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Abstract

We consider the low-temperature limit of the long-distance asymptotic behav-

ior of the finite temperature density-density correlation function in the one-

dimensional Bose gas derived recently in the algebraic Bethe Ansatz framework.

Our results confirm the predictions based on the Luttinger liquid and confor-

mal field theory approaches. We also demonstrate that the amplitudes arising

in this asymptotic expansion at low-temperature coincide with the amplitudes

associated with the so-called critical form factors.

1 Introduction

The model of one-dimensional bosons interacting through a two-body δ-function potential is

described by the Quantum Nonlinear Schrödinger equation (QNLS model). Recently [1], the

Lagrange series method was applied in the framework of the algebraic Bethe ansatz to the

derivation of the long-distance asymptotic expansion of the finite temperature density-density
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correlation function in this model. In the present paper, we consider the low-temperature limit

of this result.

The QNLS model is given by the Hamiltonian

H =

L∫

0

(
∂xΨ

†∂xΨ+ cΨ†Ψ†ΨΨ− hΨ†Ψ
)
dx . (1.1)

Here Ψ and Ψ† are Bose fields possessing canonical equal-time commutation relations, c > 0 is

a coupling constant and h > 0 the chemical potential. The results obtained in [1] are relative to

the thermodynamic limit L → ∞ of this model.

The density operator j(x) = Ψ†(x)Ψ(x) defines the operator of the number of particles in

the interval [0, x]

Qx =

x∫

0

j(z) dz. (1.2)

The generating function for the density-density correlations reads

〈e2πiαQx〉T = lim
L→∞

〈ΩT |e2πiαQx |ΩT 〉
〈ΩT |ΩT 〉

, (1.3)

were T is the temperature, α a complex number and |ΩT 〉 any eigenstate of H that goes to

the state of thermal equilibrium in the infinite volume limit. Indeed, the correlation function of

densities 〈j(x)j(0)〉T can be obtained from (1.3) as

〈j(x)j(0)〉T = − 1

8π2

∂2

∂x2
∂2

∂α2
〈e2πiαQx〉T

∣∣∣∣
α=0

. (1.4)

We have shown in [1] that the large-x asymptotic expansion of the generating function (1.3)

(and respectively of the two-point function (1.4)) is given in terms of solutions to a set of non-

linear integral equations closely related to ones arising in the quantum transfer matrix approach

[2, 3, 4, 5, 6, 7]. Below, we solve these equations in the low-temperature limit. This computation

allows us to reach two goals.

On the one hand, one can argue that the Luttinger liquid [8] and conformal field theory

(CFT) approaches [9, 10, 11, 12, 13, 14, 15, 16] can be used to predict the large-x asymptotic

behavior of the low-temperature correlation functions in massless one dimensional quantum

models. The QNLS model does belong to this class. Thus, our results give us a possibility to

confirm these predictions by a direct derivation based on the algebraic Bethe ansatz. Namely, we

show that in the low-temperature limit (T → 0) the asymptotic expansion (x → ∞, xT → ∞)

of the density-density correlation function takes the following form (at leading order for each

oscillatory term):

〈j(x)j(0)〉T = D2 − (TZ/v0)
2

2 sinh2(πTx/v0)
+
∑

ℓ∈Z∗

Aℓ e
2ixℓk

F

(
πT/v0

sinh(πTx/v0)

)2ℓ2Z2

. (1.5)
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Above appear several constants that will be defined in section 3, namely, the average density of

the gas D, the Fermi momentum k
F
, the velocity of sound on the Fermi boundary v0 and the

value of the dressed charge at Fermi boundary Z. The coefficients Aℓ do not depend on T . All

the dependence of the amplitudes on T has been gathered in the pre-factor (πT/v0)
2ℓ2Z2

.

This form is in full agreement with the CFT predictions. Moreover it provides one with an

asymptotic behavior that is also valid in the full scaling region of xT and in particular in the

T = 0 case.

On the other hand our approach allows us to calculate the constant coefficients Aℓ in (1.5).

We show that Aℓ are related to the amplitudes of the so-called critical form factors intro-

duced in [17] and arising in the study of the model at T = 0. More precisely, the coefficients

Aℓ(πT/v0)
2ℓ2Z2

determined for the system in the thermodynamic limit and at small but finite

temperature T are equal to the amplitudes of the critical form factors corresponding to umklapp-

type excited states of momentum 2k
F
ℓ and determined for the system of large but finite size L

at zero temperature, with the identification v0/T 7→ iL. We will show this coincidence by means

of straightforward calculations carried in the core of this paper.

This article is organized as follows. In section 2 we recall the results obtained in [1]. In

section 3 we present the thermodynamics of the QNLS model at low temperature. In particular

we solve the non-linear integral equation determining the asymptotic expansion of the correlation

function in the low-temperature approximation. This allows us to obtain the rates of exponential

decays in section 4 and the constant amplitudes in section 5. The expansion (1.5) is derived in

section 6. Various estimates of the low-temperature behavior of the integrals that we deal with

are gathered in three appendices.

2 Long distance asymptotic behavior at general temperature

The state of the thermal equilibrium in the QNLS model is described by the Yang–Yang equation

[18] for the excitation energy ε(λ)

ε(λ) = λ2 − h− T

2π

∫

R

K(λ− µ) log
(
1 + e−

ε(µ)
T

)
dµ, (2.1)

and the integral equation for the total density ρt(λ)

ρt(λ)−
1

2π

∫

R

K(λ− µ)ϑ(µ)ρt(µ) dµ =
1

2π
. (2.2)

The kernel K(λ) and the Fermi weight ϑ(λ) appearing above read

K(λ) =
2c

λ2 + c2
, ϑ(λ) =

(
1 + e

ε(λ)
T

)−1
. (2.3)

Below the poles of the Fermi weight will play an important role. Therefore we introduce the

roots {r±} of the equation 1 + e−ε(r±j )/T = 0, where r+

j (resp. r−

j ) belong to the upper (resp.

lower) half-plane (see Fig. 1).
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The asymptotic expansion of the generating function 〈e2πiαQx〉T is given in terms of the

solutions to non-linear integral equations similar to (2.1). Let us choose n points (n = 0, 1, . . . )

ŝ+

j in the upper half-plane and n points ŝ−

j in the lower half-plane. We then introduce non-linear

integral equation for a function u(λ)

u(λ) = λ2 − hα − T

2π

∫

R

K(λ− µ) log
(
1 + e−

u(µ)
T

)
dµ+ iT

n∑

j=1

(
θ(λ− ŝ+

j )− θ(λ− ŝ−

j )
)
, (2.4)

where hα = h+ 2πiαT and

θ(λ) = i log

(
ic+ λ

ic− λ

)
, θ′(λ) = K(λ). (2.5)

Below we will show that, in the low-temperature limit and for {ŝ±} fixed, the solution to the

equation (2.4) always exists. Clearly, this solution depends on the parameters {ŝ±}: u(λ) =

u(λ|{ŝ+}, {ŝ−}). By imposing the constraints

1 + exp

(
−
u(ŝ±

j |{ŝ+}, {ŝ−})
T

)
= 0, j = 1, . . . , n, (2.6)

we obtain a system of equations, which fixes the sets {ŝ±}i that are relevant for the description

of the long-distance asymptotics. The subscript i enumerates these sets. The long-distance

asymptotic expansion for the generating function 〈e2πiαQx〉T can then be organized into a sum

parameterized by the functions ui(λ) ≡ ui(λ|{ŝ+}i, {ŝ−}i) that solve (2.4) with a corresponding

set of roots {ŝ±}i:

〈e2πiαQx〉T =
∑

i

e−xp[ui]B[ui] + o
(
e−xmaxℜ(p[ui])

)
, (2.7)

where p[ui] and B[ui] are functionals of ui(λ) whose explicit form will be specified later.

Observe that equation (2.4) can be recast in the form

ui(λ) = λ2 − hα − T

2π

∫

Ĉi

K(λ− µ) log
(
1 + e−

ui(µ)

T

)
dµ, (2.8)

where the contour Ĉi is such that the roots {ŝ±} are located between the real axis and Ĉi. We

also demand that the contours Ĉi separate the sets {ŝ±}i from all over possible roots of the

equation 1 + e−ui(λ)/T = 0 and from all the roots {r±} (see Fig. 1). Then one can interpret the

asymptotic expansion of 〈e2πiαQx〉T as being given by the sum over the different possible choices

of contours Ĉi.
The explicit expressions for the rates of exponential decay p[ui] and the amplitudes B[ui]

can be written down in terms of integrals over the contours Ĉi. Let us introduce an auxiliary

functions zi(λ) by

zi(λ) = − 1

2πi
log

(
1 + e−

ui(λ)

T

1 + e−
ε(λ)
T

)
. (2.9)
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Figure 1: The roots {r±} are depicted by (◦), the roots {ŝ±}i are depicted by (•). Other roots

of the equation 1+ e−ui(ŝ±)/T = 0 are depicted by (×). The contour Ĉi bypasses the roots {ŝ+}i
from above and the roots {ŝ−}i from below. It also separates the points {ŝ±}i from the other

points {ŝ±} as well as from all the poles of the Fermi weight {r±}.

Then the rates of exponential decays take the very simple form

p[uk] = i

∫

Ĉk

zk(λ)dλ. (2.10)

The expressions for the amplitudes B[ui] are much more cumbersome. We present them in

the form

B[ui] = Bd[ui]Bs[ui], where Bd[ui] = exp

( ∫

Ĉi

zi(λ)zi(µ)

(λ− µ+)2
dλ dµ

)
, (2.11)

and the symbol µ+ means that the variable µ is slightly shifted to the left of the oriented

integration contour Ĉi. The reason we separate the coefficients B[ui] into two factors Bd[ui] and

Bs[ui] is that these go, in the low-temperature limit, to the discrete and to the smooth parts of

critical form factors respectively, as defined in [17].

In order to describe Bs[ui] we first introduce the Cauchy transform operator L
Ĉi

on the

contour Ĉi
L
Ĉi
[zi](ω) =

∫

Ĉi

zi(λ)

λ− ω
dλ, (2.12)

and a functional C0 = C0[zi]

C0[zi] =

∫

Ĉi

zi(λ)zi(µ)

(λ− µ− ic)2
dλ dµ . (2.13)
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Then

Bs[ui] = (e2πiα − 1)2e−C0[zi]
det
(
I + 1

2πi Û
(1)[zi]

)
det
(
I + 1

2πi Û
(2)[zi]

)

det
[
I − 1

2πK
(ε)
]
det
[
I − 1

2πK
(ui)
]

×
[
e
L
Ĉi
[zi](θ1+ic) − e

2πiα+L
Ĉi
[zi](θ1−ic)

]−1 [
e
−L

Ĉi
[zi](θ2−ic) − e

2πiα−L
Ĉi
[zi](θ2+ic)

]−1
. (2.14)

The first line of (2.14) contains a ratio of Fredholm determinants. The integral operators I −
1
2πK

(ε) and I − 1
2πK

(ui) have the kernels

K(ε)(λ, µ) =
K(λ− µ)

1 + e
ε(µ)
T

, K(ui)(λ, µ) =
K(λ− µ)

1 + e
ui(µ)

T

. (2.15)

The first of these integral operators acts on the real axis and the second one acts on the contour

Ĉi. The operators I + 1
2πi Û

(1)[zi] and I + 1
2πi Û

(2)[zi] both act on a anticlockwise oriented closed

contour surrounding Ĉi. Their kernels are given by

Û (1)(w,w′, [zi]) = −e
L
Ĉi
[zi](w) · Kα(w − w′)−Kα(θ1 − w′)

e
L
Ĉi
[zi](w+ic) − e

2πiα+L
Ĉi
[zi](w−ic)

, (2.16)

and

Û (2)(w,w′, [zi]) = e
−L

Ĉi
[zi](w

′) · Kα(w − w′)−Kα(w − θ2)

e
−L

Ĉi
[zi](w′−ic) − e

2πiα−L
Ĉi
[zi](w′+ic)

, (2.17)

where

Kα(λ) =
1

λ+ ic
− e2πiα

λ− ic
. (2.18)

Finally, observe that the kernels Û (1,2)(w,w′, [zi]) as well as the coefficient in the second line of

(2.14) depend on arbitrary complex numbers θ1 and θ2 located inside of the contour where the

operators Û (1,2)(w,w′, [zi]) act. One can prove (see [19]) that the total combination (2.14) does

not depend on the specific choice of these parameters.

3 Thermodynamics at low temperature

In this section we provide a list of necessary formulae describing the thermodynamics of the

QNLS model at low temperature. We begin our discussion with the T = 0 case.

3.1 Zero temperature

It is known [18] that for a positive chemical potential h > 0 the solution ε(λ) to the equation

(2.1) has two roots ±q(T ) on the real axis: ε(±q(T )) = 0. Hereby ε(λ) > 0 for |λ| > q(T ) and

6



ε(λ) < 0 for |λ| < q(T ). Let ε(λ) → ε0(λ) and q(T ) → q as T → 0. Then,

lim
T→0

T log
(
1 + e−

ε(λ)
T

)
=





0, |λ| > q,

−ε0(λ), |λ| < q,
. (3.1)

It is then straightforward to check that equation (2.1) turns into a linear integral equation for

the dressed energy ε0(λ):

ε0(λ)−
1

2π

q∫

−q

K(λ− µ)ε0(µ) dµ = λ2 − h, ε0(±q) = 0. (3.2)

At T = 0 the state of thermal equilibrium goes to the ground state of the QNLS model. The

Fermi weight ϑ(λ) (2.3) turns into the characteristic function of the interval [−q, q]. Therefore

the equation (2.2) for the density takes the form

ρt(λ)−
1

2π

q∫

−q

K(λ− µ)ρt(µ) dµ =
1

2π
, T = 0. (3.3)

Another important characteristic of the ground state is the dressed charge Z(λ). In the

QNLS model it is proportional to the density Z(λ) = 2πρt(λ). Below, we will use a special

notation for the value of the dressed charge on the Fermi boundary Z = Z(±q). A formal

expression for Z can be given in terms of the resolvent to the operator I − 1
2πK acting on the

interval [−q, q]

Z = 1 +

q∫

−q

R(λ,±q) dλ, (3.4)

where

R(λ, ξ)− 1

2π

q∫

−q

K(λ− µ)R(µ, ξ) dµ =
1

2π
K(λ− ξ). (3.5)

Finally, we give the formulae for the constants appearing in (1.5), namely the average density

D, the Fermi momentum k
F
, and the velocity of the sound on the Fermi boundary v0:

D =

q∫

−q

ρt(λ) dλ, k
F
= πD, v0 =

ε′0
Z , (3.6)

where we denoted ε′0 ≡ ε′0(q).
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3.2 The dressed energy at low temperature

We now describe the power-law corrections to the Yang–Yang equation (2.1), which appear at

low but non-zero temperature. For T small enough the solution to the equation (2.1) ε(λ) has

the following expansion [20, 21, 22]:

ε(λ) =

2∑

k=0

T kεk(λ) +O(T 3). (3.7)

The functions ε1(λ) and ε2(λ) can be found from the analysis of the integral in (2.1) in small

vicinities of the Fermi boundaries ±q. The details of this analysis are given in appendix A (see

also [20, 21, 22]).

Using (A.8) and substituting the expansion (3.7) into the Yang–Yang equation we obtain

2∑

k=0

T kεk(λ)−
1

2π

2∑

k=0

T k

q∫

−q

K(λ− µ)εk(µ) dµ = λ2 − h

− T 2π

12ε′0

(
K(λ− q) +K(λ+ q)

)
− T 2K(λ− q)ε21(q)

4πε′0
− T 2K(λ+ q)ε21(−q)

4πε′0
+O(T 3). (3.8)

What follows from this analysis is that ε1(λ) = 0 and

ε2(λ) = − π2

6ε′0

(
R(λ, q) +R(λ,−q)

)
, (3.9)

where R(λ, µ) corresponds to the resolvent defined by (3.5).

3.3 The poles of the Fermi weight

We now consider the low-temperature behavior of the roots r±

k to the equation 1 + e−
ε(λ)
T = 0,

namely the solutions to ε(λ) = 2πiT (k + 1/2), k ∈ Z. Obviously all these roots collapse to q or

−q when T → 0. Therefore setting r±

k = q + T r̃±

k +O(T 2) (resp. r±

k = −q + T r̃±

k +O(T 2)) and

substituting these expansions into ε(r±

k ) = 2πiT (k + 1/2) we find

ε
(
q + T r̃±

k +O(T 2)
)
= T r̃±

k ε
′
0 +O(T 2) = 2πiT (k + 1/2),

ε
(
−q + T r̃±

k +O(T 2)
)
= −T r̃±

k ε
′
0 +O(T 2) = 2πiT (k + 1/2).

(3.10)

Thus, in the linear approximation in T , we obtain two series of roots





r+

k = ±q +
2πiT

ε′0
(k + 1/2) +O(T 2), k ≥ 0,

r−

k = ±q +
2πiT

ε′0
(k + 1/2) +O(T 2), k < 0.

(3.11)

We will refer to the roots collapsing to +q as the right series and the roots collapsing to −q as

the left series.
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3.4 Low-temperature limit of the u(λ) integral equation

From now on, we focus on a fixed contour Ĉi and consider the associated contribution to the

asymptotic behavior of the generating function. Therefore, below, we will omit the subscript i

in the notations of the contour Ĉi and of the functions ui(λ), zi(λ), etc associated with it.

Let Ĉ be the contour bypassing n points ŝ+ in the upper half-plane from above and n points

ŝ− in the lower half-plane from below, where n is an arbitrary, but fixed non-negative integer.

These points ŝ± are roots of the equation 1 + e−u(ŝ±)/T = 0. It is important for our purpose to

fix the limits of these roots at T = 0.

The T → 0 limit of equation (2.4) coincides with the one of the Yang–Yang equation, hence

u(λ)|T=0 = ε0(λ). Therefore it is reasonable to expect that, similarly to the points r±

k , the roots

ŝ±

k collapse to q or to −q in the T → 0 limit. Thus, in the low-temperature limit these roots

should form two series. There will be

• n+
p roots ŝ+ and n+

h roots ŝ− belonging to the right series;

• n−
p roots ŝ+ and n−

h roots ŝ− belonging to the left series.

Obviously, there exists an integer ℓ, −n ≤ ℓ ≤ n, such that the numbers n±
p and n±

h are related

by

n+
p + n−

p = n+
h + n−

h = n, n+
p − n+

h = n−
h − n−

p = ℓ . (3.12)

Therefore, for T small enough, one deals with the following structure for the distribution of roots

ŝ±:

{ŝ+} = {q + iT η̂+k }n+
p
∪ {−q + iT η̂−k }n−

p
, ℜ(η̂±k ) > 0, (3.13)

{ŝ−} = {q − iT ξ̂+k }n+
h
∪ {−q − iT ξ̂−k }n−

h
, ℜ(ξ̂±k ) > 0. (3.14)

The parameters η̂±k and ξ̂±k admit the Taylor expansions η̂±k = η±k +O(T ) and ξ̂±k = ξ±k +O(T ).

They appear in the non-linear integral equation (2.4) defining u(λ) and should be computed by

solving the conditions

exp

(
−u(±q + iT η̂±k )

T

)
= exp

(
−u(±q − iT ξ̂±k )

T

)
= −1. (3.15)

Substituting the parameterizations (3.13), (3.14) into the equation (2.4) and expanding up

to the second order in T we are led to

u(λ) = λ2 − h− T

2π

∫

R

K(λ− µ) log
(
1 + e−

u(µ)
T

)
dµ+ TG1(λ) + T 2G2(λ) +O(T 3). (3.16)

Here

G1(λ) = −2πiα− iℓ

q∫

−q

K(λ− µ) dµ, (3.17)
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and

G2(λ) = K(λ− q)




n+
p∑

j=1

η+j +

n+
h∑

j=1

ξ+j


+K(λ+ q)




n−
p∑

j=1

η−j +

n−
h∑

j=1

ξ−j


 . (3.18)

It is natural to expect that the solution to (3.16) has a form similar to (3.7)

u(λ) =
2∑

k=0

T kuk(λ) +O(T 3), (3.19)

where, as we have already argued, u0(λ) = ε0(λ). Substituting (3.19) into (3.16) and using

(A.10), we obtain linear integral equations satisfied by the unknown functions u1(λ) and u2(λ):

u1(λ)−
1

2π

q∫

−q

K(λ− µ)u1(µ) dµ = G1(λ), (3.20)

u2(λ)−
1

2π

q∫

−q

K(λ− µ)u2(µ) dµ = G2(λ)−
π

12ε′0

(
K(λ− q) +K(λ+ q)

)

− K(λ− q)u21(q)

4πε′0
− K(λ+ q)u21(−q)

4πε′0
. (3.21)

It is then easy to see that the function u1(λ) − 2πiℓ satisfies (up to a multiplicative factor)

the equation (3.3) for the total density at T = 0. As we have already mentioned, on has that

2πρt(λ) = Z(λ) in the case of the QNLS model, with Z(λ) being the dressed charge. Hence,

u1(λ) = u1(−λ) = −2πiαℓZ(λ) + 2πiℓ, αℓ = α+ ℓ. (3.22)

The solution to equation (3.21) can be expressed in terms of the resolvent R(λ, µ) (3.5)

u2(λ) = R(λ, q)


2π

n+
p∑

j=1

η+j + 2π

n+
h∑

j=1

ξ+j − 1

2ε′0

(
π2

3
+ u21(q)

)


+R(λ,−q)


2π

n−
p∑

j=1

η−j + 2π

n−
h∑

j=1

ξ−j − 1

2ε′0

(
π2

3
+ u21(q)

)
 . (3.23)

It remains to fix the leading Taylor coefficients η±k and ξ±k . These can be parameterized by

sets of integers, exactly as it was the case for the roots r±

k (3.11). More precisely, one has

u(±q + iT η̂±k ) = ±2πiT (p±k − 1
2),

u(±q − iT ξ̂±k ) = ∓2πiT (h±k − 1
2),

(3.24)
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where p±k and h±k are integers. As a consequence, in the linear order in T , we obtain

ε′0η
±
k = 2π(p±k − 1

2)± iu1(q),

ε′0ξ
±
k = 2π(h±k − 1

2 )∓ iu1(q),
(3.25)

where u1(λ) is given by (3.22).

Remark. Let u1 ≡ u1(±q) = 2πi(ℓ − αℓZ). From now on we assume that u1 satisfies the

constraint

− π < ℑ(u1) < π. (3.26)

Note that the generating function (1.3) is periodic over α [23]: 〈e2πiαQx〉T = 〈e2πi(α+1)Qx〉T .

Due to this property the condition above always can be satisfied by appropriate choice of the

parameter α. Therefore the constraint (3.26) does not imply any additional restrictions for the

parameters of the model.

We stress that the condition (3.26) is purely technical. It allows us to simplify some interme-

diate calculations. In particular, it follows from (3.26) that all the integers p±k and h±k in (3.25)

are positive. However, one can proceed further without use of the inequality (3.26).

Thus, in this way, we have found the solution u(λ) to the equation (2.4) up to O(T 2) terms

and the roots ŝ±

k up to O(T ) terms. There is no fundamental obstacle to finding higher order

corrections to u(λ) and ŝ±

k . However, for our purposes, the results obtained here are already

sufficient.

4 Correlation lengths

In this section we compute the rate p[u] of the correlation function exponential decay. In the

case of the QNLS model, the conformal dimensions giving rise to the critical exponents in the

asymptotic expansion (1.5) were calculated in [24, 25]. We now obtain these results by taking

the T → 0 limit of equation (2.10).

We have already shown in the work [1] how the trivial constant term in (1.5) can be deduced

from our approach to the asymptotics at finite temperature. More precisely, this constant stems

from the contribution of the contour Ĉ = R, in other words the case where the sets of the roots

{ŝ±} are empty (n = 0). Therefore, in the following, we will only consider the case of non-empty

sets {ŝ±} (although the results of our analysis remain valid for n = 0 as well).

By moving the contour Ĉ to the real axis, equation (2.10) boils down to

p[u] = i

∫

R

z(µ) dµ − i

n∑

k=1

(ŝ+

k − ŝ−

k ). (4.1)

The integral over R can be estimated to the leading order in T with the help of (A.8), (A.10).

In its turn, the finite sum is estimated directly by inserting the Taylor expansions of the roots
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ŝ±k . Ultimately, one gets that, to the linear order in T ,

p[u] = −2iαℓkF
− TZu21

2πε′0
+ TZ




n+
p∑

j=1

η+j +

n−
p∑

j=1

η−j +

n+
h∑

j=1

ξ+j +

n−
h∑

j=1

ξ−j


+O(T 2). (4.2)

where we have used (3.4) and (3.6). We recall also that u1 = u1(q) = 2πi(ℓ − αℓZ). Finally, it

remains to use that η±k , ξ±k are given by (3.25). This leads to

p[u] = −2iαℓkF
+

2πT

v0


(αℓZ)2 − ℓ2 − n+

n+
p∑

j=1

p+j +

n−
p∑

j=1

p−j +

n+
h∑

j=1

h+j +

n−
h∑

j=1

h−j


+O(T 2). (4.3)

5 Constant amplitude

In this section, we compute the low-temperature limit of the constant coefficients Bd[u] (2.11)

and Bs[u] (2.14). We prove that in this limit, when properly normalized in the temperature,

B[u] goes to the amplitude of a critical form factor. The latter form factors correspond to

expectation values of local operators taken between the ground state and excited states where

all rapidities of the particles and holes are located on the Fermi boundary. We first recall several

definitions and results concerning the form factors in the QNLS model. The reader can find a

more detailed exposition in [17]1.

The form factors of the QNLS model can be parameterized by the rapidities of particles and

holes [26, 27, 28, 29]. If, in the thermodynamic limit (L → ∞) all the rapidities are located on

the Fermi boundaries ±q, then the corresponding form factor is called critical form factor [17].

Hereby the distribution of the rapidities between +q and −q is important.

Consider a critical form factor parameterized by the rapidities of n particles and n holes.

Assume that, in the thermodynamic limit, there is n+
p (resp. n+

h ) rapidities of the particles (resp.

holes) going to +q and n−
p (resp. n−

h ) rapidities of the particles (resp. holes) going to −q. We

say that a given form factor belongs to the Pℓ class, if the numbers n±
p,h satisfy the conditions

gathered in (3.12), with ℓ being some fixed integer.

The critical form factors can be presented as a product of a smooth and a discrete part (see

[17]). The smooth part has a well defined thermodynamic limit L → ∞. The discrete part,

strictly speaking, has no thermodynamic limit. First of all, it scales to zero as some negative

power of L, when L → ∞. Second, it not only depends on the rapidities of the particles and

holes (which are equal to ±q), but also on the quantum numbers associated with the excited

state.

In the following, we show that the factor Bd[u] in (2.11) exactly reproduces the discrete part

of the critical form factor of the Pℓ class, provided the distribution (3.12) is fixed. Hereby the

1Formally the work [17] deals with form factors of the XXZ spin chain, however the results obtained there

can be easily reduced to the case of the QNLS model.
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role of large L is played by the inverse temperature: v0/iT ↔ L. The integers p±j and h±j (see

(3.24)) play the role of the quantum numbers describing particles and holes.

The coefficient Bs[u] (2.14) gives the smooth part of the critical form factor. We first focus

on the analysis related with Bs[u] as the computation of its T → 0 limit is simpler then for

Bd[u].

5.1 Smooth part

The coefficient Bs[u] can be seen as mostly depending on integrals of the following type:

If =

∫

Ĉ

f ′(λ)z(λ) dλ, (5.1)

where z(λ) is given by (2.9) and f(λ) is holomorphic in some domain containing Ĉ and R. Then

moving Ĉ to R we obtain

If →
∫

R

f ′(λ)z(λ) dλ − ℓ
(
f(q)− f(−q)

)
, T → 0, (5.2)

since all roots {ŝ±} go to ±q at T → 0. Using that, at T = 0 z(λ) = 0 for |λ| > q and

z(λ) = u1(λ)/2πi for |λ| < q, we find

lim
T→0

∫

R

f ′(λ)z(λ) dλ =
1

2πi

q∫

−q

f ′(λ)u1(λ) dλ, (5.3)

and hence, due to (3.22)

lim
T→0

∫

Ĉ

f ′(λ)z(λ) dλ = −αℓ

q∫

−q

f ′(λ)Z(λ) dλ. (5.4)

Using this prescription we obtain for the limit of the Cauchy transforms

lim
T→0

L
Ĉ
[z](w + iγc) = −αℓL[−q,q][Z](w + iγc), γ = 0,±1. (5.5)

Similarly

lim
T→0

C0[z] = α2
ℓ

q∫

−q

Z(λ)Z(µ)

(λ− µ− ic)2
dλ dµ. (5.6)

Another type of integrals arises in the Fredholm determinant det
Ĉ

[
I − 1

2πK
(u)
]
. Recall that

this operator acts on the contour Ĉ as

[
I − 1

2πK
(u)
]
f(λ) = f(λ)− 1

2π

∫

Ĉ

K(u)(λ, µ)f(µ) dµ, (5.7)
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where K(u)(λ, µ) is given by (2.15). If f(λ) is holomorphic in a domain containing Ĉ and R,

then one can easily see that
∫

Ĉ

K(u)(λ, µ)f(µ) dµ =

∫

R

K(u)(λ, µ)f(µ) dµ +O(T ), T → 0. (5.8)

Since u(λ) = ε0(λ) at T = 0 we conclude that, in the T → 0 limit, the action of the operator

I− 1
2πK

(u) coincides with the one of I− 1
2πK

(ε). The action of this last operator clearly reduces

to the interval [−q, q] when T = 0. Thus,

lim
T→0

detR

[
I − 1

2πK
(ε)
]
= lim

T→0
det

Ĉ

[
I − 1

2πK
(u)
]
= det[−q,q]

[
I − 1

2πK
]
. (5.9)

Substituting all these results into (2.14) we immediately reproduce the smooth part of the

critical form factor obtained in [17]. We give these rather cumbersome expressions in appendix C.

5.2 Discrete part

The T → 0 limit of the factor Bd[u] (2.11) is more involved. In order to compute it, we first

deform the contour Ĉ to the real axis. This provides an alternative expression for Bd[u], that

was originally obtained in [30]

Bd[u] = exp

( ∫

R

z(λ)z(µ)

(λ− µ+)2
dλ dµ

)
·
(
det
n

1

ŝ+

j − ŝ−

k

)2

×
n∏

j=1

e2LR[z](ŝ
−
j )−2LR[z](ŝ

+
j )

(
∂λe

−2πiz(λ)
∣∣∣
λ=ŝ−j

)−1(
∂λe

−2πiz(λ)
∣∣∣
λ=ŝ+j

)−1

. (5.10)

Consider the behavior of the Cauchy determinant in (5.10) at T → 0. We have

(
det
n

1

ŝ+

j − ŝ−

k

)2

=

n∏
j>k

(ŝ+

j − ŝ+

k )
2(ŝ−

j − ŝ−

k )
2

n∏
j,k=1

(ŝ+

j − ŝ−

k )
2

. (5.11)

Now we should substitute here (3.13), (3.14) and (3.25). Hereby at T → 0 we can set (ŝ±

j −ŝ±

k )
2 =

(ŝ±

j − ŝ∓

k )
2 = 4q2, if the roots belong to the different series. Then we obtain

lim
T→0

(
T n−ℓ2 det

n

1

ŝ+

j − ŝ−

k

)2

= (−1)n+ℓ

(
qε′0
π

)−2ℓ2 ( ε′0
2π

)2n

×

n+
p∏

j>k

(p+j − p+k )
2

n+
h∏

j>k

(h+j − h+k )
2

n+
p∏

j=1

n+
h∏

k=1

(p+j + h+k − 1)2

n−
p∏

j>k

(p−j − p−k )
2

n−
h∏

j>k

(h−j − h−k )
2

n−
p∏

j=1

n−
h∏

k=1

(p−j + h−k − 1)2

. (5.12)
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Consider now the low-temperature behavior of the derivatives ∂λe
−2πiz(λ) at λ = ŝ±

j . We

have

e−2πiz(λ) =
1 + e−

u(λ)
T

1 + e−
ε(λ)
T

. (5.13)

Since 1 + e−
u(ŝ±

j
)

T = 0 we obtain

T∂λe
−2πiz(λ)

∣∣∣
λ=ŝ±j

=
−u′(ŝ±

j )

1 + e−
ε(ŝ±

j
)

T

=
−u′(ŝ±

j )

1− e−
ε(ŝ±

j
)−u(ŝ±

j
)

T

. (5.14)

Substituting here (3.19), (3.22) we arrive at

lim
T→0

T∂λe
−2πiz(λ)

∣∣∣
λ=ŝ±j

=

{
−ε′0

(
1− e−2πiαℓZ

)−1
, if ŝ±

j belongs to the right series,

ε′0
(
1− e−2πiαℓZ

)−1
, if ŝ±

j belongs to the left series.
(5.15)

The estimate of the T → 0 behavior of the Cauchy transforms LR[z](ŝ
±

j ) is a more com-

plicated problem. It is easy to see that one cannot use (5.5) in this case. Indeed, on the one

hand the Cauchy transform L[−q,q][z](ω) on the interval [−q, q] has a logarithmic singularity at

ω = ±q. On the other hand, we have seen that all ŝ±

j go to ±q at T → 0, therefore LR[z](ŝ
±

j )

should diverge as a multiple of log T in the low-temperature limit. In fact, the equation (5.5)

only allows one to access to this divergent part; however it does not give an access to the finite

part of the T → 0 behavior of the Cauchy transform.

Similar problem occurs at studying the T → 0 behavior of the double integral

A =

∫

R

z(λ)z(µ)

(λ− µ+)2
dλ dµ. (5.16)

The above double integral can be reduced to a single one

A =

∫

R

z(λ)z(µ)

(λ− µ+)2
dλ dµ =

∫

R

(
∂µLR[z](µ+)

)
· z(µ) dµ. (5.17)

Thus, in order to estimate this integral at T → 0 one should know the behavior of LR[z](µ) on

the whole real axis including the points ±q. This question is studied in details in appendix B.

Here we restrict ourselves to present the results of these computations.

First of all, we list the leading T → 0 behavior of the exponents of the Cauchy transforms

LR[z](ŝ
±

j ). There are four cases to distinguish:

• ŝ+

k belongs to the right or to the left series,

• ŝ−

k belongs to the right or to the left series.
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Using the parametrization (3.13), (3.14) and (3.25) we have

lim
T→0

{
eLR[z](±q+iT η̂±

k
)

(
qε′0
πT

)±
u1
2πi
}

= exp

{
− αℓ

q∫

−q

Z(µ)−Z
µ∓ q

dµ− u1
4

}
Γ(p±k )

Γ(p±k ∓ u1
2πi)

, (5.18)

lim
T→0

{
eLR[z](±q−iT ξ̂±

k
)

(
qε′0
πT

)±
u1
2πi
}

= exp

{
− αℓ

q∫

−q

Z(µ)−Z
µ∓ q

dµ+
u1
4

}
Γ(h±k ± u1

2πi )

Γ(h±k )
. (5.19)

Thus, for a given partition (3.13), (3.14) of roots ŝ±

j into the right and left series, we obtain

lim
T→0

n∏

j=1

e2LR[z](ŝ
−
j )−2LR[z](ŝ

+
j )

(
qε′0
πT

)−
2ℓu1
πi

= exp



4ℓαℓ

q∫

−q

Z(µ)−Z
µ− q

dµ+ 2iπnαℓZ





× Γ2

(
{p+k − u1

2πi}, {h+k + u1
2πi}, {p−k + u1

2πi}, {h−k − u1
2πi}

{p+k }, {h+k }, {p−k }, {h−k }

)
, (5.20)

where we use the standard hypergeometric type notation for ratios of Γ-functions:

Γ

(
a1 , . . . , ap
b1 , . . . , bq

)
=

p∏

k=1

Γ(ak) ·
q∏

k=1

Γ(bk)
−1. (5.21)

In its turn, the exponent of the double integral (5.16) exhibits the following leading T → 0

behavior

lim
T→0

exp



∫

R

z(λ)z(µ)

(λ− µ+)2
dλ dµ



(
qε′0
πT

)−
u21
2π2

= e
C1

[

u1(λ)

2πi

]

G2
(
1,

u1
2πi

)
. (5.22)

The functional C1[F ] appearing above reads

C1[F (λ)] =
1

2

q∫

−q

F ′(λ)F (µ) − F (λ)F ′(µ)

λ− µ
dλ dµ + 2F (q)

q∫

−q

F (λ)− F (q)

λ− q
, (5.23)

and G(1, x) = G(1 + x)G(1 − x), where G(x) is the Barnes function.

Now we substitute u1/2πi = ℓ−αℓZ. Combining (5.12), (5.15), (5.20), and (5.22) and using

C1[αℓZ(λ)− ℓ] = C1[αℓZ(λ)]− 4ℓαℓ

q∫

−q

Z(µ)−Z
µ− q

dµ, (5.24)

we obtain

B
(0)
d [u] = lim

T→0
Bd[u]

∣∣∣∣
qε′0
iπT

∣∣∣∣
2α2

ℓ
Z2

= eC1[αℓZ(λ)]

(
sinπαℓZ

π

)2n

G2(1, αℓZ − ℓ)

×Rn+
p ,n+

h
({p+}, {h+}|αℓZ − ℓ) Rn−

p ,n−
h
({p−}, {h−}|ℓ− αℓZ), (5.25)
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where

Rn,m({p}, {h}|ν) =

n∏
j>k

(pj − pk)
2

m∏
j>k

(hj − hk)
2

n∏
j=1

m∏
k=1

(pj + hk − 1)2
Γ2

(
{pk + ν} , {hk − ν}

{pk} , {hk}

)
. (5.26)

We have thus reproduced the discrete part of form factors given in [17] up to the replacement

v0/T 7→ iL.

6 Final result

We have calculated the low-temperature limits of the exponential decay and constant coeffi-

cient in the long-distance asymptotic expansion of the generating function 〈e2iπαQx〉T for given

distribution of the roots ŝ±j . In this section we sum up all the obtained contributions for ℓ fixed.

Let us first summarize the results obtained in the previous sections. The asymptotic expan-

sion of the generating function 〈e2iπαQx〉T at low temperature has the form

〈e2iπαQx〉T ≃
∑

ℓ∈Z

Qℓ e
2iαℓkF x x → ∞, T → 0, xT → ∞ , (6.1)

where the coefficients Qℓ are

Qℓ = B(0)
s [αℓZ]

(
πT

qε′0

)2α2
ℓ
Z2

G2(1, αℓZ − ℓ)e
C1[αℓZ(λ)]− 2πTx

v0
((αℓZ)2−ℓ2)

W+W− . (6.2)

Here the smooth part B
(0)
s [αℓZ] is given by (C.1), the functional C1 by (5.23). To describe the

factors W± we first define a function W (ν, r) depending on complex ν and integer r as

W (ν, r) =

∞∑

n,n′=0
n−n′=r

∑

1≤p1<···<pn<∞

∑

1≤h1<···<hn′<∞

n∏

j=1

e
− 2πTx

v0
(pj−1)

n′∏

k=1

e
− 2πTx

v0
hk

×
(
sinπν

π

)2n′

Rn,n′({p}, {h}|ν), (6.3)

where Rn,n′({p}, {h}|ν) is given by (5.26). Then

W± = W (ν, r)
∣∣∣
ν=±(αℓZ−ℓ),

r=±ℓ

, (6.4)

It is easy to see that the factors W± correspond to the sums over all the possible choices of

integers {p±a }
n±
p

1 and {h±a }
n±
h

1 which parameterize the possible configurations of the roots ŝ±j at

ℓ fixed. Such sums are computed in [31] as,

W (ν, r) =
G2(1 + r + ν)

G2(1 + ν)

e
−πTx

v0
r(r−1)

(
1− e

− 2πTx
v0

)(ν+r)2
. (6.5)
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Setting here ν = ±(αℓZ − ℓ), r = ±ℓ and substituting (6.5) into (6.2) we obtain after simple

algebra

Qℓ = Ãℓ

(
πT/v0

sinh πTx
v0

)2α2
ℓ
Z2

, with Ãℓ = B(0)
s [αℓZ]

G2(1, αℓZ)

(2qZ)2α
2
ℓ
Z2

eC1[αℓZ(λ)] , (6.6)

where we have used ε′0 = Zv0. Thus we arrive at the following asymptotic expansion

〈e2iπαQx〉T ≃
∑

ℓ∈Z

e2iαℓkF x

(
πT/v0

sinh πTx
v0

)2α2
ℓ
Z2

Ãℓ . (6.7)

Note that the obtained result is obviously a periodic function of α as it was expected thanks

to the fact that the coefficient Ãℓ is also a function of αℓ only, see appendix C. It is also

straightforward to see that the combination Ãℓ (πT/v0)
2ℓ2Z2

coincides with the amplitude of

the critical form factor of the operator e2iπαQx [17] corresponding to the umklapp-type excited

state of the momentum 2αℓkF
, where v0/T plays the role of the system size.

Finally, in order to obtain the long-distance asymptotic expansion of the density-density

correlation function it is enough to apply the differential operator (1.4) to the equation (6.7).

Hereby one should distinguish two cases: ℓ = 0 and ℓ 6= 0. In the last case one has due to (C.1)

B(0)
s [αℓZ]

∣∣∣
α=0

= 0, ∂αB
(0)
s [αℓZ]

∣∣∣
α=0

= 0. (6.8)

Therefore the second α-derivative should be applied to the coefficient B
(0)
s [αℓZ].

On the contrary B
(0)
s [αℓZ] = 1 at α = 0 and ℓ = 0, that is at αℓ = 0, (see [1]). Therefore in

that case, the second α-derivative should be applied on the combination containing the depen-

dence on x, namely on exp[2iαℓkF
x]
(
sinh(πTx/v0)

)−2α2
ℓ
Z2

, as otherwise the second x-derivative

vanishes. Thus, taking the second α and x derivatives of (6.7) as it is explained above, and

neglecting higher order corrections over T as well as subdominant exponential decays in x, we

arrive at (1.5) with

Aℓ =
D2ℓ2

2

∂2

∂α2
Ãℓ

∣∣∣
α=0

. (6.9)

It is readily checked that in the x → ∞, xT → 0 limit equation (1.5) does reproduce the long-

distance asymptotic expansion of the density-density correlation function of the one dimensional

Bose gas at T = 0, together with the correct values of the amplitudes [19].
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A Estimates of integrals with regular functions

In this appendix we estimate the class of integrals that appears in equations (2.1) and (2.4). We

first focus on the integrals of the form:

J [ε] = T

∫

R

f(λ) log
(
1 + e−

ε(λ)
T

)
dλ. (A.1)

For our purpose, it is enough to consider the case when f(λ) is bounded on the real axis and

differentiable in vicinities of ±q, although the result of the analysis remains valid at much less

restrictive assumptions. Due to the properties of ε(λ) (3.1) it is clear that

lim
T→0

J [ε] = −
q∫

−q

f(λ)ε(λ) dλ. (A.2)

In order to find power-law corrections to the equation (A.2), one should estimate the contribu-

tions coming from the vicinities of ±q more thoroughly. Let δ > 0 be such that δ → 0 as T → 0,

while δ/T → ∞ as T → 0. We can split the integral J into five parts J = J−+J−q+J0+Jq+J+.

The integrals J± correspond to the domains λ > q + δ and λ < −q − δ. They behave as

O(e−ε(±q±δ)/T ) and hence produce O(T∞) contributions. The integral J0 runs along the do-

main −q + δ < λ < q − δ. By factoring out e−
ε(λ)
T from the logarithm, we get that

J0[ε] = −
q−δ∫

−q+δ

f(λ)ε(λ) dλ +O(T∞). (A.3)

Finally the integrals J±q correspond to the domains ±q − δ < λ < ±q + δ and generate all

power-law corrections in T to (A.2). We now derive the leading power-law correction to (A.2)

coming from the δ-vicinity of q. For doing this, we can replace the functions entering the integral

by the leading non-vanishing terms of their Taylor expansions. Namely, we replace f(λ) by f(q)

and ε(λ) by (λ− q)ε′0 + Tε1(q). Recall that ε0(q) = 0 and we denote ε′0 ≡ ε′0(q). Thence,

Jq[ε] = Tf(q)

δ∫

−δ

log

(
1 + e−

λε′0
T

−ε1(q)

)
dλ+ h.o.c., (A.4)
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where h.o.c. means the higher order corrections in T . After changing of variables λ = µT/ε′0 we

obtain

Jq[ε] =
T 2f(q)

ε′0

δε′0/T∫

−δε′0/T

[
log
(
1 + e−µ−ε1(q)

)
+
(
µ+ ε1(q)

)
Θ
(
−µ− ε1(q)

)]
dµ

− T 2f(q)

ε′0

−ε1(q)∫

−δε′0/T

(
µ+ ε1(q)

)
dµ+ h.o.c., (A.5)

where Θ(λ) is the Heaviside step-function. Using now that δ/T → ∞ we arrive at

Jq[ε] =
T 2f(q)

2ε′0

(
ε1(q)−

δε′0
T

)2

+
T 2f(q)

ε′0

∞∫

−∞

[
log
(
1 + e−µ

)
+ µΘ(−µ)

]
dµ

=
T 2f(q)

2ε′0

(
ε1(q)−

δε′0
T

)2

+
π2T 2f(q)

6ε′0
+ h.o.c. . (A.6)

Similarly one has

J−q[ε] =
T 2f(−q)

2ε′0

(
ε1(−q)− δε′0

T

)2

+
π2T 2f(−q)

6ε′0
+ h.o.c. . (A.7)

Combining (A.6), (A.7) with (A.3) we obtain after simple algebra

J [ε] = −
q∫

−q

f(λ)ε(λ) dλ +
T 2π2

6ε′0

(
f(q) + f(−q)

)

+
T 2f(q)ε21(q)

2ε′0
+

T 2f(−q)ε21(−q)

2ε′0
+ h.o.c. . (A.8)

In a similar way, one can obtain the low-temperature expansion of integrals involving the

function u(λ)

J [u] = T

∫

R

f(λ) log
(
1 + e−

u(λ)
T

)
dλ. (A.9)

Since u0(λ) = ε0(λ), exactly the same considerations lead us to the estimate

J [u] = −
q∫

−q

f(λ)u(λ) dλ+
T 2π2

6ε′0

(
f(q) + f(−q)

)

+
T 2f(q)u21(q)

2ε′0
+

T 2f(−q)u21(−q)

2ε′0
+O(T 3). (A.10)
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B Estimates of integrals with singular functions

B.1 The Cauchy transform in the vicinities of ±q

In this section we determine the leading T → 0 behavior of LR[z](λ). Its depends on where λ is

located. Recall that

LR[z](λ) =
−1

2πi

∫

R

log

(
1 + e−

u(µ)
T

1 + e−
ε(µ)
T

)
dµ

µ− λ
. (B.1)

If λ is separated from ±q, then obviously

lim
T→0

LR[z](λ) =
1

2πi

q∫

−q

u1(µ) dµ

µ− λ
=

1

2πi
L[−q,q][u1](λ), (B.2)

where u1(λ) is given by (3.22).

Let now λ → q as T → 0. We denote λ = λ±, if λ approaches q from the upper (resp.

lower) half-plane. Let again δ > 0 be such that δ → 0 as T → 0, while δ/T → ∞ in the

T → 0 limit. Consider the contributions to the integral (B.1) coming from different intervals

of integration. Obviously, when T → 0 the integrals over domains λ > q + δ and λ < −q − δ

produce exponentially small corrections. On the other hand z(λ) can be approximated by u1(λ)
2πi

on the interval [−q − δ, q − δ]:

−1

2πi

q−δ∫

−q−δ

log

(
1 + e−

u(µ)
T

1 + e−
ε(µ)
T

)
dµ

µ− λ±
→֒ 1

2πi

q−δ∫

−q−δ

u1(µ) dµ

µ− λ±
, T → 0. (B.3)

Extracting the divergent part we obtain

1

2πi

q−δ∫

−q−δ

u1(µ) dµ

µ− λ±
→ 1

2πi

q∫

−q

u1(µ)− u1
µ− λ±

dµ+
u1
2πi

log

(
λ± − q + δ

λ± + q

)
, δ → 0, (B.4)

and we remind that u1 = u1(±q).

It remains to compute the integral over [q − δ, q + δ]. Following the method of the previous

section we linearize the functions u(µ) and ε(µ) in the vicinity of µ = q. Then we have

Iq ≡
−1

2πi

q+δ∫

q−δ

log

(
1 + e−

u(µ)
T

1 + e−
ε(µ)
T

)
dµ

µ− λ±
→֒ −1

2πi

δ∫

−δ

log


1 + e−

µε′0
T

−u1

1 + e−
µε′

0
T


 dµ

µ− (λ± − q)
. (B.5)

Replacing µε′0/T = ξ we arrive at

Iq =
−1

2πi

δε′0/T∫

−δε′0/T

[
log

(
eξ + e−u1

eξ + 1

)
+ u1Θ(−ξ − c)

]
dξ

ξ − t±
+

u1
2πi

log

(
t± + c

t± +
δε′0
T

)
, (B.6)
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where c is an arbitrary positive constant and we have set t± = (λ± − q)ε′0/T . We can send now

δ/T → ∞. Substituting into (B.6)

1

ξ − t±
= ±i

∞∫

0

e∓iω(ξ−t±) dω, (B.7)

we arrive at

Iq =
∓1

2π

∞∫

−∞

dξ

∞∫

0

dω

[
log

(
eξ + e−u1

eξ + 1

)
+ u1Θ(−ξ − c)

]
e∓iω(ξ−t±)

+
u1
2πi

log

(
t± + c

t± +
δε′0
T

)
. (B.8)

The integral over ξ can be calculated by means of an integration by parts followed by a compu-

tation of the residues at eξ + e−u1 = 0 and eξ + 1 = 0:

1

2π

∞∫

−∞

dξ

[
log

(
eξ + e−u1

eξ + 1

)
+ u1Θ(−ξ − c)

]
e∓iωξ =

1− e±iωu1

2ω sinh(πω)
∓ u1e

±iωc

2πiω
. (B.9)

Thus, we arrive at

Iq =
u1
2πi

log

(
t± + c

t± +
δε′0
T

)
± 1

2π

∞∫

0

dω

ω

[
∓iu1e

±iωc − π

sinh(πω)

(
1− e±iωu1

)]
e±iωt± . (B.10)

Due to (3.26) the last integral is convergent. It can be computed in terms of the Γ-functions via

∞∫

0

e−pω dω

ω

[
b− a− π

sinh(πω)

(
e−aω − e−bω

)]
= (a−b) log

( p

2π

)
+2π log

Γ
(
p+b
2π + 1

2

)

Γ
(p+a

2π + 1
2

) . (B.11)

Thus, we obtain

Iq =
u1
2πi

log

( ±2πiT

(λ± − q + δ)ε′0

)
± log

Γ
(
1
2 ± (λ±−q)ε′0

2πiT ± u1
2πi

)

Γ
(
1
2 ±

(λ±−q)ε′0
2πiT

) . (B.12)

Combining this result with (B.4) we find the following estimate

LR[z](λ±) =
1

2πi

q∫

−q

u1(µ)− u1
µ− λ±

dµ +
u1
2πi

log

(
λ± − q

λ± + q

)

− u1
2πi

log

(
(λ± − q)ε′0
±2πiT

)
± log

Γ
(
1
2 ±

(λ±−q)ε′0
2πiT ± u1

2πi

)

Γ
(
1
2 ± (λ±−q)ε′0

2πiT

) , T → 0, λ ∼ q. (B.13)
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Similarly, if λ → −q as T → 0 one has

LR[z](λ±) =
1

2πi

q∫

−q

u1(µ)− u1
µ− λ±

dµ +
u1
2πi

log

(
λ± − q

λ± + q

)

+
u1
2πi

log

(
(λ± + q)ε′0
±2πiT

)
± log

Γ
(
1
2 ± (λ±+q)ε′0

2πiT ∓ u1
2πi

)

Γ
(
1
2 ±

(λ±+q)ε′0
2πiT

) , T → 0, λ ∼ −q. (B.14)

B.2 The double integral

Consider now the low temperature behavior of the integral A given in (5.17). As usual we split

the integration domain into several pieces A = A−+A−q+A0+Aq+A+. The integral A+ (resp.

A−) over the domain λ > q + δ (resp. λ < −q − δ) are again exponentially small in respect to

the T → 0 limit. When λ ∈ [−q − δ, q − δ], we can use the expression (B.2) for LR[z](λ+) and

also replace z(λ) by u1(λ)
2πi . This gives

A0 ≡
1

(2πi)2

q−δ∫

−q+δ

dλu1(λ)∂λ

q∫

−q

dµ
u1(µ)

µ− λ+
. (B.15)

Integrating by parts we arrive at

A0 =
−1

(2πi)2

q−δ∫

−q+δ

dλ

q∫

−q

dµ
u′1(λ)u1(µ)

µ− λ+
+

u1(q − δ)

(2πi)2




q∫

−q

u1(µ) dµ

µ− − q + δ
−

q∫

−q

u1(µ) dµ

µ− + q − δ


 . (B.16)

Here we have used that u1(λ) = u1(−λ). This last property also allows one to symmetrize the

integrand, so that upon sending δ → 0, we get

−1

(2πi)2

q−δ∫

−q+δ

dλ

q∫

−q

dµ
u′1(λ)u1(µ)

µ− λ+
=

1

2(2πi)2

q∫

−q

u′1(λ)u1(µ)− u1(λ)u
′
1(µ)

λ− µ
dλ dµ, δ → 0.

(B.17)

Extracting then the divergent part from the single integrals in (B.16) we find

A0 → C1

[
u1(λ)

2πi

]
+

2u21
(2πi)2

log

(
δ

2q

)
, δ → 0, (B.18)

where the functional C1[F ] is defined in (5.23).

Consider now the contribution Aq coming from the interval q − δ < λ < q + δ:

Aq =

q+δ∫

q−δ

(
∂λLR[z](λ+)

)
· z(λ) dλ. (B.19)
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Substituting here (B.13) we arrive at Aq = A
(1)
q +A

(2)
q +A

(3)
q , where

A(1)
q =

1

2πi

q+δ∫

q−δ

z(λ)∂λ




q∫

−q

u1(µ)− u1
µ− λ±

dµ− u1
2πi

log(λ± + q)


 dλ, (B.20)

A(2)
q =

−u1
(2πi)2

q+δ∫

−q−δ

log

(
1 + e−

u(λ)
T

1 + e−
ε(λ)
T

)
dλ

λ+ − q
, (B.21)

and

A(3)
q =

−1

2πi

q+δ∫

−q−δ

∂λ



log

Γ
(
1
2 +

(λ+−q)ε′0
2πiT + u1

2πi

)

Γ
(
1
2 +

(λ+−q)ε′0
2πiT

) − u1
2πi

log

(
(λ+ − q)ε′0

2πiT

)


× log

(
1 + e−

u(λ)
T

1 + e−
ε(λ)
T

)
dλ. (B.22)

It is easy to see that A
(1)
q → 0 as δ → 0, because the integrand is a bounded function as

T → 0. The integral A
(2)
q can be estimated similarly to (B.5):

A(2)
q =

u21
(2πi)2

log

(−2πiT

δε′0

)
− u1

2πi
log

Γ
(
1
2 −

u1
2πi

)

Γ
(
1
2

) , T → 0, δ → 0. (B.23)

As for the remaining integral A
(3)
q , its leading behavior is obtained by a linearization of the

functions u(λ) and ε(λ) in the vicinity of λ = q. After the change of variables ξ = (λ− q)ε′0/T

followed by an integration by parts, we find in the δ → 0, T → 0 limit

A(3)
q =

1

2πi

∞∫

−∞



log

Γ
(
1
2 +

ξ+u1

2πi

)

Γ
(
1
2 +

ξ
2πi

) − u1
2πi

log

(
ξ + i0

2πi

)


(
1

1 + e−ξ−u1
− 1

1 + e−ξ

)
dξ. (B.24)

We close the integration contour in the upper half-plane and compute the integral (B.24) by

residues. These are located at ξ = −u1 + πi(2k + 1) and ξ = πi(2k + 1), k = 0, 1 . . . . Hence,

A(3)
q =

∞∑

k=1

[
log

Γ2(k)

Γ
(
k + u1

2πi

)
Γ
(
k − u1

2πi

) − u1
2πi

log

(
k − 1

2 − u1
2πi

k − 1
2

)]

= logG
(
1,

u1
2πi

)
+

u1
2πi

log
Γ
(
1
2 −

u1
2πi

)

Γ
(
1
2

)

+ lim
N→∞

[
log

G2(N + 1)

G
(
N + 1 + u1

2πi

)
G
(
N + 1− u1

2πi

) − u1
2πi

log
Γ
(
N + 1

2 − u1
2πi

)

Γ
(
N + 1

2

)
]
, (B.25)
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where G(x) is the Barnes function and G(1, x) = G(1 + x)G(1 − x). Using the asymptotic

behavior of the Γ and Barnes functions for z → ∞ with z 6∈ R−

logG(z + 1 + a)− logG(z + 1) = a log
√
2π + a

2 (2z + a) log z − az + o(1),

log Γ(z + 1 + a)− log Γ(z + 1) = a log z + o(1),

we find that the limit in the last line of (B.25) vanishes. Hence,

A(3)
q = logG

(
1,

u1
2πi

)
+

u1
2πi

log
Γ
(
1
2 −

u1
2πi

)

Γ
(
1
2

) . (B.26)

Combining this result with (B.23) we find

Aq →
u21

(2πi)2
log

(−2πiT

δε′0

)
+ logG

(
1,

u1
2πi

)
, T → 0, δ → 0. (B.27)

Similar calculation in the vicinity of the point −q leads us to the following below contribution

coming from the interval q − δ < λ < q + δ:

A−q ≡
−q+δ∫

−q−δ

(
∂λLR[z](λ+)

)
· z(λ) dλ → u21

(2πi)2
log

(
2πiT

δε′0

)
+ logG

(
1,

u1
2πi

)
, T → 0, δ → 0.

(B.28)

Thus, taking into account (B.27), (B.28) and (B.18) we finally obtain

A → C1

[
u1(λ)

2πi

]
− 2

( u1
2πi

)2
log

(
qε′0
πT

)
+ 2 logG

(
1,

u1
2πi

)
, T → 0. (B.29)

C Smooth part of the amplitude

In this section we give the exact expression for the smooth part of the amplitude B
(0)
s [αℓZ] =

limT→0Bs[u]. Provided the condition (3.12) holds, we have

B(0)
s [αℓZ] = (e2πiα − 1)2e−C0

det
(
I + 1

2πi Û
(1)[αℓZ]

)
det
(
I + 1

2πi Û
(2)[αℓZ]

)

(
det
[
I − 1

2πK
])2

×
(
e−αℓL[Z](θ1+ic) − e2πiα−αℓL[Z](θ1−ic)

)−1 (
eαℓL[Z](θ2−ic) − e2πiα+αℓL[Z](θ2+ic)

)−1
. (C.1)

Here L[Z](ω) stands the Cauchy transform of the dressed charge Z(λ) on the interval [−q, q],

and C0 is given by (5.6). The integral operator I− 1
2πK acts on the interval [−q, q] and its kernel

was defined by (2.3). The operators I+ 1
2πi Û

(1)[αℓZ] and I+ 1
2πi Û

(2)[αℓZ] act on a anticlockwise

oriented closed contour surrounding [−q, q]. Their kernels are

Û (1)(w,w′, [αℓZ]) = −e−αℓL[Z](w) · Kα(w −w′)−Kα(θ1 − w′)

e−αℓL[Z](w+ic) − e2πiα−αℓL[Z](w−ic)
, (C.2)
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and

Û (2)(w,w′, [αℓZ]) = eαℓL[Z](w′) · Kα(w −w′)−Kα(w − θ2)

eαℓL[Z](w′−ic) − e2πiα+αℓL[Z](w′+ic)
, (C.3)

where Kα(λ) is given by (2.18). Finally parameters θ1 and θ2 are arbitrary complex numbers

lying inside of the contour where the operators Û (1,2)(w,w′, [αℓZ]) act. If we set θ1 = −q and

θ2 = q, then we reproduce the smooth part of form factors of the Pℓ class obtained [17].
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