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ABSTRACT

The three- and four-point correlation functions are evaluated from the Perseus Pisces galaxy redshift
sample. Former results on the two-point function ¢ are also reviewed. In the range of distances from 1 h~*
Mpc to 10 h~' Mpc, three- and four-point functions do not agree with the expressions of the hierarchical
clustering model. On the contrary they are steeper and can be fitted by adding terms with a higher power of
. Such results from a redshift catalog partially modifies the picture of the large-scale matter distribution
obtained from early two-dimensional samples. The relation among these results, biased models of galaxy for-

mation, and observed velocity fields is discussed.

Subject headings: galaxies: clustering — galaxies: formation — methods: numerical

1. INTRODUCTION

One of the main aims of cosmology is to attain a quantitat-
ive description of the distribution of matter over scales not
affected by dissipative phenomena. As part of this effort, during
the last 20 years, a large deal of work has been devoted to
measuring correlation functions. Much attention was concen-
trated on the two-point function, which is however not suffi-
cient in general to distinguish among different clustering
models. Higher order correlation functions are the natural way
to extend such information. Other kinds of statistical measures
were also suggested, e.g., the void probability function (White
1979; Fry 1984; Schaeffer 1984; Bouchet & Lachiéze-Rey
1986; Balian & Schaeffer 1989) and the multifractal analysis
(Mandelbrot 1982; Paladin & Vulpiani 1984, 1987; Pietronero
1987; Martinez et al. 1990; Valdarini, Borgani, & Provenzale
1992, and references therein). However, it must be outlined that
correlation functions are more than a standard reference point
in this context.

Their statistical significance is related to the distribution
Ple,] of density fluctuations €, = €(x) = p(x)/{p> — 1, where
p(x) is the density in the point x in three-dimensional space and
{p) is its mean value. If we perform a McLaurin functional
expansion of the Fourier transform of P[e,],

Z[J] = JDex P[e, ]V (1.1)
(often called partition functional), the expansion coefficients are
essentially the unreduced n-point functions (see, e.g., Ramond
1981). Here and below we adopt the continuous Einstein con-
vention: J, €, = jd3xJ(x)e(x). Furthermore, if we consider
W = In Z, its McLaurin expansion directly reads

e} :n

1
W[Jx]= z ;ié(xnl) ..... x.,']xl"'Jx,.a

n=2

(12)
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where the £
tions.

Accordingly, should all connected functions ¢™ with n > 2
vanish, the distribution P[e] is Gaussian. This can be shown
by starting from the inverse of equation (1.1), which reads

x, are the n-point reduced (or connected) func-

Ple,] = WJDJXZ[Jx]e“’*‘* , (1.3)
(here A" is a normalization constant), and by replacing there
the expression

Z[J,] = exp _%én.xz‘]xl Iz -

If we consider &, ,, = £@) . as a continuous matrix and take
its inverse K

= [¢71],,.«,, it is then straightforward to
obtain that

X1, X2

Ple] = & exp — 1e

i.e,, that P[e€] is Gaussian.

A nonvanishing two-point function provides us with the
information on the way how galaxy distribution deviates from
Poisson. Nonvanishing higher order functions, instead, tell us
how galaxy distribution deviates from Gaussian. When still in
its linear stages, matter distribution had to be non-Poissonian,
i.e., inhomogeneities had to exist, which could later evolve
toward present epoch structures. On the contrary non-
Gaussian behavior needs not to be present; in fact, standard
inflationary theories give rise to a purely Gaussian spectrum.

Nonlinear terms in gravitational evolution equations
directly cause deviations from pure Gaussian behavior. As
soon as the evolution itself becomes nonlinear we must there-
fore expect that P[e,] shows a substantial non-Gaussian signa-
ture.

Furthermore, if there is a class of objects exhibiting a biased
distribution vis-a-vis that of the matter, even if the matter dis-
tribution is Gaussian, the distribution of such objects is non-
Gaussian.

Finally, it is also quite possible that primeval fluctuations
had a nonstandard origin and spectra were non-Gaussian even
in their linear stages.

The subject of this paper is a measure of the three- and
four-point correlation functions applying the moment method
to the Perseus Pisces redshift Survey (PPS). We rederive and
discuss also in detail the two-point correlation function, given
its importance for the subsequent higher order analysis. The

K €

X177 X1, X2

(1.4)
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analysis leads to some fairly unexpected conclusions. Previous
angular sample analyses led to the introduction of the so-called
hierarchical clustering model, according to which the reduced
n-point function £™ can be written in the form ) , Q™[] !
(Peebles 1980; § 73; the summation is carried over different
possible topologies, see below). This model is not confirmed by
the present three-dimensional data analysis: the three- and
four-point functions are found to be steeper than predicted by
the above model.

The paper is organized as follows. Section 2 describes the
data. In § 3 we discuss the analytical techniques used in the
analysis together with the theoretical predictions related to the
above described scenarios. In § 4 the results of the analysis are
presented, while in § 5 they are discussed and conclusions are
drawn.

2. THE DATA

The PPS database was compiled by Giovanelli and Haynes
during the last decade (see, e.g., Giovanelli & Haynes 1993, and
references therein). Thanks to its completeness, its large
volume, and the fact of containing a number of both under-
dense and overdense regions (i.e., voids and density enhance-
ments like the Perseus-Pisces supercluster), it provides an
excellent sample to investigate the properties of galaxy dis-
tribution.

The survey consists mainly of highly accurate 21 cm H 1line
redshifts, partly unpublished, obtained with the NAIC 305 m
telescope in Arecibo’ at declinations between 0° and 38°, and
with the NRAO?® 300 foot telescope formerly in Green Bank
(Giovanelli & Haynes 1985; Giovanelli, Haynes, & Chincarini
1986; Haynes et al. 1988; Giovanelli & Haynes 1989). The
radio data are complemented with optical observations of
early-type galaxies carried out at the 2.4 m telescope of the
McGraw-Hill Observatory® (Wegner, Haynes, & Giovanelli
1994), plus a number of redshifts kindly provided by J. Huchra
and other smaller sources in the public domain.

All through this work we shall refer to PPS as the region
bound by [R.A. = 22"-04"], [Decl. = 0°-45°], which is some-
what more restrictive than the region surveyed by Giovanelli,
Haynes, and coworkers (in order to reject regions of sky where
the incompleteness is too high). The catalog used comprises
those redshifts obtained before 1991 December, for a total of
5183 galaxies. Among them, 3854 have Zwicky magnitudes
(Zwicky et al. 1961-1968, hereafter CGCG) of 15.7 or brighter.

For the analysis presented here, the following corrections
have been applied to the observed, heliocentric, radial velo-
cities. First, a velocity correction Av = 300 sin / cos b km s~}
was applied to take into account galactic rotation and the
motion of the Galaxy with respect to the bulk of the Local
Group. A simplified model was applied for Virgocentric flow.
The projection of the Galaxy’s motion with respect to the
Virgo Cluster onto the line of sight to each galaxy of the
sample, was added to the radial velocity. Furthermore, it was
assumed that galaxies at distance R from M87 fall toward
Virgo according to an inverse-distance law for R < R,, where

7 The Arecibo Observatory is part of the National Astronomy and Iono-
sphere Center, operated by Cornell University under a cooperative agreement
with the National Science Foundation.

8 NRAO: the National Radio Astronomy Observatory is operated by
Associated Universities, Inc., under a cooperative agreement with the National
Science Foundation.

2 The McGraw-Hill Observatory is located on Kitt Peak mountain, and
jointly operated under a cooperative agreement by Dartmouth College, the
Massachusetts Institute of Technology, and the University of Michigan.
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R, is the Local Group’s distance from MS87, while those
between R, and 2R, fall with a velocity that decreases linearly
between 250 km s~ ! at R, and O at 2R,. The latter correction
affects a minority of galaxies in the sample, which is located in
the anti-Virgo octant of the sky, and where most galaxies are at
velocities larger than 1500 km s~ !. Finally, velocity dispersions
in rich clusters were compressed to eliminate virial fingers.
Further details on these corrections and on the survey in
general can be found in Haynes & Giovanelli (1988) and
Iovino et al. (1993).

Because the survey region’s northern parts are at relatively
low galactic latitude, extinction is a serious concern. To this
end, Zwicky magnitudes are corrected for extinction using the
absorption maps produced by D. Burstein & C. E. Heiles
(1988-1992, private communication). The extinction map of
the survey region is shown in Giovanelli et al. (1986). Exclud-
ing galaxies fainter than my,;,, = 15.5 from the catalog, after
correcting extinction, eliminates incompleteness on the far side
of the survey wherever absorption is less or equal to 0.2 mag.
This was the strategy used in Guzzo et al. (1991, hereafter G91).
Here we decided to be more conservative, with the aim to
check possible effects of extinction on the results obtained by
G91 on the shape of &(r) (which, nevertheless, were in very
good agreement with the results of the same analysis per-
formed on the CfA,,s). Therefore, we clipped out those
regions which might be more seriously affected by extinction,
restricting the sample within the following ranges:
[R.A. = 22"03"10™], [decl. = 0°-42°30']. We were left with
3525 galaxies with Zwicky magnitude brighter than 15.5 (after
correcgion for extinction), and velocity in the range 0-13,000
kms™".

Among them, we selected a volume limited sample (VLS in
the following), by requiring that the absolute magnitude of the
galaxy be M < —19 + 5log h and its distance d <79 .h~!
Mpc (here h is the value of the Hubble parameter in units of
100 km s~ ! Mpc™!). This sample contains 948 galaxies and the
main results presented here are based on it. Part of the analysis
was repeated also on the whole apparent-magnitude limited
sample (mLS in the following). The use of VLS has two main
advantages. First, it is homogeneous in the galaxy properties,
including only objects within a well defined luminosity range.
Secondly, it represents the best possible option in terms of
equally weighing different redshift ranges of the sample. In our
case, owing to the form of the selection function, the Perseus-
Pisces supercluster, at a distance of ~50 h~! Mpc, lies in the
distance range wherefrom the top contribution to mLS comes.
If not treated with suitable care, such relevant structure can
cause an overestimate of the mean galaxy density and a conse-
quent reduction of the correlation length. Using VLS, instead,
minimizes such effect, as low-density regions behind and
beyond the supercluster are included with the same weight of
the supercluster volume.

3. METHODS OF ANALYSIS

3.1. The Two-Point Function

It is well established that the two-point function is fitted by
the expression &(r) = (r,/r)’ up to ~10 h~! Mpc. The present
analysis of three- and four-point functions is based on such
expression for the two-point function.

In this paragraph we want to describe how such expression
can be compared with another expression of the two-point
function, initially obtained from the PPS and CfA,, 5 surveys
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(G91; see also Dekel & Aarseth 1984), and subsequently con-
firmed also on angular samples (Calzetti, Giavalisco, &
Meiksin 1992). According to G91, a detailed fit to the data over
a more extended distance range of separations is obtained
using a two—power-law expression:

A;r't—1 for
&) = {Azryz —1 for

r<r,
rp,<r<r,.

Continuity requires that A, = 4,r}>” ", while 4,r??> =1, so
this expression contains four parameters. For PPS data, G91
obtain y, ~ —1.8,y, ~0.8,r,~3.5h™ Mpcandr, ~25h™!
Mpc. This expression follows naturally the excess correlation
(shoulder), which is observed at r ~ r, in virtually all optical
galaxy samples, both in spatial and angular analyses (e.g.,
Shanks et al. 1989; Maddox et al. 1990), and provides a good
fit to the data in the whole range 1-25 h~! Mpc [i.e., where
&(r) > 0]. Given the fact that the data used here differ slightly
from those used by G91, due to the elimination of the higher
absorption outer region, we shall reestimate the two-point
correlation function. We apply the standard estimator
&(r) = fGG/GR — 1, where GG is the number of galaxy pairs
with separations in the range r + dr. This is normalized by the
number of cross pairs GR between the data and a set of points
distributed randomly within the survey boundaries, with
density f times that of the galaxies. Errors on &(r) are evaluated
through bootstrap resampling (a more advanced procedure
will be adopted for all other measures in this work; see § 3.4).
We anticipate that, at least for r < 10 h~! Mpc, the usual fit to
&(r) with a single power law is still widely acceptable, and since
10 h~* Mpc is the scale where we stop the high-order analysis
presented here, we can safely use the simple &(r) = (r,/r)’ model.

This will be seen in more detail by considering the expected
number of galaxies in a sphere of radius R centered on a
galaxy, which reads

{Ng> =nW[l + K &R)] (3.1

[here n is the galaxy number density within the sample, V; =
(4n/3)R3, K, = 3/(3 — y)]. Taking then a galaxy set Poisson
distributed, V; is expected to contain N, , = nVy galaxies.
Accordingly, the value of the correlation length r, can be
obtained from the integral counts:

il
° <Ne‘r> . Kl ’

To evaluate N,, we created a large number (A" ~ 10%) of
artificial samples, whose points are distributed at random in
the same volume occupied by the actual sample; N, , is esti-
mated by averaging among the numbers N O@i=1..,4)of
points in each V. In this way also boundary effects (arising
when the radius R of a sphere of volume V, exceeds the dis-
tance of galaxy from the boundary of the sample volume) are
taken into account. In the next paragraphs we shall need also
(N.,)" To take into account boundary effects this is obtained
directly from the averages

L WOy
R

(32)

If &(r) has a perfect power law behavior, the value of r,
obtained from equation (3.2) is independent of . On the con-
trary, a two-power-law behavior leads to expecting slight
variations of r, even in the 1-10 h~! Mpc scale range. In § 4 we
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shall give the values of r, and their expected errors for different
r’s. Then we shall compare such values and errors with the
expectation that r, is constant (usual model) and with the r,
scale dependence predicted by the two—power-law expression.

The conclusions drawn from this comparison will both
confirm the robustness of the two—power-law expression, and
show that it is safe to keep to the well established expression
&r) = (r,/r), forr < 10 h~ ! Mpc.

3.2. n-Point Function Expressions

The so-called hierarchical model (HM) expressions for the
three- and four-point connected functions read

&2 = Qlo1&12 + E12 620 + E20801] (3.3
ERas = R[£01812825 + sym (12 terms)]
+ Ry[$01802 o3 + sym (4 terms)] . (34

In the case of the four-point function we meet the simplest
example of different topologies within a function of a given
order. The following graphs are given to facilitate the under-
standing of more complicated cases we shall have below:

&8s =R, x [+ C+U+ J+1+ 2+
+ N+ X+ X+ X+XT+R, x [+ + "+\/].
Let us also consider here the so-called Kirkwood super-

position (KW) expressions. They are obtained from the
assumption that

1 + 65;:’.)‘,):1 ..... Xn 1—[ (1 + él]) .

i<j=1

(3.5)

In the case of the three-point function this yields a simple form
for the connected function:

Es = &o1&12 + &2 820 + E20801 + E01812820 - (3.6)

We shall indicate as generalized Kirkwood (GK) expression
the one obtained from KW by setting two coefficients in front
of the terms oc &2 and oc&3:

&)y = Q&01&45 + sym] + Q&g &1, &5 .

This gives back the HM expression for Q' = 0.

In the case of the four-point function we have some more
complications. The KW expression now contains terms oc&3,
oc &4, oc &3, and oc £6. Terms oc &3 and oc £* can be still handled
with standard techniques. Higher powers give rise to statistical
problems that will be discussed elsewhere. Lt us rather give the
GK expression that we shall need in this analysis:

s =R x [+ +1+ -+ X+-]
+ R, x [+ ]
+R. x [N+ N+ +R+N+N+
+ N+ X+ X +X +X]
+ Ry x [0+ NX+X1.

The HM expression was widely tested in the analysis of
two-dimensional samples. There, however, a generalized
Limber equation is needed to pass from two to three dimen-
sions (Peebles & Groth 1977; Sharp, Bonometto, & Lucchin
1984). Schaeffer and his coworkers (see, e.g., Balian & Schaeffer
1989, and references therein) performed a great deal of work on
HM expressions, analyzing its relation with scaling and

(3.7)
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showing that the observed void distribution is compatible with
Q, = (2" 1/n)* (here the constants appearing in all order con-
nected functions are indicated by Q), witha ~ 1 + 1.

KW expressions were used to fit data in different physical
contexts, as gas dynamics. However, KW expressions for
n-point functions can be expected to hold if galaxies are related
to very high peaks of an underlying distribution (Matarrese,
Lucchin, & Bonometto 1986; Szalay 1988; Borgani & Bono-
metto 1990). This is exactly true for underlying Gaussian dis-
tributions, pure 3 thresholds and in the very high peak limit. If
such conditions are not verified quite cumbersome expressions
hold which are difficult to handle. GK expressions can be con-
sidered to be reasonable approximations to such expressions.

It is also important to outline that, in the case of the three-
point function To6th, Hollosi, & Szalay (1989) have shown that,
if £ has the standard power-law form ocr~?, the cubic terms
should project into a term of the form

Wo1Wiz2 Wao

! 901002 620 ’

© -3
L,= nZI:J. dx(1 + xz)_y/z]

and this should be detectable at small angles 6.

Wor2 = Q'L

with

3.3. Moment Analysis

In equation (3.2) we showed how C; = (N,>/{(N,,> is
related to r,. Here we shall consider the moments

Nn
= N (338)
(New
and the mixed-exponent quantities
NP
Com="7m~ > 39
mTINT ¢

which are necessary to subtract the shot-noise due to the point
structure of the sample. We shall also use the quantity

C,=C,—1.

We shall report here the relations connecting C, and C, ,, to
the constants Q and R. For the HM case, such relations can be
obtained from Peebles (1980; § 59) and from Sharp et al. (1984).
A generalization to the GK case, for the three-point function, is
provided by Pons, Iovino, & Bonometto (1991). Here we shall
give also a further extension including the GK case for the
four-point function.

In the case of the three-point function we have that

2 —Ci _0161 -1
C2 6% +qc; Ci

0=C (3.10)

Here g = Q'/Q is the ratio between the coefficients of the
cubic and quadratic terms. Furthermore

J K H
Q=g am1+22 o= G
with
3 ZJ\I 9 X 2)’3
Jy=|-— d3x,d3x,x1] = (3.12)
2 <4n> o P T 4 s
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(x;; is the distance between the integration points x; and x;,
ys = s — ), K, is the same quantity appearing in equation (3.1),

3 2 M1
KZ:(E) J d3x;dPxy(x1%15) 77, (3.13)
o

3 2 (1
H= (E> f d3x1d3%5(x1 %3 %15) 7"
o

27 1 1
= dx X3 | dxy x5 xy + X, =[x — x,]")
81y, Jo 0

(3.14)

(fory = 1.51,itis H = 1.96).
In the case of the four-point function the situation is slightly
more complicated. What is evaluated is the combination

R, =R, + pR,
_C3+2C,3—3C,—3¢,C, —3(c, —2)C, — 1
- ¢, C3 + 30Ct#

of the hierarchical coefficients R, and R,. They can be corrected
for the contribution of a quartic term (GK) by the second term
at the denominator, where

(3.15)

R, R
a=ccR—4+c,,R—z. (3.16)

In equation (3.15, C,=C, — Ci,—¢,C—1, G, =
C2'3 + C2 - C1,2 - Cl’ and

I3

Cy =m . 3.17)

Here
3 3 (1
J3=<4_7z> J A3x,d3x, d3x5(x12%25)77 . (3.18)
0

Furthermore

K3a KZ
C, = 6<K? + K%> (3.19)

enters in the definition of the coefficients

1 <K3,, >
p=—\—73+1
¢ \ K} (3.20)

1 H, H, H,
=—|H+—/—+2—/7], = .
e ca( * K, * Kl) a ¢, Ky

Such coefficients contain the new integrals

3 L1

H, = <i> d3x1d3x2 d3x3(x1x12x13 X,3)77, (3.21)
JO
3 3 1

H,= (G) d*x,d’x, d3x3(x1x3 X13%23)" 7,  (3.22)
JO

3 3 1
H,= <E> d3x d3x, d3x5(x %15 X3%,3) 7. (3.23)
JO

Suitable geometrical choices can reduce the integration from
nine to six variables. At that stage we perform a Monte Carlo

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1993ApJ...419..451B

No. 2, 1993 CORRELATION FUNCTIONS 455

AL Ny N B B B S B B B By 9 L LN L B
150 |- — . i
ok . WL h
f=4 ~ -1 & - .
2 100~ ~ = - I } } I i
L - IS L I i
* - . S I [ } { }} I —
50 ] L i
0 L L] i | Y T ST SR SR SO ST R N SN ]

6 9 ¢ 0 10

FiG. 1.—Example of a result of the Monte Carlo analysis used to estimate
the errors on the parameters. Here the nearly Gaussian distribution of C, is
shown.

integration using ~ 2,000,000 random points. For y = 1.51 we
obtain

H., =146, H, =235, H,=419. (324

3.4. Error Analysis

Besides estimating C’s and derived quantities it is essential
to work out the expected errors on such estimates. To this aim
we followed a pattern which is a generalization of the boots-
trap procedure.

We selected at random subsamples made of half galaxies of
the sample as centers of spheres, while all galaxies were kept as
possible companions. C’s were then estimated using a large
number (2000) of independent subsamples. For the sake of
example, in Figure 1 we report an histogram representing the
distributions of the values obtained for C, with rh =3 Mpc.
All histograms have a similar bell shape. The standard devi-
ations AC evaluated from such distributions are therefore an
overestimate of the error for each C.

Starting from the C averages, we worked out r,, Q, and R,,
according to equations (3.2), (3.10), and (3.15). Error propaga-
tion was studied numerically, by taking random points in the
intervals C + AC. All errors given below and in the figures
correspond to 3 o, estimated in the above fashion.

4. RESULTS

4.1. Two-Point Correlation Function

In Figure 2 we give the behavior of the correlation length r,
estimated from the integral counts with y = 1.51, using (3.2).
This value of y is obtained from a direct fit to the two-point
function, discussed here below. As already outlined, the stan-
dard single power-law behavior must be consistent with equal
r,-values for all r’s.

An inspection of Figure 2 then shows that the value of r, is
fairly stable in the range 1-10 h~! Mpc, so that the chosen
approximation is justified. However, there is no way to fit a
single horizontal straight line through all error bars, which
represent 3 standard deviations. (Let us also remind that points
and error bars at different r-values are not statistically inde-
pendent.)

The dashed line, instead, is the result of integrating the two
power-law model (with the observed slopes and amplitudes), to
obtain N,, and then r, from equation (3.2). The global trend of
the points and, in particular, the minimum around 4 h~! Mpc,
is thus coherent with a two—power-law behavior. What pre-

5
hr (Mpc)

F1G. 2—Clustering length deduced averaging over spheres of radius r and
approximating &(r) with a single power law with slope y = 1.51. The dashed
line is the expected behavior if the two—power-law model holds.

vious inspection implicitly suggested to consider as an excess
noise is now the expected behavior.

In Figure 3 we show directly the plot of the two-point corre-
lation function estimated on the VLS. This plot confirms the
findings of G91, although obtained without clipping out the
area of higher extinction. In particular, the function 1 + &(r) is
well modeled with two power laws. Here a formal least-square
fit in the two ranges gives logarithmic slopes, respectively,
7y = 1.44 + 0.03 and y, = 0.76 + 0.06. With respect to G91 the
small-scale slope has decreased by ~0.3: this is most probably
due to the exclusion from the new sample of the very rich
Perseus cluster at RA ~ 3h2,

It is also clear that fitting £(r) with a single power law is still
a sufficient approximation for r < 10 A~ Mpc. From this fit, in
the range 1-10 h~! Mpc, we have the slope y = 1.51 + 0.04;
the correlation lengthisr, = 7.4 + 0.7 h~ ! Mpc.

Altogether, while the two-power law model seems to be in
better agreement with data, still a single power-law fit to &(r),
forr < 10 h~! Mpc, can be considered to be valid.

4.2. Three- and Four-Point Functions

In Figure 4 we plot the values of Q obtained for Q' = 0 (open
circles) and for Q'/Q = 1 (filled circles). The latter case provides

IIIII T T IIIIII] T T

10 PPS Ms-19
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F1G. 3.—Two-point correlation function estimated from the M < 19,
d < 79 h~* Mpc volume limited sample (VLS). The inset shows 1 + &(r).
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F1G. 4—Coefficient Q for the three-point function of the VLS, as obtained
from the hierarchical model expression (open circles), and assuming also a
cubic term still with coefficient Q (filled circles).

results which depend less on the radius r of the averaging
sphere and can be fitted by a single straight horizontal line.
The value of Q obtained for Q’/Q =1 is, however, different
from unity. Therefore the distribution is not KW.

Assuming HM expression and considering spheres of 3-5
h~1 Mpc, values Q ~ 1, with an error ~25%, are recovered.

The situation is even more remarkable in the case of the
four-point function (see Fig. 5). Here we plot the outputs
which correspond to R,/R = R;/R =0 and to R,/R = R;/R =
1. The latter case gives results independent from r. In the
former case, instead, the dependence on r is quite strong. Here
again, in the interval 3-5 h~! Mpc, assuming an HM expres-
sion, we have R, ~ 1.3 with an error of ~30%.

In order to illustrate the advantages of using VLS, in Figure
6 we provide the outputs concerning the three-point function

T Y

T ?
SRR
0 hrS(MpC) ’

FiG. 5—Coefficient R, (linear combination of R, and R,, see text) for the
VLS, as obtained for the hierarchical model expression (open circles) and
assuming quartic terms with coefficients equal to R, = R, (filled circles).

FIG. 6.—Same as Fig. 4, but for the mLS

also for mLS. The random sample, in this case, was suitably
modulated using the observed selection function. In spite of the
larger number of galaxies (~ 3000 vs. ~900), error bars are not
significantly reduced. There is however a point which can be
outlined here: in the small scale range, the value of Q might be
consistent with pure KW.

Similar conclusions can be drawn in the analysis of the four-
point function.

5. DISCUSSION

The main results of the present work are the presence of a
cubic term in the three-point function and of a quartic term in
the four-point function. Results on three- and four-point func-
tions were first obtained from angular catalogs, like the Zwicky
and Lick compilations (Groth & Peebles 1977; Fry & Peebles
1978; Sharp et al. 1984). Recently Szapudi, Szalay, & Boschan
(1992) used the moment method on the two-dimensional Lick
sample and Meiksin, Szapudi, & Szalay (1992) extended the
same method to the IRAS galaxy sample. The range of angles
considered in analyses of Zwicky and Lick counts corresponds
to distances r in the range 0.5 < hr/Mpc < 8. Points above 4
h~1 Mpc are however given with very large errors and only in
the interval 1.5 < hr/Mpc < 4 there is some contradiction
between the estimate of this work and the results obtained
from Zwicky and Lick counts.

In the work of Meiksin et al. (1992), instead, in the case of the
three-point function, it is shown that observations are com-
patible with Q3 — Q' =09+04 (for y=2) or with
03 — Q' = 1.7 + 1. (for y = 1.6). Such results do not disagree
with the outputs of our analysis.

A comparison with the results from other three-dimensional
samples is not easily made. Huchra, Davis, & Geller (1979,
unpublished) are reported by Peebles (1980) to have estimated
Q =0.80 + 0.07 on the CfA 14.5 sample. On the basis of an
unpublished sample selected by Rood, Peebles (1981) found
agreement with HM expressions for the three-point function
and gave Q = 0.68 + 0.05. However, the triplets from which
such measure is taken are situated at the vertices of triangles
whose shortest side has a projected length never exceeding 1.3
h~! Mpc. (The longest projected triangle sides do not exceed
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4.8 h~! Mpc.) It is therefore hard to say whether a real contra-
diction exists with the present result.

More recently Gaztafiaga (1992), performing counts in
random cells of diameters ranging from 2 to 22 h~* Mpc, based
on volume limited samples worked out from the CfA,,
catalog and on the Southern Sky Redshift Survey (da Costa et
al. 1991), obtained significant results on three- and four-point
functions. The paper shows a reasonable agreement between
data and a hierarchical clustering model. However, as is often
done, errors are estimated using formal least-square fits and
their quantitative significance can be hardly evaluated. In spite
of that, formal errors can be a fair indication of the noise
present in the data: a ~20% error is present for the output on
Q, while such error approaches ~90% for the output on R,.
(Although not clearly stated, these errors seem to account for a
2 ¢ formal error level.) Assuming hierarchical clustering greatly
lowers the above error level. No quantitative comparison is
however provided with other clustering models. Altogether it is
hard to say whether such results really disagree with those of
this paper, although this impression can hardly be avoided.

The range of distances considered here shows substantial
overlaps only with the one taken in Gaztafiaga’s paper. The
significance of the distance range we took can be better focused
if we consider that a critical galaxy separation AR, ~ 1-2 h~1
Mpc, related to pairwise velocities, exists, which bears a triple
meaning: (i) for AR 2 AR, the distance component along the z
direction begins to be reliably appreciable from z measures. (ii)
For AR z AR, the relative displacement of galaxies in a
Hubble time is not so heavy to destroy clustering features
related to matter distribution at the time of galaxy formation.
(iii) Accordingly, for scales R < AR, we are in a fully nonlinear
regime (both from the Eulerian and the Lagrangian points of
view).

The scale AR, is obtained considering the component along
the z direction of the average galaxy pairwise velocity. Pairwise
velocities are very mildly dependent on galaxy separation and
their average component along z is estimated to be o, ~
150-200 km s~ . Actual velocities are smaller for field galaxies;
statistical corrections can be applied however to galaxies in
clusters; to our aims corrections are equivalent to reduce o, by
afactor ~2. Accordingly

AR, g,
h™! Mpc™ 100 km s~ !
lays between 1 and 2.

Owing to point (i), it would have scarce significance to use a
redshift sample to estimate clustering properties at distances

(5.1)
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below ~1 h~! Mpc, while such estimates are fairly reliable
above ~2 h~! Mpc. This corresponds to the range of distances
above which our analysis is effective.

The point (ii) is related to precise physical arguments. As was
discussed in § 1, biased thories of galaxy origin predict KW
expressions. Such theories are however intrinsically geometri-
cal: they do not contemplate dynamical effects over scales
exceeding the interior of matter density peaks. Accordingly,
bias predictions can only be tested if the displacement from the
place where galaxies formed can be neglected. Once more, this
begins to be allowed above AR..

In turn this relates to the onset of a nonlinear dynamical
situation. The presence of large velocities over scales of a few
Mpc witnesses that, at the present time, nonlinearity has
extended from the distance range characterizing the interior of
density peaks, up to some Mpc. It is therefore fair to consider
three distance ranges: at R < AR, there is a fully nonlinear

regime; for
2\ 1/r
AR, <R < <?> r,

(b is the linear bias factor) from the Eulerian point of view, we
are in nonlinear regime, i.e., density fluctuations dp/p exceed
unity; however the dynamics can still be quasi-linear from the
Lagrangian point of view and can be treated with perturbative
Lagrangian techniques (e.g., Zel’dovich approximation and
its improvements, see Buchert 1992). Above r, = (2/b%)'"'r,
we attain a fully linear regime. For b ~ 2.4 it turns out that
r. = ry, wWhich is the point where there appears to be a change
of slope in the two-point function, according to the two—
power-law model.

In order that KW expression significantly differs from HM
expression, scales less than r, ought to be considered. Between
AR, and r, we can therefore expect to detect features related to
biased galaxy formation. Peculiar velocities erase such features
at R < AR..

According to these considerations our findings on three- and
four-point functions become essentially consistent both with
previous measures of higher order functions and with G91
findings on the shape of the two-point function. In our opinion
it is reasonable to conclude that our outputs show the gradual
passage from a linear to a nonlinear regime and support a
biased theory of galaxy formation with a bias factor for bright
galaxies ~2-2.5.

(5.2)

The authors wish to thank I. Szapudi, who was the referee of
this article, for a number of useful comments.
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