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Abstract

We consider a system of harmonic oscillators with short range interactions and we study their

correlation functions when the initial data is sampled with respect to the Gibbs measure. Such

correlation functions display rapid oscillations that travel through the chain. We show that the

correlation functions always have two fastest peaks which move in opposite directions and

decay at rate t−
1
3 for position and momentum correlations and as t−

2
3 for energy correlations.

The shape of these peaks is asymptotically described by the Airy function. Furthermore, the

correlation functions have some non generic peaks with lower decay rates. In particular, there

are peaks which decay at rate t−
1
4 for position and momentum correlators and with rate t−

1
2

for energy correlators. The shape of these peaks is described by the Pearcey integral. Crucial

for our analysis is an appropriate generalisation of spacings, i.e. differences of the positions

of neighbouring particles, that are used as spatial variables in the case of nearest neighbour

interactions. Using the theory of circulant matrices we are able to introduce a quantity that

retains both localisation and analytic viability. This also allows us to define and analyse

some additional quantities used for nearest neighbour chains. Finally, we study numerically

the evolution of the correlation functions after adding nonlinear perturbations to our model.

Within the time range of our numerical simulations the asymptotic description of the linear

case seems to persist for small nonlinear perturbations while stronger nonlinearities change

shape and decay rates of the peaks significantly.
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1 Introduction

In this manuscript we consider a system of N = 2M + 1 particles interacting with a short

range harmonic potential with Hamiltonian of the form

H =
N−1∑

j=0

p2
j

2
+

m∑

s=1

κs

2

N−1∑

j=0

(q j − q j+s)
2 , (1.1)

where 1 ≤ m ≪ N , κ1 > 0, κm > 0, and κs ≥ 0 for 1 < s < m. In order to make sense of

(1.1) we need to introduce boundary conditions. Throughout this paper we consider periodic

boundary conditions. By that we mean that the indices j are taken from Z/NZ and therefore

qN+ j = q j , pN+ j = p j

holds for all j . The Hamiltonian (1.1) can be rewritten in the form

H(p, q) := 1

2
〈p, p〉 + 1

2
〈q, Aq〉, (1.2)

where p = (p0, . . . , pN−1), q = (q0, . . . , qN−1), 〈 . , .〉 denotes the standard scalar product

in R
N and where A ∈ Mat(N , R) is a positive semidefinite symmetric circulant matrix

generated by the vector a = (a0, . . . , aN−1) namely Ak j = a( j−k)modN or

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

a0 a1 . . . aN−2 aN−1

aN−1 a0 a1 aN−2

... aN−1 a0

. . .
...

a2

. . .
. . . a1

a1 a2 . . . aN−1 a0

⎤
⎥⎥⎥⎥⎥⎥⎦

, (1.3)

where

a0 = 2

m∑

s=1

κs, as = aN−s = −κs, for s = 1, . . . , m and as = 0 otherwise. (1.4)

Due to the condition κ1 > 0 we have 〈q, Aq〉 = 0 iff all spacings q j+1 −q j vanish. Therefore

the kernel of A is one-dimensional with the constant vector (1, . . . , 1)⊺ providing a basis.

This also implies that the lattice at rest has zero spacings everywhere. Observe, however, that

one may introduce an arbitrary spacing � for the lattice at rest by the canonical transformation

Q j = q j + j�, Pj = p j which does not change the dynamics. The periodicity condition

for the positions Q j then reads QN+ j = Q j + L with L = N� (see e.g.[17, Sect. 2]).

The harmonic oscillator with only nearest neighbour interactions is recovered by choosing

a0 = 2κ1, a1 = aN−1 = −κ1,

and the remaining coefficients are set to zero.

The equations of motion for the Hamiltonian H take the form

d2

dt2
q j =

m∑

s=1

κs(q j+s − 2q j + q j−s), j ∈ Z/NZ.
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Correlation Functions for a Chain... Page 3 of 31 1

The integration is obtained by studying the dynamics in Fourier space (see e.g. [9]). In

this paper we study correlations between momentum, position and local versions of energy.

Following the standard procedure in the case of nearest neighbour interactions we replace

the vector of position q by a new variable r so that the Hamiltonian takes the form

H = 1

2
〈p, p〉 + 1

2
〈r, r〉.

Such a change of variables may be achieved by any linear transformation

r = T q, (1.5)

with an N × N matrix T that satisfies

A = T ⊺T , (1.6)

where T ⊺ denotes the transpose of T . In the case of nearest neighbour interactions one may

choose r j = √
κ1(q j+1 − q j ) corresponding to a circulant matrix T generated by the vector

τ = √
κ1(−1, 1, 0, . . . , 0). We show in Proposition 2.2 below that short range interactions

given by matrices A of the form (1.3), (1.4) also admit such a localized square root. More

precisely, there exists a circulant N × N matrix T of the form

T =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

τ0 τ1 . . . τm 0 . . . 0

0 τ0 τ1 . . . τm 0

. . .
. . .

. . .
. . .

τm 0
. . .

. . .
. . .

. . .

. . .
. . .

. . .
. . .

. . .
. . .

τ2 . . . τm 0 . . . τ0 τ1

τ1 τ2 . . . τm 0 0 τ0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (1.7)

that satisfies (1.6). The crucial point here is that T is not the standard (symmetric) square

root of the positive semidefinite matrix A but a localized version generated by some vector

τ with zero entries everywhere, except possibly in the first m + 1 components. Hence the

j-th component of the generalized elongation r defined through (1.5) depends only on the

components qs with s = j, j +1, . . . , j +m. It is worth noting that 1 = (1, . . . , 1)⊺ satisfies

T 1 = 0 since 〈1, A1〉 = 0. This implies

m∑

s=0

τs = 0 , r j =
m∑

s=1

τs(q j+s − q j ) and

N−1∑

j=0

r j = (1, . . . , 1)T q = 0.

The local energy e j takes the form

e j = 1

2
p2

j + 1

2
r2

j .

The goal of this manuscript is to study the behaviour of the correlation functions for the

momentum p j , the generalized elongation r j and the local energy e j when N → ∞ and

t → ∞. Due to the spatial translation invariance of the Hamiltonian H(p, q) = H(p, q+λ1),

λ ∈ R, that corresponds to the conservation of total momentum, we reduce the Hamiltonian

system by one degree of freedom to obtain a normalizable Gibbs measure. This leads to the

reduced phase space
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1 Page 4 of 31 T. Grava et al.

M :=
{

(p, q) ∈ R
N × R

N :
N−1∑

k=0

pk = 0 ;
N−1∑

k=0

qk = 0

}
. (1.8)

We endow M with the Gibbs measure at temperature β−1, namely:

dμ = Z N (β)−1δ

(
N−1∑

k=0

pk

)
δ

(
N−1∑

k=0

qk

)
e−β H(p,q)dpdq (1.9)

where Z N (β) is the norming constant and δ(x) is the delta function.

For convenience we introduce the vector

u( j, t) = (r j (t), p j (t), e j (t)).

We consider the correlation functions

SN
αα′( j, t) = 〈uα( j, t)uα′(0, 0)〉 − 〈uα( j, t)〉 〈uα′(0, 0)〉 , α, α′ = 1, 2, 3, (1.10)

where the symbol 〈 . 〉 refers to averages with respect to dμ . We calculate the limits

lim
N→∞

SN
αα′( j, t) = Sαα′( j, t) .

For the harmonic oscillator with nearest-neighbour interactions such limits have been calcu-

lated in [10].

In an interesting series of papers, (see e.g. [18], and also the collection [7]) several

researchers have considered the evolution of space-time correlation functions, for “anhar-

monic chains”, which are nonlinear nearest-neighbour Hamiltonian systems of oscillators.

The authors consider the deterministic evolution from random initial data sampled from a

Gibbs ensemble, with a large number of particles and study the correlation functions SN
αα′ .

In addition to intensive computational simulations [6,13], Spohn and collaborators also

propose and study a nonlinear stochastic conservation law model [17,18]. Using deep phys-

ical intuition, it has been proposed that the long-time behaviour of space-time correlation

functions of the deterministic Hamiltonian evolution from random initial data is equivalent to

the behaviour of correlation functions of an analogous nonlinear stochastic system of PDEs.

Studying this stochastic model, Spohn eventually arrives at an asymptotic description of the

“sound peaks” of the correlation functions in normal modes coordinates which are related to

Sαα′ by orthogonal transformation:

S̃αα
∼= (λs t)−2/3 fKPZ

(
(λs t)−2/3(x − αct)

)
, (1.11)

using the notation of [17, Formula (3.1)]. Here fKPZ is a universal function that first emerges

in the Kardar-Parisi-Zhang equation and it is related to the Tracy-Widom distribution, [20],

(for a review see [1] and also [4]). A common element to the above cited papers is the

observation that such formulae should hold for non-integrable dynamics, while the correlation

functions of integrable lattices of oscillators will exhibit ballistic scaling, which means the

correlation functions decay as 1
t

for t large. For example, in [6] the authors present the

results of simulations of the Toda lattice in 3 different asymptotic regimes (the harmonic

oscillator limit, the hard-particle limit, and the full nonlinear system). They present plots of

the quantity t S(x, t) as a function of the scaled spatial variable x/t (here S(x, t) represents

any of the correlation functions). The numerical results support the ballistic scaling conjecture

in some of the asymptotic scaling regimes. Further analysis in [19] gives a derivation of the

ballistic scaling for the Toda lattice. The decay of equilibrium correlation functions show
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similar features as anomalous heat transport in one-dimensional systems [2,3,7] which leads

to conjecture that the two phenomena are related [8].

There is one aspect regarding all the correlations we consider that we wish to point out. For

linear force laws they are oscillating rapidly in the region between the sound peaks, except

for those regions that display slower decay rates (see Figs. 1 and 3). In agreement with [6]

we observe numerically that these oscillations persist in the weakly nonlinear regime but

disappear for fully nonlinear systems (see Figs. 4, 5).

In [12] the authors also pursue a different connection to random matrices, and in particular

to the Tracy-Widom distribution. Over the last 15 years, there has emerged a story originating

in the proof that for the totally asymmetric exclusion process on a 1-D lattice (TASEP), the

fluctuations of the height function are governed (in a suitable limit) by the Tracy-Widom

distribution. Separately, a partial differential equations model for these fluctuations emerged,

which takes the form of a stochastic Burgers equation:

∂u

∂t
= ν

∂2u

∂x2
− λu

∂u

∂x
+ ∂ζ

∂x
, (1.12)

where ζ is a stationary spatio-temporal white noise process. (The mean behaviour of TASEP

is actually described by the simpler Euler equation
∂u

∂t
= −λu

∂u

∂x
.). From these origins there

have now emerged proofs, for a small collection of initial conditions, that the fluctuations

of the solution to (1.12) are indeed connected to the Tracy-Widom distribution (see [1]

and the references contained therein). In [12], the authors considered continuum limits of

anharmonic lattices with random initial data, in which there are underlying conservation laws

describing the mean behaviour that are the analogue of the Euler equation associated to (1.12).

By analogy with the connection between TASEP and (1.12), they proposed that the time-

integrated currents are the analogue of the height function, and should exhibit fluctuations

about their mean described by the Tracy-Widom distribution, again based on the use of the

nonlinear stochastic pde system as a model for the deterministic evolution from random

initial data. As one example, they consider the quantity

�(x, t) =
∫ t

0

j(x, t ′)dt ′ −
∫ x

0

u(x ′, 0)dx ′ , (1.13)

where u(x, t) arises as a sort of continuum limit of a particle system obeying a discrete

analogue of a system of conservation laws taking the form ∂tu(x, t) + ∂x j(x, t) = 0, in

which j(x, t) is a local current density for u(x, t). The authors suggest a dual interpretation

of �(x, t) as the height function from a KPZ equation, and thus arrive at the proposal that

�(x, t) ≃ a0t + (Ŵt)1/3 ξT W , (1.14)

where a0 and Ŵ are model-dependent parameters, and ξT W is a random amplitude with

Tracy-Widom distribution.

Our main result is the analogue of the relations (1.11) for the harmonic oscillator with

short range interactions and (1.14) for the harmonic oscillator.

For stating our result, we first calculate the dispersion relation |ω(k)| for the harmonic

oscillator with short range interaction in the limit N → ∞ obtaining

f (k) = |ω(k)| =

√√√√2

m∑

s=1

κs (1 − cos(2πks)) , (1.15)
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1 Page 6 of 31 T. Grava et al.

Fig. 1 Correlation functions Sαα′ for the harmonic oscillator with nearest-neighbour interaction with κ1 = 1

(top left) and the harmonic potential with κs = 1

s2 for s = 1, 2 in Example 2.8 (center left) and the potential

of Example 2.9 in the bottom left. In the second column the Airy scaling (2.36) of the corresponding fastest

moving peaks. The Airy asymptotic is perfectly matching the fastest peak and capturing several oscillations

see (2.21). The points k = 0, 1 contribute to the fastest moving peaks of the correlation

functions that have a velocity ±v0 where v0 =
√∑m

s=1 s2κs = f ′(0)/(2π). If f ′′(k) < 0

for all 0 < k ≤ 1/2 then as t → ∞ the following holds uniformly in j ∈ Z (cf. Theorem 2.6

and Figs. 1 and 3):

123
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Fig. 2 Correlation function S33( j, t) for the potential κs = 1/s2 for m = 2 in Example 2.8 for several values

of time on the left. On the right one sees that the Pearcey scaling provided in (2.45) matches perfectly for the

central peak of S33( j, t)

Fig. 3 Potential of Example 2.9. The top left figure displays S33( j, t) for several values of t . The scaling of S33
according to the Airy function in Theorem 2.6 for the fastest moving peak and the scaling of the slower moving

peak according to the Pearcey integral are shown top right and bottom left, respectively. The corresponding

critical points of the derivative of the dispersion function can be seen in the bottom right figure

123
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Fig. 4 Correlation function S
(N )
11 ( j, t) for several values of times and for the perturbed Hamiltonian (3.18)

with κs as in Example 2.8, χ = 0.01 and γ = 0.001 in the top figure and χ = 0.1 and γ = 0.01 in the lower

figure. On the right top figure, the scaling of the fastest peak according to Airy parametrix (see Theorem 2.6 and

Fig. 1) and according to t−2/3 in the lower figure. The speed ξ0 of the fastest peak is determined numerically.

One can see that the central peak has a low decay in the top left figure, while in the left bottom figure it is

destroyed by the relatively stronger nonlinearity

Sαα′( j, t) = 1

2βλ0t1/3

[
(−1)α+α′

Ai

(
j − v0t

λ0t1/3

)
+ Ai

(
− j + v0t

λ0t1/3

)]
+ O

(
t−1/2

)
, α, α′ = 1, 2

S33( j, t) = 1

2β2λ2
0t2/3

[
Ai2

(
j − v0t

λ0t1/3

)

+Ai2
(

− j + v0t

λ0t1/3

)]
+ O

(
t−5/6

)
,

(1.16)

where Ai(w) = 1
π

∫∞
0 cos(y3/3 + wy)dy, w ∈ R, is the Airy function, and λ0 :=

1
2

(
1
v0

∑m
s=1 s4κs

)1/3
. The above formula is the linear analogue of the Tracy-Widom dis-

tribution in (1.11).

Furthermore we can tune the spring intensities κs , s = 1, . . . , m in (1.15) so that we can

find an (m − 1)-parameter family of potentials such that for j ∼ ±v∗t , with 0 ≤ v∗ < v0,

one has

Sαα′( j, t) = O

(
1

t
1
4

)
, α, α′ = 1, 2 , S33( j, t) = O

(
1

t
1
2

)
, as t → ∞ .

123



Correlation Functions for a Chain... Page 9 of 31 1

Fig. 5 Correlation function S
(N )
22 ( j, t) for several values of times and for the perturbed Hamiltonian (3.18)

with κs as in Example 2.9, χ = 0.01 and γ = 0.001 in the top figure and χ = 0.1 and γ = 0.01 in the

lower figure. The right top figure shows the scaling of the fastest peak compatible with the Airy parametrix

and according to t−2/3 in the lower figure. The speed ξ0 of the fastest peak is determined numerically. The

decay rate of the slower moving peaks that are scaling like t−1/4 in the linear case (see Fig. 1), is not very

clear due to their highly oscillatory behaviour

Fig. 6 Logarithmic plot of the central peak of the example in Fig. 4 for S11( j, t) and S21( j, t) and several

values of times. The peak is highly oscillatory and the oscillations are interpolated by the red line that suggests

a scaling of the correlation function S11( j, t) and S21( j, t) near j ∼ 0 compatible with t
− 1

4

In this case the local behaviour of the correlation functions is described by the Pearcey integral

(see Theorem 2.7 and Figs. 2, 3). For example a potential with such behaviour is given by

a spring interaction of the form κs = 1

s2
for s = 1, . . . , m and m even (see Example 2.8

below).
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In Sect. 3.3 we study numerically small nonlinear perturbations of the harmonic oscillator

with short range interactions and our results suggest that the behaviour of the fastest peak has a

transition from the Airy asymptotic (1.16) to the Tracy-Widom asymptotic (1.11), depending

on the strength of the nonlinearity. Namely the asymptotic behaviour in (1.11) that has been

conjectured for nearest-neighbour interactions seems to persist also for sufficiently strong

nonlinear perturbations of the harmonic oscillator with short range interactions. Remarkably,

our numerical simulations indicate that the non generic decay in time of other peaks in the

correlation functions persists under small nonlinear perturbations with the same power law

t−1/4 as in the linear case, see e.g. Figs. 4 and 6.

So as not to overlook a large body of related work, we observe that the quantities we

consider here are somewhat different than those considered in the study of thermal transport,

though there is of course overlap. (We refer to the Lecture Notes [7] for an overview of this

research area and also the seminal paper [15].) As mentioned above, we study the dynamical

evolution of space-time correlation functions and the statistical description of random height

functions, where the only randomness comes from the initial data. By comparison, in the

consideration of heat conduction and transport in low dimensions, anharmonic chains are

often connected at their ends to heat reservoirs of different temperatures, and randomness is

present primarily in the dynamical laws, not only in fluctuations of initial data.

This manuscript is organized as follows. In Sect. 2 we study the harmonic oscillator

with short range interactions and we introduce the necessary notation and the change of

coordinates q → r that enables us to study correlation functions. We then study the time

decay of the correlation functions via steepest descent analysis and we show that the two

fastest peaks travelling in opposite directions originate from the points k = 0 and k = 1 in the

spectrum. Such peaks have a decay described by the Airy scaling. We then show the existence

of potentials such that the correlation functions have a slower time decaying with respect to

“Airy peaks”. In Sect. 3 we show that the harmonic oscillator with short range interactions

has a complete set of local integrals of motion in involution and the correlation functions of

such integrals have the same structure as the energy-energy correlation function. Finally, we

show that the evolution equations for the generalized position, momentum can be written in

the form of conservation laws which have a potential function. For the case of the harmonic

oscillator with nearest-neighbour interaction, we show that this function is a Gaussian random

variable and determine the leading order behaviour of its variance as t → ∞. This may be

viewed as the analogue of formula (1.14) for the linear case. Technicalities and a description

of our numerics are deferred to the Appendix.

2 The Harmonic Oscillator with Short Range Interactions

As it was explained in the introduction we rewrite the Hamiltonian for the harmonic oscillator

with short range interactions

H(p, q) =
N−1∑

j=0

p2
j

2
+

m∑

s=1

κs

2

N−1∑

j=0

(q j − q j+s)
2 =

N−1∑

j=0

(
p2

j

2
+ 1

2

( m∑

s=1

τs(q j+s − q j )
)2
)

so that we may define a Hamiltonian density

e j =
p2

j

2
+ 1

2

( m∑

s=1

τs(q j+s − q j )
)2

,

123
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which is local in the variables (p, q) for fixed m. Namely, if we let N → ∞, the quantity e j

involves a finite number of physical variables (p, q). Recall that the coefficients τs are the

entries of the circulant localized square root T of the matrix A by which we mean a solution

of the equation (1.6) of the form (1.7). The matrix T will also play a role in constructing a

complete set of integrals that have a local density in the sense that we just described for the

energy.

In order to state our result we have to introduce some notation. First of all, a matrix A of

the form (1.3) with a ∈ R
N is called a circulant matrix generated by the vector a.

Definition 2.1 (m-physical vector and half-m-physical vector) Fix m ∈ N. For any odd N >

2m, a vector x̃ ∈ R
N is said to be m-physical generated by x = (x0, x1, . . . , xm) ∈ R

m+1 if

x0 = −2
∑m

s=1 xs and

x̃0 =x0 ,

x̃1 =x̃N−1 = x1 < 0, x̃m = x̃N−m = xm < 0,

x̃k =x̃N−k = xk ≤ 0, for 1 < k < m,

x̃k =0, otherwise,

while the vector x̃ ∈ R
N is called half-m-physical generated by y ∈ R

m+1 if y0 = −
∑m

s=1 ys

and

x̃k =yk, for 0 ≤ k ≤ m

x̃k =0, for m < k ≤ N − 1.

Following the proof of a classic lemma by Fejér and Riesz, see e.g. [16, pg. 117 f], one can

show that a circulant symmetric matrix A of the form (1.2) generated by a m-physical vector

a always has a circulant localized square root T that is generated by a half-m physical vector

τ .

Proposition 2.2 Fix m ∈ N. Let the circulant matrix A be generated by an m-physical vector

a, then there exist a circulant matrix T generated by an half-m-physical vector τ such that:

A = T ⊺T . (2.1)

Moreover, we can choose τ such that
∑m

s=1 sτs > 0. Then one has
∑m

s=1 sτs =
√∑m

s=1 s2κs .

The proof of the proposition is contained in Appendix A:.

For example, if we consider m = 1, and a0 = 2κ1 and a1 = aN−1 = −κ1. The matrix T

is generated by the vector τ = (τ0, τ1) with τ0 = −√
κ1 and τ1 = √

κ1. When m = 2 and

a0 = 2κ1 + 2κ2, a1 = aN−1 = −κ1, a2 = aN−2 = −κ2. The matrix T is generated by the

vector τ = (τ0, τ1, τ2) with

τ0 = −
√

κ1

2
− 1

2

√
κ1 + 4κ2, τ1 = √

κ1,

τ2 = −
√

κ1

2
+ 1

2

√
κ1 + 4κ2,

so that the quantities r j are defined as

r j = τ1(q j+1 − q j ) + τ2(q j+2 − q j ) , j ∈ Z/NZ .

Next we integrate the equation of motions. The Hamiltonian H(p, q) represents clearly an

integrable system that can be integrated passing through Fourier transform. Let F be the

123



1 Page 12 of 31 T. Grava et al.

discrete Fourier transform with entries F j,k := 1√
N

e−2iπ jk/N with j, k = 0, . . . , N − 1. It

is immediate to verify that

F−1 = �F F⊺ = F . (2.2)

Thanks to the above properties, the transformation defined by

( p̂, q̂) = (�F p, Fq) (2.3)

is canonical. Furthermore �̂p j = p̂N− j and �̂q j = q̂N− j , for j = 1, . . . , N − 1, while p̂0 and

q̂0 are real variables. The matrices T and A are circulant matrices and so they are reduced to

diagonal form by F :

F AF−1 = FT ⊺T F−1 = (FT F−1)
⊺

(FT F−1) .

Let ω j denote the eigenvalues of the matrix T ordered so that FT F−1 = diag(ω j ). Then

|ω j |2 are the (non negative) eigenvalues of the matrix A and

|ω j |2 =
√

N (F ã) j , ω j =
√

N (F τ̃ ) j , j = 0, . . . , N − 1, (2.4)

where ã is the m-physical vector generated by a and τ̃ is the half m-physical vector generated

by τ according to Definition 2.1. It follows that

ω0 = 0, ω j = ωN− j , j = 1, . . . , N − 1, (2.5)

which implies |ω j |2 = |ωN− j |2, j = 1, . . . , N − 1. The Hamiltonian H , can be written as

the sum of N − 1 oscillators

H (̂p, q̂) = 1

2

⎛
⎝

N−1∑

j=1

| p̂ j |2 + |ω j |2 |̂q j |2
⎞
⎠ =

N−1
2∑

j=1

| p̂ j |2 + |ω j |2 |̂q j |2 . (2.6)

There are no terms involving p̂0, q̂0 since the conditions defining M (1.8) imply that p̂0 = 0

and q̂0 = 0. The Hamilton equations are

⎧
⎪⎪⎨
⎪⎪⎩

d

dt
q̂ j = p̂ j

d

dt
p̂ j = −|ω j |2q̂ j .

(2.7)

Thus the general solution reads:

q̂ j (t) = q̂ j (0) cos(|ω j |t) + p̂ j (0)

|ω j |
sin(|ω j |t) ,

p̂ j (t) = p̂ j (0) cos(|ω j |t) − |ω j |̂q j (0) sin(|ω j |t) , j = 1, . . . , N − 1,

(2.8)

and q̂0(t) = 0 and p̂0(t) = 0. Inverting the Fourier transform, we recover the variables

q = F−1q̂, p = F p̂ and r = F−1r̂ where

r̂ j = ω j q̂ j , j = 0, . . . , N − 1 . (2.9)
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Correlation Decay

We now study the decay of correlation functions for Hamiltonian systems of the form (1.2).

We recall the definition (1.9) of the Gibbs measure at temperature β−1 on the reduced phase

space M, namely:

dμ = Z N (β)−1δ

(
N−1∑

k=0

pk

)
δ

(
N−1∑

k=0

qk

)
e−β H(p,q)dpdq

where Z N (β) is the norming constant of the probability measure. For a function f = f (p, q)

we define its average as

〈 f 〉 :=
∫

R2N

f (p, q) dμ.

We first compute all correlation functions (1.10), then we will evaluate the limit N → ∞.

We first observe that (1.9) in the variables (̂p, q̂) := (�Fp, Fq) becomes

dμ = Z N (β)−1

N−1
2∏

j=1

e−β(| p̂ j |2+|ω j |2 |̂q j |2)d p̂ j dq̂ j (2.10)

where d p̂ j dq̂ j = dℜ p̂ j dℑ p̂ j dℜq̂ j dℑq̂ j and we recall that p̂ j = p̂N− j , q̂ j = q̂ N− j , r̂ j =
ω j q̂ j , for j = 1, . . . , N − 1.

From the evolution of p̂ j and q̂ j in (2.8) and (2.9), we arrive at the relations

〈
p̂ j (t) p̂k(0)

〉
=
〈
p̂k(0)

(
p̂ j (0) cos(|ω j |t) − |ω j |̂q j (0) sin

(
|ω j |t

))〉
= δ j,k

1

β
cos(|ω j |t),

(2.11)
〈
p̂ j (t )̂rk(0)

〉
=
〈
ωk q̂k(0)

(
p̂ j (0) cos(|ω j |t) − |ω j |q̂ j (0) sin

(
|ω j |t

))〉

= −δ j,k

ω j

|ω j |β
sin
(
|ω j |t

)
, (2.12)

〈
r̂ j (t) p̂k(0)

〉
=
〈
ω j p̂k(0)

(
q̂ j (0) cos(|ω j |t) + p̂ j (0)

|ω j |
sin
(
|ω j |t

)
)〉

= δ j,k

ω j

|ω j |β
sin(|ω j |t)

(2.13)

〈
r̂ j (t )̂rk(0)

〉
=
〈
ωkω j q̂k(0)

(
q̂ j (0) cos(|ω j |t) + p̂ j (0)

|ω j |
sin
(
|ω j |t

)
)〉

= δ j,k

1

β
cos(|ω j |t).

(2.14)

Now we are ready to compute explicitly the correlation functions in the physical variables.

We show the computation for the case SN
11( j, t), and we leave to the reader the details for the

other cases:

SN
11( j, t) =

〈
r j (t)r0(0)

〉
= 1

N

〈
N−1∑

k,l=1

r̂k(t )̂rl(0)e2π ı
jk
N

〉

= 1

Nβ

N−1∑

l=1

cos (|ωl |t) cos

(
2π

l j

N

)
= SN

22( j, t) .

(2.15)
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In the same way we have that:

SN
12( j, t) = 1

Nβ

N−1∑

l=1

sin(|ωl |t) cos

(
2π

l j

N
+ arg(ωl)

)
(2.16)

SN
21( j, t) = − 1

Nβ

N−1∑

l=1

sin(|ωl |t) cos

(
2π

l j

N
− arg(ωl)

)
(2.17)

SN
31( j, t) = SN

32( j, t) = SN
13( j, t) = SN

23( j, t) = 0 (2.18)

SN
33( j, t) = 1

2
((SN

11)
2 + (SN

22)
2 + (SN

12)
2 + (SN

21)
2) + 3(N − 1)

2N 2β2
. (2.19)

The dispersion relation given by (2.4) takes the form

ωℓ = −
m∑

s=1

τs

(
1 − cos

(
2π

sℓ

N

))
+ i

m∑

s=1

τs sin

(
2π

sℓ

N

)

|ωℓ|2 =
N−1∑

s=0

ase−2π i sℓ
N = 2

m∑

s=1

κs

(
1 − cos

(
2π

sℓ

N

))
,

(2.20)

where we substitute for the as their values as in (1.4). We are interested in obtaining the

continuum limit of the above correlation functions. We first define ω(k) to provide continuum

limits of ωℓ and |ωℓ|2, namely

ω(k) := −
m∑

s=1

τs (1 − cos (2πsk)) + i

m∑

s=1

τs sin (2πsk)

|ω(k)|2 = 2

m∑

s=1

κs (1 − cos(2πks)) ,

(2.21)

where the variable ℓ/N has been approximated with k ∈ [0, 1]. One may use equation

(A.1) to check the consistency of the two equations of (2.21). To this end observe that

ω(k) = Q(e−2π ik), ω(k) = Q(e2π ik), and |ω(k)|2 = ℓ(e2π ik).

Lemma 2.3 Let ω(k) be defined as in (2.21), set f (k) := |ω(k)|, and denote θ(k) :=
arg(ω(k)) for 0 ≤ k ≤ 1, where the ambiguity in the definition of θ is settled by requir-

ing θ to be continuous with θ(0) ∈ (−π, π]. Then, for all k ∈ [0, 1] we have

ω(1 − k) = ω(k), (2.22)

f (1 − k) = f (k), (2.23)

θ(1 − k) ≡ −θ(k) (mod 2π). (2.24)

Furthemore, the functions f and θ − π
2

are C∞ on [0, 1] and they both possess odd C∞-

extensions at k = 0 which implies in particular θ(0) = π
2

.

Proof The symmetries follow directly from the definition of ω in (2.21). From (2.21) we also

learn that |ω(k)|2 ≥ 2κ1(1 − cos(2πk)) > 0 for k ∈ (0, 1). Thus the smoothness of f and

θ only needs to be investigated for k ∈ {0, 1}. By symmetry we only need to study the case

k = 0. The smoothness of the function θ may be obtained from the expansion near k = 0

cot(θ(k)) = −kπ

∑m
s=1 s2τs∑m
s=1 sτs

+ O(k3)
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together with
∑m

s=1 sτs > 0 (see Proposition 2.2). Since cot(θ(0)) = 0 and ℑω(k) > 0 for

small positive values of k we conclude that θ(0) = π
2

from the requirement θ(0) ∈ (−π, π].
This also implies the existence of a smooth odd extension of θ − π

2
at k = 0 because cot(θ(k))

has such an extension. For the function f the claims follow from the representation

f (k) = 2πk

(
m∑

s=1

s2κs sinc2(πsk)

)1/2

near k = 0 where sinc(x) = sin(x)
x

denotes the smooth and even sinus cardinalis function.

⊓⊔

Lemma 2.4 In the limit N → ∞ the correlation functions have the following expansion

SN
αα′( j, t) + δαα′

Nβ
= Sαα′( j, t) + O

(
N−∞) , α, α′ = 1, 2,

SN
33( j, t) = S33( j, t) + O

(
N−1

)
,

where δαα′ denotes the Kronecker delta,

S11( j, t) = S22( j, t) = 1

β

∫ 1

0

cos (|ω(k)|t) cos (2πk j) dk (2.25)

S12( j, t) = 1

β

∫ 1

0

sin (|ω(k)|t) cos (2πk j + θ(k)) dk, (2.26)

S21( j, t) = − 1

β

∫ 1

0

sin (|ω(k)|t) cos (2πk j − θ(k)) dk, (2.27)

S33( j, t) = 1

2
(S2

11 + S2
22 + S2

12 + S2
21), (2.28)

and θ(k) = arg ω(k) with ω(k) as in (2.21).

Proof For any periodic C∞-function g on the real line with period 1, g(k) =
∑

n∈Z
ĝne2π ikn ,

one has

1

N

N−1∑

ℓ=0

g

(
ℓ

N

)
=
∑

m∈Z

ĝm N =
∫ 1

0

g(k)dk + O
(
N−∞) .

It follows from Lemma 2.3 that the integrands in (2.25)-(2.27) can be extended to 1-periodic

smooth functions because we have for small positive values of k that

cos ( f (−k)t) cos (−2πk j) = cos ( f (k)t) cos (−2πk j)

= cos ( f (1 − k)t) cos (2π(1 − k) j) ,

sin ( f (−k)t) cos (−2πk j ± θ(−k)) = − sin ( f (k)t) cos (−2πk j ± (π − θ(k)))

= sin ( f (1 − k)t) cos (2π(1 − k) j ± θ(1 − k)) .

Observing in addition that the summands corresponding to ℓ = 0 are missing in (2.15)-(2.17)

the first claim is proved. Together with (2.19) this also implies the second claim. ⊓⊔

Next we analyse the leading order behaviour (as t → ∞) of the limiting correlation

functions Sαα′( j, t) using the method of steepest descent. In order to explain the phenomena

that may occur we start by discussing S11. Denote

ξ := j

t
and φ±(k, ξ) := f (k) ± 2πξk . (2.29)
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With these definitions and using the symmetry (2.23) we may write

S11( j, t) = 1

2β
ℜ
∫ 1

0

(
ei t( f (k)+2πξk) + ei t( f (k)−2πξk)

)
dk = 1

β
ℜ
∫ 1

0

ei tφ−(k,ξ)dk .

(2.30)

The leading order behaviour (t → ∞) of such an integral is determined by the stationary

phase points k0 ∈ [0, 1], i.e. by the solutions of the equation ∂
∂k

φ−(k0, ξ) = 0 which depend

on the value of ξ .

Such stationary phase points do not need to exist. In fact, as we see in Lemma 2.5(b) below,

the range of f ′ is given by some interval [−2πv0, 2πv0] so that there are no stationary phase

points for |ξ | > v0. As in the proof of Lemma 2.4 one can argue that the integrand ℜei tφ−(k, j/t)

can be extended to a periodic smooth function of k on the real line with period 1. It then

follows from integration by parts that S11( j, t) decays rapidly in time. More precisely, for

every fixed δ > 0 we have

S11( j, t) = O
(
t−∞) as t → ∞, uniformly for | j | ≥ (v0 + δ)t . (2.31)

This justifies the name of sound speed for the quantity v0.

In the case |ξ | ≤ v0 there always exists at least one stationary phase point k0 = k0(ξ) ∈
[0, 1]. Each stationary phase point may provide an additive contribution to the leading order

behaviour of
∫ 1

0 ei tφ−(k, j/t)dk for j near ξ t . However, the order of the contribution depends

on the multiplicity of the stationary phase point. For example, let k0 be a stationary phase

point of φ−(·, ξ), i.e. ∂
∂k

φ−(k0, ξ) = 0. Denote by ℓ the smallest integer bigger than 1 for

which ∂ℓ

∂kℓ φ−(k0, ξ) �= 0. Then k0 contributes a term of order t1/ℓ to the t-asymptotics of
∫ 1

0 ei tφ−(k, j/t)dk for j in a suitable neighbourhood of ξ t .

Before treating the general situation let us recall the case of nearest-neighbour interactions.

There we have

f (k) = f1(k) =
√

2κ1(1 − cos(2πk)) = 2
√

κ1 sin(πk) , k ∈ [0, 1] .

The range of f ′
1 equals [−2πv0, 2πv0] with v0 = √

κ1. For every |ξ | ≤ v0 there exists

exactly one stationary phase point k0(ξ) ∈ [0, 1] of φ−(·, ξ) that is determined by the

relation cos(πk0(ξ)) = ξ/v0. A straight forward calculation gives

∂2

∂k2
φ−(k0(ξ), ξ) = f ′′

1 (k0(ξ)) = −2π2
√

v2
0 − ξ2 = 0 ⇔ ξ = ±v0 .

Moreover, we have k0(v0) = 0 and k0(−v0) = 1 and therefore ∂3

∂k3 φ−(k0(±v0),±v0) =
∓2π3v0 �= 0. This implies that in addition to (2.31) we have S11( j, t) = O(t−1/2), except

for j near ±v0t where S11( j, t) = O(t−1/3). In order to determine the behaviour near the

least decaying peaks that travel at speeds ±v0 we expand f1 near the stationary phase points.

Let us first consider ξ = v0 with k0 = 0. Introducing λ0 = 1
2π

| f ′′′
1 (0)/2|1/3 = 1

2
v

1/3
0 we

obtain

f1(k) = 2πv0k − 1

3
(2πλ0k)3 + O(k5) , as k → 0.

Substituting y = 2πλ0t1/3k leads for k close to 0 to the asymptotic expression

tφ−(k, j/t) = v0t − j

λ0t1/3
y − 1

3
y3 + O(t−2/3) , as t → ∞.

123



Correlation Functions for a Chain... Page 17 of 31 1

Using the well-known representation Ai(w) = 1
π

∫∞
0 cos(y3/3+wy)dy, w ∈ R, of the Airy

function and performing a similar analysis around the stationary phase point k0 = −1 for

ξ = −v0 one obtains an asymptotic formula for the region not covered by (2.31)

S11( j, t) = 1

2βλ0t1/3

[
Ai

(
j − v0t

λ0t1/3

)
+ Ai

(
− j + v0t

λ0t1/3

)]

+O
(
t−1/2

)
, t → ∞, uniformly for | j | < (v0 + δ)t (2.32)

for δ > 0 (see e.g. [14]). Observe that due to the decay of Ai(w) for w → ±∞, the Airy

term is dominant roughly in the regions described by v0t − o(t) < | j | < v0t + o((ln t)2/3).

From the arguments just presented it is not difficult to see that the derivation of (2.32)

only uses the following properties of f = f1:

f ′′(k) < 0 for all 0 < k ≤ 1

2
, (2.33)

together with

f ′′(0) = 0 , f ′′′(0) < 0 , and f (1 − k) = f (k) for all 0 ≤ k <
1

2
. (2.34)

Conditions (2.33) and (2.34) imply that statements (2.31) and (2.32) hold with v0 =
f ′(0)
2π

> 0 and λ0 = 1
2π

| f ′′′(0)/2|1/3.

It follows from equation (2.23) and from statement (a) of Lemma 2.5 below that the

conditions of (2.34) are always satisfied in our model. Condition (2.33), however, might fail.

Indeed, it is not hard to see that there exist open regions in the κ-space R
m
+ where there always

exist stationary phase points k0 ∈ (0, 1) of higher multiplicity, i.e. with f ′′(k0) = 0. In this

situation the value of v := f ′(k0)
2π

lies in the open interval (−v0, v0) (cf. Lemma 2.5b). Then

the decay rate of S11( j, t) for j near vt is at most of order t−1/3. The decay is even slower

(at least of order t−1/4) if f ′′′(k0) = 0 holds in addition. We show in Theorem 2.7 that this

may happen for κ in some submanifold of R
m
+ of codimension 1 (see also Examples 2.8 and

2.9). Nevertheless, if κ2, . . ., κm are sufficiently small in comparison to κ1 then condition

(2.33) is always satisfied as we show in Theorem 2.6(c).

Before stating our main results of this section, Theorems 2.6 and 2.7, we first summarize

some more properties of the function f .

Lemma 2.5 Given (κ1, . . . , κm) with κ1 > 0, κm > 0, and κ j ≥ 0 for 1 < j < m. Denote

f (k) = |ω(k)| for 0 ≤ k ≤ 1 as introduced in Lemma 2.3 and define v0 := (
∑m

s=1 s2κs)
1
2 .

Then the following holds:

(a) f (0) = f ′′(0) = 0 , f ′(0) = 2πv0 , and f ′′′(0) = − 2π3

v0

∑m
s=1 s4κs .

(b) f ′([0, 1]) = [−2πv0, 2πv0]. f ′ attains its maximum only at k = 0 and its minimum

only at k = 1.

(c) Fix κ1 > 0. Then the map f can be extended as a C∞-function of the variables

(k, κ2, . . . , κm) on the set [0, 1] × [0,∞)m−1.

Proof Statement (a) follows directly from the last formula in the proof of Lemma 2.3 and

from the expansion sinc2(x) = 1 − x2

3
+ O(x4) for small values of x :

f (k) = 2πk

(
m∑

s=1

s2κs sinc2(πsk)

)1/2

= 2πv0k − π3

3v0

(
m∑

s=1

s4κs

)
k3 + O(k5) .
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This representation also settles statement (c). As we know already f ′(0) = 2πv0 = − f ′(1)

we may establish statement (b) by verifying that | f ′(k)| < 2πv0 holds for all k ∈ (0, 1).

To this end we write f = (
∑m

s=1 h2
s )

1/2 with hs(k) = 2
√

κs sin(πsk). Using the Cauchy-

Schwarz inequality we obtain for 0 < k < 1 that

| f ′(k)| = |
∑m

s=1 hs(k)h′
s(k)|

(∑m
s=1 h2

s (k)
)1/2

≤
(

m∑

s=1

(h′
s)

2(k)

)1/2

= 2π

(
m∑

s=1

s2κs cos2(πsk)

)1/2

< 2πv0 ,

where the last inequality follows from | cos(πk)| < 1 and κ1 > 0. ⊓⊔

We are now ready to state our first main result in this section.

Theorem 2.6 Let m ∈ N, fix δ > 0, denote f (k) = |ω(k)| as introduced in Lemma 2.3, and

set

v0 :=

√√√√
m∑

s=1

s2κs, λ0 := 1

2

(
1

v0

m∑

s=1

s4κs

)1/3

. (2.35)

(a) For all α, α′ = 1, 2, 3 we have rapid decay as t → ∞, uniformly for | j | > (v0 + δ)t ,

i.e.

Sαα′( j, t) = O
(
t−∞) .

(b) If f ′′(k) < 0 for all 0 < k ≤ 1/2 then as t → ∞ the following holds uniformly for

| j | < (v0 + δ)t:

S11( j, t) = 1

2βλ0t1/3

[
Ai

(
j − v0t

λ0t1/3

)
+ Ai

(
− j + v0t

λ0t1/3

)]
+ O

(
t−1/2

)
= S22( j, t) ,

(2.36)

S12( j, t) = 1

2λ0t1/3β

(
Ai

(
− j + v0t

λ0t1/3

)
− Ai

(
j − v0t

λ0t1/3

))
+ O(t−

1
2 ) = S21( j, t) ,

(2.37)

S33( j, t) = 1

2β2λ2
0t2/3

[
Ai2
(

j − v0t

λ0t1/3

)
+ Ai2

(
− j + v0t

λ0t1/3

)]
+ O

(
t−5/6

)
. (2.38)

(c) For every κ1 > 0 there exists ε = ε(κ1) > 0 such that for all (κ2, . . . , κm) ∈ [0, ε)m−1

we have f ′′(k) < 0 for all 0 < k ≤ 1/2.

Proof The rapid decay claimed in statement (a) can be argued in the same way as (2.31)

for S11 = S22. Due to relations (2.18) and (2.28) one only needs to consider S12 and S21.

Indeed, using Lemma 2.3 one may show that the imaginary parts of the integrands used in

the representation of S12 and S21 in (2.39) below have smooth extensions to all k ∈ R that

are 1-periodic. This is all that is needed because | ∂
∂k

φ±(k, j/t)| > 2πδ by Lemma 2.5b)

uniformly for k ∈ [0, 1/2] and | j | > (v0 + δ)t .

We have already argued above that conditions (2.33), (2.34) suffice to derive the first claim

of statement (b) with v0 = f ′(0)
2π

> 0 and λ0 = 1
2π

| f ′′′(0)/2|1/3. The expressions for f ′(0)

and f ′′′(0) stated in Lemma 2.5 (a) justify the definitions of (2.35).
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Using the symmetry relations (2.23) and (2.24) we derive a representation for S12 and S21

that is suitable for a steepest descent analysis

S12( j, t) = 1

β

∫ 1/2

0

(
sin( f (k)t − 2πk j − θ(k)) + sin( f (k)t + 2πk j + θ(k))

)
dk

= 1

β
ℑ
∫ 1/2

0

(
ei tφ−(k, j/t)e−iθ(k) + ei tφ+(k, j/t)eiθ(k)

)
dk

S21( j, k) = − 1

β
ℑ
∫ 1/2

0

(
ei tφ−(k, j/t)eiθ(k) + ei tφ+(k, j/t)e−iθ(k)

)
dk

(2.39)

where φ±(k, ξ) = f (k)±2πξk as in (2.29) above. Expanding for k close to zero one obtains

φ±(k, j/t) = 2πv0k − 1
3
(2π)3λ3

0k3 ± 2πk
j
t
+ O(k5). Substituting y = 2πλ0t1/3k leads to

the asymptotic expression

tφ±(k, j/t) = v0t ± j

λ0t
1
3

y − 1

3
y3 + O(t−

2
3 ) as t → ∞.

Keeping in mind that θ(0) = π
2

we obtain

S12( j, t) = 1

2λ0t1/3β

(
Ai

(
− j + v0t

λ0t1/3

)
− Ai

(
j − v0t

λ0t1/3

))
+ O(t−

1
2 ) = S21( j, t) .

Regarding the expansion for t → ∞ of S33( j, t) it follows immediately from the expres-

sion (2.28) and the expansions of Sαα′( j, t) with α, α′ = 1, 2.

Statement (c) follows from the continuous dependence of the derivatives f ′′ and f ′′′ on

the parameters (κ2, . . . , κm) (see Lemma 2.5 c) and from simple facts for the case of nearest-

neighbour interactions f1(k) = 2
√

κ1 sin(πk) discussed above. Indeed, from f ′′(0) = 0

and from f ′′′
1 (0) < 0 it follows that there exists such an ε > 0 such that f ′′′(k) < 0 and

hence also f ′′(k) < 0 for k in some region (0, δ) uniformly in (κ2, . . . , κm) ∈ [0, ε)m−1. As

f ′′
1 (k) < −2π2√κ1 sin(πδ) for all k ∈ [δ, 1/2] we may prove the claim in this region by

reducing the value of ε if necessary. ⊓⊔

Theorem 2.6 provides the leading order asymptotics of the limiting correlations Sαα′( j, t)

for t → ∞ in the simple situation that the second derivative of the dispersion relation

is strictly negative on the open interval (0, 1) (cf. condition (2.33)). Moreover, statement

(c) shows that there is a set of positive measure in parameter space κ ∈ R
m
+ where this

happens. For general values of κ , however, different phenomena may appear. In particular,

there might exist stationary phase points of higher order leading to slower time-decay of

the correlations (see discussion before the statement of Lemma 2.5). By a naive count of

variables and equations one might expect that decay rates t−1/(3+p) occur on submanifolds

of parameter space of dimension m − p. Theorem 2.7 shows that this is indeed the case for

p = 1. Moreover, we present in this situation a formula for the leading order contribution

of the corresponding stationary phase points to the asymptotics of Sαα′( j, t). Despite being

non-generic in parameter space it is interesting to note that decay rates t−1/4 can be observed

numerically (see Figs. 2 and 3). There is also a second issue that may arise if condition (2.33)

fails. Namely, for v ∈ (−v0, v0) there can be several values of k ∈ (0, 1
2
] satisfying f ′(k) ±

2πv = 0 so that the contributions from all these stationary points need to be added to describe

the leading order behaviour for j near vt .
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Theorem 2.7 Recall from (2.21) the formula for the dispersion relation

f (k) = |ω(k)| =

√√√√2

m∑

s=1

κs (1 − cos(2πks)) .

(a) For m ≥ 3 there is an (m − 1)-parameter family of potentials for which there exists

k∗ = k∗(κ) ∈ (0, 1
2
) with

f ′′(k∗) = 0, f ′′′(k∗) = 0, f (iv)(k∗) �= 0, and 0 < v∗ := f ′(k∗)

2π
< v0, (2.40)

with v0 as in (2.35). Set λ∗ := 1

2π
(| f (iv)(k∗)|/4!) 1

4 > 0. Then for j → ∞ and t → ∞ in

such a way that

v∗t − j

λ∗t
1
4

is bounded, the contribution of the stationary phase point k∗ to the correlation functions is

given by:

S11( j, t), S22( j, t) : 1

2βπλ∗t
1
4

ℜ
(

ei tφ−(k∗, j/t)P±

(
v∗t − j

λ∗t
1
4

))
+ O(t−

1
2 ) , (2.41)

S12( j, t) : 1

2βπλ∗t
1
4

ℑ
(

ei tφ−(k∗, j/t)−iθ(k∗)P±

(
v∗t − j

λ∗t
1
4

))
+ O(t−

1
2 ) ,

(2.42)

S21( j, t) : − 1

2βπλ∗t
1
4

ℑ
(

ei tφ−(k∗, j/t)+iθ(k∗)P±

(
v∗t − j

λ∗t
1
4

))
+ O(t−

1
2 ) ,

(2.43)

where φ±(k, ξ) = f (k) ± 2πξk, θ(k) = arg ω(k) as defined in Lemma 2.3, P±(a) denote

the Pearcey integrals, cf. Appendix B:,

P±(a) =
∫ ∞

−∞
ei(±y4+ay)dy, a ∈ R, (2.44)

and P± has to be chosen according to the sign of f (iv)(k∗). If j → −∞ with bounded

(v∗t + j)/(λ∗t1/4) the contributions of the stationary point k∗ can be obtained from the ones

presented in (2.41)-(2.43) by replacing φ− by φ+, θ by −θ , and j in the argument of P± by

− j .

(b) When k∗ = 1
2

one has f ′(1/2) = 0 and f ′′′(1/2) = 0 by the symmetry (2.23). For

each m ≥ 2 there is an (m − 1)-parameter family of potentials so that f ′′(1/2) = 0 and

f (iv)(1/2) �= 0 holds in addition. In this case the contribution of the stationary phase point

k∗ = 1/2 to the correlation functions in the asymptotic regime t → ∞ with bounded j/t
1
4

is given by (λ∗ defined as in statement (a) with k∗ = 1
2

)
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S11( j, t), S22( j, t) : (−1) j

2βπλ∗t
1
4

ℜ
(

ei t f ( 1
2 )P±

(
j

λ∗t
1
4

))
+ O(t−

1
2 )

S12( j, t), S21( j, t) : − sgn (
∑

s odd

τs)
(−1) j

2βπλ∗t
1
4

ℑ
(

ei t f ( 1
2 )P±

(
j

λ∗t
1
4

))
+ O(t−

1
2 )

S33( j, t) : 1

4β2π2(λ∗)2t
1
2

∣∣∣∣P±

(
j

λ∗t
1
4

)∣∣∣∣
2

+ O(t−
3
4 ) .

(2.45)

Proof We begin by proving formula (2.41) for the momentum or position correlations

S22( j, t) = S11( j, t) under the assumption that we have found a k∗ ∈ (0, 1/2) for which all

the relations of (2.40) are satisfied.

From (2.30) and Lemma 2.3 we obtain

S11( j, t) = S22( j, t) = 1

β
ℜ
∫ 1

2

0

(
ei t( f (k)+2πk

j
t
) + ei t( f (k)−2πk

j
t
)
)

dk. (2.46)

In order to compute the contribution of the stationary phase point k∗ to the large t asymptotics

of the integral in (2.46) we expand

f (k) = f (k∗) + 2πv∗(k − k∗) + f (iv)(k∗)(k − k∗)4/4! + O((k − k∗)5) .

Introducing the change of variables

y = 2πλ∗(k − k∗)t
1
4 , λ∗ = 1

2π
(| f (iv)(k∗)|/4!) 1

4

one obtains

t f (k) − 2π jk = t f (k∗) − 2π jk∗ + y
v∗t − j

λ∗t
1
4

± y4 + O(t−
1
4 )

where the ± sign is determined by the sign of f (iv)(k∗). Then using the Pearcey integral

(2.44), the expansion (2.41) can be derived in a straightforward way from (2.46). In a similar

way the expansions (2.42) and (2.43) are obtained by applying the above analysis to the

expression (2.39).

In the situation k∗ = 1/2 of statement (b) one uses in addition that tφ±(1/2, j/t) =
t f (1/2) ± jπ , ω(1/2) = −

∑m
s=1 τs(1 − cos(πs)) = −2

∑
s odd τs , see (2.21), and conse-

quently e±iθ(1/2) = − sgn(
∑

s odd τs). The leading order contribution of the stationary phase

point k∗ = 1/2 to the integral representation of, say, S12 in (2.39) is then given by

−sgn

(∑

s odd

τs

)
(−1) j

2βπλ∗t
1
4

ℑ
(

ei t f ( 1
2 )

(∫ 0

−∞
ei(±y4−wy)dy +

∫ 0

−∞
ei(±y4+wy)dy

))

with w = j

λ∗t
1
4

. In this way and with the help of (2.28) all relations of (2.45) can be deduced.

We now show the existence of a codimension 1 manifold in parameter space that exhibits

such higher order stationary phase points in the situation of (b) where k∗ = 1/2. As we have

f ′′′(1/2) = 0 by symmetry (2.23) we only need to solve

f ′′
(

1

2

)
= 0 which is equivalent to

m∑

s=1

s2(−1)s+1κs = 0 . (2.47)
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The solution of the above equation is

κm = (−1)m

m2

m−1∑

s=1

s2(−1)s+1κs . (2.48)

It is clear from the above relation that for m even, choosing κ1 sufficiently big one has κm > 0

while for m odd, it is sufficient to choose κs+1 > s2

(s+1)2 κs > 0, s odd and 1 ≤ s ≤ m − 2.

Note that in the situation of (2.48) f (iv)( 1
2
) �= 0 holds iff

∑m
s=1 κss4(−1)s+1 �= 0. This

condition simply removes an (m − 2)-dimensional plane from our manifold (2.48) which

defines a hyperplane in the positive cone of the m-dimensional parameter space. Therefore

we have found an (m − 1)-parameter family of potentials such that the correlation functions

decay as in (2.45).

Finally, we show for m ≥ 4 our claim about the solution set of (2.40). The case m = 3

is treated in Example 2.9. Our strategy is to first show that there exists a κ
∗ that satisfies

f ′′(1/4, κ∗) = 0, f ′′′(1/4, κ∗) = 0, f ′(1/4, κ∗) > 0, and f (iv)(1/4, κ∗) �= 0. We then

invoke the Implicit Function Theorem to show the existence of the (m − 1)-dimensional

solution manifold, where the stationary phase point k∗ ∼ 1/4 may and will depend on the

parameters. The conditions f ′′( 1
4
, κ) = 0 and f ′′′( 1

4
, κ) = 0 imply

f ′′′
(

1

4

)
= 0 →

∑

s odd

(−1)
s−1

2 s3κs = 0, (2.49)

f ′′
(

1

4

)
= 0 →

(
2
∑

s odd

κs + 2
∑

s even

κs(1 − (−1)
s
2 )

) ∑

s even

s2κs(−1)
s
2

−
(∑

s odd

sκs(−1)
s−1

2

)2

= 0 . (2.50)

One needs to treat the case m odd and even separately. Here we consider only the case m

even. The odd case can be treated in a similar way. Equation (2.49) gives

κm−1 = (−1)
m
2

(m − 1)3

m−3∑

s odd,s=1

(−1)
s−1

2 s3κs .

If m = 2ℓ with ℓ even, a positive solution κm−1 exists, provided that κ1 is sufficiently big. If

m = 2ℓ with ℓ odd then one needs to require 0 < κs <
(s+2)3

s3 κs+2 for s = 1, 5, 9, . . . , m−5.

The equation (2.50) is a linear equation in κ4 and we solve it for κ4 obtaining

κ4 = 1

32

(
m−3∑

s odd,s=1

κs(−1)
s−1

2 s(1 − s2

(m−1)2 )

)2

m−3∑
s odd,s=1

κs(1 + s3(−1)
m+s−1

2

(m−1)3 ) +
m∑

s even,s=2

κs(1 − (−1)
s
2 )

+ 1

16

m∑

s even,s �=4,s=2

s2κs(−1)
s−2

2 .

We observe that the first term in the above expression is always positive, while the second

term is positive if we require that κs >
(s+2)2

s2 κs+2 > 0 for s = 6, 10, 14, . . . , m − 2. The

remaining two conditions f ′(1/4) > 0 and f (iv)(1/4) �= 0 are easy to satisfy: the sign of
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f ′(1/4) agrees with the sign of
∑

s odd sκs(−1)
s−1

2 and can be made positive by choosing

κ1 sufficiently large. In the situation where (2.49) and (2.50) hold the fourth derivative

f (iv)(1/4) does not vanish iff
∑

s even s4κs(−1)
s
2 �= 0. This can be achieved by adjusting,

for example, the value of κ2. We have now shown that there exists κ
∗ ∈ R

m
+ such that the first

four derivatives of f have all desired properties at k = 1/4. In order to obtain the (m − 1)-

dimensional solution manifold in parameter space, we apply the Implicit Function Theorem

to F(k, κ) := ( f ′′(k, κ), f ′′′(k, κ)). By a straight forward computation on sees that

det

[
∂ F

∂(k, κ4)
(1/4, κ∗)

]
= − f (iv)(1/4, κ∗)

∂ f ′′

∂κ4
(1/4, κ∗) �= 0 .

We can therefore solve F(k, κ) = 0 near (1/4, κ∗) by choosing (k, κ4) as functions of the

remaining parameters κ j with j �= 4. ⊓⊔

Example 2.8 m even. Choosing κs = 1
s2 for s = 1, . . . , m one has that conditions (2.47) are

satisfied and f (iv)
(

1
2

)
< 0.

For κs = 1
sα , s = 1, . . . , m − 1, 2 < α < 3, and κm given by (2.48), there is α = α(m)

such that κm < κm−1.

m odd. Choosing κs = 1
s
, for s = 1, . . . m − 1, one has from (2.48) κm = m−1

2m2 < κm−1

and f (iv)( 1
2
) > 0.

In all these examples the correlation functions Sαα′( j, t), α, α′ = 1, 2 decrease as t−
1
4

near j = 0.

Example 2.9 We consider the case m = 3 and we want to get a potential that satisfies (2.40)

with v∗ > 0. We chose as a critical point of f (k) the point k∗ = 1
3

thus obtaining the

equations

κ2 = 1

8
κ1, κ3 = 7

72
κ1 .

The speed of the peak is v∗ =
√

2κ1

4
and f (iv)( 1

3
) = − 68

√
6

6
π4√κ1.

The correlation functions Sαα′( j, t), α, α′ = 1, 2 decrease as t−
1
4 and S33( j, t) decreases

like t−
1
2 as t → ∞ and j ∼ v∗t , see Fig. 3. Note that one may obtain a 2-parameter family

of solutions of (2.40) by picking, for example, the particular solution related to κ1 = 1 and

by showing that the system of equations ( f ′′, f ′′′)(k, κ) = 0 can be solved near (1/3, 1, 1/8,

7/72) by choosing k and κ3 as functions of κ1 and κ2 using the Implicit Function Theorem

in the same way as at the end of the proof of Theorem 2.7.

3 Complete Set of Integrals with Local Densities, Currents and
potentials, and Some Numerics for Nonlinear Versions

3.1 Circulant Hierarchy of Integrals

In this section we construct a complete set of conserved quantities that have local densities.

The harmonic oscillator with short range interaction is clearly an integrable system. A set of

integrals of motion is given by the harmonic oscillators in each of the Fourier variables: Ĥ j =
1
2

(
| p̂ j |2 + |ω j |2 |̂q j |2

)
, j = 0, . . . N−1

2
. However, when written in the physical variables p

and q, the quantities
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Ĥ j = 1

2

N−1∑

k,l=0

F j,kF j,l(pk pl + |ω j |2qkql)

depend on all components of the physical variables. We now construct integrals of motion

each having a density that involves only a limited number of components of the physical

variables and this number only depends on the range m of interaction.

For this purpose we denote by {ek}N−1
k=0 the canonical basis in R

N .

Theorem 3.1 Let us consider the Hamiltonian

H(p, q) = 1

2
p⊺p + 1

2
q⊺ Aq , (3.1)

with the symmetric circulant matrix A as in (1.2), (1.3). Define the matrices {Gk}M
k=1 to be

the symmetric circulant matrix generated by the vector 1
2
(ek + eN−k) and {Sk}M

k=1 to be the

antisymmetric circulant matrix generated by the vector 1
2
(ek − eN−k). Then the family of

Hamiltonians defined as

Hk(p, q) = 1

2
p⊺Gkp + 1

2
q⊺T ⊺Gk T q = 1

2

N−1∑

j=0

[p j p j+k + r jr j+k] , (3.2)

H
k+ N−1

2
(p, q) = p⊺T ⊺Sk T q = 1

2

N−1∑

j=0

[(
m∑

ℓ=0

τℓ p j+ℓ

)
(r j+k − r j−k)

]
, (3.3)

for k = 1, . . . , N−1
2

together with H0 := H forms a complete family (H j )0≤ j≤N−1 of

integrals of motion that, moreover, is in involution.

Proof Observe first that the Hamiltonian H0 = H is included in the description of formula

(3.2) as G0 equals the identity matrix. Using the symmetries G
⊺

k = Gk , 0 ≤ k ≤ (N − 1)/2,

the Poisson bracket {F, G} = 〈∇q F,∇pG〉 − 〈∇qG,∇p F〉 may be evaluated in the form

{Hk, Hℓ} = q⊺
(
T ⊺Gk T Gℓ − T ⊺GℓT Gk

)
p , for 0 ≤ k, ℓ ≤ N−1

2
,

{Hk, Hℓ} = p⊺
(
T ⊺Sk T T ⊺SℓT − T ⊺SℓT T ⊺Sk T

)
q , for N+1

2
≤ k, ℓ ≤ N − 1,

{Hk, Hℓ} = q⊺T ⊺Gk T T ⊺SℓT q − p⊺T ⊺SℓT Gkp , for 0 ≤ k ≤ N−1
2

, N+1
2

≤ ℓ ≤ N − 1.

All these expressions vanish. To see this, it suffices to observe that multiplication is commu-

tative for circulant matrices and, for the bottom line, that Sℓ is skew symmetric: S
⊺

ℓ = −Sℓ.

⊓⊔
Now we introduce the local densities corresponding to the just defined integrals of motion

e
(k)
j =

{
1
2

(
p j p j+k + r jr j+k

)
, for k = 1, . . . , N−1

2(∑m
l=0 τl p j+l

) (
r j+k − r j−k

)
, for k = N+1

2
, . . . , N .

together with their correlation functions

S
(N )
(k+3,n+3)( j, t) :=

〈
e
(k)
j (t)e

(n)
0 (0)

〉
−
〈
e
(k)
j (t)

〉 〈
e
(n)
0 (0)

〉
. (3.4)

and limits

Sk,n( j, t) = lim
N→∞

S
(N )
k,n ( j, t). (3.5)

We present explicit formulas for the limits Sk,n in Appendix C: from which one can deduce

that they have the same scaling behaviour as the energy-energy correlation function S33 when

t → ∞.
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3.2 Currents and Potentials

In this subsection we write the evolution with respect to time of r j , p j and e j in the form

of a (discrete) conservation law by introducing the currents. Each conservation law has a

potential function that is a Gaussian random variable. In the final part of this subsection we

determine the leading order behaviour of the variance of this Gaussian random variable as

t → ∞ in the case of nearest neighbour interactions.

For introducing the currents we recall that r = T q with T as in (1.7). Then one has

ṙ j =
∑

ℓ

T j ℓ pℓ =
m∑

ℓ=1

τℓ(p j+ℓ − p j ), r j+N = r j

ṗ j = −
∑

ℓ

Tℓ jrℓ =
m∑

ℓ=1

τℓ(r j − r j−ℓ), p j+N = p j , j = 0, . . . , N − 1.

(3.6)

To write the above equation in the form of a discrete conservation law we introduce the local

currents

J
(r)
j :=

m−1∑

s=0

p j+1+s

m∑

ℓ=s+1

τℓ , J
(p)
j :=

m∑

s=1

r j+1−s

m∑

ℓ=s

τℓ. (3.7)

Then the equations of motion (3.6) can be written in the form

ṙ j = J
(r)
j − J

(r)
j−1 (3.8)

ṗ j = J
(p)
j − J

(p)
j−1, j = 0, . . . , N − 1. (3.9)

From the above equations it is clear that the momentum p j and the generalized elongation

r j are locally conserved. The evolution of the energy e j := 1

2
p2

j + 1

2
r2

j at position j takes

the form

ė j = J
(e)
j − J

(e)
j−1 , J

(e)
j =

m∑

s=1

τs

s−1∑

ℓ=0

r j+1−s+ℓ p j+1+ℓ. (3.10)

We remark that all the currents J
(r)
j , J

(p)
j and J

(e)
j are local quantities in the variables q

and p. Observe furthermore that the total current
∑

j J
(p)
j for the momentum is a multiple

of the total stretch and that the total current
∑

j J
(r)
j for the stretch is a multiple of the

total momentum. Therefore these two total currents are conserved quantities. However, the

total current for the energy
∑

j J
(e)
j is not a conserved quantity. Of course, one could easily

remedy this by simply subtracting the mean total current from each J
(e)
j at the cost of losing

the local nature of the current. It is an interesting question whether one can find more integrals

of motion (besides momentum and stretch) with corresponding currents that are both local

quantities in the variables q and p so that the currents are conserved. To the best of our

knowledge this is an open question even in the simplest case of linear nearest-neighbour

interactions.

We recall the notation of the introduction

u( j, t) = (r j (t), p j (t), e j (t)),

123



1 Page 26 of 31 T. Grava et al.

and we introduce the vector of currents J( j, t) = (J
(r)
j (t), J

(p)
j (t), J

(e)
j (t)) . The equations

of motion take the compact form

d

dt
u( j, t) = J( j, t) − J( j − 1, t).

We define a potential function for the above conservation law

�( j, t) :=
∫ t

0

J( j, t ′)dt ′ +
j∑

ℓ=0

u(ℓ, 0).

Then it is straightforward to verify that�t ( j, t) = J( j, t) and�( j, t)−�( j−1, t) = u( j, t).

The quantities �1( j, t) and �2( j, t) can be expressed as sums of independent centered

Gaussian random variables and are therefore also Gaussian random variables with zero mean

and variance 〈(�1( j, t))2〉 and 〈(�2( j, t))2〉, where all the averages are taken with respect to

the distribution (1.9), see also (2.10). We calculate the variance for the case of the harmonic

oscillator with nearest neighbour interactions. In this particular case

�1( j, t) = √
κ1

∫ t

0

p j+1(t
′)dt ′ +

j∑

ℓ=0

rℓ(0) = √
κ1(q j+1(t) − q0(0))

�2( j, t) = √
κ1

∫ t

0

r j (t
′)dt ′ +

j∑

ℓ=0

pℓ(0) .

(3.11)

After some lengthy calculations one obtains:

lim
N→∞

〈(�1( j, t))2〉 = 2κ1

β

∫ 1

0

|ω(k)|−2 [1 − cos (|ω(k)|t) cos (2π( j + 1)k)] dk (3.12)

lim
N→∞

〈(�2( j, t))2〉 = 2κ1

β

∫ 1

0

|ω(k)|−2(1 − cos (|ω(k)|t)) cos (2π( j + 1)k)dk + j + 1

β
.

(3.13)

Evaluating the r.h.s. of the above expressions in the limit t → ∞ we arrive to the following

theorem.

Theorem 3.2 In the limit N → ∞ and t → ∞ the quantities �1( j, t) and �2( j, t) defined

in (3.11) are Gaussian random variables that have the following large t behaviour:

lim
N→∞

�1( j, t) = N (0, σ 2
1 ) and lim

N→∞
�2( j, t) = N (0, σ 2

2 ) . (3.14)

The leading order behaviour of the variances σ 2
1 and σ 2

2 agrees. In the physically interesting

region
| j |
t

≤ √
κ1 it is given by

σ 2
1 = t

√
κ1

β
+ O

(
t

1
3
)

= σ 2
2 . (3.15)

The proof of the above theorem relies on steepest descent analysis of the oscillatory integrals

in (3.13). But because the integrand is actually quite large ( ∼ Ct2) near k = 0, we consider

the following Cauchy-type integral instead,

F0(z) = 1

2π2β

∫ 1/2

−1/2

1 − cos (|ω(k)|t)
(k − z)2

cos (2π( j + 1)k)dk , (3.16)
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which gives the leading order asymptotic behaviour of the integrals appearing in (3.13), since

2κ1

β

∫ 1/2

−1/2

|ω(k)|−2(1 − cos (|ω(k)|t)) cos (2π( j + 1)k)dk − F0(0) → 0 as t, j → ∞ .

(3.17)

For
| j |
t

< (1 − ǫ)
√

κ1, ǫ > 0, the analysis of F0(z) is quite straightforward - a standard

stationary phase calculation combined with a contour deformation to permit the evaluation

at z = 0. For t and j growing to ∞ such that
| j |
t

≈ √
κ1, the analysis is more complicated

because the point of stationary phase is encroaching upon the origin, where the integrand itself

is actually large as t → ∞. For this case, one must construct a local parametrix, following

quite closely the analysis presented in [5], and we omit the details of this analysis. In order to

analyse �1 observe that the difference of the integrals in relations (3.12) and (3.13) is given

by
∫ 1

0 |ω(k)|−2 [1 − cos (2π( j + 1)k)] dk which can also be treated by a stationary phase

calculation combined with a contour deformation.

3.3 Nonlinear Regime

In this section we consider a nonlinear perturbation of the harmonic oscillators with short

range interactions of the form

H(p, q) =
N−1∑

j=0

p2
j

2
+

m∑

s=1

κs

⎛
⎝1

2

N−1∑

j=0

(q j − q j+s)
2

+χ

3

N−1∑

j=0

(q j − q j+s)
3 + γ

4

N−1∑

j=0

(q j − q j+s)
4

⎞
⎠ . (3.18)

We consider Examples 2.8 and 2.9 with different strengths of nonlinearity namely

m = 2, κ1 = 1, κ2 = 1

4
,

{
χ = 0.01 and γ = 0.001

χ = 0.1 and γ = 0.01

m = 3, κ1 = 1, κ2 = 1

8
, κ2 = 7

72
,

{
χ = 0.01 and γ = 0.001

χ = 0.1 and γ = 0.01
.

We numerically compute and study the correlatios functions for these systems sampling the

initial conditions according to the Gibbs measures of just their harmonic part at temperature

β−1 = 1.

In the weakly nonlinear case, the fastest peaks of the correlation functions scale numeri-

cally according to the Airy parametrices (cf. Theorem 2.6) as can be deduced from the top

pictures in Figs. 4, 5 while for stronger nonlinearity the fastest peaks seem to scale like t
2
3 in

equation (1.11), see bottom figures in Figs. 4, 5. The non generic peaks that are present in the

linear cases and scale like t1/4 have a fast decay in the case of strong nonlinearity. However

for weak nonlinearities, the central peak in the top left Fig. 4, still scales in time like t−
1
4 .

Indeed performing a regression analysis of the log-log plot one can see a scaling like t−0.267

that is slightly faster then t−
1
4 (see Fig. 6).
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Appendices

A: Proof of Proposition 2.2

Proof In view of the notation introduced in (1.3), (1.4), and (1.7) the proof of Proposition

2.2 amounts to showing the existence of τ0, . . . , τm ∈ R satisfying
∑m

s=0 τs = 0 such that

Q(z−1) Q(z) = ℓ(z) for all z ∈ C \ {0}, where

Q(z) = τ0 + τ1z + . . . + τm zmand

ℓ(z) = −κm z−m − . . . − κ1z−1 + a0 − κ1z − . . . − κm zm . (A.1)

The existence of the τ j ’s is a consequence of the Fejér-Riesz lemma. For the convenience of

the reader we present a proof following the presentation in [16, pg. 117 f]. Denote by P the

polynomial of degree 2m given by P(z) := zmℓ(z). Observe that for all x ∈ R we have

ℓ(ei x ) = a0 − 2

m∑

j=1

κ j cos( j x) ≥ a0 − 2

m∑

j=1

κ j = 0.

By the positivity of κ1 equality holds in the inequality above iff cos(x) = 1. This implies that

P has no zeros on the unit circle |z| = 1 except for z = 1. We denote by ηk , 1 ≤ k ≤ r<, the

zeros of P that lie within the unit disc |ηk | < 1 and by ξk , 1 ≤ k ≤ r>, the zeros of P with

|ξk | > 1, recorded repeatedly according to their multiplicities, so that

P(z) = −κm(z − 1)r0

r<∏

k=1

(z − ηk)

r>∏

k=1

(z − ξk) . (A.2)

Using the uniqueness of such a factorization for any polynomial together with the relation

z2m P(z−1) = P(z) one obtains that r< = r> and that the zeros can be listed in such a way that

ηk = ξ−1
k for all 1 ≤ k ≤ r<. Moreover, we learn that r0 is even with 1 ≤ ̺ := r0/2 = m−r<.

Now it follows from formula (A.2) that
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l(z) = z−m P(z)

= c (z−1 − 1)̺(z − 1)̺
r<∏

k=1

(z−1 − ξk)

r<∏

k=1

(z − ξk)

with c := −κm(−1)̺
r<∏

k=1

(−ξ−1
k ) �= 0 .

Choosing d ∈ C with d2 = c we see that Q(z) := d(z−1)̺
∏r<

k=1(z−ξk) satisfies (A.1). Next

we show that the coefficients of the polynomial Q are real. To this end observe that P has real

coefficients and therefore all non-real zeros of P come in complex conjugate pairs with equal

multiplicities. Therefore the polynomial d−1 Q(z) =
∑m

j=0 s j z
j has only real coefficients

s j . Relation (A.1) implies a0 = d2
∑m

j=0 s2
j . Consequently, d2 is the quotient of two positive

numbers and d must be real. Thus we have τ j = ds j ∈ R for all 0 ≤ j ≤ m. We complete

the proof by arguing that
∑m

s=0 τs = 0 and (
∑m

s=1 sτs)
2 =

∑m
s=1 s2κs hold true. This can

be deduced from (A.1) via Q(1)2 = ℓ(1) = 0 and −2Q′(1)2 = ℓ′′(1) = −
∑m

s=1 2s2κs . ⊓⊔

B: Pearcey Integral

The general Pearcey integral is defined as

P̄(b, a) :=
∫ ∞

−∞
ei(t4+bt2+at)dt, 0 ≤ arg b ≤ π, a ∈ R. (B.1)

This integral describes cusp singularities in physical phenomena, like the semiclassical limit

of the linear Schrödinger equation. The integral (B.1), after a rotation of the integration path

through an angle of π/8 that removes the rapidly oscillatory term ei t4
, can be written in the

form P̄(b, a) = 2eiπ/8 P(be−iπ/4, aeiπ/8), with

P(b, a) :=
∫ ∞

0

e−t4−bt2

cos(at)dt . (B.2)

We are interested in the case b = 0. The corresponding integral is absolutely convergent for

all complex values of a and represents the analytic continuation of the Pearcey integral. For

the Pearcey integral P+(a) defined in (2.44) we obtain

P+(a) = 2eiπ/8 P(0, aeiπ/8) .

Note that the integral P−(a), also defined in (2.44), can be related to the function P by rotating

the integration path by an angle of −π/8. This gives P−(a) = 2e−iπ/8 P(0, ae−iπ/8). From

this we learn that P−(ā) = P+(a). On the reals we therefore have

P−(a) = P+(a) , a ∈ R .
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C: Integrals of Motion Correlation Functions

Here, for completeness, we report the limiting correlation functions for the integral of motions

as defined in (3.5). Using the notation f (k) = |ω(k)| introduced in Lemma 2.3 they are:

Sk+3,n+3( j, t) = 1

2β2

∫ 1

0

∫ 1

0

cos ( f (x)t) cos ( f (y)t) cos (2πx( j − n)) cos (2π y( j + k))

+ cos ( f (x)t) cos ( f (y)t) cos (2πx j) cos (2π y( j + k − n))

+ sin ( f (x)t) sin ( f (y)t) cos (2πx( j − n)) cos (2π y( j + k)) cos(θ(x)) cos(θ(y))

+ sin ( f (x)t) sin ( f (y)t) sin (2πx( j − n)) sin (2π y( j + k)) sin(θ(x)) sin(θ(y))dxdy

(C.1)

for k, n ≤ N−1
2

,

Sn+3,k+3( j, t)

= 1

2β2

∫ 1

0

∫ 1

0

f (x) f (y) sin ( f (x)t) sin ( f (y)t) sin (2πx j) sin (2π y j) sin (2πxn) sin (2π yk)

+ f 2(x) cos( f (x)t) cos( f (y)t) cos (2πx j) cos (2π y j) sin (2π yn) sin (2π yk) dxdy

(C.2)

for k, n > N−1
2

and

Sn+3,k+3( j, t)

= 1

2β2

∫ 1

0

∫ 1

0
cos (2πx j − θ(x)) cos (2π y j) sin (2π yk) sin (2π yn) sin(( f (x) + f (y))t)

+ cos (2πx j − θ(x)) sin (2π y j) sin (2π yk) cos (2π yn) sin(( f (x) − f (y))t)dxdy

(C.3)

for k > N−1
2

, n ≤ N−1
2

.

D: Numerical Computation

The numerical computations have been implemented with Python software, all codes are

available on GitHub [11]. Figures 1 and 3 are the result of the numerical evaluation via the

standard routine numpy.trapz of the integrals in (2.25)–(2.28) for various values of j and

t and then we just added the Airy function (1.16) and the Pearcey integral (2.45).

To obtain Fig. 4 we proceed in the following way. First we sampled a random initial

data according to the Gibbs measure defined by the corresponding harmonic part of (3.18),

namely the Hamiltonian of Example 2.8 with m = 2. We let these data evolve according to

the Hamilton equations (3.18) and compute the values of the correlations function. Then we

repeated this procedure 4×106 times and we averaged the values of the correlations functions.

On the left panel we plot the correlation functions, instead on the right one we focus on the

extreme peak and we guess a proper scaling depending on the size of the perturbation. Figure

5 is made in a similar way. In this case the nonlinear potential has the same harmonic part as

Example 2.9.

In Fig. 6 we focus our attention on the central peak of the chain with potential as is Fig. 4.

We follow the same procedure as before and plot in logarithmic scale the average scaling of

the highest peak in the center of the chain. We decide to plot the average height of this peak

since it is highly oscillatory and it is difficult to precisely track the oscillations.
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