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Abstract

The spectral shape of one dimensional systems (describing for in-
stance the behaviour of Frenkel excitons) is approached through the
exactly solvable model of XXO Heisenberg quantum spin chain in a
transverse magnetic field. Some results for finite size chains concerning
2N-point correlators are presented in details. In particular the finite
lattice, finite temperature 2-point correlators are explicitely worked
out. Moreover, results in closed form are given for 2N-point correla-
tors in the most general situation (finite lattice and thermodynamic
limit, finite temperature, finite space and/or time separations). Their
relations with frequency moments of the spectral shape are pointed
out and the connection with moment expansion through continued
fraction representation is given.
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1 Introduction

As far as physical applications are concerned, exactly solvable models are
rather few. The development in this area is also rather slow on a time scale
usual for condensed matter physics (see, e.g., [1, 2]). However the obtained
results can be considered as milestones because they give certainties about
the simmetry properties of the models and give insights about approaching
general systems using the exact models as the unperturbed ones. Condensed
matter physics represents a good training for this activity. As a matter
of fact many real systems can be well described by exactly solvable model
Hamiltonians and solid state physicists can almost always construct such
systems in real life, testing experimentally the theoretical predictions. For
instance, this is the case of the Frenkel excitons of one-dimensional systems
as studied in Dicke superradiance [3, 4, 5] for coherent emission of two-level
atoms or in non-linear lattice vibrations for biopolymers [6, 7] or molecular
crystals [8]. By using the well know field-theory approach as developed in Ref.
[9] for electron-hole interaction in semiconductors, the relevant features of the
afore-mentioned systems can be described by the following one-dimensional
Hamiltonian [10, 11]:

He =
M∑

m=1

[
ω0σ

(m)
z − Jσ(m)

x σ(m+1)
x − Jσ(m)

y σ(m+1)
y 2− Jzσ

(m)
z σ(m+1)

z

]
(1)

Here ω0 is the excitation energy of the individual molecule (or atom), J is
the interaction which causes the propagation of Frenkel excitons. The last
term ∼ Jz takes into account the interaction between excitations. Since σ

(m)
i

are Pauli matrices satisfying[
σ(m)

p , σ(n)
q

]
= 2iδmnεpqrσ

(m)
r , p, q, s = x, y, z ; (2)

it is easily recognized that we are involved with the so called XXZ model
of spin 1

2
in a constant external field h = ω0. The first term in eq. (1)

can be considered as a c-number when the number of excitons is very large
[11], leading to the XXZ model with no external field. This model also rep-
resents some interesting one-dimensional antiferromagnets which have been
recently probed by neutron scattering experiments [12]. Instead, when the
exciton interaction can be neglected [9], the emission spectra can be calcu-
lated from the temperature and time dependent correlation functions of the
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XXO Heisenberg chain in a transverse field. This possibility was devised in
Ref. [11], using our previous results [13, 14]. However, some results for finite
size chains, presented in detail in [14] were not referred properly. It should be
pointed out that all results could be obtained from our previous calculations
of matrix elements for XXO Heisenberg chain[14]. In this paper we present
explicit calculations of the relevant correlation functions related to the emis-
sion spectra, giving also the explicit expressions for 2N -point correlators in
closed form; in particular, a recipe is given for calculating the first moments,
in order to evaluate eventually the spectral shape by a continued fraction
expansion.

2 The XXO Heisenberg Chain

The Hamiltonian of the XXO Heisenberg chain, which is an isotropic case of
the Lieb, Schultz and Mattis XY model [15], describing the nearest neighbour
interaction of spins 1

2
situated at the sites of the one-dimensional periodical

lattice in a constant transverse magnetic field h, is

H(h) = −
M∑

m=1

[
σ(m)

x σ(m+1)
x + σ(m)

y σ(m+1)
y + hσ(m)

z

]
+ Mh (3)

(the constant is chosen so that H | 0〉 = 0, where | 0〉 ≡ ⊗M
m=1 |↑〉m, 〈0 | 0〉 =

1 is the ferromagnetic state (all spins up)). The total number M of sites is
supposed to be even.

Eigenvectors | ΨN({p})〉, {p} ≡ {p1, ..., pN} of the Hamiltonian are well
known and can be regarded as the states containing N (N = 0, 1, ...,M)
quasiparticles with quasimomenta pa and energies ε(pa)

ε(p) = −4 cos p + 2h , (4)

over the state | 0〉 (corresponding to N = 0):

H | ΨN({p})〉 = (
N∑

a=1

ε(pa)) | ΨN({p})〉 . (5)

The quasimomenta −π < 0 ≤ π parametrizing quasiparticles are all
different and “quantized” due to periodical boundary condition, eiMpa =
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(−1)N+1, so that the permitted values are given as

pa =
2π

M
na ,

na = −M
2

+ j , j = 1, 2, ...,M for N odd,
na = −M+1

2
+ j , j = 1, 2, ...,M for N even,

(6)

and are different for N even or odd.
The explicit form of these eigenvectors is (as usual, σ

(m)
± ≡ 1

2
[σ(m)

x ±iσ(m)
y ])

| ΨN({p})〉 =
1√

MNN !

M∑
m1,...,mN

χ
N
({m} | {p}) σ

(m1)
− ...σ

(mN )
− | 0〉 , (7)

where the eigenfunction χ
N

is proportional to the “Slater determinant”,

χ
N
({m} | {p}) =

1√
N !

 ∏
1≤a<b≤N

ε(mb −ma)

 ·∑
Q

(−1)[Q] exp

[
i

N∑
a=1

mapQa

]
,

(8)
ε(m) being the sign-function, defined as

ε(m) = 1, m > 0; ε(m) = 0, m = 0; ε(m) = −1, m < 0.
(9)

All the quasimomenta entering a given | Ψ
N
〉 should be different, otherwise

the eigenfunction vanishes identically.
There are 2M different eigenstates, and to avoid the multiple counting

of states due to the antisymmetry of the state vector under permutation of
p’s, we suppose that pa < pb, if a < b. The eigenstates are orthogonal for
different sets of quasimomenta, and the normalization is

〈Ψ
N
({p}) | Ψ

N
({p})〉 = 1 . (10)

3 Temperature dependent correlation func-

tions on the finite lattice

We consider, following reference [13, 14], the temperature correlation func-
tions on the finite lattice. These are, e.g.

(i) the generating function of σz-σz correlators,

g
(M)
0 (α, m, h, T ) ≡ 〈exp [αQ(m)]〉(M)

T
, (11)
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where Q(m) ≡ 1
2

∑m
n=1(1+σ(n)

z ) is the operator of the number of quasiparticles
in the first m sites of the lattice;

(ii) the temperature and time dependent correlators

g
(M)

+ (m, t, T ) ≡ 〈σ(n2)
+ (t2)σ

(n1)
− (t1)〉

(M)

T
, (12)

g
(M)

− (m, t, T ) ≡ 〈σ(n2)
− (t2)σ

(n1)
+ (t1)〉

(M)

T
, (13)

where m ≡ n2−n1; t ≡ t2− t1 (due to the obvious symmetries, it is sufficient
to consider the case m ≥ 0, t ≥ 0, h ≥ 0). The Heisenberg operators are

defined as σ
(m)
± (t) = exp[iHt]σ

(m)
± exp[−iHt].

The temperature mean value of a given operator O is defined as usual,

〈O〉 =
1

Z
Tr

[
e−βHO

]
=

1

Z

M∑
N=0

∑
p1<...<pN

e−β
∑N

a=1
ε(pa)〈Ψ

N
({p}) | O | Ψ

N
({p})〉 ,

(14)
where

Z ≡ Tr
[
e−βH

]
= 1 +

M∑
N=1

∑
p1<...<pN

e−β
∑N

a=1
ε(pa) (15)

is the partition function and β ≡ 1
T

is the inverse temperature.
All the diagonal matrix elements entering the sums (14) for correlators

(11)-(13) were calculated explicitly in paper [14]; the answer were given there
as determinants of N × N matrices. Non-diagonal matrix elements can be
calculated in exactly the same way. In the thermodynamic limit, the correla-
tors turned out to be the Fredholm determinants [13, 14]. In papers [16, 17]
these Fredholm determinant representations were used to derive integrable
differential equations for correlators and construct explicitly the large time
and distance asymptotics.

Here we give the representations for the temperature correlators also on
the finite lattice, as determinants of M ×M matrices. These representations
are the immediate and straightforward consequences of the expressions for
the diagonal matrix elements on the finite lattice obtained in paper [14]. It
should be mentioned that the expressions for these matrix elements were used
also in paper [11] to investigate correlator (13) (though paper [14] was not
cited). The answer for this correlator given there does not however coincide
with the one given below.

As was mentioned, the derivation of representation on the finite lattice
is quite simple (cfr. [11]) after the matrix elements are computed [14], and
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can be explained on the example of the partition function (15). If the M
possible values of the quasimomenta had been the same for N even and odd,
the right hand side of (15) would have been equal to det

M
(I

M
+ A), where

I
M

is the M × M unit matrix and A is the diagonal M × M matrix with
matrix elements

Aab = δab exp[−βε(pa)] ; a, b = 1...., M. (16)

It is easy to take into account the difference in the permitted values for N
even and odd, just representing

Z =
1

2
(Z1 + Z2) +

1

2
(Z3 − Z4) (17)

with
Z1,2 = detM(IM ± A); Z3,4 = detM(IM ± Ā) (18)

and (6) should be taken into account in definition of matrices A and Ā:

Aab = δab exp[−βε(pa)], pa =
2π

M
(−M + 1

2
+ a); a, b = 1, ...,M ;(19)

Āab = δab exp[−βε(pa)], pa =
2π

M
(−M

2
+ a); a, b = 1, ...,M. (20)

The first term in the right hand side of (17) gives thus the contribution of
the states with even N , and the second term corresponds to odd N . It is
easily seen that quantities Zi can be represented as

Z1 = det
M

[AΘ−1
F ] , Z2 = det

M
[AΘ−1

B ] , Z3 = det
M

[ĀΘ̄−1
F ] , Z4 = det

M
[ĀΘ̄−1

B ] ,
(21)

where M ×M diagonal matrices ΘF = (I + A)−1A and ΘB = (I − A)−1A
are introduced,

(ΘF )ab = ϑF (pa) δab ; (ΘB)ab = ϑB(pa) δab , (22)

and “Fermi” and “Bose” weights ϑF,B are

ϑF,B(p) =
1

exp[βε(pa)]± 1
. (23)

The difference between Θ and Θ̄ is just as the one between A and Ā. All the
mean values entering representation (14) for the correlators were obtained in
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[14] under the form 〈O〉N ∼ det
N
[MN ], where the N × N matrix MN (in

general case nondiagonal) possesses matrix elements

(MN)ij = M(pi, pj) ; i, j = 1, ..., N ; (24)

one can then build trivially from it the two M ×M matrices M and M̄. It
is then obvious from (14) that

〈O〉(M)

T
=

1

Z

[
1

2
(detM [I + AM] + detM [I − AM]) +

1

2
(detM [I + ĀM̄]− detM [I − ĀM̄])

]
=

=
1

2Z
(Z1detM [I + ΘF (M− I)] + Z2detM [I −ΘB(M− I)] +

+Z3detM [I + Θ̄F (M̄ − I)]− Z4detM [I − Θ̄B(M̄ − I)]) . (25)

Taking the expression for the corresponding matrices M from paper [14], one

obtains the temperature correlators on the finite lattice. For g
(M)

0 (α, m, h, T )
(see (11)),

〈exp[αQ(m)]〉
N

= det
N
[M(m)] ; (26)

[M(m)]i,j = δij(1 + γ
m

M
) + (1− δij)

γ

M

sin m
2
(pi − pj)

sin 1
2
(pi − pj)

,

(here γ ≡ eα − 1), and one gets

g
(M)

0 (α, m, h, T ) =
1

2Z
(Z1detM [I + ΘF N ] + Z2detM [I −ΘBN ]+

+Z3detM [I + Θ̄F N̄ ]− Z4detM [I − Θ̄BN̄ ]
)

,(27)

where N is the M ×M matrix defined as

Nab = δab
γm

M
+ (1− δab)

γ

M

sin m
2
(pa − pb)

sin 1
2
(pa − pb)

(28)

For the time dependent correlators (12),(13), applying the same proce-
dure, one gets

g
(M)

+ (m, t, T ) = e−2iht 1

Z

[(
g(m, t) +

∂

∂x

)
·

(
Z1det

M
[I + ΘF S − xΘF R(+)]+

+Z2det
M

[I −ΘBS + xΘBR(+)]
)

+
(
ḡ(m, t) +

∂

∂x

)
·

(
Z3det

M
[I + Θ̄F S̄ − xΘ̄F R̄(+)]−

−Z4det
M

[I − Θ̄BS̄ + xΘ̄BR̄(+)]
) ]

x=0
(29)
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and

g
(M)

− (m, t, T ) = e2iht 1

Z

∂

∂x

[
Z1det

M
[I + ΘF S + xΘF R(−)] + Z2det

M
[I −ΘBS − xΘBR(−)] +

+Z3det
M

[I + Θ̄F S̄ + xΘ̄F R̄(−)]− Z4det
M

[I − Θ̄BS̄ − xΘ̄BR̄(−)]
]
x=0

.(30)

Here matrix elements of M ×M matrices S = S(m, t), R(+) = R(+)(m, t)
and R(−) = R(−)(m, t) are

Sab = δab [d(m, t, pa) exp [−impa − 4it cos pa]− 1] +

+ (1− δab)
e+(m, t, pa)e−(m, t, pb)− e−(m, t, pa)e+(m, t, pb)

M tan 1
2
(pa − pb)

−

− 1

M
g(m, t)e−(m, t, pa)e−(m, t, pb) ;

R
(+)
ab =

1

M
e+(m, t, pa)e+(m, t, pb) ;

R
(−)
ab =

1

M
e−(m, t, pa)e−(m, t, pb) . (31)

Functions e± are defined as

e−(m, t, pa) ≡ exp
[
−im

2
pa − 2it cos pa

]
,

e+(m, t, pa) ≡ e−(m, t, pa)e(m, t, pa) , (32)

and functions g, e, d are given as the sums:

g(m, t) ≡ 1

M

∑
q

exp [imq + 4it cos q] , (33)

e(m, t, pa) ≡ 1

M

∑
q

exp [imq + 4it cos q]

tan 1
2
(q − pa)

, (34)

d(m, t, pa) ≡ 1

M2

∑
q

exp [imq + 4it cos q]

sin2 1
2
(q − pa)

, (35)

where pa = 2π
M

(−M+1
2

+ a), a = 1, ...,M (“even sector”, see (6)). The sums
over q’s in the definition of functions g, e, d, are taken over all “odd” q’s.

Matrix elements of M × M matrices S̄ = S̄(m, t), R̄(+) = R̄(+)(m, t)
and R̄(−) = R̄(−)(m, t) have analogous expression in terms of ḡ, ē, d̄, with
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pa = 2π
M

(−M
2

+ a), a = 1, ...,M (“odd sector”, see (6)). Now the sums over
q’s in the definition of functions ḡ, ē, d̄ are taken over all “even” q’s.

The thermodynamic limit of all the previous formulas is quite obvious as
soon as we recognize that for a given operator O (see eq. (25)), when we
send M to ∞, the distinction between the two sets of possible quasimomenta
(“even” and “odd”) disappears, and Z3 −→ Z1, Z4 −→ Z2 and M̄ −→ M;
in this limit only one determinant survives, which is just the Fredholm deter-
minant of the corresponding linear operator. This is, of course, in complete
correspondence with the general theorem for the Bethe Ansatz solvable mod-
els [18, 19]. It was, in fact, how the Fredholm determinant representations
in [13, 14] were obtained.

4 2N̄-point Correlation Functions

We want now to present some new results for 2N̄ -point correlators of opera-
tors σ+, σ−.

As shown in [14], correlators can be expressed (on the finite lattice and at
zero temperature) as determinants of some matrices. In this case correlators
are nothing else but diagonal elements of the corresponding operators. But it
is easy to repeat the steps performed in [14] to compute non diagonal elements
of the previous operators, similarly to the case of the impenetrable bosons
[2, 20]. This in turn allows to compute multi-point correlation functions of
the kind:

〈σ+(n2N̄ , t2N̄)σ−(n2N̄−1, t2N̄−1)...σ+(n2, t2)σ−(n1, t1)〉N (36)

as

exp[−2ih
N̄∑

α=1

(t2α− t2α−1)] ·
N̄∏

α=1

[g(n2α−n2α−1, t2α− t2α−1)+
∂

∂zα

] ·detN [K]zα=0

(37)
with

Kab = K(pa, pb) =
∑

qN̄−1

...
∑
q1

 N̄∏
α=1

K̃α(qα, qα−1)

 , (38)

where q0 = pa, qN̄ = pb and

K̃α(qα, qα−1) = exp[−4it2α cos qα − in2αqα + 4it2α−1 cos qα−1 + in2α−1qα−1] ·

8



·{δqα,qα−1 [d(mα, τα, qα)− 1

M
g(mα, τα)] +

+(1− δqα,qα−1)[
1

M

e(mα, τα, qα)− e(mα, τα, qα−1)

tan 1
2
(qα − qα−1)

− 1

M
g(mα, τα)]−

− zα

M
e(mα, τα, qα)e(mα, τα, qα−1)} (39)

with mα ≡ n2α − n2α1 , τα ≡ t2α − t2α−1.
Going to the case of finite temperature, the previous formula generalizes

in an obvious way to the following

〈σ+(n2N̄ , t2N̄)σ−(n2N̄−1, t2N̄−1)...σ+(n2, t2)σ−(n1, t1)〉
(M)

T
= (40)

= e−2ih
∑N̄

α=1
τα {

N̄∏
α=1

[g(mα, τα) +
∂

∂zα

] ·
(

Z1

Z
detM [I + ΘF K ′] +

Z2

Z
detM [I −ΘBK ′]

)
+

+
N̄∏

α=1

[ḡ(mα, τα) +
∂

∂zα

] ·
(

Z3

Z
detM [I + Θ̄F K̄ ′]− Z4

Z
detM [I − Θ̄BK̄ ′]

)
}zα=0

where K ′
papb

=Kpapb
− δpa,pb

, K̄ ′
papb

=K̄papb
− δpa,pb

, are M ×M matrices and
Kpapb

has been defined in equations (38),(39). The difference between barred
and unbarred matrices is in the sector (“even” or “odd”) to which belong the
quasimomenta pa, pb, as specified in (19-20).

The thermodynamic limit is performed in straightforward way (see com-
ment at the end of section 2). At zero temperature we obtain

〈σ+(n2N̄ , t2N̄)σ−(n2N̄−1, t2N̄−1)...σ+(n2, t2)σ−(n1, t1)〉 =

= e−2ih
∑N̄

α=1
τα

N̄∏
α=1

[G(mα, τα) +
∂

∂zα

] · det[W ]zα=0 . (41)

Here now det[W ] is the Fredholm determinant of linear integral operator W
acting on functions f(q) on interval [−kF , kF ] according to the rule:

(Wf)(p) =
1

2π

∫ kF

−kF

dq W (p, q)f(q) (42)

with kernel W (p, q) given as

W (p, q) =
∫ π

−π

dqN̄−1

2π
...

∫ π

−π

dq1

2π

 N̄∏
α=1

[δ(qα − qα−1) + W̃α(qα, qα−1)]

 , q0 ≡ q , qN̄ ≡ p ,

(43)
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and

W̃α(qα, qα−1) = exp[−4it2α cos qα − in2αqα + 4it2α−1 cos qα−1 + in2α−1qα−1] ·

·
{

E(mα, τα, qα)− E(mα, τα, qα−1)

tan 1
2
(qα − qα−1)

−G(mα, τα)− zαE(mα, τα, qα)E(mα, τα, qα−1)

}
.(44)

At finite temperature, in the thermodynamic limit, we get instead:

〈σ+(n2N̄ , t2N̄)σ−(n2N̄−1, t2N̄−1)...σ+(n2, t2)σ−(n1, t1)〉T =

= e−2ih
∑N̄

α=1
τα

N̄∏
α=1

[G(mα, τα) +
∂

∂zα

] · det[W
T
]zα=0 . (45)

Here now det[W
T
] is the Fredholm determinant of linear integral operator

W
T

acting on functions f(q) on interval [−π, π] according to the rule:

(W
T
f)(p) =

1

2π

∫ π

−π
dq W

T
(p, q)f(q) (46)

with kernel W (p, q) given as

W
T
(p, q) = δ(p− q) + ϑ(p)[W (p, q)− δ(p− q)] (47)

In previous formulae functions G(m, t) and E(m, t, q) are the thermodynamic
limit version of corresponding functions g(m, t), e(m, t, q) defined in (33-34):

G(m, t) =
1

2π

∫ π

−π
dp exp [imp + 4it cos p] ; (48)

E(m, t, q) =
1

2π
P

∫ π

−π
dp

exp [imp + 4it cos p]

tan 1
2
(p− q)

. (49)

Going to the unit circle in the complex plane through the mapping

p → µ = eip (50)

it is possible to express the kernel of integral operator W̃ in the form

1

µ− λ

2∑
j

fj(µ)f̃j(λ) . (51)

Integral operators with kernels like (51) form an infinite dimensional group
[21]. This makes it possible to perform explicitly the operator product in

(43) representing the kernel of integral operators W
(2N̄)

as

W
(2N̄)

(µ, λ) = δ(µ− λ) +
1

µ− λ

2N̄∑
j

fj(µ)f̃j(λ) . (52)
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5 Second moment of correlator g+(m, t) at fi-

nite T and h

The spectral density of emission intensity in the case of Frenkel excitons
system is given by

Iem(ω) =
1

2π

∑
i,j

∫ +∞

−∞
dte−iωt〈σ+(i, 0)σ−(j, t)〉 . (53)

Defining as usual the Kubo relaxation function [22] as

RA(t) ≡
∫ β

0
dλ〈A+(0)A(t + iλ)〉 , A(t) =

∑
i

σ−(i, t) , (54)

with its Fourier transform given by

R̃A(ω) =
1− eβω

ω
Iem(ω) , (55)

and the normalized Kubo function

Ξ0(ω) ≡ R̃A(ω)

RA(t = 0)
, (56)

the nth-moment 〈ωn〉 is given by:

〈ωn〉 ≡
∫ ∞

−∞
dω ωnΞ0(ω) (57)

and can be worked out explicitely as

〈ωn〉 =
(−1)n

RA(t = 0)
· 〈[[...[[A, H], H]..., H], A+]〉 (n commutators) , (58)

where the odd moments vanish because of the even character of R(t) and
Ξ0(t).

The relevance of the moments is due to the fact they are experimentally
accessible. Moreover the calculation of Ξ0(t) and consequently I(ω) can be
performed starting from the short time expansion of Ξ0(t)

Ξ0(t) = 1− 1

2
〈ω2〉t2 +

1

4!
〈ω4〉t4 + ... (59)
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or better by the continued fraction expansion of its Laplace transform [23,
24, 25]:

Ξ0(z) =
1

z + δ1
z+

δ2
...

(60)

where the δn’s are related to the frequency moments, i.e.

δ1 =
〈ω2〉
〈ω0〉

, δ2 =
〈ω4〉
〈ω2〉

− 〈ω2〉
〈ω0〉

. (61)

In our case we obtain for the second moment of the spectral density of emis-
sion intensity

〈ω2〉 =
1

RA(t = 0)
· [4〈σ+(m)σ−(m + 1)〉T + 4〈σ−(m)σ+(m + 1)〉T +

+2h〈σz(m)〉T − 4〈σz(m)σz(m + 1)〉T ] . (62)

The previous expression can be given a very explicit form. Since it involves
only first neighbour correlators, the latter are essentially determinant of op-
erators of the form “Identity + 1-dimensional projector” and can be easily
reduced to traces. Let us work out in detail 〈σ+(m)σ−(m + 1)〉; using re-
lation(6.23) of Ref. [14], we immediately get (on the finite lattice at zero
temperature):

〈σ+(m)σ−(m + 1)〉N =
∂

∂z
detN [s̃ + zr+]z=0

=
∂

∂z
detN [δab + zfafb]z=0 (with fa =

1√
M

e−
i
2
pa)

= Tr[fafb]

=
1

M

N∑
a=1

e−ipa (63)

and in the thermodynamic limit at finite T

〈σ+(m)σ−(m + 1)〉T = 〈σ−(m)σ+(m + 1)〉T =
1

2π

∫ π

−π
dq ϑ(q) cos q . (64)

Analogously,

〈σz(m)σz(m + 1)〉T = (〈σz〉T )2 − 4 |〈σ+(m)σ−(m + 1)〉T |2 , (65)

〈σz〉T = 1− 1

π

∫ π

−π
dq ϑ(q) . (66)

Higher moments can be calculated in the same way.
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