡ 1,

where for any (x1, . . . , xn) ∈ (Rd)n

f (n)(x1, . . . , xn) :=
n∑
i=1

k(n−1)(x1, . . . , x̌i, . . . , xn)
∑
j: j 6=i

a(xi − xj).

This statement can be formulated more precisely:

Proposition 4.5 If a measure µ ∈ M1(Γ) is an invariant measure for the
contact process Xµ

t ∈ Γ, then the system of corresponding correlation functions
of this measure is a solution to the recurrent systems of equation

nk(n)(x1, . . . , xn) =
n∑
i=1

k(n−1)(x1, . . . , x̌i, . . . , xn)
∑
j: j 6=i

a(xi − xj)+

+
n∑
i=1

∫
Rd

a(xi − y)k(n)(x1, . . . , xi−1, y, xi+1, . . . , xn)dy, n ≥ 1. (16)

Now, we give below the answer to the inverse problem and prove some kind
of ergodicity result for our process in the translation invariant case. In this
connection, for any n ∈ N we will be interested in the time asymptotics of
solutions to an auxiliary Cauchy problem

∂k
(n)
t

∂t
(x1, . . . , xn) = L̂∗nk

(n)
t (x1, . . . , xn), t ≥ 0, (17)

k
(n)
t (x1, . . . , xn)

∣∣∣
t=0

:= k
(n)
0 (x1, . . . , xn),

in the Banach space Xn .

Theorem 4.2 Let d ≥ 3 be arbitrary and fixed and let 0 ≤ a ∈ L1(Rd) be an
arbitrary even continuous function such that

1.
∫

Rd a(x)dx = 1,

2.
∫

Rd xkxj a(x)dx <∞, for all 1 ≤ k, j ≤ d,

3. â(·) :=
∫

Rd e
−i(·, x)a(x)dx ∈ L1(Rd).
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Then, for any ρ ∈ R+ there exists a unique measure µρ ∈ M1(Γ) such that
its system of correlation functions

{
k(n), ρ

}
n≥0

is translation invariant, solves
equation (16) and satisfies the following estimate

||k(n), ρ||Xn ≤ C(ρ)n(n!)2, n ≥ 1,

for some positive constant C(ρ). Moreover, the first correlation function (den-
sity) of µρ is exactly ρ ∈ R+.

Let µt be the distribution of Xµ0
t , µ0 ∈ M1

hol(Γ) at time t ≥ 0 and let{
k

(n)
t

}
n≥0

denotes the system of correlation functions of µt. Then, in the crit-

ical case (κ = 1) the following conditions are fulfilled

1. k(1)
t = k

(1)
0 =: ρ;

2. for any n ≥ 2 and any ϕ ∈ L1((Rd)n)(
k

(n)
t , ϕ

)
→
(
k(n), ρ, ϕ

)
as t→∞,

where
(
k

(n)
t , ·

)
and

(
k(n), ρ, ·

)
are notations for the corresponding functionals

on L1((Rd)n).

Proof. We have to show that under the assumptions of Theorem 4.2 the equation
(16) has a solution for any initial k(1) = ρ, ρ ∈ R+ which satisfies the moment
growth condition and Lenard positivity (13). For the moment growth condition
it is enough to show that the solution has the following property

||k(n)||Xn ≤ Cn(n!)2.

We will give the proof using the mathematical induction method. Let us first
consider the case n = 2. Since we are in the translation invariant case, we have

k(2)(x1, x2) = k(2)(x1 − x2, 0) =: k(x1 − x2),

where k is even function on Rd. Hence, equation (16) can be rewritten as

(a ? k)(x1 − x2)− k(x1 − x2) = −ρa(x1 − x2), (18)

where
(a ? k)(x) :=

∫
Rd

a(x− y)k(y)dy.

It is clear, that the best method for the investigation of equations with convo-
lutions is the Fourier transform method. Assume equation (18) has a solution
v ∈ L1(Rd). Then, the Fourier transform of v satisfies the following equation

v̂(p) =
ρâ(p)

1− â(p)
.
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If d ≥ 3 and the conditions of Theorem 4.4 are fulfilled, then v̂(p) has an
integrable singularity 1

|p|2 at p = 0, i.e v̂(p) ∈ L1(Rd). Therefore,

v(x) :=
1

(2π)d

∫
Rd

ei(p,x) ρâ(p)
1− â(p)

dp ∈ L∞(Rd). (19)

Remark 4.9 Let us consider the translation invariant case. Suppose that so-
lution to (18) is a second correlation function. Then, an application of the
Fourier transform directly to (18) does not have any a priori sense (in general
second correlation function is not integrable). Contrary to the second correlation
function, the second Ursell function u(2) in majority of physical applications is
integrable in one coordinate. Namely, the function u which is defined by

u(x1 − x2) := u(2)(x1 − x2, 0) = k(x1 − x2)− ρ2

is integrable on Rd. It is easy to check that the equation for the function u has
the same form as (18) for the function k (the set of constants belong to the
kernel of the operator L̂∗2), i.e.

(a ? u)(x1 − x2)− u(x1 − x2) = −ρa(x1 − x2).

Having in mind Remark 4.9 and (19) one can easily check that

k(2)(x1, x2) = k(x1 − x2) = v(x1 − x2) + ρ2 (20)

is a solution to (18) in X2. Moreover,

k(2)(x1, x2) ≤ ρA+ ρ2 ≤ C2(2!)2,

where

A =
1

(2π)d

∫
Rd

|â(p)|
1− â(p)

dp,

and the constant

C ≥
√
ρ(A+ ρ)

2
will be chosen later.

The reason why we look for the solution to (18) in X2 in the form (20) is
motivated by the arguments given above and Remark 4.9. We would like to
stress that we do not need the existence of a solution to the equation (18) in
the space L1(Rd) to define (20) in X2 rigorously.

Let us consider now equation (16) for n ≥ 3

L̂∗nk
(n)(x1, . . . , xn) = (21)

= −
n∑
i=1

k(n−1)(x1, . . . , x̌i, . . . , xn)
∑
j: j 6=i

a(xi − xj) =: −f (n)(x1, . . . , xn).
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The following function is a solution to this equation in the Banach space Xn:

k(n)(x1, . . . , xn) =
∫ ∞

0

(
et

bL∗nf (n)
)

(x1, . . . , xn)dt, (22)

provided∫ ∞
0

(
et

bL∗nf (n)
)

(x1, . . . , xn)dt <∞, for a. a. (x1, . . . , xn) ∈ (Rd)n

and
et

bL∗nf (n) → 0, t→∞.

Therefore, in order to clarify the existence of the solution to (21) we should check
whether the right hand side of (22) has sense in Xn. Using the mathematical
induction step (n− 1)→ n and the Markov property of etbL∗n , we get∫ ∞

0

(
et

bL∗nf (n)
)

(x1, . . . , xn)dt ≤ (23)

≤
∫ ∞

0

etbL∗nCn−1 ((n− 1)!)2
n∑
i=1

∑
j: j 6=i

a(· i − · j)

 (x1, . . . , xn)dt =

= Cn−1 ((n− 1)!)2
n∑
i=1

∑
j: j 6=i

∫ ∞
0

(
et(L

i
a+Lj

a)a(· i − · j)
)

(xi, xj)dt. (24)

The contraction property of the semigroup etL
j
a implies: there exists a subset

N ⊂ Rd, the Lebesgue measure of which is zero, such that for a.a. xj ∈ Rd
w.r.t. the Lebesgue measure∫ ∞

0

(
et(L

i
a+Lj

a)a(· i − · j)
)

(xi, xj)dt ≤

≤
∫ ∞

0

sup
xj∈Rd\N

(
etL

i
aa(· i − xj)

)
(xi)dt ≤

≤ 1
(2π)d

∫ ∞
0

sup
xj∈Rd\N

∫
Rd

∣∣∣ ̂(
etL

i
aa(· i − xj)

)
(p)
∣∣∣ dp dt =

=
1

(2π)d

∫ ∞
0

sup
xj∈Rd\N

∫
Rd

et(â(p)−1)

∣∣∣∣∫
Rd

e−i(p,x)a(x− xj)dx
∣∣∣∣ dp dt =

=
1

(2π)d

∫ ∞
0

sup
xj∈Rd\N

∫
Rd

et(â(p)−1)
∣∣∣e−i(p,xj)â(p)

∣∣∣ dp dt ≤
≤ 1

(2π)d

∫ ∞
0

∫
Rd

et(â(p)−1) |â(p)| dp dt.
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For any p ∈ Rd \ {0} ∫ ∞
0

et(â(p)−1)dt =
1

1− â(p)
.

Moreover, because of (19) ∫
Rd

|â(p)|
1− â(p)

dp <∞.

Therefore, the Fubini theorem for non-negative functions implies that∫ ∞
0

∫
Rd

et(â(p)−1) |â(p)| dp dt <∞.

Finally, using the result obtained for the case n = 2, under the conditions of
Theorem 4.2, for almost all (x1, . . . , xn) ∈ (Rd)n w.r.t. the Lebesgue measure
we get ∫ ∞

0

(
et

bL∗nf (n)
)

(x1, . . . , xn)dt ≤ Cn−1A(n!)2 ≤ Cn(n!)2,

where

C = max

{
A,

√
ρ(A+ ρ)

2

}
.

The remaining statement of the first part of the theorem which has to be proved
is Lenard positivity for the system of functions {k(n)}n≥0. But it follows directly
from the second part of the theorem which describes the time asymptotics of
the considered system of correlation functions.

The first statement of the second part of the theorem is trivial. In order to
prove the second one, let us consider the following difference

k
(n)
t (x1, . . . , xn)− k(n)(x1, . . . , xn) = (25)

=
[
et

bL∗n − 11
]
k(n)(x1, . . . , xn) + et

bL∗n [k(n)
0 (x1, . . . , xn)− k(n)(x1, . . . , xn)

]
+

+
∫ t

0

es
bL∗nf (n)

t−s(x1, . . . , xn)ds,

where {k(n)}n≥0 is a solution to (16), constructed in the first part of this proof,
such that

k(1) = k
(1)
0 = k

(1)
t = ρ, t > 0.

Since [
et

bL∗n − 11
]
k(n)(x1, . . . , xn) =

∫ t

0

es
bL∗nL̂∗nk(n)(x1, . . . , xn)ds =

= −
∫ t

0

es
bL∗nf (n)(x1, . . . , xn),
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the difference (25) can be rewritten in the form

k
(n)
t (x1, . . . , xn)− k(n)(x1, . . . , xn) = (26)

= et
bL∗n [k(n)

0 (x1, . . . , xn)− k(n)(x1, . . . , xn)
]

+

+
∫ t

0

es
bL∗n [f (n)

t−s(x1, . . . , xn)− f (n)(x1, . . . , xn)
]
ds.

Similar to the observations which were proposed above for the investigation of
the right hand side of (22) and due to Proposition 4.4, one can easily check that∫ ∞

0

es
bL∗nf (n)(x1, . . . , xn)ds ∈ Xn (27)

and ∫ t

0

es
bL∗nf (n)

t−s(x1, . . . , xn)ds ∈ Xn.

As a next step we use the method of mathematical induction. For n = 1 the
second statement of the second part of the theorem is trivial. Let us assume
the inductive step (n− 1)→ n. Namely, let

k
(n−1)
t → k(n−1), t→∞ in Xn−1. (28)

This immediately implies the convergence of

f
(n)
t−s → f (n), t→∞ in Xn, (29)

for any fixed s ∈ [0,∞). Therefore, taking into account Proposition 4.4 and
(28), one can find a constant K > 0 such that for any t ≥ 0

||k(n−1)
t ||Xn−1 ≤ K||k(n−1)||Xn−1 .

Now, for an arbitrary ε > 0 there exists T > 0 such that for all t ≥ T∫ t

T

es
bL∗n [f (n)

t−s(x1, . . . , xn)− f (n)(x1, . . . , xn)
]
ds ≤

≤
∫ t

T

es
bL∗n [|f (n)

t−s(x1, . . . , xn)|+ |f (n)(x1, . . . , xn)|
]
ds ≤

≤ 2K
∫ t

T

||k(n−1)||Xn

n∑
i=1

∑
j: j 6=i

(
es(L

i
a+Lj

a)a(· i − · j)
)

(xi, xj)ds ≤

≤ 2K
∫ ∞
T

||k(n−1)||Xn

n∑
i=1

∑
j: j 6=i

(
es(L

i
a+Lj

a)a(· i − · j)
)

(xi, xj)ds < ε.

In the latter estimate we have used (23) and the bound for (27).
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The convergence (29) and the contraction property of the semigroup et
bL∗n

imply∫ T

0

es
bL∗n [f (n)

t−s(x1, . . . , xn)− f (n)(x1, . . . , xn)
]
ds→ 0, t→∞ in Xn.

Finally,∫ t

0

es
bL∗n [f (n)

t−s(x1, . . . , xn)− f (n)(x1, . . . , xn)
]
ds→ 0, t→∞ in Xn.

Assuming that

et
bL∗n [k(n)

0 (x1, . . . , xn)− k(n)(x1, . . . , xn)
]
→ 0, t→∞, in Xn. (30)

and due to (26), the second statement of the second part of the theorem is now
obvious.

Now, let us come back to the assumption (30). This assumption means that
the asymptotics, as t tends to ∞, of the solution to the Cauchy problem

∂k
(n)
t

∂t
(x1, . . . , xn) = L̂∗nk

(n)
t (x1, . . . , xn), t ≥ 0, (31)

k
(n)
t (x1, . . . , xn)

∣∣∣
t=0

:= k
(n)
0 (x1, . . . , xn) ∈ Xn,

do not depend on the initial data. The boundness of the operator L̂∗n in Xn

implies that the solution k(n)
t = et

bL∗nk(n)
0 to the Cauchy problem (31) exists and

it is a function from Xn. The latter fact gives us the possibility to look at the
solution of (31) in the class of generalized functions (L1((Rd)n))′ ⊂ S′((Rd)n)
(where S′((Rd)n) linear continuous functionals on the class of rapidly decreasing
functions on (Rd)n). The well-definiteness of the Fourier transform for the class
S′((Rd)n) gives the possibility to consider the following functional

(k̂(n)
t , ϕ) = (k(n)

t , ϕ̂), ϕ ∈ S((Rd)n)

where ϕ̂ is the Fourier transform of ϕ. Sometimes we will use notation F(ϕ)
instead of ϕ̂ to avoid complicated notations in large formulas. The functional

k̂
(n)
t can be written also in more explicit form

(k̂(n)
t , ϕ) =

∫
Rd

. . .

∫
Rd

et
bL∗nk(n)

0 (x1, . . . , xn)ϕ̂(x1, . . . , xn)dx1 . . . dxn.

Since for κ = 1∣∣∣∣∣∣L̂∗nk∣∣∣∣∣∣
L∞((Rd)n)

≤ n(||a||L1(Rd) + 1)||k||L∞((Rd)n)
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we get ∣∣∣∣∣
N∑
l=0

tl

l!

((
L̂∗n

)l
k

(n)
0

)
(x1, . . . , xn)ϕ̂(x1, . . . , xn)

∣∣∣∣∣ ≤
≤

N∑
l=0

tl

l!
(
n(||a||L1(Rd) + 1)

)l ||k(n)
0 ||L∞ |ϕ̂(x1, . . . , xn)| ≤

≤ exp {tn(||a||L1(Rd) + 1)}||k(n)
0 ||L∞ |ϕ̂(x1, . . . , xn)| ∈ L1((Rd)n)

for all N ∈ N. By the Lebesgue dominated convergence theorem

(k̂(n)
t , ϕ) =

∞∑
l=0

tl

l!

∫
Rd

...

∫
Rd

((
L̂∗n

)l
k

(n)
0

)
(x1, ..., xn)ϕ̂(x1, ..., xn)dx1...dxn.

Then, using the Newton’s binomial formula to write the explicit form for the ex-

pression
((

L̂∗n

)l
k

(n)
0

)
(x1, ..., xn) and the Fourier property of the convolution,

i.e.

(̂a ? k)(p1, ..., pn) = â(p1, ..., pn)k̂(p1, ..., pn), for k ∈ L1((Rd)n)

one can easily check that

(k̂(n)
t , ϕ) =

∞∑
l=0

tl

l!

∫
Rd

...

∫
Rd

k
(n)
0 (x1, ..., xn)

((
L̂∗n

)l
ϕ̂

)
(x1, ..., xn)dx1...dxn

and ((
L̂∗n

)l
ϕ̂

)
(x1, ..., xn) = F

( n∑
i=1

â(·i)− n

)l
ϕ

(x1, ..., xn).

Therefore,

(k̂(n)
t , ϕ) =

∫
Rd

...

∫
Rd

k
(n)
0 (x1, ..., xn)

(
et

bL∗n ϕ̂) (x1, ..., xn)dx1...dxn =

=
∫

Rd

...

∫
Rd

k
(n)
0 (x1, ..., xn)F

(
et(

Pn
i=1 ba(·i)−n)ϕ

)
(x1, ..., xn)dx1...dxn.

For κ = 1 the semigroup etbL∗n is a contraction semigroup in L1((Rd)n). It follows
directly from Lemma 4.1 and Remark 4.1. It is also not difficult to see that

F

(
exp

{
t

(
n∑
i=1

â(·i)− n

)}
ϕ

)
(x1, ..., xn)→ 0, as t→∞

pointwisely. The latter two facts imply

et
bL∗n ϕ̂→ 0 in L1((Rd)n) as t→∞.
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As result, for any ϕ ∈ S((Rd)n) we have(
k̂

(n)
t , ϕ

)
→ 0, as t→∞

and hence (
k

(n)
t , ϕ

)
→ 0, as t→∞.

Since S((Rd)n) is dense in L1((Rd)n) and

||k(n)
t ||(L1((Rd)n))′ = ||k(n)

t ||L∞((Rd)n) ≤ ||k
(n)
0 ||L∞((Rd)n)

we have: for any ϕ ∈ L1((Rd)n)(
k

(n)
t , ϕ

)
→ 0, as t→∞.

This fact concludes the proof of the main theorem. �
The system of equations (17) corresponds to an infinite number of inde-

pendent random walks on Rd. Similar to the observations proposed in [5], the
investigation of the asymptotics for (17) in the sense of convergence in the
norm requires some restrictions on the initial correlation functions. It is more
convenient to formulate these restrictions in terms of Ursell functions, which
correspond to the correlation functions. Ursell functions are defined as follows

u(η) :=
|η|∑
i=1

∑
(ξ1,...,ξi)∈Pi

∅(η)

(−1)i−1(i− 1)! k(ξ1) · · · k(ξi), η ∈ Γ0,

u(η) = k(η), if |η| = 1.

The inverse relation is given by

k(η) :=
|η|∑
i=1

∑
(ξ1,...,ξi)∈Pi

∅(η)

u(ξ1) · · ·u(ξi), η ∈ Γ0. (32)

Remark 4.10 Let us denote by Kaddmissible the class of translation invariant
correlation functions (or the class of corresponding measures), whose Ursell
functions satisfy the following assumptions:

1. for any n ≥ 2
sup
x∈Rd

ux, (n−1) ∈ L1((Rd)n−1),

where
ux, (n−1)(x1, ..., xn−1) := u({x1, ..., xn−1, x});

2. for any n ≥ 2
sup
x∈Rd

̂ux, (n−1) ∈ L1((Rd)n−1).
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Under the conditions of Theorem 4.2 and for any
{
k

(n)
0

}
n≥0
∈ Kaddmissible

k
(n)
t → k(n), ρ in Xn as t→∞.

Proof. Below we will show, that for the class of initial correlation functions
from Kadmissible, the assumption (30) is fulfilled. The first important observa-
tion, which follows from the definition of the Ursell function, is that evolutional
equation for the n-th Ursell function u(n), which corresponds to the equation
(31), is of the same type. Namely,

∂u
(n)
t

∂t
(x1, . . . , xn) = L̂∗nu

(n)
t (x1, . . . , xn), t ≥ 0, (33)

u
(n)
t (x1, . . . , xn)

∣∣∣
t=0

:= u
(n)
0 (x1, . . . , xn),

Since the operator L̂∗n preserves translation invariant functions and the initial
function u0 ∈ Kadmissible is considered to be translation invariant, the evolution
of ut will be also translation invariant.

Let x ∈ Rd be arbitrary and fixed. The definition of the class Kadmissible

and the fact that semigroup etbL∗n can be presented as the product of semigroups
acting in each coordinate of (x1, . . . , xn) ∈ (Rd)n, i.e. in the form

⊗n
i=1 e

tLi
a ,

imply
u
x, (n−1)
t ∈ L1((Rd)n−1), n ≥ 2.

Therefore, the Fourier transform of ux, (n−1)
t exists and the equation (33) for

this function in the Fourier coordinates has the following form

∂
̂
u
x, (n−1)
t

∂t
(p1, . . . , pn−1) =

∫
Rd

a(x− y) ̂
u
y, (n−1)
t (p1, . . . , pn−1)dy+ (34)

+

[
n−1∑
i=1

â(pi)− n

]
̂
u
x, (n−1)
t (p1, . . . , pn−1).

For fixed (p1, . . . , pn−1) ∈ (Rd)n−1, we define

ũt(x) := ̂
u
x, (n−1)
t (p1, . . . , pn−1).

In terms of this function, the equation (34) has the form

∂ũt
∂t

(x) =
∫

Rd

a(x− y)ũt(y)dy +

[
n−1∑
i=1

â(pi)− n

]
ũt(x). (35)

Due to the definition of Kadmissible, the function ũt(x) is bounded. Moreover,

ũt(x) := exp

{
t

[
n−1∑
i=1

â(pi)− (n− 1)

]}(
et

bL∗1 ũ0

)
(x)
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is a solution to (35).
Now,

||u(n)
t ||Xn

≤ sup
x∈Rd

∫
Rd

...

∫
Rd

| ̂
u
x, (n−1)
t (p1, . . . , pn−1)|dp1...dpn−1 ≤

≤
∫

Rd

...

∫
Rd

exp

{
t

[
n−1∑
i=1

â(pi)− (n− 1)

]}
sup
x∈Rd

| ̂
u
x, (n−1)
0 (p1, . . . , pn−1)|dp1...dpn−1.

Since ∫
Rd

...

∫
Rd

sup
x∈Rd

| ̂
u
x, (n−1)
0 (p1, . . . , pn−1)|dp1...dpn−1 <∞,

the following norm
||u(n)

t ||Xn → 0,

as t tends to ∞. �

Appendix 1

According to the definition of the Lenard positivity it is enough to check that∫
Γ0

G(η)ρt(dη) :=

=
∑
n≥0

1
n!

∫
Rd

. . .

∫
Rd

G(n)(x1, . . . , xn)k(n)
t (x1, . . . , xn)dx1 . . . dxn ≥ 0, (36)

for all G ∈ Bbs(Γ0), such that KG ≥ 0. Moreover, due to Corollary 4.1 it is
enough to check the latter inequality only in the case of a ∈ C0(Rd).

Let µ ∈ M1
fm(Γ) be locally absolutely continuous w.r.t. the Poisson mea-

sure whose system of correlation functions {k(n)}n≥0 satisfies the assumption of
Remark 4.4.

As it was shown in [10], there exists a Markov process Xγ
t on the configu-

ration space Γ with the corresponding generator L in the case of a ∈ C0(Rd).
Next, we consider the following functions on Γ

F (n)(γ) =
∑

{x1,...,xn}⊂γ

e−β|x1| · · · e−β|xn|, β > 0, n ∈ N, |γ| ≥ n.

Note, that ∫
Γ

F (n)(γ)µ(dγ) =

=
1
n!

∫
Rd

. . .

∫
Rd

e−β|x1| · · · e−β|xn|k(n)(x1, . . . , xn)dx1 . . . dxn <∞, (37)

because of (i) of Remark 4.4. Using the same direct computation as in [10] we
obtain

LF (n)(γ) ≤ C1F
(n)(γ) + C2F

(n−1)(γ),
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for some constants C1, C2 > 0. The use of the latter estimate for the function

LL(N)(γ) :=
N∑
n=1

F (n)(γ),

gives us the bound
LLL(N)(γ) ≤ CLL(N)(γ), C > 0.

The application of the martingale representation together with the Gronwall
inequality implies

E
[
LL(N)(Xγ

t )
]
≤ LL(N)(γ)eCt. (38)

Let {µt}t≥0 be the evolution of µ0 which corresponds to Xγ
t described by the

dual Kolmogorov equation
∂µt
∂t

= L?µt,

µt | t=0 = µ0,

where L? is the adjoint operator to the operator L on M1(Γ). Then (38) and
the bound

LL(N)(γ) ≥ LL(N)(γΛ) ≥
N∑
k=1

(
min
x∈Λ
{e−β|x|}

)k (|γΛ|
k

)
≥

≥

{ (
1 + minx∈Λ{e−β|x|}

)|γΛ| − 1, if |γΛ| ≤ N ,
CN

(
minx∈Λ{e−β|x|}

)N |γΛ|N , otherwise,
Λ ∈ Bb(Rd),

with
0 < CN <

1
NN

imply∫
Γ

|γΛ|Nµt(dγ) ≤
(

min
x∈Λ
{e−β|x|}

)−N
C−1
N

(
1 +

∫
Γ

E
[
LL(N)(Xγ

t )
]
µ0(dγ)

)
≤

≤
(

min
x∈Λ
{e−β|x|}

)−N
C−1
N

(
1 + eCt

∫
Γ

LL(N)(γ)µ0(dγ)
)
<∞,

where the latter integral is finite because of (37). Therefore, the evolution of
states {µt}t≥0 ⊂ M1

fm(Γ), which means that there exists a Markov evolution
of corresponding correlation measures (or corresponding correlation functions)
on Mlf(Γ0) associated with the generator L. The fulfilment of (36) is now
obvious because of the Markov property of the semigroup which corresponds to
the evolution of states. �
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