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Abstract. Using a manifestly supersymmetric formalism, we determine the general structure of
two- and three-point functions of the supercurrent and the flavour current ofN = 2 superconformal
field theories. We also express them in terms ofN = 1 superfields and compare to the generic
N = 1 correlation functions. A general discussion of theN = 2 supercurrent superfield and
the multiplet of anomalies and their definition as derivatives with respect to the supergravity
prepotentials is also included.
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1. Introduction

Superconformal field theories in various dimensions have been intensively studied for many
years. The conjecture of Maldacena [1], which in its simplest form relatesN = 4 super-Yang–
Mills theory in four-dimensional Minkowski space toN = 8 supergravity in five-dimensional
anti-de Sitter space has led to a renewed interest in superconformal field theories in diverse
dimensions with maximal and less than maximal supersymmetry. Here we will be interested
in N = 2 genericsuperconformally invariant theories. Particular examples can be realized as
world-volume theories on D3 branes in the presence of D7 branes [2]. These theories have also
been studied in the context of the Maldacena conjecture [3]. A more general interest inN = 2
supersymmetric theories, not necessarily conformally invariant, arises within the context of
Seiberg–Witten theory and its string/M-theory realization. For reviews, see, e.g., [4–6].

A general efficient formalism to analyse correlation functions of quasi-primary fields
has been developed since the early days of conformal field theory. Some important recent
contributions have been provided by Osborn and collaborators. We refer to their papers:
to [7, 8] for the non-supersymmetric case in an arbitrary number of dimensions. A complete
analysis of theN = 1 supersymmetric case ind = 4 was presented in [9] (see also [10]). In [11]
Park constructed the building blocks of correlators of quasi-primary fields for arbitraryN in
four dimensions and for(p, 0) superconformal symmetry ind = 6. The formalism is powerful
for applications whenever there exist off-shell superfield formulations for superconformal
theories, and such formulations are known in four dimensions forN = 1, 2, 3.

In this paper we are going to analyse correlation functions of conserved currents inN = 2,
d = 4 superconformal field theory in a manifestlyN = 2 supersymmetric language. To this
end we review in section 2 the formalism of Osborn and Park, specializing to the case ofN = 2.
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In section 3 we apply this to the computation of various two- and three-point correlation
functions, involving theN = 2 supercurrentJ and flavour currentsLij . The three-point
function of the supercurrent is shown to be the sum of two linearly independent superconformal
structures whose coefficients are related to the anomaly coefficients, denoted bya andc in
[12]. Whereas forN = 1 there exist two independent structures for the three-point function of
the flavour current, there is only one forN = 2. This is a consequence of the fact thatN = 2
theories are non-chiral. We also analyse mixed three-point functions and, in particular, show
that the three-point function〈JJLij 〉 vanishes, as a consequence ofN = 2 superconformal
symmetry. In section 4 we describe the reduction of our results toN = 1 superfields. The main
body of the paper ends with a brief discussion. We have included a few technical appendices
to make the paper self-contained. In appendix A we review the Weyl and the minimal
N = 2 supergravity multiplets in harmonic superspace and present a new parametrization
of the supergravity prepotential (it was sketched already in part by Siegel [13]) which is most
convenient for any consideration involving the supercurrent and the multiplet of anomalies.
In appendix B we describe the procedure to generate the supercurrent and the multiplet of
anomalies as functional derivatives with respect to supergravity prepotentials. In appendix C
we compute the supercurrent and the multiplet of anomalies for general renormalizableN = 2
super-Yang–Mills models.

The multiplets of currents and anomalies forN = 2 extended supersymmetry in four
spacetime dimensions were introduced by Sohnius [14] 20 years ago. He considered the
simplestN = 2 supersymmetric model—the hypermultiplet with 8 + 8 off-shell degrees of
freedom [15], and showed that the energy–momentum tensor2mn belongs to a supermultiplet
(called, by analogy withN = 1 SUSY [16], theN = 2 supercurrent) which (a) in addition,
contains theSU(2) R-currentj (ij)m , the axial currentj (R)m , theN = 2 supersymmetry currents
j i
mα̂

, whereα̂ = α, α̇, the central charge currentcm as well as some auxiliary components of
lower dimension; (b) is described by a real scalar superfieldJ (z) of mass dimension two. The
central charge current is also part of the multiplet of anomalies which contains in addition2m

m,
∂mj (R)m and(γ mj im)α̂ along with an auxiliary triplet. The multiplet of anomalies is described
by a real isotriplet superfieldT (ij)(z), T ij = Tij , which is subject to the constraint

D(i
α T jk) = D̄(i

α̇ T jk) = 0 (1.1)

whereDA = (∂a,D
i
α, D̄

α̇
i ) are theN = 2 supersymmetric covariant derivatives,i = 1, 2.

BothJ andT ij turn out to be invariant with respect to the central charge transformations. The
supercurrent conservation law reads

1
4D

ijJ + iT ij = 0 ⇐⇒ 1
4D̄

ijJ − iT ij = 0 (1.2)

whereDij = Dα(iD
j)
α , D̄ij = D̄

(i
α̇ D̄

j)α̇. The constraint (1.1) means thatT ij is a so-called
N = 2 linear multiplet. Such a multiplet contains a conserved vector and the reality condition
for T ij is equivalent to the absence of the second (fundamental) central charge (which is the
case for allN = 2 irreducible supermultiplets).

A nice feature of theN = 2 multiplet of anomalies is that its supersymmetric structure
is completely analogous to that of aN = 2 superfield containing a conserved flavour current
of aN = 2 supersymmetric field theory. Such a flavour current superfieldL(ij)(z), Lij = Lij
satisfies the same constraint,

D(i
α Ljk) = D̄(i

α̇ Ljk) = 0. (1.3)

The similarity is not accidental. The point is thatLij is generated by coupling matter
hypermultiplets to a gauge vector supermultiplet. On the other hand, the source forT ij is
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a vector multiplet which gauges the central charge and belongs to theN = 2 supergravity
multiplet.

The structure of theN = 2 supercurrent has been used by Sohnius and West [17, 18] in
their proof of finiteness of theN = 4 SYM theory which was based on anomaly considerations.
It is worth pointing out that the supercurrent conservation law in quantumN = 2 super-Yang–
Mills theories [19] (see also [20])

DijJ = −1

3

β(g)

g
D̄ij W̄ 2 (1.4)

can be brought to the form (1.2) by a finite local shift ofJ , resulting in

DijJ = 1

3

β(g)

g

(
DijW 2 − D̄ij W̄ 2

)
. (1.5)

HereW is theN = 2 Yang–Mills field strength, andβ(g) is the beta-function of the gauge
coupling constant.

Another consequence of the structure of theN = 2 supercurrent follows from the fact that
J presents itself as the multiplet of superconformal currents. Then, Noether’s procedure tells
us thatN = 2 conformal supergravity should be described by a real scalar prepotentialG(z)

[21, 22] to which the matter supercurrent is coupled. In appendix A.1 we will show how such
a prepotential arises in the harmonic superspace approach toN = 2 conformal supergravity
[23, 24]. This point requires some comments. Many years ago, Gates and Siegel [25] showed
that the first minimalN = 2 Poincaŕe supergravity (in the terminology of the third reference in
[26]) is described, at the linearized level, by a single unconstrained spinor superfield9αi(z)†.
Their conclusion is in perfect agreement with the fact that (a) the corresponding superspace
differential geometry [27] contains two independent strengths—a covariantly chiral symmetric
bi-spinorWαβ (N = 2 super-Weyl tensor) and a spinorTαi ; (b) the supergravity equation of
motion reads

δSsugra

δ9αi
∝ T αi = 0. (1.6)

In [25] it was argued thatN = 2 conformal supergravity should be described by the same
prepotential9αi but with a larger gauge freedom. This led Gateset al [30] to postulate that
theN = 2 supercurrent be a spinor superfield

J iα =
δSmatter

δ9α
i

. (1.7)

As will be described below, this puzzle can be resolved in the harmonic superspace approach to
N = 2 supergravity [23, 24]. There, the prepotentialG is part of a larger harmonic multiplet
G(z, u) with a huge gauge symmetry. The gauge freedom can be fixed in part either to leave
a single real unconstrainedG(z), the leading component ofG(z, u) in its harmonic Fourier
expansion, or to bringG(z, u) to the form

G(z, u) = Dαi9j
α(z)u

+
i u
−
j + conjugate (1.8)

with 9αi(z) the Gates–Siegel prepotential. Therefore, we haveJ iα = Di
αJ for all

(renormalizable)N = 2 matter systems. The details of this discussion are provided in
appendices A and C.

Manifestly supersymmetric techniques to study the quantum dynamics and to compute the
superconformal anomalies forN = 2 matter systems in a supergravity background are not yet

† The harmonic superspace origin of this prepotential has been revealed recently by Zupnik [29].
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available. Inx-space, there exists an exhaustive description of generalN = 2 supergravity–
matter systems [26, 28]. In superspace, there exist elaborated differential geometry formalisms
[27, 31, 32] corresponding toN = 2 conformal supergravity and the three known versions of
N = 2 Poincaŕe supergravity. Moreover, the unconstrained prepotentials and the gauge
group ofN = 2 conformal supergravity were found in harmonic superspace [23, 24], and this
analysis was extended to describe different versions ofN = 2 Poincaŕe supergravity [24, 33]
and most general supersymmetric sigma models in curved harmonic superspace [34]. What
is still missing is the detailed relationship between the differential superspace geometry of
N = 2 supergravity [27, 31, 32] and its description in terms of the unconstrained prepotentials
given in [23, 24]. Another missing prerequisite is the definition of theN = 2 supercurrent
and multiplet of anomalies as the response of theN = 2 matter action (in the full nonlinear
theory) to small disturbances in supergravity prepotentials, similar to what is well known in
N = 1 supersymmetry (see [35] for a review)

Jαα̇ = δS

δHαα̇
, T = δS

δϕ
; (1.9)

hereHαα̇ andϕ are theN = 1 gravitational superfield and chiral compensator, respectively.
Such a definition is of primary importance, since it allows us to compute correlators with
supercurrent insertions simply as functional derivatives of the renormalized effective action
with respect to supergravity prepotentials. In the appendices we will close some of these gaps.
In particular, using the harmonic superspace approach toN = 2 supergravity [23, 24], which
we briefly review, we introduce a new parametrization of the supergravity prepotentials which
allows us to easily obtain theN = 2 analogue of (1.9).

Before closing this introductory section, we would like to comment on theN = 1
multiplets contained inJ and T ij (see also [30]). For that purpose we introduce the
N = 1 spinor covariant derivativesDα ≡ D

1
α, D̄α̇ ≡ D̄α̇

1 and define theN = 1 projection

U | ≡ U(x, θαi , θ̄ jα̇ )|θ2=θ̄2=0 of an arbitraryN = 2 superfieldU . It follows from (1.1) and (1.2)
thatJ is composed of three independentN = 1 multiplets

J ≡ J | = J̄ , Jα ≡ D2
αJ |, Jαα̇ ≡ 1

2[D2
α, D̄α̇2]J | − 1

6[D1
α, D̄α̇1]J | = J̄αα̇

(1.10)

while T contains two independentN = 1 components

T ≡ iT 22|, D̄α̇T = 0

L ≡ iT 12| = L̄, D̄2L = 0
(1.11)

whereT is a chiral superfield andL is a real linear superfield. It is easy to find the equations
for J , Jα andJαα̇:

1
4D̄

2J = T
1
4D

αJα = −L, D̄2Jα = 0

D̄α̇Jαα̇ = 2
3 DαT .

(1.12)

The latter equation shows thatJαα̇ is theN = 1 supercurrent andT the corresponding multiplet
of anomalies. The spinor objectJα contains the second supersymmetry current, the central
charge current and two of the threeSU(2) currents, namely those which correspond to the
symmetries belonging toSU(2)/U(1). Finally, the scalarJ contains the current corresponding
to the special combination of theN = 2U(1) R-transformation andSU(2) z-rotation which
leavesθ1 and θ̄1 invariant. The central charge current is also contained inL, which is no
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accident. InN = 1 supersymmetry, associated with any internal symmetry is a real linear
superfield containing the corresponding conserved current;L is such a superfield for the central
charge. Similarly, in a superconformal theory (T ij = 0) the real scalarJ becomes a linear
superfield and, hence, contains a conserved current.

2. Superconformal building blocks

2.1. Superconformal Killing vectors

In N -extended global superspaceR4|4N parametrized byzA = (xa, θαi , θ̄
i
α̇), infinitesimal

superconformal transformations

zA −→ zA + ξA (2.1)

are generated by superconformal Killing vectors [19, 35–37]

ξ = ξ = ξa(z)∂a + ξαi (z)D
i
α + ξ̄ iα̇(z)D̄

α̇
i (2.2)

defined to satisfy

[ξ,Di
α] ∝ Dj

β. (2.3)

From here one obtains

ξαi = − 1
8iD̄β̇iξ

β̇α, D̄β̇j ξ
α
i = 0 (2.4)

while the vector parameters satisfy the master equation

Di
(αξβ)β̇ = D̄i(α̇ξββ̇) = 0 (2.5)

implying, in turn, the conformal Killing equation

∂aξb + ∂bξa = 1
2ηab∂cξ

c. (2.6)

The general solution of equation (2.5) was given in [35] forN = 1 and in [11] forN > 1.
From equations (2.4) and (2.5) it follows

[ξ,Di
α] = −(Di

αξ
β

j )D
j

β = ω̂αβDi
β −

1

N
(
(N − 2)σ + 2σ̄

)
Di
α − i3̂j

iDj
α. (2.7)

Here the parameters of ‘local’ Lorentẑω and scale-chiralσ transformations are

ω̂αβ(z) = − 1

N
Di
(αξβ)i , σ (z) = 1

N (N − 4)

(
1
2(N − 2)Di

αξ
α
i − D̄α̇

i ξ̄
i
α̇

)
(2.8)

and turn out to be chiral

D̄α̇i ω̂αβ = 0, D̄α̇iσ = 0. (2.9)

The parameterŝ3j
i

3̂j
i(z) = − 1

32

(
[Di

α, D̄α̇j ] − 1

N
δj
i [Dk

α, D̄α̇k]

)
ξ α̇α, 3̂† = 3̂, tr 3̂ = 0 (2.10)

correspond to ‘local’SU(N ) transformations. One can readily check the identity

Dk
α3̂j

i = 2i

(
δkjD

i
α −

1

N
δijD

k
α

)
σ. (2.11)
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ForN = 2 it leads to the analyticity condition

D(i
α 3̂

jk) = D̄(i
α̇ 3̂

jk) = 0, (N = 2). (2.12)

As is seen from (2.8), the above formalism cannot be directly applied to the case ofN = 4
which is treated in more detail, for example, in [11]. In what follows, our considerations will
be restricted toN < 4, with a special emphasis on the choiceN = 2 later on.

The superalgebra ofN -extended superconformal Killing vectors is isomorphic to the
superalgebrasu(2, 2|N ) spanned by elements of the form

g =


ωα

β −1δαβ −ibαβ̇ 2ηαj

−iaα̇β −ω̄α̇ β̇ + 1̄δα̇ β̇ 2ε̄α̇j

2εiβ 2η̄iβ̇
2

N
(1̄−1)δij + i3i

j

 (2.13)

which satisfy the conditions

strg = 0, Bg†B = −g, B =

 0 1 0

1 0 0

0 0 −1

. (2.14)

Here the matrix elements correspond to a Lorentz transformation(ωα
β, ω̄α̇ β̇ ), translation

aα̇α, special conformal transformationbαα̇, Q-supersymmetry(εαi , ε̄
α̇i ), S-supersymmetry

(ηiα, η̄iα̇), combined scale and chiral transformation1 and chiralSU(N ) transformation3i
j .

They are related to the parameters of the superconformal Killing vector as follows:

ωα
β = ω̂αβ(z = 0), 1 = σ(z = 0), 3i

j = 3̂i
j (z = 0),

am = ξm(z = 0), εαi = ξαi (z = 0),
(2.15)

and so on. For such a correspondence,ξ −→ g, we have

[ξ1, ξ2] −→ −[g1, g2]. (2.16)

It is useful to identify Minkowski superspace as a homogeneous space of the
superconformal groupSU(2, 2|N ) using the above matrix realization

�(z) = exp i
{−xaPa + θαi Q

i
α + θ̄ iα̇Q̄

α̇
i

} =
 δα

β 0 0

−ixα̇β+ δα̇ β̇ 2θ̄ α̇j

2θiβ 0 δi
j

 (2.17)

wherex∓ denote ordinary (anti-)chiral bosonic variables

xa± = xa ± iθiσ
aθ̄ i . (2.18)

One verifies that

g�(z) = ξ�(z) +�(z)h(z),

where

h(z) =


ω̂α

β − σδαβ −ibαβ̇ 2η̂αj

0 − ˆ̄ωα̇β̇ + σ̄ δα̇ β̇ 0

0 2ˆ̄ηiβ̇
2

N
(σ̄ − σ)δij + i3̂i

j

 (2.19)

belongs to the Lie algebra of the stability group. Hereη̂ is

η̂α
i(z) = 1

2D
i
ασ(z). (2.20)

This should be interpreted within the framework of nonlinear realizations.
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2.2. Two-point structures

Given two pointsz1 andz2 in superspace, it is useful to introduce (anti-)chiral combinations

xa
1̄2
= −xa

21̄
= xa1− − xa2+ + 2iθ2iσ

aθ̄ i1

θ12 = θ1− θ2 θ̄12 = θ̄1− θ̄2

(2.21)

which are invariants of theQ-supersymmetry transformations (the notation ‘x1̄2’ indicates that
x1̄2 is antichiral with respect toz1 and chiral with respect toz2). As a consequence of (2.19),
they transform semi-covariantly with respect to the superconformal group

δxα̇α
1̄2
= −

(
ˆ̄ωα̇β̇(z1)− δα̇ β̇ σ̄ (z1)

)
x
β̇α

1̄2
− xα̇β

1̄2

(
ω̂β

α(z2)− δβασ (z2)
)

δθα12i = i
(
3̂i

j (z1) +
2

N
(σ̄ (z1)− σ(z1)) δi

j
)
θα12j − i ˆ̄ηβ̇i(z1)x

β̇α

1̄2

−θβ12i

(
ω̂β

α(z2)− δβασ (z2)
) (2.22)

Following [11], it is useful to introduce a conformally covariantN ×N matrix†

ui
j (z12) = δij − 4i

θ12ix1̄2θ̄
j

12

x1̄2
2
= δij + 4iθ12i x̃1̄2

−1θ̄
j

12 (2.23)

with the basic properties

u†(z12)u(z12) = 1, u−1(z12) = u(z21), detu(z12) = x1̄2
2

x2̄1
2
. (2.24)

In accordance with (2.22), the unimodular unitary matrix

ûi
j (z12) =

(
x2̄1

2

x1̄2
2

)1/N

ui
j (z12) (2.25)

transforms as

δûi
j (z12) = i3̂i

k(z1)ûk
j (z12)− iûi

k(z12)3̂k
j (z2). (2.26)

2.3. Three-point structures

Given three superspace pointsz1, z2 andz3, one can define superconformally covariant bosonic
and fermionic variablesZ1,Z2 andZ3, whereZ1 = (Xa

1 ,2
αi
1 , 2̄

α̇
1 i ) are [9, 11]

X1 ≡ x̃12̄
−1x̃2̄3x̃31̄

−1, X̄1 = X†
1 = −x̃13̄

−1x̃3̄2x̃21̄
−1

2̃i
1 ≡ i

(
x̃2̄1
−1θ̄ i12− x̃3̄1

−1θ̄ i13

) = 1
4D̃

i
1 ln

x2̄1
2

x3̄1
2

˜̄21 i ≡ i
(
θ12i x̃1̄2

−1− θ13i x̃1̄3
−1
) = 1

4
˜̄D1 i ln

x1̄2
2

x1̄3
2

(2.27)

andZ2,Z3 are obtained from here by cyclically permuting indices. These structures possess
remarkably simple transformation rules under superconformal transformations:

δX1αα̇ =
(
ω̂α

β(z1)− δαβσ (z1)
)
X1βα̇ +X1αβ̇

(
ˆ̄ωβ̇ α̇(z1)− δβ̇ α̇σ̄ (z1)

)
δ2i

1α = ω̂αβ(z1)2
i
1β − i2j

1α3̂j
i(z1)− 1

N
(
(N − 2)σ (z1) + 2σ̄ (z1)

)
2i

1α

(2.28)

† We use the notation adopted in [35, 38]. When the spinor indices are not indicated explicitly, the following matrix-

like conventions are assumed [9]:ψ = (ψα), ψ̃ = (ψα), ψ̄ = (ψ̄ α̇), ˜̄ψ = (ψ̄α̇), x = (xαα̇), x̃ = (xα̇α); but
x2 ≡ xaxa = − 1

2 tr(x̃x), and hencẽx−1 = −x/x2.
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and turn out to be essential building blocks for correlations functions of quasi-primary
superfields.

Among important properties ofZ ’s are the following:

X1
2 = x2̄3

2

x2̄1
2x1̄3

2
, X̄1

2 = x3̄2
2

x3̄1
2x1̄2

2

X1αα̇ − X̄1αα̇ = 4i2i
1α2̄1 α̇i

(2.29)

and further relations obtained by cyclic permutation of labels. The variablesZ with different
labels are related to each other:

x̃1̄3X3x̃3̄1 = −X̄1
−1, x̃1̄3X̄3x̃3̄1 = −X1

−1

x̃1̄32̃
i
3ui

j (z31) = −X1
−12̃

j

1, ui
j (z13)

˜̄23j x̃3̄1 = ˜̄21 iX̄1
−1.

(2.30)

With the aid of the matricesu(zrs), r, s = 1, 2, 3, defined in (2.24), one can construct
unitary matrices [11]

u(Z3) = u(z31)u(z12)u(z23), ui
j (Z3) = δij − 4i ˜̄23 iX3

−12̃
j

3

u†(Z3) = u(z32)u(z21)u(z13), u†
i
j (Z3) = δij + 4i ˜̄23 iX̄3

−12̃
j

3

(2.31)

transforming atz3 only. Their properties are

u†(Z3) = u−1(Z3), detu(Z3) = X3
2

X̄3
2
. (2.32)

It is worth noting that detu(Z3) is a superconformal invariant [11] and from (2.29) one
immediately obtains

X1
2

X̄1
2
= X2

2

X̄2
2
= X3

2

X̄3
2
. (2.33)

2.4. Specific features ofN = 2 theory

In the case ofN = 2, we have at our disposal theSU(2)-invariant tensorsεij = −εji and
εij = −εji , normalized toε12 = ε21 = 1. They can be used to raise and lower isoindices

Ci = εijCj , Ci = εijCj . (2.34)

Now, the condition of unimodularity of the matrix defined in (2.25)

ûi
j (z12) =

(
x2̄1

2

x1̄2
2

)1/2

ui
j (z12) (2.35)

takes the form(
û−1(z12)

)
i

j = ûi j (z21) = εjkûk l(z12)εli (2.36)

which can be written as

ûj i(z21) = −ûij (z12). (2.37)

The importance of this relation is that it implies that the two-point function

Ai1i2(z1, z2) ≡ ûi1i2(z12)(
x1̄2

2x2̄1
2
)1/2 = − ûi2i1(z21)(

x1̄2
2x2̄1

2
)1/2

= ui1i2(z12)

x1̄2
2
= −ui2i1(z21)

x2̄1
2

(2.38)
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is analytic inz1 andz2 for z1 6= z2,

D1α(j1Ai1)i2(z1, z2) = D̄1α̇(j1Ai1)i2(z1, z2) = 0. (2.39)

As we will see later,Ai1i2(z1, z2) is a building block of correlation functions of analytic quasi-
primary superfields like theN = 2 flavour current superfields. It is worth noting that unitarity
of û(z12) now implies

ûij (z12) = ûij (z12). (2.40)

The above properties of the matricesûrs , wherer, s = 1, 2, 3, have natural counterparts
for u(Zs), with u(Z3) defined in (2.31). We introduce the unitary unimodular 2× 2 matrix

û(Z3) =
(
X̄3

2

X3
2

)1/2

u(Z3), detû(Z3) = 1, û†(Z3)û(Z3) = 1 (2.41)

with the superconformal transformation law

δûi
j (Z3) = 3̂i

k(z3)ûk
j (Z3)− ûi k(Z3)3̂k

j (z3). (2.42)

Sinceû(Z3) is unimodular and unitary, we have

tr û†(Z3) = tr û(Z3)

û†
ji(Z3) = −ûij (Z3)

(2.43)

and from here one can readily deduce the useful identities

2

(
1

X̄3
2
− 1

X3
2

)
= (X3 · X̄3)

(
1

(X̄3
2)2
− 1

(X3
2)2

)
23(i

X3

(X3
2)2
2̄3j) = 23(i

X̄3

(X̄3
2)2
2̄3j).

(2.44)

3. Correlators ofN = 2 quasi-primary superfields

3.1. Quasi-primary superfields

In N -extended superconformal field theory, a quasi-primary superfieldOAI (z), carrying some
number of undotted and dotted spinor indices, denoted collectively by the superscript ‘A’, and
transforming in a representationT of theR-symmetrySU(N ) with respect to the subscript
‘I ’, is defined by the following infinitesimal transformation law under the superconformal
group:

δOAI (z) = −ξOAI (z) + (ω̂γ δ(z)Mγδ + ˆ̄ωγ̇ δ̇(z)M̄γ̇ δ̇)
A
BOBI (z)

+i3̂k
l(z)(R

l
k)I
JOAJ (z)− 2 (qσ (z) + q̄σ̄ (z))OAI (z). (3.1)

HereMαβ andM̄α̇β̇ are the Lorentz generators which act on the undotted and dotted spinor
indices, respectively, whileRij are the generators ofSU(N ). The parametersq and q̄
determine the dimension(q + q̄) andU(1) R-symmetry charge(q − q̄) of the superfield,
since for a combined scale andU(1) chiral transformation

δxm = λxm, δθαi = 1
2(λ + i�)θαi , δθ̄ iα̇ = 1

2(λ− i�)θ̄ iα̇ (3.2)

we have

σ(z) = 1

2

(
λ + i

N
N − 4

�

)
. (3.3)
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In this paper we are mainly interested in two- and three-point correlation functions of the
supercurrentJ (z) and a flavour current superfieldL(ij)(z) in N = 2 superconformal theory.
The reality conditionJ̄ = J and the supercurrent conservation equation

DijJ = D̄ijJ = 0 (3.4)

uniquely fix the superconformal transformation law ofJ

δJ (z) = −ξJ (z)− 2 (σ (z) + σ̄ (z))J (z). (3.5)

As for the flavour current superfield, the reality conditionLij = Lij and the conservation
(analyticity) equation

D(i
α Ljk) = D̄(i

α̇ Ljk) = 0 (3.6)

fix its transformation law to

δLij (z) = −ξLij (z) + 2i3̂(i
k(z)Lj)k(z)− 2 (σ (z) + σ̄ (z))Lij (z). (3.7)

Similar to theN = 1 consideration of [44], the transformations (3.5) and (3.7) can
also be obtained as invariance conditions with respect to combined diffeomorphisms and
Weyl transformations in the superconformal theory coupled to aN = 2 supergravity
background.

3.2. Two-point functions

According to the general prescription of [9, 11], the two-point function of a quasi-primary
superfieldOI (carrying no Lorentz indices) with its conjugatēOJ reads

〈OI(z1)ŌJ (z2)〉 = CO
TI
J (û(z12)

)
(x1̄2

2)q̄ (x2̄1
2)q

(3.8)

with CO a normalization constant. HereT denotes the representation ofSU(N ) to whichOI
belongs.

For the two-point function of theN = 2 supercurrent, the above prescription leads to

〈J (z1)J (z2)〉 = cJ 1

x1̄2
2x2̄1

2
. (3.9)

Using the identity

D̄1
ij 1

x1̄2
2
= 4iD1

ij δ8
+(z1, z2), (3.10)

whereδ8
+(z1, z2) denotes theN = 2 chiral delta function,

δ8
+(z1, z2) = 1

16D̄
4δ12(z1− z2), D̄4 = 1

3D̄
ij D̄ij , (3.11)

we immediately see that the supercurrent conservation equation is satisfied at non-coincident
points

D1
ij 〈J (z1)J (z2)〉 = D̄1

ij 〈J (z1)J (z2)〉 = 0, z1 6= z2. (3.12)

In this paper we leave aside the analysis of singular behaviour at coincident points, see [9] for
details.
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In the case of two-point function of theN = 2 flavour current superfieldLij , the above
prescription gives

〈Li1j1(z1)Li2j2(z2)〉 = cL ûi1
i2(z12)ûj1

j2(z12) + ûi1
j2(z12)ûj1

i2(z12)

x1̄2
2x2̄1

2
. (3.13)

Because of equation (2.39), the relevant conservation equation is satisfied

D1α(k1〈Li1j1)(z1)Li2j2(z2)〉 = D̄1α̇(k1〈Li1j1)(z1)Li2j2(z2)〉 = 0 (3.14)

for z1 6= z2.

3.3. Three-point functions

According to the general prescription of [9, 11], the three-point function of quasi-primary
superfieldsO(1)I1

,O(2)I2
andO(3)I3

reads

〈O(1)I1
(z1)O(2)I2

(z2)O(3)I3
(z3)〉 =

T (1)I1
J1
(
û(z13)

)
T (2)I2

J2
(
û(z23)

)
(x1̄3

2)q̄1(x3̄1
2)q1(x2̄3

2)q̄2(x3̄2
2)q2

HJ1J2I3(Z3). (3.15)

HereHJ1J2I3(Z3) transforms as an isotensor atz3 in the representationsT (1), T (2) andT (3)

with respect to the indicesJ1,J2 andI3, respectively, and possesses the homogeneity property

HJ1J2I3(11̄X,12, 1̄2̄) = 12a1̄2āHJ1J2I3(X,2, 2̄)

a − 2ā = q̄1 + q̄2 − q3, ā − 2a = q1 + q2 − q̄3.
(3.16)

In general, the latter equation admits a finite number of linearly independent solutions, and
this can be considerably reduced by taking into account the symmetry properties, superfield
conservation equations and, of course, the superfield constraints (chirality or analyticity).

3.3.1. TheN = 2 supercurrent. We are going to analyse the three-point function of the
N = 2 supercurrent for which we should have

〈J (z1)J (z2)J (z3)〉 = 1

x1̄3
2x3̄1

2x2̄3
2x3̄2

2
H(Z3),

H(11̄X,12, 1̄2̄) = (11̄)−2H(X,2, 2̄)

(3.17)

where the real functionH(Z3) has to be compatible with the supercurrent conservation
equation and the symmetry properties with respect to transposition of indices. SinceH(Z3) is
invariant underU(1) × SU(2) R-transformations, we haveH(X3,23, 2̄3) = H ′(X3, X̄3),
as a consequence of (2.29).

When analysing the restrictions imposed by theN = 2 conservation equations, it proves
advantageous, following similarN = 1 considerations in [9], to make use of conformally
covariant operatorsDĀ = (∂/∂Xa

3 ,Dαi, D̄α̇i ) andQĀ = (∂/∂Xa
3 ,Qαi, Q̄α̇i ) defined by

Dαi = ∂

∂2αi
3

− 2i(σ a)αα̇2̄
α̇
3 i

∂

∂Xa
3

, D̄α̇i = ∂

∂2̄3 α̇i

Qαi = ∂

∂2αi
3

, Q̄α̇i
∂

∂2̄3 α̇i
+ 2i2i

3α(σ̃
a)α̇α

∂

∂Xa
3

[DĀ,QB̄} = 0.

(3.18)
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These operators emerge via the relations

D1α
i t (X3,23, 2̄3) = −i(x̃3̄1

−1)αβ̇uj
i(z31)D̄β̇j t (X3,23, 2̄3)

D̄1αi t (X3,23, 2̄3) = −i(x̃1̄3
−1)βα̇ui

j (z13)Dbj t (X3,23, 2̄3)

D2α
i t (X3,23, 2̄3) = i(x̃3̄2

−1)αβ̇uj
i(z32)Q̄β̇j t (X3,23, 2̄3)

D̄2αi t (X3,23, 2̄3) = i(x̃2̄3
−1)βα̇ui

j (z23)Qbj t (X3,23, 2̄3)

(3.19)

wheret (X3,23, 2̄3) is an arbitrary function.
With the aid of these operators, one can prove the identity

D1
αiD1α

j

(
1

x3̄1
2
t (X3,23, 2̄3)

)
= −u

i
k(z13)u

j
l(z13)

(x1̄3
2)2

D̄kα̇D̄α̇l t (X3,23, 2̄3) (3.20)

and similar ones involving the operatorsD̄1ij ,D2
ij andD̄2ij .

Now, the supercurrent conservation equation (3.4) leads to the requirements

DijH(X3,23, 2̄3) = D̄ijH(X3,23, 2̄3) = 0 (3.21)

and to similar ones withD’s −→ Q’s. SinceD̄α̇i andQαi coincide with partial fermionic
derivatives the above equations imply

∂2

∂2i
α∂2

αj
H(X,2, 2̄) = ∂2

∂2̄α̇
i ∂2̄α̇j

H(X,2, 2̄) = 0, (3.22)

and therefore the power series ofH(X,2, 2̄) in the Grassmann variables2 contains only a
few terms.

The general solution forH(Z3) compatible with all the physical requirements on the
three-point function of theN = 2 supercurrent reads

H(X3,23, 2̄3) = A
(

1

X3
2

+
1

X̄3
2

)
+B

2
αβ

3 X3αα̇X3ββ̇2̄
α̇β̇

3

(X3
2)2

(3.23)

where

2
αβ

3 = 2(αβ)

3 = 2αi
3 2

β

3 i , 2̄
α̇β̇

3 = 2̄(α̇β̇)

3 = 2̄α̇
3 i2̄

α̇i
3 (3.24)

andA,B are real parameters. Note that the second structure is nilpotent.
Let us comment on the derivation of this solution. First, it is straightforward to check that

the functionsX3
−2 andX̄3

−2 satisfy equation (3.21). They enterH(Z3) with the same real
coefficient, sinceH must be real and invariant under the replacementz1↔ z2 that acts onX3

andX̄3 byX3 ↔ −X̄3. The second term in (3.23) is a solution to (3.21) due to the special
N = 2 identity

Dij θαβ = D̄ij θ̄ α̇β̇ = 0. (3.25)

It is important to demonstrate that the second term in (3.23) is real, i.e. that

2
αβ

3 X3αα̇X3ββ̇2̄
α̇β̇

3

(X3
2)2

= 2
αβ

3 X̄3αα̇X̄3ββ̇2̄
α̇β̇

3

(X̄3
2)2

. (3.26)

Using the identityX̄a
3 = Xa

3 +2i2i
3σ

a2̄3 i , we first represent̄X3
−2 as a function ofX3,23, 2̄3:

1

X̄3
2
= 1

X3
2
− 4i

2i
3X32̄3 i

(X3
2)2
− 8

2
αβ

3 X3αα̇X3ββ̇2̄
α̇β̇

3

(X3
2)3

. (3.27)

We then apply the same identity to express2i
3X32̄3 i in the second term viaX3 andX̄3. Now,

equation (3.26) follows from (3.27) and the first identity in (2.44).
Using (2.30), one can check that the three-point function (3.17) and (3.23) is completely

symmetric in its arguments.
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3.3.2. Flavour current superfields.Let us turn to the three-point function of flavour current
superfieldsLāij

〈Lāi1j1
(z1)Lb̄i2j2

(z2)Lc̄i3j3
(z3)〉 = ûi1

k1(z13)ûj1
l1(z13)ûi2

k2(z23)ûj2
l2(z23)

x3̄1
2x1̄3

2x3̄2
2x2̄3

2
·Hāb̄c̄

(k1l1)(k2l2)(i3j3)
(Z3),

(3.28)

with

Hāb̄c̄
(k1l1)(k2l2)(i3j3)

(11̄X,12, 1̄2̄) = (11̄)−2Hāb̄c̄
(k1l1)(k2l2)(i3j3)

(X,2, 2̄). (3.29)

Using relations (2.39) and (3.19), the flavour current conservation equations (3.6) are equivalent
to

Dα(i1Hāb̄c̄
k1l1)(k2l2)(i3j3)

(X,2, 2̄) = D̄α̇(i1Hāb̄c̄
k1l1)(k2l2)(i3j3)

(X,2, 2̄) = 0,

Qα(i2Hāb̄c̄
|k1l1|k2l2)(i3j3)

(X,2, 2̄) = Q̄α̇(i2Hāb̄c̄
|k1l1|k2l2)(i3j3)

(X,2, 2̄) = 0.
(3.30)

In particular, sinceD̄α̇i andQαi are just partial Grassmann derivatives, we should have

∂

∂2̄3 α̇
(i1
Hāb̄c̄
k1l1)(k2l2)(i3j3)

(X,2, 2̄) = ∂

∂23α
(i2
Hāb̄c̄
|k1l1|k2l2)(i3j3)

(X,2, 2̄) = 0. (3.31)

The most general form for the correlation function in question is of the form (3.28) with

Hāb̄c̄
(k1l1)(k2l2)(i3j3)

(Z3) = f āb̄c̄ εi3(k1ûl1)(l2(Z3)εk2)j3

(X3
2X̄3

2)1/2
+ (i3←→ j3) (3.32)

with f āb̄c̄ = f [āb̄c̄] a completely antisymmetric tensor, proportional to the structure constants
of the flavour group. In contrast toN = 1 supersymmetry [9], the three-point correlation
function of flavour currents does not admit an anomalous term proportional to an overall
completely symmetric group tensor,dāb̄c̄ = d(āb̄c̄). This is a consequence of the fact that the
N = 2 conservation equations (3.6) do not admit non-trivial deformations; see also below.

3.3.3. Mixed correlators. The three-point function involving twoN = 2 supercurrent
insertions and a flavourN = 2 current superfield, turns out to vanish

〈J (z1)J (z2)Lij (z3)〉 = 0. (3.33)

On general grounds, the only possible expression for such a correlation function compatible
with the conservation equations and reality properties should read

〈J (z1)J (z2)Lij (z3)〉 = P 1

x3̄1
2x1̄3

2x3̄2
2x2̄3

2

û(ij)(Z3)

(X3
2X̄3

2)1/2
(3.34)

with P a real constant. However, the right-hand side is easily seen to be antisymmetric with
respect to the transpositionz1↔ z2 acting asX3↔ −X̄3, and hencêu(ij)(Z3)↔ û†

(ij)(Z3) =
−û(ij)(Z3). Therefore, we must setP = 0.

For the three-point function with two flavour currents and one supercurrent insertion one
finds

〈Lāi1j1
(z1)Lb̄i2j2

(z2)J (z3)〉 = dδāb̄ ûi1
k1(z13)ûj1

l1(z13)ûi2
k2(z23)ûj2

l2(z23)

x3̄1
2x1̄3

2x3̄2
2x2̄3

2

×εk2(k1ûl1)l2(Z3) + εl2(k1ûl1)k2(Z3)

(X3
2X̄3

2)1/2
, (3.35)

whered is a real parameter which can be related, via supersymmetric Ward identities, to the
parametercL in the two-point function (3.13).
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3.4. Example:N = 4 super-Yang–Mills

Let us consider the harmonic superspace formulation forN = 4 super-Yang–Mills theory

S[V ++, q+, q̆+] = 1

2g2
tr
∫

d4x d4θ W 2 − 1

g2
tr
∫

du dζ (−4) q̆+
(
D++ + iV ++

)
q+. (3.36)

Since the hypermultipletq+ belongs to the adjoint representation of the gauge group, we can
unify q+ andq̆+ in an isospinor

q+
ı = (q+, q̆+), q+ ı = εı q+

 = (q̆+,−q+), (q+
ı )̆ = q+ ı (3.37)

such that the action takes the form (with∇ = D++ + iV ++)

S = 1

2g2
tr
∫

d4x d4θ W 2 − 1

2g2
tr
∫

du dζ (−4) q̆+ ı ←→∇ −−q+
ı . (3.38)

This form makes it explicit that the theory manifestly possesses the flavour symmetry
SUF (2), in addition to theN = 2 automorphism groupSUR(2) × UR(1). The full group
SUR(2)×UR(1)× SUF (2) is the maximal subgroup ofSUR(4)—theR-symmetry group of
theN = 4 SYM—which can be made manifest in the framework of theN = 2 superspace
formulation. While the conserved currents forSUR(2)× UR(1) belong to the supercurrent

J = 1

g2
tr
(
W̄W − 1

4q
+ ı ←→∇ −−q+

ı

)
, (3.39)

the currents forSUF (2) belong to the flavour current supermultiplet

L++a(z, u) ∝ iq+ ı (τ a)ı
 q+

 = u+iu+iLaij (z), (3.40)

with τ a the Pauli matrices; here the latter equality is valid on-shell. The fact that〈JJL〉
vanishes identically, whereas〈LLJ 〉 is generically non-zero is now a simple consequence of
group theory. In fact, group theory restricts the structure of the correlation function of three
N = 4 SUR(4) currents to be proportional to tr(tI tJ tK) wheret I is aSUR(4) generator. By
considering the action of theN = 2 UR(1) symmetry, one finds that the correct embedding
uR(1) ⊂ suR(4) is diag(+1,+1,−1,−1). Also suR(2)

⊕
suF (2) ⊂ suR(4) is embedded as

diag(suR(2), suF (2)). The result stated above now follows immediately. Three- and four-point
functions of the flavour currents (3.40) have been computed at two loops in [45].

4. Reduction toN = 1 superfields

From the point of view ofN = 1 superconformal symmetry, anyN = 2 quasi-primary
superfield consists of severalN = 1 quasi-primary superfields. Having computed the
correlation functions ofN = 2 quasi-primary superfields, one can read off all correlators
of theirN = 1 superconformal components.

When restricting ourselves to the subgroupSU(2, 2|1) ∈ SU(2, 2|2), all matrix elements
of h(z) (2.19) withi, j = 2 should vanish, and hence we have to set

3̂1
2 = 3̂2

1 = 0, i3̂1
1 = −i3̂2

2 = σ̄ − σ. (4.1)

Therefore, theN = 1 U(1) R-transformation is a combination ofN = 2 U(1) and special
SU(2) R-transformations.
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Keeping equation (4.1) in mind, from theN = 2 supercurrent transformation law (3.5)
one deduces the transformation of theN = 1 currents (1.10)

δJ = −ξJ − 2 (σ + σ̄ ) J

δJα = −ξJα + ω̂α
βJβ − (3σ + 2σ̄ ) Jα

δJαα̇ = −ξJαα̇ + (ω̂α
βδα̇

β̇ + ¯̂ωα̇β̇δαβ)Jββ̇ − 3(σ + σ̄ ) Jαα̇.

(4.2)

These superconformal transformations are uniquely singled out by the relevant conservation
equations

D2J = D̄2J = 0

DαJα = D̄2Jα = 0

DαJαα̇ = D̄α̇Jαα̇ = 0.

(4.3)

In the case ofN = 2 flavour current superfieldLij , its most interestingN = 1 component
containing the conserved current,

L ≡ iL12| = L̄ (4.4)

satisfies the standardN = 1 conservation equation

D2L = D̄2L = 0, (4.5)

and, therefore, its superconformal transformation rule is similar toJ ,

δL = −ξL− 2 (σ + σ̄ ) L. (4.6)

The sameN = 1 transformation follows from (3.7).

4.1. Two-point functions

Using the explicit form (3.9) of theN = 2 supercurrent two-point function, one can read off
the two-point functions of theN = 1 quasi-primary superfields contained inJ †

〈J (z1)J (z2)〉 = cJ 1

x1̄2
2x2̄1

2
,

〈Jα(z1)J̄β̇ (z2)〉 = 4icJ
(x12̄)αβ̇

x1̄2
2(x2̄1

2)2
,

〈Jαα̇(z1)Jββ̇(z2)〉 = 64

3
cJ
(x12̄)αβ̇(x21̄)βα̇

(x1̄2
2x2̄1

2)2
.

(4.7)

These results are in agreement withN = 1 superconformal considerations [9]. Similarly, the
two-point function of theN = 1 flavour current superfield (4.4) follows from (3.13)

〈L(z1)L(z2)〉 = cL 1

x1̄2
2x2̄1

2
. (4.8)

† Here and below, all building blocks are expressed inN = 1 superspace.
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4.2. Three-point functions

We now present severalN = 1 three-point functions which are encoded in that of theN = 2
supercurrent, given by equations (3.17) and (3.23). First of all, for the leadingN = 1
component ofJ one immediately obtains

〈J (z1)J (z2)J (z3)〉 = A

x1̄3
2x3̄1

2x2̄3
2x3̄2

2

(
1

X3
2

+
1

X̄3
2

)
(4.9)

The second term in (3.23) does not contribute to this three-point function, since2αβ is equal
to zero forθ2 = θ̄2 = 0.

The derivation of three-point functions involving theN = 1 supercurrent is technically
more complicated. In accordance with equation (1.10),Jαα̇ is obtained fromJ by applying
the operator

1αα̇ = 1
2[D2

α, D̄α̇2] − 1
6[D1

α, D̄α̇1] (4.10)

and, then, the Grassmann variablesθ2 and θ̄2 have to be switched off. One can prove the
following useful relations:

〈Jαα̇(z1)J (z2)J (z3)〉 = (x̃13̄
−1)αγ̇ (x̃31̄

−1)γ α̇

x1̄3
2x3̄1

2x2̄3
2x3̄2

2
1(D)

γ γ̇ H(Z3)|,

〈Jαα̇(z1)Jββ̇(z2)J (z3)〉 =
(x̃13̄

−1)αγ̇ (x̃31̄
−1)γ α̇(x̃23̄

−1)βδ̇(x̃32̄
−1)δβ̇

x1̄3
2x3̄1

2x2̄3
2x3̄2

2

×1(D)
γ γ̇ 1(Q)

δδ̇H(Z3)|

(4.11)

whereH(Z3) is given by equation (3.23) and the operators1(D) and1(Q) are constructed in
terms of the conformally covariant derivatives (3.18)

1(D)
αα̇ = 1

2[Dα2 , D̄α̇2] − 1
6[Dα1 , D̄α̇1], 1(Q)

αα̇ = 1
2[Qα2, Q̄α̇2] − 1

6[Qα1, Q̄α̇1]. (4.12)

Direct calculations lead to

〈J (z1)J (z2)Jαα̇(z3)〉 = − 1
12(8A− 3B)

1

x1̄3
2x3̄1

2x2̄3
2x3̄2

2

×
(

2(P3 ·X3)X3αα̇ +X3
2P3αα̇

(X3
2)2

+ (X3↔ −X̄3)

)
, (4.13)

〈Jαα̇(z1)Jββ̇(z2)J (z3)〉 = −4

9
(8A + 3B)

(x13̄)αγ̇ (x31̄)γ α̇(x23̄)βδ̇(x32̄)δβ̇

(x1̄3
2x3̄1

2x2̄3
2x3̄2

2)2

×
(
X3

γ γ̇X3
δδ̇

(X3
2)3

+
1

2

εγ δεγ̇ δ̇

(X3
2)2

+ (X3↔ −X̄3)

)
, (4.14)

with Pa defined by [9]

X̄a −Xa = iPa, Pa = 22σa2̄. (4.15)

Equation (4.14) presents itself a nice consistency check. InN = 1 superconformal
field theory, the three-point function〈Jαα̇Jββ̇L〉 of two supercurrents with one flavour current
superfieldL is uniquely determined up to an overall constant [9]. AnyN = 2 superconformal
field theory, considered as a particularN = 1 superconformal model, possesses a special
flavour current superfield,L = J . Therefore, the only possible arbitrariness in the structure of
the correlation function〈Jαα̇Jββ̇J 〉 is an overall constant. However,J andJαα̇ are parts of the
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N = 2 supercurrentJ , and hence the three-point function〈Jαα̇Jββ̇J 〉 follows from 〈JJJ 〉.
Since the latter contains two linearly independent forms, given in equation (3.23), there are
two possibilities: (a) either theA- or B-term in (3.23) does not contribute to〈Jαα̇Jββ̇J 〉; (b)
both theA- andB-term produce the same functional contribution to〈Jαα̇Jββ̇J 〉modulo overall
constants. Equation (4.14) tells us that option (b) is realized.

The calculation of〈Jαα̇Jββ̇Jγ γ̇ 〉 is much more tedious. To derive this correlation function,
one has to act with the operator (4.10) on each argument of〈J (z1)J (z2)J (z3)〉. However,
since by constructionH in (3.17) is a function ofZ3, it turns out to be quite difficult to control
superconformal covariance at intermediate stages of the calculation when acting with1γγ̇ on
the third argument of〈J (z1)J (z2)J (z3)〉. A way out is as follows. One first computes

〈1αα̇J (z1)J (z2)J (z3)〉 = (x̃13̄
−1)ασ̇ (x̃31̄

−1)σ α̇

x1̄3
2x3̄1

2x2̄3
2x3̄2

2

×( 64
3 θ

σ
13 2 θ̄

σ̇2
13H(Z3) + 16

3 θ
σ
13 2uk

2(z31)D̄σ̇ kH(Z3)− 16
3 θ̄

σ̇2
13 u2

k(z13)Dσk H(Z3)

+1
2

{
u2
k(z13)ul

2(z31)− 1
3u1

k(z13)ul
1(z31)

}
[Dσk , D̄σ̇ l ]H(Z3)

)
and next expressesH(Z3), Dσk H(Z3) and [Dσk , D̄σ̇ l ]H(Z3) as functions ofZ1 with the help
of identities (2.30). After that it is a simple, but time-consuming procedure, to complete the
computation of〈Jαα̇Jββ̇Jγ γ̇ 〉. The result reads

〈Jαα̇(z1)Jββ̇(z2)Jγ γ̇ (z3)〉 =
(x13̄)ασ̇ (x31̄)σ α̇(x23̄)βδ̇(x32̄)δβ̇

(x1̄3
2x3̄1

2x2̄3
2x3̄2

2)2
Hσ̇σ,δ̇δ

γ γ̇ (X3, X̄3),

H σ̇σ,δ̇δ
γ γ̇ (X3, X̄3) = hσ̇σ,δ̇δγ γ̇ (X3, X̄3) + hδ̇δ,σ̇σ γ γ̇ (−X̄3,−X3),

(4.16)

where

hα̇α,β̇βγ γ̇ (X, X̄) = 64

27
(26A− 9

4B)
i

(X2)2
X β̇αδα̇γ δ

β
γ̇

− 8

27
(8A− 9B)

1

(X2)3

(
2
(
X α̇αP β̇β +X β̇βP α̇α

)
Xγ γ̇

−3X α̇αX β̇β

(
Pγ γ̇ + 2

(P ·X)
X2

Xγ γ̇

)
+2
(
(P ·X)Xαα̇ −X2P αα̇

)
δβγ δ

β̇
γ̇ + 2

(
(P ·X)Xββ̇ −X2P ββ̇

)
δαγ δ

α̇
γ̇

+
(
4(P ·X)Xαβ̇ +X2P αβ̇

)
δβγ δ

α̇
γ̇ +

(
4(P ·X)Xβα̇ +X2P βα̇

)
δαγ δ

β̇
γ̇

)
. (4.17)

It is convenient to rewrite this result in vector notation

habc(X, X̄) ≡ − 1
8(σ

a)αα̇(σ
a)ββ̇(σ̃

c)γ̇ γ hα̇α,β̇βγ γ̇ (X, X̄)

= −16

27
(26A− 9

4B)
i

(X2)2

(
Xaηbc +Xbηac −Xcηab + iεabcdXd

)
− 8

27
(8A− 9B)

1

(X2)3

(
2
(
XaP b +XbP a

)
Xc

−3XaXb

(
P c + 2

(P ·X)
X2

Xc

)
− (P ·X)(3(Xaηbc +Xbηac)− 2Xcηab

)
+ 1

2X
2
(
P aηbc +P bηac +P cηab

))
. (4.18)
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Our final relations (4.16) and (4.18) agree perfectly with the general structure of the three-point
function of the supercurrent inN = 1 superconformal field theory [9].

Using the results of [9], it is easy to expressA andB in terms of the anomaly coefficients
[12]

a = 1
24(5nV + nH ), c = 1

12(2nV + nH ), (4.19)

wherenV andnH denote the number of freeN = 2 vector multiplets and hypermultiplets,
respectively. We obtain†

A = 3

64π6
(4a − 3c), B = 1

8π6
(4a − 5c). (4.20)

In N = 1 supersymmetry, a superconformal Ward identity relates the coefficient in the
two-point function of the supercurrent (4.7) to the anomaly coefficientc as follows [9]:

cJ = 3

8π4
c. (4.21)

In terms of the coefficientsA andB this relation reads

2

π2
cJ = 8A− 3B. (4.22)

In N = 1 supersymmetry, there also exists a superconformal Ward identity which relates
the coefficients in the following correlation functions:

〈L(z1)L(z2)〉 = cL

x1̄2
2x2̄1

2
,

〈L(z1)L(z2)Jαα̇(z3)〉 = D

x1̄3
2x3̄1

2x2̄3
2x3̄2

2

(
2(P3 ·X3)X3αα̇ +X3

2P3αα̇

(X3
2)2

+ c.c.

)
of a current superfieldL. A nice consequence of our consideration is thatN = 2
supersymmetry allows us to fix up this Ward identity without working it out explicitly. The
point is that theN = 2 supercurrent contains a special current superfield, that isJ . Therefore,
from the first relation in (4.7) and equation (4.13) we deduce

D = − 1

6π2
cL. (4.23)

Let us turn to the three-point function of theN = 2 flavour current superfield given by
equations (3.28) and (3.32). From these relations one reads off the three-point function of the
N = 1 component (4.4)

〈La(z1)L
b(z2)L

c(z3)〉 = 1

4
f abc

i

x1̄3
2x3̄1

2x2̄3
2x3̄2

2

(
1

X̄3
2
− 1

X3
2

)
. (4.24)

Here we have used the identities

u1
1(Z3)| = detu(Z3)|, u1

2(Z3)| = u2
1(Z3)| = 0, u2

2(Z3)| = 1. (4.25)

It is worth noting that Ward identities allow us to representf abc as a product ofcL and the
structure constants of the flavour symmetry group, see [9] for more details.

† Our definition of theN = 1 supercurrent corresponds to that adopted in [35] and differs in sign from Osborn’s
convention [9].
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In N = 1 superconformal field theory, the three-point function of flavour current
superfieldsL contains, in general, two linearly independent forms [9]:

〈La(z1)L
b(z2)L

c(z3)〉 = 1

x1̄3
2x3̄1

2x2̄3
2x3̄2

2

{
if [abc]

(
1

X3
2
− 1

X̄3
2

)
+ d(abc)

(
1

X3
2

+
1

X̄3
2

)}
.

The second term, involving a completely symmetric group tensordabc, reflects the presence
of chiral anomalies in the theory. The field-theoretic origin of this term is due to the fact that
theN = 1 conservation equation̄D2L = D2L = 0 admits a non-trivial deformation

D̄2〈La〉 ∝ dabcWbαWc
α

when the chiral flavour current is coupled to a background vector multiplet. Equation (4.24)
tells us that the flavour currents are anomaly free inN = 2 superconformal theory. This
agrees with the facts that: (a)N = 2 super-Yang–Mills models are non-chiral; (b) theN = 2
conservation equation (3.6) does not possess non-trivial deformations.

Finally, from the three-point function (3.35) we immediately deduce

〈La(z1)L
b(z2)J (z3)〉 = d

2
δab

1

x1̄3
2x3̄1

2x2̄3
2x3̄2

2

(
1

X3
2

+
1

X̄3
2

)
,

〈La(z1)L
b(z2)Jαα̇(z3)〉 = −2d

3
δab

1

x1̄3
2x3̄1

2x2̄3
2x3̄2

2
(4.26)

×
(

2(P3 ·X3)X3αα̇ +X3
2P3αα̇

(X3
2)2

+ (X3↔ −X̄3)

)
.

Now, the Ward identity (4.23) implies

d = 1

4π2
cL. (4.27)

5. Discussion

Our main objective in this paper was to determine the restrictions of the general structure
of two- and three-point functions of conserved currents imposed byN = 2 superconformal
symmetry. This was done in a manifestly supersymmetric formalism. The results are contained
in sections 3.2 and 3.3. In particular, we have shown that the three-point function of the
supercurrent allows for two independent structures. In the appendices we show that the minimal
supergravity multiplet can be described in harmonic superspace by two real unconstrained
prepotentials: harmonicG and analyticv++

5 . This is the superfield parametrization which
allows us to derive the supercurrent and multiplet of anomalies as the response of the matter
action to small disturbances of the supergravity prepotentials.

In this paper, the results about the structure of the correlation functions were completely
determined byN = 2 superconformal symmetry. The results for specific models only differ
in the value of the numerical coefficients. They can be determined in perturbation theory using
supergraph techniques.

An interesting open problem is the issue of non-renormalization theorems for the
correlation functions of conserved currents. For a recent discussion forN = 4, see [46].

There exists an off-shell formulation ofN = 3 SYM theory, [47]. SinceN = 3 and
N = 4 SYM are dynamically equivalent, it can be used to find further restrictions and possible
non-renormalization theorems on theN = 4 correlation functions.
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Another interesting problem is the structure of superconformal anomalies ofN = 2
matter systems in a supergravity background. Such anomalies are responsible for the three-
point function of theN = 2 supercurrent studied in section 3. The results of appendices A and
B provide the natural prerequisites for the analysis of theN = 2 superconformal anomalies.
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Appendix A. Supergravity multiplets

In this appendix we briefly review harmonic superspace and discuss the Weyl multiplet and
the minimal supergravity multiplet in some detail.

In rigid supersymmetry, all knownN = 2 supersymmetric theories in four spacetime
dimensions can be described in terms of fields living inN = 2 harmonic superspace
R4|8 × SU(2)/U(1) introduced by GIKOS [39]. Along with the standard coordinates
z = (xm, θαi , θ̄ iα̇) of R4|8 (θ̄ α̇i = θαi ), this superspace involves the internal harmonic variables
u±i which are constrained byu+iu−i = 1 and defined modulo phase rotations with charge
±1. Harmonic superspace possesses a supersymmetric subspace, with half the fermionic
coordinates of the full superspace, defined to be spanned by the variables{

ζM, u±i
}
, ζM = (xmA , θ+α̂) = (xmA , θ+α, θ̄+α̇) (A.1)

where†

xmA = xm − 2iθ(iσmθ̄ j)u+
i u

+
j , θ±α̂ = θ α̂iu±i . (A.2)

The analytic subspace (A.1) is closed underN = 2 super-Poincaré and superconformal
transformations [23, 39]. In addition, it is invariant under the generalized conjugation ‘˘ ’
defined as [39]

˘ : xmA → xmA , θ+
α → θ̄+

α̇ , θ̄+
α̇ →−θ+

α , u±i →−u±i , u±i → u±i .

The fundamental importance of analytic subspace (A.1) lies in the fact that theN = 2 matter
multiplets (hypermultiplets and vector multiplets) can be described in terms of unconstrained
analytic superfields living in the analytic subspace (A.1).

In harmonic superspace, there is a universal gauge principle to introduce couplings to
Yang–Mills and supergravity [39]. Consider the rigid supersymmetric operatorsD++ and
D−− defined as

D±± = ∂±± − 2iθ±σmθ̄±∂m + θ±α̂∂±
α̂
, (A.3)

where∂±± = u±i∂/∂u∓i , ∂m = ∂/∂xmA , ∂±α̂ = ∂/∂θ∓α̂. The fundamental property ofD++ is
that if φ is analytic, i.e. if∂+

α̂
φ = 0, then so isD++φ. It turns our that switching on the Yang–

Mills or supergravity couplings is equivalent to the requirement thatD++ must be deformed
to acquire a connection or non-trivial vielbeins, in such a way that the deformed operator still
preserves analyticity.

† Equation (A.2) defines the so-called analytic basis of harmonic superspace, while the original basis{z, u±i } is called
central. In what follows, we mainly use the analytic basis and do not indicate the subscript ‘A’ explicitly.
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A.1. Weyl multiplet

In this subsection we start by reviewing the harmonic superspace realization [23, 24] of the
Weyl multiplet [26] describingN = 2 conformal supergravity and comprising 24 + 24 off-
shell degrees of freedom. Then, we will present a new parametrization for the conformal
supergravity prepotentials and describe several gauge fixings.

According to [23, 24], the conformal supergravity gauge fields are identified with the
vielbein components of a real covariant derivative

D++ = ∂++ +H++M∂M +H(+4)∂−− +H+α̂∂+
α̂ (A.4)

that is required to move every analytic superfield into an analytic one. HenceH++M ≡
(H++m,H+++α, H̆+++α̇) andH(+4) are analytic, whileH+α̂ ≡ (H+α, H̆+α̇) are unconstrained
superfields. The supergravity gauge transformations act onD++ and a scalar superfieldU via
the rule (D0 = u+i∂/∂u+i − u−i∂/∂u−i)

δD++ = [λ + ρ,D++] + λ++D0, δU = (λ + ρ)U (A.5)

where

λ = λM∂M + λ++∂−−, ρ = ρ−α̂∂+
α̂ (A.6)

such that every analytic superfield ofU(1) chargep,8(p), remains analytic

δ8(p) = λ8(p), ∂+
α̂8

(p) = ∂+
α̂ δ8

(p) = 0. (A.7)

Therefore, the parametersλM = (λm, λ+α, λ̆+α̇) andλ++ are analytic, whileρ−α̂ = (ρ−α, ρ̆−α̇)
are unconstrained superfields.

The supergravity gauge transformations are induced by special reparametrizations of
harmonic superspace

δζM = −λM(ζ, u),
δu+i = −λ++(ζ, u)u−i , δu−i = 0,

δθ−α̂ = −ρ−α̂(ζ, θ−, u)
(A.8)

which leave the analytic subspace invariant.
SinceD++ contains a number of independent vielbeins, it is far from obvious in the above

picture how to generate a single scalar supercurrent from the host of harmonic vielbeins. In
addition, there is a technical complication—some vielbeins possess non-vanishing values in
the flat superspace limit (A.3). To find a way out, it is sufficient to recall the standard wisdom
of superfieldN = 1 supergravity [40]. In equations (A.4) and (A.6) the covariant derivative
and gauge parameters are decomposed with respect to the superspace partial derivatives. To
have a simple flat superspace limit (which would correspond to vanishing values for all the
supergravity prepotential), it is convenient to decomposeD++ andλ, ρ with respect to flat
covariant derivativesD±±,DM = (∂m,D−α , D̄−α̇ ) andD+

α̂
= ∂/∂θ−α̂; i.e.

D++ = D++ +H ++MDM +H(+4)D−− +H +α̂D+
α̂ (A.9)

λ = 3MDM +3++D−− ρ = ρ−α̂D+
α̂ (A.10)

whereH(+4) = H(+4), 3++ = λ++. In such a parametrization, the vielbeinsH ++M andH(+4)

are no longer independent, but they are instead expressed via a single unconstrained superfield.
Really, since we must have

D+
αD++8(p) = 0,
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for any analytic superfield8(p), using the algebra of flat covariant derivatives leads to

D+
αH

++ββ̇ − 2iδβα H̆
+++β̇ = 0, D+

αH
(+4) = 0,

D+
αH

+++β − δβαH (+4) = 0, D+
αH̆

+++β̇ = 0.
(A.11)

The general solution to these equations (and their conjugates) reads

H ++αα̇ = −iD+αD̄+α̇G,

H +++α = − 1
8D

+α(D̄+)2G, H̆ +++α̇ = 1
8D̄

+α̇(D+)2G,

H(+4) = 1
16(D

+)2(D̄+)2G ≡ (D+)4G

(A.12)

with G(ζ, θ−, u) a real unconstrained harmonic superfield,Ğ = G. The prepotential
introduced is defined modulo pre-gauge transformations

δG = 1
4(D

+)2�−− + 1
4(D̄

+)2�̆−− (A.13)

where�−− is a complex unconstrained parameter.
Similar toH ++M andH(+4), the gauge parameters3M and3++ in equation (A.10) are

expressed via a single real unconstrained superfieldl−−(ζ, θ−, u), l̆−− = l−−, as

3αα̇ = −iD+αD̄+α̇ l−−, 3++ = (D+)4l−−,

3+α = − 1
8D

+α(D̄+)2l−−, 3̆+α̇ = 1
8D̄

+α̇(D+)2l−−.
(A.14)

From equation (A.5) one can read off the transformations ofH ++M ,H(+4) andH +α̂:

δH ++M = λH ++M − D̃++3M, δH(+4) = λH(+4) − D++3++,

δH +α̂ = (λ + ρ)H +α̂ −3+α̂ − D++ρ−α̂,
(A.15)

where

D̃++ = D++ −H +α̂D+
α̂ .

Since the parametersρ−α̂ are unconstrained,H +α̂ can be gauged away

H +α̂ = 0. (A.16)

Then, the residual gauge freedom is constrained by

D++ρ−α̂ = −3+α̂ . (A.17)

In what follows, we will assume equation (A.16), henceD++ andD̃++ coincide.
From (A.15) it is easy to read off the transformation law ofG. It is sufficient to note the

identities

[D+
α̂ , λ] = 0, [D+

α̂ ,D
++] = 0 (A.18)

where the latter holds for (A.16) only. Therefore, from equations (A.12), (A.14) and (A.15)
we deduce

δG = λG−D++l−−. (A.19)

Now, equations (A.13) and (A.19) determine the full supergravity gauge group.
It is instructive to examine (A.19) in linearized theory

δG = −D++l−−. (A.20)
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In the central basisD++ coincides with∂++, andG(z, u) andl−−(z, u) are

G(z, u) = G(z) +
∞∑
n=1

G(i1···inj1···jn)(z)u+
i1
· · · u+

in
u−j1
· · · u−jn ,

l−−(z, u) =
∞∑
n=1

l(i1···in−1j1···jn+1)(z)u+
i1
· · · u+

in−1
u−j1
· · · u−jn+1

(A.21)

whereG(z), G(i1···i2n)(z) andl(i1···i2n)(z) are unconstrained superfields. SinceD++u+
i = 0 and

D++u−i = u+
i , equation (A.20) tells us that all the componentsG(i1···i2n), n = 1, 2, . . . , can be

gauged away to arrive at the gauge condition

D++G = 0. (A.22)

The surviving gauge freedom consists of those combined transformations (A.13) and (A.19)
which preserve the above gauge condition, that is

δG(z) = 1
12Dij�

ij (z) + 1
12D̄ij �̄

ij (z) (A.23)

where�ij (z) is the leading component in the harmonic expansion of�−−(z, u) (A.13).
The linearized prepotential of conformal supergravityG(z) and its gauge freedom (A.23)
is precisely what follows from the structure of theN = 2 supercurrent discussed in the
introduction.

Instead of imposing the gauge condition (A.22), one can take a different course. Since
H(+4) is analytic, it follows from (A.15) that we can achieve the gauge [23, 24]

H(+4) = 0 (A.24)

which restricts the residual gauge freedom to

D++3++ = 0. (A.25)

Now, from (A.12) and (A.24) we obtain

G = D+α9−α + D̄+α̇9̆−α̇ (A.26)

where 9−α (z, u) is an unconstrained harmonic spinor superfield ofU(1) charge−1.
Equation (A.25) defines a linear analytic superfield in conformal supergravity background.
In linearizedtheory, the general solution of equation (A.25) is well known:

3++ = (D+)4
{
u−i u

−
j D

ijV (z) + u−i u
−
j D̄

ij V̄ (z)
}
. (A.27)

Therefore, from here and (A.14) we can completely specify the residual gauge freedom:

l−−(z, u) = D+αϒ(−3)
α (z, u) + D̄+α̇ϒ̆

(−3)
α̇ (z, u) + u−i u

−
j

(
DijV (z) + D̄ij V̄ (z)

)
(A.28)

with an unconstrained harmonic parameterϒ(−3)
α (z, u). Usingϒ(−3)

α transformations, we can
gauge away all9−α but the leading component in its harmonic expansion

9−α (z, u) = 9i
α(z)u

−
i . (A.29)

9i
α(z) is nothing but the Gates–Siegel prepotential [25].
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A.2. Minimal multiplet

The so-called minimal supergravity multiplet [26] is obtained by coupling the Weyl multiplet to
an Abelian vector multiplet which is a real analytic superfieldV++

5 (ζ, u). V++
5 (ζ, u) transforms

as a scalar under (A.5) and possesses its own gauge freedom [23, 24, 39]

δV++
5 = −D++λ5 (A.30)

with λ5(ζ, u) an arbitrary real analytic parameter. This vector multiplet is a gauge field for the
central charge1 that can be understood as the derivative in an extra bosonic coordinatex5,
1 = ∂/∂x5, on which matter supermultiplets may depend. For matter supermultiplets with
central charge, the definition (A.4) should be replaced by

D++
1 = D++ + V++

5 1 (A.31)

and the transformations (A.5) extend to

δD++
1 = [λ + ρ + λ51,D++

1 ] + λ++D0, δU = (λ + ρ + λ51)U. (A.32)

The limit of rigid supersymmetry corresponds to the choice when allH -vielbeins in (A.9)
vanish andV++

5 can be brought to the form

V++
5,flat = i

(
(θ+)2 − (θ̄+)2

)
. (A.33)

That is whyV++
5 must in general satisfy a global restriction that its scalar component fieldZ(x)

defined by

V++
5 (ζ, u) ∼ (θ+)2Z̆(x, u) + (θ̄+)2Z(x, u),

Z(x, u) = Z(x) +
∞∑
n=1

Z(i1···inj1···jn)(x)u+
i1
· · · u+

in
u−j1
· · · u−jn

(A.34)

be non-vanishing over the spacetime,Z(x) 6= 0. Then, ordinary local scale and chiral
transformations (contained in (A.10)) can be used to bringZ(x) to its flat form (A.33) (all
remaining components in (A.34) turn out to be gauge degrees of freedom). LetDi

α, D̄α̇i and
D±± be the flat covariant derivatives with central charge. In the central basis,D±± coincide
with ∂±±, whileDi

α andD̄α̇i are

Di
α =

∂

∂θαi
+ i(σmθ̄ i)∂m − iθ iα1, D̄α̇i = − ∂

∂θ̄ α̇i
− i(θiσ

m)α̇∂m − iθ̄α̇i1. (A.35)

In the analytic basis which we mainly use,D+
α̂

coincide withD+
α̂

and the other derivatives are
[39]: D−

α̂
= D−

α̂
− 2iθ−

α̂
1,D±± = D±± + i

(
(θ±)2 − (θ̄±)2)1.

The above global restriction onV++
5 gets automatically accounted for if, instead of using

the representations (A.9) and (A.10), we start decomposing the harmonic covariant derivative
and gauge parameters with respect to the flat covariant derivatives with central charge

D++
1 = D++ +H ++MDM +H(+4)D−− +H +α̂D+

α̂ + V ++
5 1 (A.36)

λ + λ51 = 3MDM +3++D−− +351. (A.37)

Then, the flat superspace limit would correspond toV ++
5 = 0. However, such a representation

is sensible only if the matter multipletsU under consideration are characterized by a constant
central charge,1UI = iMI

JU
J , with M = (MI

J ) a constant mass matrix independent of
the supergravity prepotentials. Such a situation appears, for example, for hypermultiplets
described by unconstrained analytic superfields. However, it is well known that there exist
N = 2 supermultiplets which contain finitely many auxiliary fields and possess an intrinsic
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central charge. This means that setting the central charge to be constant is equivalent to putting
the theory on-shell (for example, this applies to the hypermultiplet with 8 + 8 off-shell degrees
of freedom). To have a finite number of component fields in such theories, one has to impose
special constraints on ‘primary’ superfieldsU in order that the series{U,1U,11U, . . .}
contains only a few functionally independent representatives. The constraints imposed must
determine not only the field content but also specify the off-shell central charge as a non-trivial
functional of the supergravity prepotentials. For such theories, the representation (A.36) is
useless, because the flat derivativesD±± andDM involve the ‘curved’ central charge.

In the representation (A.36) the requirement

D+
αD++

1 8
(p) = 0

for any analytic superfield8(p), implies that the set of equations (A.11) should be extended to
include one more relation

D+
αV

++
5 − 2iH +++

α = 0. (A.38)

Now, the general solution of the constraints (A.11) and (A.38) is given by equation (A.12)
along with

V ++
5 = 1

4i(D+)2G− 1
4i(D̄+)2G + v++

5 , D+
α̂v

++
5 = 0. (A.39)

The pre-gauge invariance (A.13) turns into

δG = 1
4(D

+)2�−− + 1
4(D̄

+)2�̆−−,

δv++
5 = i(D+)4�−− − i(D+)4�̆−−.

(A.40)

We see that the minimal multiplet is described by the two prepotentialsG andv++
5 , the latter

being a real analytic superfield.
The operator (A.37) must move every analytic superfield into an analytic one. This restricts

the parameters3M and3++ to have the form (A.14), while35 reads

35 = 1
4i(D+)2l−− − 1

4i(D̄+)2l−− + λ̂5, D+
α̂ λ̂5 = 0 (A.41)

whereλ̂5 is an arbitrary real analytic superfield.
In the gauge (A.16),H ++M ,H(+4) andV ++

5 transform as follows

δH ++M = λH ++M − D++3M, δH(+4) = λH(+4) − D++3++

δV ++5 = λV ++
5 − D++35

(A.42)

and hence

δv++
5 = λv++

5 − D++λ̂5. (A.43)

As concerns the prepotentialG, from (A.42) we again deduce its transformation (A.19).

Appendix B. Supercurrent and multiplet of anomalies

Given a matter system coupled to the minimal supergravity multiplet, we define the supercurrent
and multiplet of anomalies

J = δS

δG
, T ++ = δS

δv++
5

(B.1)
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whereS is the matter action. Here the variational derivatives with respect to the supergravity
prepotentials are defined as follows:

δS =
∫

d12z du δG
δS

δG
+
∫

du dζ (−4) δv++
5
δS

δv++
5

. (B.2)

As is seen, the supercurrentJ is a real harmonic superfield,̆J = J , while the multiplet of
anomaliesT ++ is a real analytic superfield,̆T ++ = T ++,D+

α̂
T ++ = 0. By construction, bothJ

andT ++ are inert with respect to the central charge transformations.
The action is required to be invariant under pre-gauge transformations (A.40). This means

δS = 1
4

∫
d12z duJ (D+)2�−− + i

∫
du dζ (−4) T ++(D+)4�−− + c.c.

=
∫

d12z du�−−
{

1
4(D

+)2J + iT ++
}

+ c.c. = 0

for arbitrary�−−. As a consequence, we obtain
1
4(D

+)2J + iT ++ = 0, 1
4(D̄

+)2J − iT ++ = 0. (B.3)

The action must also be invariant under the superspace general coordinate transformation
group. The group acts on the prepotentialsGandv++

5 according to equations (A.19) and (A.43),
respectively. These transformations should be supplemented by those of the matter superfields.
On-shell, the invariance ofS with respect to (A.19) and (A.43) turns out to imply very strong
restrictions onJ andT ++, in addition to the conservation law (B.3). Let us describe here the
implications of general coordinate invariance for the simplest and most interesting case of a
flat superspace whenG = v++

5 = 0 (in general, the analysis is basically the same but requires
more involved technical tools). For such a background equations (A.19) and (A.43) reduce to
the linearized transformations

δG = −D++l−−, δv++
5 = −D++λ̂5. (B.4)

Now, the invariance ofS with respect to thel−− transformations means

δS = −
∫

d12z du (D++l−−)J =
∫

d12z du l−−D++J = 0 (B.5)

for arbitraryl−−, and hence

D++J = 0. (B.6)

We see that the matter supercurrent in Minkowski superspace isu-independent,J = J (z). On
the same grounds, the invariance ofS with respect to the central chargeλ̂5-transformations
implies

D++T ++ = 0. (B.7)

The general solution of this equation in the central frame reads

T ++(z, u) = T (ij)(z)u+
i u

+
j . (B.8)

SinceT ++(z, u) has to be analytic, the multiplet of anomaliesT (ij)(z) satisfies equation (1.1).

Appendix C. Matter models in the supergravity background

In this section we will describeN = 2 supersymmetric models, both with an intrinsic central
charge and models with a constant central charge.
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C.1. Models with intrinsic central charge

We will use analytic densities8(p)

{w} transforming as

δ8
(p)

{w} = (λ + λ51)8
(p)

{w} +w38
(p)

{w}, D+
α̂8

(p)

{w} = D+
α̂δ8

(p)

{w} = 0 (C.1)

where the variation of the analytic subspace measure du dζ (−4) with respect to general
coordinate transformations (A.8) is given by the analytic superfield

3 ≡ (−1)MDM3
M +D−−3++, D+

α̂3 = 0. (C.2)

We will be mainly interested in analytic densities9(p)

{p/2} on which we can consistently impose
the constraint(

D++ + V++
5 1 + 1

2p0
++
)
9
(p)

{p/2} = 0 (C.3)

where the analytic connection0++ is defined by [33]

0++ = (−1)MDMH
++M +D−−H(+4), D+

α̂0
++ = 0 (C.4)

and transforms as

δ0++ = λ0++ − D++3− 23++. (C.5)

The above constraint turns out to be gauge covariant only ifp = 2w.
To construct a supersymmetric action, let us specify an analytic density9

(2)
{1} ≡ L++ subject

to the constraint (C.3). Then, the integral

S =
∫

du dζ (−4) V++
5 L++ (C.6)

proves to be invariant under the supergravity gauge transformations. Indeed, sinceL++ is an
analytic density of weight 1, andV++

5 is a scalar superfield, their product transforms into a total
derivative

δ
(
V++

5 L++
) = (−1)MDM

(
3MV++

5 L++
)

+D−−
(
3++V++

5 L++
)
,

= (D+)4D−−
(
l−−V++

5 L++
)

(C.7)

under (A.8), and the action (C.6) remains invariant. Here we have used equation (A.14). As
concerns the central charge transformations, we have

δV++
5 = −D++λ5 δL++ = λ51L++ (C.8)

and, modulo total derivatives, the variation ofS vanishes

δS =
∫

du dζ (−4) λ5
(
D++ + V++

5 1 + 0++
)
L++ = 0 (C.9)

as a consequence of (C.3). The above prescription to construct supersymmetric invariants is a
natural generalization of the action rule given in [41] forN = 2 rigid supersymmetric theories
with a gauged central charge.

Now, let us turn to a hypermultiplet with intrinsic central charge in a conformal
supergravity background. The hypermultiplet is described by a constrained analytic superfield
q+ ≡ 9

(1)
{1/2} and its conjugatĕq+. It can be shown that the analyticity ofq+ and the basic

constraint (
D++ + V++

5 1 + 1
20

++
)
q+ = 0 (C.10)
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determine the central charge1 as a non-trivial operator depending on the supergravity
prepotentials. The hypermultiplet dynamics is described by the Lagrangian

L++ = 1
2 q̆

+ ←→
1 q+ − imq̆+q+. (C.11)

The corresponding equation of motion enforces the central charge to be constant [42]

δS

δq+
= 0 H⇒ 1q+ = imq+. (C.12)

C.2. Models with constant central charge

Let us consider a dual, for applications a more useful description of the hypermultiplet in terms
of an unconstrainedanalytic superfieldq+(ζ, u) and its conjugatĕq+(ζ, u). The dynamical
superfield is defined to transform as a density of weight1

2,

δq+ = (λ + λ51) q
+ + 1

23q
+ (C.13)

and its central charge is chosen to be constant

1q+ = imq+ (C.14)

off-shell. The dynamics is described in curved superspace by the action

S = −
∫

du dζ (−4)
{

1
2 q̆

+ ←→D ++q+ + imV++
5 q̆

+q+
}

(C.15)

which reduces to that given in [24] form = 0. The action is invariant under all local symmetries.
The corresponding equation of motion reads

δS

δq+
= 0 H⇒ (

D++ + V++
5 1 + 1

20
++
)
q+ = 0. (C.16)

Comparing equations (C.10) and (C.12) with (C.16) and (C.14), we see that the two
hypermultiplet models are equivalent. However, the equation of motion in one model turns
into the off-shell constraint in the other and vice versa.

The basic advantage of this model is that off the mass shell the dynamical variableq+ is an
unconstrained superfield independent of the supergravity prepotentials. That is why one can
readily vary the action with respect to these prepotentials. Using equations (A.12) and (A.39)
gives

q̆+D++q+ + imV++
5 q̆

+q+ = q̆+D++q+ + (D+)4
{
q̆+GD−−q+

}
+ imv++

5 q̆
+q+. (C.17)

We therefore obtain

J = − 1
2 q̆

+ ←→
D
−−q+, T ++ = −imq̆+q+. (C.18)

Let us compute the supercurrent and multiplet of anomalies (C.18) in flat superspace where
the equation of motion (C.16) becomes

D++q+ = 0. (C.19)

In the central basis,D±± coincide with∂±±, and the on-shell superfields read

q+ = qi(z)u+
i , q̆+ = q̄i (z)u+i , q̄i = qi. (C.20)

Now, equation (C.18) leads to

J = − 1
2 q̄iq

i, T ++ = T ij (z)u+
i u

+
j , T ij = imq̄(iqj). (C.21)
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What we have derived is exactly theN = 2 supercurrent and multiplet of anomalies found by
Sohnius [14].

The above consideration can be generalized to the case of a general renormalizable super-
Yang–Mills system in curved superspace with action

S = 1

2g2
tr
∫

d4x d42 EW2 −
∫

du dζ (−4) q̆+
{

1
2

←→
D ++ + iV++ + iV++

5 M
}
q+. (C.22)

HereV++ = V++
I (ζ, u)RI is the Yang–Mills gauge superfield, andW is the corresponding

covariantly chiral strength;E denotes theN = 2 chiral density [32, 43]. The constant mass
matrixM is required to be Hermitian and to commute with the gauge group, [V++,M] = 0.
In flat superspace, the corresponding supercurrent and multiplet of anomalies read

J = 1

g2
tr
(
W̄W

)− 1

2
q̆+ ←→∇ −−q+, T ++ = −iq̆+Mq+ (C.23)

where∇−− denotes the proper gauge covariant harmonic derivative. In the central basis,∇−−
coincides with∂−−, and on-shell

q+ = qi(z)u+
i , ∇(iα qj) = ∇̄(iα̇ qj) = 0 (C.24)

where∇ iα and∇̄ α̇i denote ordinaryu-independent gauge covariant derivatives. Therefore, from
equation (C.23) we obtain

J = 1

g2
tr
(
W̄W

)− 1

2
q̄iq

i, T ij = iq̄(iMqj). (C.25)

It is worth noting that (C.22) describes a curved superspace extension of theN = 4 super-
Yang–Mills theory ifM = 0 and ifq+ transforms in the adjoint representation of the gauge
group.

It is well known thatN = 2 Poincaŕe or de Sitter supergravity cannot be formulated
solely in terms of the minimal multiplet [26, 42]. To find a consistent action for Poincaré
supergravity, one has to couple the minimal multiplet to an auxiliary multiplet whose role is
to compensate some local transformations. Such a compensator may contain finitely many
[26] or an infinite number [24] of off-shell component fields. The three known minimal
formulations [26] comprising 40 + 40 off-shell degrees of freedom and their compensators
are: (I) nonlinear multiplet; (II) hypermultiplet with intrinsic central charge (C.10); (III)
improved tensor multiplet. In principle, one can elaborate on non-minimal supergravity
formulations withn + n off-shell degrees of freedom, 40< n < ∞. Finally, there exists
the maximal formulation [24] whose compensator is a singleq+ hypermultiplet considered
in this subsection. In all cases, the supergravity action is a sum of the action of the minimal
multiplet and that for the compensator [24, 26].

No matter what compensator we choose, it does not enter the minimal classical action
(C.22) corresponding to generalN = 2 renormalizable SYM models. Therefore, the choice of
compensator has no impact on the structure of the supercurrent at the classical level. The main
effect of the compensator is to ensure self-consistency of the dynamics of the full supergravity–
matter system.

If we give up the requirement of renormalizability, the compensator can tangle withN = 2
matter. This is the case for general quaternionic off-shell sigma models in curved harmonic
superspace [34]. However, then we deal with effective field theories (e.g. low-energy string
actions) and can treat the compensator as part of the matter sector coupled toN = 2 conformal
supergravity.
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As an example of more general dynamics, let us consider theN = 2 rigid supersymmetric
sigma model

S = − 1
2

∫
du dζ (−4)

{
q̆+ ←→

D
++q+ + 1

2λ(q̆
+q+)2

}
(C.26)

with λ the coupling constant. The bosonic sector of this model describes the Taub–NUT
gravitational instanton with a scalar potential generated by the central charge. To lift the
model to curved superspace, one has to couple the dynamical superfields not only to the
minimal supergravity multiplet, but also to an unconstrained analytic densityω [23, 24]. As a
result, the coupling to supergravity is characterized byJ andT ++ given, in the flat superspace
limit, by (C.18) along with the analytic superfieldT (+4) = δS/δω = − 1

2λ(q̆
+q+)2. The

conservation equations (B.3) and (B.7) remain unchanged, but equation (B.6) gets modified to

D++J +D−−T (+4) = 0 (C.27)

and thereforeJ becomesu-dependent (note that(D++)2J = 0, sinceD++(q̆+q+) =
D++(q̆+q+) = 0 on-shell).
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