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Abstract. Using a manifestly supersymmetric formalism, we determine the general structure of
two- and three-point functions of the supercurrent and the flavour currantef2 superconformal

field theories. We also express them in terms\ot= 1 superfields and compare to the generic
N = 1 correlation functions. A general discussion of tkie= 2 supercurrent superfield and
the multiplet of anomalies and their definition as derivatives with respect to the supergravity
prepotentials is also included.

PACS numbers: 1130P, 1125M

1. Introduction

Superconformal field theories in various dimensions have been intensively studied for many
years. The conjecture of Maldacena [1], which in its simplest form reldtes4 super-Yang—

Mills theory in four-dimensional Minkowski space 6 = 8 supergravity in five-dimensional
anti-de Sitter space has led to a renewed interest in superconformal field theories in diverse
dimensions with maximal and less than maximal supersymmetry. Here we will be interested
in A = 2 genericsuperconformally invariant theories. Particular examples can be realized as
world-volume theories on D3 branes in the presence of D7 branes [2]. These theories have also
been studied in the context of the Maldacena conjecture [3]. A more general intekést ik
supersymmetric theories, not necessarily conformally invariant, arises within the context of
Seiberg—Witten theory and its string/M-theory realization. For reviews, see, e.g., [4—6].

A general efficient formalism to analyse correlation functions of quasi-primary fields
has been developed since the early days of conformal field theory. Some important recent
contributions have been provided by Osborn and collaborators. We refer to their papers:
to [7, 8] for the non-supersymmetric case in an arbitrary number of dimensions. A complete
analysis of théV" = 1 supersymmetric casedn= 4 was presented in[9] (see also[10]). In[11]
Park constructed the building blocks of correlators of quasi-primary fields for arhitfary
four dimensions and fap, 0) superconformal symmetry th= 6. The formalism is powerful
for applications whenever there exist off-shell superfield formulations for superconformal
theories, and such formulations are known in four dimensiona/fes 1, 2, 3.

In this paper we are going to analyse correlation functions of conserved currafts ig,

d = 4 superconformal field theory in a manifestly = 2 supersymmetric language. To this
end we review in section 2 the formalism of Osborn and Park, specializing to the ¢ése &f.
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In section 3 we apply this to the computation of various two- and three-point correlation
functions, involving the\" = 2 supercurrent7 and flavour current€’/. The three-point
function of the supercurrentis shown to be the sum of two linearly independent superconformal
structures whose coefficients are related to the anomaly coefficients, denateahnbly: in

[12]. Whereas foV' = 1 there exist two independent structures for the three-point function of
the flavour current, there is only one f6f = 2. This is a consequence of the fact that= 2
theories are non-chiral. We also analyse mixed three-point functions and, in particular, show
that the three-point function7 7£"/) vanishes, as a consequence\bf= 2 superconformal
symmetry. In section 4 we describe the reduction of our resuli§ to 1 superfields. The main

body of the paper ends with a brief discussion. We have included a few technical appendices
to make the paper self-contained. In appendix A we review the Weyl and the minimal
N = 2 supergravity multiplets in harmonic superspace and present a new parametrization
of the supergravity prepotential (it was sketched already in part by Siegel [13]) which is most
convenient for any consideration involving the supercurrent and the multiplet of anomalies.
In appendix B we describe the procedure to generate the supercurrent and the multiplet of
anomalies as functional derivatives with respect to supergravity prepotentials. In appendix C
we compute the supercurrent and the multiplet of anomalies for general renormahzabiz
super-Yang—Mills models.

The multiplets of currents and anomalies for = 2 extended supersymmetry in four
spacetime dimensions were introduced by Sohnius [14] 20 years ago. He considered the
simplest\ = 2 supersymmetric model—the hypermultiplet with 8 + 8 off-shell degrees of
freedom [15], and showed that the energy—momentum tepspbelongs to a supermultiplet
(called, by analogy witth" = 1 SUSY [16], theNV = 2 supercurrent) which (a) in addition,
contains theSU (2) R-current i\ the axial curreng®, the N’ = 2 supersymmetry currents
j,’;w;, wherea = «, a, the central charge current, as well as some auxiliary components of
lower dimension; (b) is described by a real scalar superfiglg of mass dimension two. The
central charge currentis also part of the multiplet of anomalies which contains in addlitign
8™ j® and(y™ji ); along with an auxiliary triplet. The multiplet of anomalies is described

by a real isotriplet superfield /) (z), 7'/ = 7;;, which is subject to the constraint
DUTH = l_)gTj“ -0 (1.2)

whereD, = (9,, D., l_);") are theN = 2 supersymmetric covariant derivativés= 1, 2.
Both 7 and7/ turn out to be invariant with respect to the central charge transformations. The
supercurrent conservation law reads

iDVT+iTI =0 < 3iDVg—-iT"=0 (1.2)

where D/ = D*ip}), D'/ = DY D). The constraint (1.1) means that/ is a so-called
N = 2linear multiplet. Such a multiplet contains a conserved vector and the reality condition
for TV is equivalent to the absence of the second (fundamental) central charge (which is the
case for all\V = 2 irreducible supermultiplets).

A nice feature of the\' = 2 multiplet of anomalies is that its supersymmetric structure
is completely analogous to that of\a = 2 superfield containing a conserved flavour current
of aA = 2 supersymmetric field theory. Such a flavour current superfiéit(z), £i/ = Lij
satisfies the same constraint,

DYL/® = DY b =o. (1.3)

The similarity is not accidental. The point is thdt/ is generated by coupling matter
hypermultiplets to a gauge vector supermultiplet. On the other hand, the sourté fier
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a vector multiplet which gauges the central charge and belongs t&the 2 supergravity
multiplet.

The structure of they" = 2 supercurrent has been used by Sohnius and West [17,18] in
their proof of finiteness of th&” = 4 SYM theory which was based on anomaly considerations.
Itis worth pointing out that the supercurrent conservation law in quantusa 2 super-Yang—
Mills theories [19] (see also [20])

pig = 1P i (1.4)
3 g
can be brought to the form (1.2) by a finite local shift6f resulting in
. 1 . N
DT = 5@ (D''W? — DVW?). (1.5)
8

Here W is the N/ = 2 Yang—Mills field strength, an@(g) is the beta-function of the gauge
coupling constant.
Another consequence of the structure ofAfie= 2 supercurrent follows from the fact that
J presents itself as the multiplet of superconformal currents. Then, Noether’s procedure tells
us that\V = 2 conformal supergravity should be described by a real scalar prepo@iitial
[21, 22] to which the matter supercurrent is coupled. In appendix A.1 we will show how such
a prepotential arises in the harmonic superspace approac¢h=to2 conformal supergravity
[23, 24]. This point requires some comments. Many years ago, Gates and Siegel [25] showed
that the first minimal\V" = 2 Poincaé supergravity (in the terminology of the third reference in
[26]) is described, at the linearized level, by a single unconstrained spinor supexfiéiort.
Their conclusion is in perfect agreement with the fact that (a) the corresponding superspace
differential geometry [27] contains two independent strengths—a covariantly chiral symmetric
bi-spinor W, (M = 2 super-Weyl tensor) and a spinfy;; (b) the supergravity equation of
motion reads
5Ssugra
S\I/ozi

In [25] it was argued that' = 2 conformal supergravity should be described by the same
prepotentialW,; but with a larger gauge freedom. This led Gagesl [30] to postulate that
the N = 2 supercurrent be a spinor superfield

x T% = 0. (1.6)

; OSmatter
Jo = swe

1

(1.7)

As will be described below, this puzzle can be resolved in the harmonic superspace approach to
N = 2 supergravity [23, 24]. There, the prepotentials part of a larger harmonic multiplet

G(z, u) with a huge gauge symmetry. The gauge freedom can be fixed in part either to leave
a single real unconstraing®(z), the leading component @ (z, «) in its harmonic Fourier
expansion, or to brings (z, u) to the form

G(z,u) = D*'W](z)u;u; +conjugate (1.8)

with W,;(z) the Gates—Siegel prepotential. Therefore, we haje = D.LJ for all
(renormalizable)V = 2 matter systems. The details of this discussion are provided in
appendices A and C.

Manifestly supersymmetric techniques to study the quantum dynamics and to compute the
superconformal anomalies f&f = 2 matter systems in a supergravity background are not yet

Tt The harmonic superspace origin of this prepotential has been revealed recently by Zupnik [29].
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available. Inx-space, there exists an exhaustive description of genéral 2 supergravity—
matter systems [26, 28]. In superspace, there exist elaborated differential geometry formalisms
[27,31, 32] corresponding t&" = 2 conformal supergravity and the three known versions of

N = 2 Poincaé supergravity. Moreover, the unconstrained prepotentials and the gauge
group of V' = 2 conformal supergravity were found in harmonic superspace [23, 24], and this
analysis was extended to describe different version's ef 2 Poincaé supergravity [24, 33]

and most general supersymmetric sigma models in curved harmonic superspace [34]. What
is still missing is the detailed relationship between the differential superspace geometry of
N = 2 supergravity [27, 31, 32] and its description in terms of the unconstrained prepotentials
given in [23, 24]. Another missing prerequisite is the definition of Mfie= 2 supercurrent

and multiplet of anomalies as the response ofthe= 2 matter action (in the full nonlinear
theory) to small disturbances in supergravity prepotentials, similar to what is well known in
N = 1 supersymmetry (see [35] for a review)

N N
T J— .

szd = R} —
SH™™ %)

(1.9)

here H** andg are the\’ = 1 gravitational superfield and chiral compensator, respectively.
Such a definition is of primary importance, since it allows us to compute correlators with
supercurrent insertions simply as functional derivatives of the renormalized effective action
with respect to supergravity prepotentials. In the appendices we will close some of these gaps.
In particular, using the harmonic superspace approagh e 2 supergravity [23, 24], which
we briefly review, we introduce a new parametrization of the supergravity prepotentials which
allows us to easily obtain th&” = 2 analogue of (1.9).

Before closing this introductory section, we would like to comment onthe= 1
multiplets contained in7 and 7%/ (see also [30]). For that purpose we introduce the
N = 1 spinor covariant derivativeB, = Dy, D* = D% and define the\' = 1 projection

Ul=U(x,0?, égf)lgzzéazo of an arbitrary\V = 2 superfiéld/. It follows from (1.1) and (1.2)

l

that.7 is composed of three independévt= 1 multiplets

J=Jl=1J, Jo = D27, Jui = 3[DZ, Dial T| — £[Dz. Dial T| = Joi
(1.10)
while 7 contains two independenf = 1 components
T =iT?, D,T =0 (L.11)
L=iT2 =1L, D’L =0

whereT is a chiral superfield and is a real linear superfield. It is easy to find the equations
for J, J, and J,g:

iD*J =T
1o N2
Zp Jo =—L, D?J, =0 (1.12)
D*Jys = 5D, T.
The latter equation shows thay, is theN = 1 supercurrent anfl the corresponding multiplet
of anomalies. The spinor objedt contains the second supersymmetry current, the central
charge current and two of the thré8é&/ (2) currents, namely those which correspond to the
symmetries belonging t®U (2) /U (1). Finally, the scalay contains the current corresponding

to the special combination of th€ = 2 U (1) R-transformation andU (2) z-rotation which
leavesd; and@?! invariant. The central charge current is also contained,invhich is no
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accident. InN = 1 supersymmetry, associated with any internal symmetry is a real linear
superfield containing the corresponding conserved curtgetsuch a superfield for the central
charge. Similarly, in a superconformal theo{ = 0) the real scalay becomes a linear
superfield and, hence, contains a conserved current.

2. Superconformal building blocks

2.1. Superconformal Killing vectors

In NV-extended global superspaBé*V parametrized by = (x“, 6%,6!), infinitesimal
superconformal transformations

# o — A (2.1)
are generated by superconformal Killing vectors [19, 35-37]

§ =& =50, +& @D, +§(2)Df (2.2)
defined to satisfy

[£. D}] o« Dj. (2.3)
From here one obtains

g = —4iDuE",  DyEr=0 (2.4)

while the vector parameters satisfy the master equation

DiuEpp = Diatpp =0 (2.5)
implying, in turn, the conformal Killing equation
0uby + OpEa = 3Nap0cE”. (2.6)

The general solution of equation (2.5) was given in [35]46r= 1 and in [11] forA" > 1.
From equations (2.4) and (2.5) it follows

[€. D} = —(D£") D} = &, Diy — jTl/((/\/ —2)0 +25)D}, —iA,; D} (2.7)

Here the parameters of ‘local’ Lorenézand scale-chirar transformations are

Wap(2) = —%D;’ag,g),», o(z) = /\ﬁ (3 —2)DLg — DYE)) (2.8)
and turn out to be chiral
Diyiap = 0, Dyio = 0. (2.9)
The parametera ;/
A (2) __1 <[D£"Dw] _iaji[pg,[)dk]) g9, AT = A, trA=0 (2.10)
32 N
correspond to ‘localSU (N) transformations. One can readily check the identity

A . 1 .
DEA T = 2i (aﬁpjx - Nafp{;) 0. (2.11)
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For N/ = 2 it leads to the analyticity condition
DYAM = DY AP =0, W = 2). (2.12)

As is seen from (2.8), the above formalism cannot be directly applied to the c&5e-of
which is treated in more detail, for example, in [11]. In what follows, our considerations will
be restricted toV' < 4, with a special emphasis on the chai¢e= 2 later on.

The superalgebra of/-extended superconformal Killing vectors is isomorphic to the
superalgebrau (2, 2|NV) spanned by elements of the form

a)aﬂ — A(Saﬁ —iba,{g 277aj
g= —ia%# —%; + A8 2e%) (2.13)
2 - , :
2 ,'ﬂ 21;:; —(A—A 81,] +iA,'j
€ nlﬁ N( )
which satisfy the conditions
01 O
strg = 0, Bg'B = —g, B=|10 0 | (2.14)
0 0 -1

Here the matrix elements correspond to a Lorentz transformatigf, &% 4), translation
a*®, special conformal transformatiadrn,,, Q-supersymmetryey, €*'), S-supersymmetry
(0., M:4), combined scale and chiral transformatitrand chiralSU (V) transformatiom;/ .
They are related to the parameters of the superconformal Killing vector as follows:

o =0, (z2=0,  A=0(=0), Ad =Ad(z=0),
(2.15)
a" =£"(z=0), 6?‘:%‘?‘(1:0),
and so on. For such a correspondeifce—~ g, we have
[61,62] —  —lg1,92] (2.16)

It is useful to identify Minkowski superspace as a homogeneous space of the
superconformal grougU (2, 2|N) using the above matrix realization

5 0 0
Q(z) = expi{—x"P, +07 QL + 0,00} = | —ixi? sv; 26% (2.17)
20f 0 5

wherex-. denote ordinary (anti-)chiral bosonic variables

x{ =x*+i6;00". (2.18)
One verifies that

9Q2(2) = §R2(z) + Q(2)h(2),

where )
WyP — 08,P —ibgys 21y’
h(z) = 0 —" + 58 0 (2.19)
~ 2 . N
O 2_~' — (o — 5,‘j + iA,’j

belongs to the Lie algebra of the stability group. Hgiie
flo' () = 3 Do (2). (2.20)
This should be interpreted within the framework of nonlinear realizations.
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2.2. Two-point structures

Given two points; andz; in superspace, it is useful to introduce (anti-)chiral combinations
xi’z = —x;i =x{_—x5, + 2i92io“0_i
012 =01 — 6 610 =01 — 0,

which are invariants of th@-supersymmetry transformations (the notatiefy“indicates that
X1, is antichiral with respect tg; and chiral with respect tg,). As a consequence of (2.19),
they transform semi-covariantly with respect to the superconformal group

sy = = (83(e0 =576 ) ) 1y =237 (357 G) — 35°0 22)

(2.21)

oA 2 : S Bor
803 = 1(Ai7 (en) + 47 (5(2a) — 0 c0)) 87 )0 — iy (e (2.22)
—0fy (@5%(22) — 84" 0 (22)
Following [11], it is useful to introduce a conformally covariavitx A matrixt

_nJ
0121 x7201,

uil (z12) = 87 — 4 212 = 5,7 + Aig1p %1, 107, (2.23)
X12
with the basic properties
e 2
u'(z12u(z12) = 1, uN(z12) = u(z20), detu(zi2) = )% (2.24)
21

In accordance with (2.22), the unimodular unitary matrix

i’ (z12) = (2—12> ui’ (212) (2.25)
X12
transforms as
807 (z12) = 1A (2 (z12) — 105 (z12) Ad? (z2). (2.26)

2.3. Three-point structures

Given three superspace poibtsz, andzs, one can define superconformally covariant bosonic
and fermionic variableg, Z, and Z3, whereZ; = (X7, ®f', ©F,) are [9, 11]

R P | e _ xt_ = -1z = -1
X1 = X152 "X33X31 7, X, = Xl = —X13 X3X21
5 15i 15i 17 g Y21
O =i(X3 01, — X3, 013) = 7D71In
1 ( 21 V12— X3 13) 271 3,2 (2.27)
= 1 1 15 x122
O, =1 (912,‘)(127 — O13i X153 ) = ZDli In x—_ >
13

and Z,, Z3 are obtained from here by cyclically permuting indices. These structures possess
remarkably simple transformation rules under superconformal transformations:

A

6 Xui = (0 (2) = 870 (1) Xaga + X (a(20) — 875 (z0))
1
N

T We use the notation adopted in [35, 38]. When the spinor indices are not indicated explicitly, the following matrix-

like conventions are assumed [9} = (¥%), ¥ = (Yo), ¥ = W), ¥ = (Pa), X = (xaq), ¥ = (x%); but

x2=x%%, = —% tr(¥x), and hencg—1 = —x/xz.

(2.28)

86}, = 6o (@O} — 101, A (2) = (W = Do (en) + 25 (20)) @4,
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and turn out to be essential building blocks for correlations functions of quasi-primary
superfields.
Among important properties &’s are the following:

xész -2 _ xézz
= 2.2 X1 =

X217X13 X317X12 (2.29)

X — X1gg = 40}, 014

and further relations obtained by cyclic permutation of labels. The varigbleih different
labels are related to each other:

Xi3X3¥X3 = _le—l, )Ei3)z3f31 = —Xl_l (2.30)

¥1305u;7 (z31) = —lel@{, ;' (213)03, %3, = O1; X1 %

With the aid of the matrices(z,,), r,s = 1, 2, 3, defined in (2.24), one can construct
unitary matrices [11]

w(Z) =uGsuCuG. (7 = 8] 40y Xs0)
u'(Z3) = u(zau(z20)u(z19), ul/(Zs) = 87 + 4103, X516}
transforming ats only. Their properties are
X4?
w'(Z3) = u1(Z3), detu(Z3) = =—. (2.32)
X352

It is worth noting that det.(Z3) is a superconformal invariant [11] and from (2.29) one
immediately obtains

X?  Xo*  X3?

—— = = = =, 2.33
X2 X2 X32 ( )
2.4. Specific features ¢f = 2 theory
In the case ofV = 2, we have at our disposal tt$/(2)-invariant tensorg;; = —¢;; and
g/ = —¢J!, normalized te12 = ¢5; = 1. They can be used to raise and lower isoindices
Ci zgijcj, C; =8,‘jCj. (234)
Now, the condition of unimodularity of the matrix defined in (2.25)
oy 1/2
m%m9=<i%) uil (212) (2.35)
X12
takes the form
(M (z12), 7 = i1/ (z20) = e i (212 (2.36)
which can be written as
i (z21) = —1;5(z12). (2.37)
The importance of this relation is that it implies that the two-point function
Uiyiy(212) Ui, (221)
Apir(z1,22) = s =
/2 1/2
(x122x212) (xizzxélz)
_ Uiy, (212) _  Uiyiy (221) (2.38)

_2 _2
X12 X21
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is analytic inz; andz; for z3 # zo,
Dla(leil)iz(Zla 22) = Dldt(leil)iz(Zla 72) =0. (2-39)

As we will see laterA,,;,(z1, z2) is a building block of correlation functions of analytic quasi-
primary superfields like th&” = 2 flavour current superfields. It is worth noting that unitarity
of ii(z12) now implies

iij(z12) = 01" (z12). (2.40)

The above properties of the matrices, wherer, s = 1, 2, 3, have natural counterparts
for w(Z,), with u(Z3) defined in (2.31). We introduce the unitary unimodulat 2 matrix

= o\ 12
Wz = (35) wza. etz =1 @(Zicz) =1 (2.42)
3
with the superconformal transformation law
807 (Z3) = Ai* (za)iu! (Zs) — 0" (Za) Av (z3). (2.42)
Sinceu(Z3) is unimodular and unitary, we have

tra'(Zs) = tr a(Zs)

0l(Z3) = —11;;(Zs) (249
and from here one can readily deduce the useful identities
(3205 i)
X32 X32 ] (X32)2 (X32)2 (2.44)
®3(i£@3_,'> = @3(1‘:)(—3@31)-
(X3%)? (X3?)?

3. Correlators of N = 2 quasi-primary superfields

3.1. Quasi-primary superfields

In M-extended superconformal field theory, a quasi-primary supedigid), carrying some
number of undotted and dotted spinor indices, denoted collectively by the superd&rgd
transforming in a representatidn of the R-symmetrySU (N') with respect to the subscript
‘7", is defined by the following infinitesimal transformation law under the superconformal
group:
807(2) = —§07(2) + (@ (DIMy5 + &"° (2)M;3) 505 (2)

+HAS ) (R'D17 07(2) = 2(q0 (2) + 5 (2) OF (D). (3.)
Here M, andeﬁ are the Lorentz generators which act on the undotted and dotted spinor
indices, respectively, whil&®’; are the generators ofU(N). The parameterg and g

determine the dimensio@ + ¢) and U (1) R-symmetry chargéqg — g) of the superfield,
since for a combined scale abtd1) chiral transformation

Sx™ = ax", 807 = (A +iQ)67, 86, = (L — Q)0 (3.2)

(01 0) »

we have

o(z) =

NI =
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In this paper we are mainly interested in two- and three-point correlation functions of the
supercurrent/(z) and a flavour current superfielt};(z) in V' = 2 superconformal theory.
The reality condition7 = 7 and the supercurrent conservation equation

Dig=D77=0 (3.4
uniquely fix the superconformal transformation law of
8J(2) = —£J(2) = 2(0(2) +6(2)) T (2). (3.5)

As for the flavour current superfield, the reality conditi6yp = £/ and the conservation
(analyticity) equation

DYL/M =DYrh =0 (3.6)
fix its transformation law to

8Lij(2) = —£Lij(2) + 2IA*(2) L (2) — 2(0(2) + 5 (2)) Lij (2). (3.7)
Similar to the A/ = 1 consideration of [44], the transformations (3.5) and (3.7) can

also be obtained as invariance conditions with respect to combined diffeomorphisms and
Weyl transformations in the superconformal theory coupled t& a= 2 supergravity
background.

3.2. Two-point functions

According to the general prescription of [9, 11], the two-point function of a quasi-primary
superfieldO; (carrying no Lorentz indices) with its conjugaf®’ reads

T (i(z12))
0_—

(Xizz)q (xélz)q
with Cp a normalization constant. Hefedenotes the representationsi (A) to whichOz

belongs.
For the two-point function of th&/ = 2 supercurrent, the above prescription leads to

(07(20007 (z2)) = C (3.8)

1
(J(z21) T (22)) = T %> (39)
X127X31
Using the identity
_ .. 1 .
Dy — = 4iD1"8%(z1, z2), (3.10)

X12
wheres®(z1, z») denotes theV = 2 chiral delta function,

88(21, 22) = =D*"(z1 — 22), D*= 1DV Dy, (3.11)

we immediately see that the supercurrent conservation equation is satisfied at non-coincident
points

D1"(J (21T (z2)) = D1”(T (21T (z2)) = 0, 21 # 22. (3.12)

In this paper we leave aside the analysis of singular behaviour at coincident points, see [9] for
detalils.
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In the case of two-point function of th& = 2 flavour current superfield;;, the above
prescription gives

Ui,2(212)1 ;72 (212) + 111,72 (212)1 ;, 2 (212)

(Liyjy (21 L?2(22)) = cr — (3.13)
X127X31
Because of equation (2.39), the relevant conservation equation is satisfied
Doy (Liyj1y 21 £72(22)) = D1gay (Liyjoy (21)L22(22)) = 0 (3.14)

for z1 # zo.

3.3. Three-point functions

According to the general prescription of [9, 11], the three-point function of quasi-primary
superfield©y, 0% andoy reads

TW 7% (ii(z13) TP, (1(229))
(xisz)th (x§12)‘11 (x232)‘§2 (xézz)%

(0P (202 (220D (z3)) = Hy, 7.7.(Z5). (3.15)
Here H, 7,7,(Zs3) transforms as an isotensor atin the representationg™™, 7® and7®
with respect to the indice$;, 7> andZs, respectively, and possesses the homogeneity property

Hjljzls(AAX’ A®7 Aé) = A2a AZ&HJ:LJZZE (Xa ®a é) (3 16)
a—2a=q1+q2— qs, a—2a=q1+q2—qs

In general, the latter equation admits a finite number of linearly independent solutions, and
this can be considerably reduced by taking into account the symmetry properties, superfield
conservation equations and, of course, the superfield constraints (chirality or analyticity).

3.3.1. TheN = 2 supercurrent. We are going to analyse the three-point function of the
N = 2 supercurrent for which we should have

(J (21T (22)T (23)) = H(Z3),

x13%x312x532x35° (3.17)
H(AAX,A®, A®) = (AA)°H(X,0,0)

where the real functiortd (Z3) has to be compatible with the supercurrent conservation
equation and the symmetry properties with respect to transposition of indices.[Bi@ggis
invariant undei/ (1) x SU(2) R-transformations, we havl (X3, O3, ©3) = H'(X3, X3),
as a consequence of (2.29).

When analysing the restrictions imposed by Mie= 2 conservation equations, it proves
advantageous, following simila¥" = 1 considerations in [9], to make use of conformally
covariant operator®; = (3/3X§, Dyi, D*) andQ; = (3/d X%, Qui, O%) defined by

Drxi

_ - . 3

= — 20093 0%, ——, L—

0% 3 X4 3034

3 _ D o

= —, chl _ + 2|®§a(o_a)aa_a
90Y 3034 IX4

[Pz, Qs =0.

(3.18)

Qoti
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These operators emerge via the relations
D1,'t(X3, O3, O3) = —i(fgl_l)a;}u,’i(Zsl)@ﬂjf(Xs, O3, O3)
D1,it (X3, O3, O3) = —i(iisfl)ﬁauij(ms)D?f(Xg, A3, O3)

A - L A s _ (3.19)
D2,'t(X3, O3, O3) = i(¥35 Dy pus (2320 Q% 1(X3, O3, O3)
Doyit (X3, O3, O3) = (X33~ 1) patti’ (223) Q1 (X3, O3, O3)
wherer (X3, O3, ©3) is an arbitrary function.
With the aid of these operators, one can prove the identity
. s _ i j . _
D1 D1’ <—21(X3, O3, ®3)) = —MDQDMI(X& O3, O3) (3.20)
X31 (x13%)

and similar ones involving the operatabs;;, D, and Da;;.
Now, the supercurrent conservation equation (3.4) leads to the requirements
DijH (X3, ©3, 03) = DV H(X3,03,03) =0 (3:21)
and to similar ones wittb’s — Q’s. SinceD* and Q,; coincide with partial fermionic
derivatives the above equations imply
32 _ 2 _
-  _H(X,0,0)= ———H(X,0,0) =0, (3.22)
900! 9O 9090,
and therefore the power seriesB{ X, ©, ©) in the Grassmann variabl€s contains only a
few terms.
The general solution foH (Z3) compatible with all the physical requirements on the
three-point function of the&/" = 2 supercurrent reads

1 >+ 0% X304 X35,05"

_ 1
H(X3,03,03)=A — + — 3.23
(X3, O3, 03) <X32 X2 (X222 ( )
where
0¥ = =036l A = 6% = 6%,6% (3.24)

andA, B are real parameters. Note that the second structure is nilpotent.

Let us comment on the derivation of this solution. First, it is straightforward to check that
the functionsX;~2 and X532 satisfy equation (3.21). They ent#f(Z3) with the same real
coefficient, sincéd must be real and invariant under the replacemert z, that acts onX'z
and X3 by X3 < —X3. The second term in (3.23) is a solution to (3.21) due to the special
N = 2 identity

Dlig = DG = Q. (3.25)
It is important to demonstrate that the second term in (3.23) is real, i.e. that
@gﬁXwaX:;ﬁﬂ@gﬁ _ @gﬂX&an3ﬁﬁ@gﬂ

_ 3.26
(X32)2 (X32)2 ( )
Usingthe identityX§ = X5+2i050®3;, we firstrepresenk;—2 as afunction oz, O3, O3:
1 _ 1 ,.05Xs05 0% X34 X 35505 (327
X2 Xg 0 (Xg)? (Xs2)° '

We then apply the same identity to exprélﬁosxg(:)g,- in the second term viX; and X3. Now,
equation (3.26) follows from (3.27) and the first identity in (2.44).

Using (2.30), one can check that the three-point function (3.17) and (3.23) is completely
symmetric in its arguments.
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3.3.2. Flavour current superfields.Let us turn to the three-point function of flavour current
superfieldsCy,

i, (212)0 ;" (219) 11,2 (229)10 ;,2(223)  _, 2j

b 1 J 3
<‘C?111 (Zl)‘clzjz (ZZ)‘C;3J3 (z3)) = xé12x132X322x232 ’ H(klll)(kzlz)(i3j3) (Z3),
(3.28)
with
abe A Q) 2 yrabé ®
H(g/qucl)(kzlz)(isjs) (AAX,AB, AB) = (A A) H((/IICﬂCl)(kzlz)(lsjs) (X,0,0). (3'29)

Using relations (2.39) and (3.19), the flavour current conservation equations (3.6) are equivalent
to

abe
Dt H iy i (X €5 8) = Dty HEE 115 (X O, ©) =
Q"‘(iZ Hlklll\kzlz)(isjs) X, 0, ®) Q“(’z HlkllLl\kzlz)(zgjg)(Xv o, ®) =0.

In particular, sinced% andQ,, are just partial Grassmann derivatives, we should have

0 abe ® 0 abé ®
3@ Hklll)(kzlz)(l3j3) (X,0,0) = 903, Hlklll\kzlz)(lsjs)(X’ ©,0)=0. (3'31)

The most general form for the correlation function in question is of the form (3.28) with

(3.30)

Hib (Zs) = [ Eighy Uty (1, (Z3) k) s
(i) et iz (Z3 X2 X2

+ (i3 < Jj3) (3.32)

with fa¢ = flabel g completely antisymmetric tensor, proportional to the structure constants
of the flavour group. In contrast t& = 1 supersymmetry [9], the three-point correlation
function of flavour currents does not admit an anomalous term proportional to an overall
completely symmetric group tensaf’® = 4@ Thisis a consequence of the fact that the
N = 2 conservation equations (3.6) do not admit non-trivial deformations; see also below.

3.3.3. Mixed correlators. The three-point function involving twgv" = 2 supercurrent
insertions and a flavouy” = 2 current superfield, turns out to vanish

(T (z0) T (z2)Lij(z3)) = 0. (3.33)
On general grounds, the only possible expression for such a correlation function compatible
with the conservation equations and reality properties should read

1 Uijy(Z3)

x31%X132X3,%255° (X 32 X32) 12
with P a real constant. However, the right-hand side is easily seen to be antisymmetric with
respect to the transpositien <> z, acting asX3 <» —Xs, and hencéy;j,(Z3) < ﬁ,:rl.j)(Zg) =
—,(Z3). Therefore, we must sét = 0.

For the three-point function with two flavour currents and one supercurrent insertion one
finds

(T (20T (22)Lij(z3)) = P

(3.34)

k(2191 1, (z13)i0:,"2 (223)11 j,"? (223)

2. 2. 2. 2
X317 X137 X32°X53

(« ll]l(zl)ﬁf)z]z (z2)T (z3)) = dSaE iy

» Ekahy Wip)1, (Z3) + 1y, Wiy)k, (Z3)
(X32X32)1/2
whered is a real parameter which can be related, via supersymmetric Ward identities, to the
parametet in the two-point function (3.13).

: (3.35)
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3.4. Example:N = 4 super-Yang—Mills

Let us consider the harmonic superspace formulationfee 4 super-Yang—Mills theory
S[Vv*©* ¢, ¢l = —tr/ol4 d*o w2 — —tr/du dcP gt (D™ +iviY) ¢* (3.36)

Since the hypermultiplet* belongs to the adjoint representation of the gauge group, we can
unify g* andg™ in an isospinor

+ v+ +7 7+ v+

=" q". ¢ =¢"4 =G . —q"). (¢ y=q" (337
such that the action takes the form (Wkh= D** +iv**)

<>

1 ,
S = —tr/d4 d*o w2 — 2 tr/du de9g*" v ¢ (3.38)

This form makes it explicit that the theory manifestly possesses the flavour symmetry
SU r(2), in addition to theN" = 2 automorphism grougU z(2) x Ug(1). The full group
SUR2) x Ur(1) x SU ¢(2) is the maximal subgroup &U g (4)—the R-symmetry group of
the ' = 4 SYM—which can be made manifest in the framework of Mie= 2 superspace
formulation. While the conserved currents &V x (2) x Ur(1) belong to the supercurrent

l — _ >
J=Str(WW—1¢"" v ¢, (3.39)
(-} )

the currents foSU r(2) belong to the flavour current supermultiplet
L7z, u) g™ (17 ¢ = uTut L] (2), (3.40)

with 7@ the Pauli matrices; here the latter equality is valid on-shell. The fact{that’)
vanishes identically, whered£L.7) is generically non-zero is now a simple consequence of
group theory. In fact, group theory restricts the structure of the correlation function of three
N = 4 SUx(4) currents to be proportional to(tf /+%) wheret! is aSUx (4) generator. By
considering the action of th8” = 2 Uz (1) symmetry, one finds that the correct embedding
ur(l) C sug(d) is diag+1, +1, —1, —1). Alsosug(2) @ sur(2) C sur(4) is embedded as
diagisug(2), sur(2)). Theresult stated above now follows immediately. Three- and four-point
functions of the flavour currents (3.40) have been computed at two loops in [45].

4. Reduction toA = 1 superfields

From the point of view ofA/ = 1 superconformal symmetry, any = 2 quasi-primary
superfield consists of severAl = 1 quasi-primary superfields. Having computed the
correlation functions of\" = 2 quasi-primary superfields, one can read off all correlators
of their / = 1 superconformal components.

When restricting ourselves to the subgrdip(2, 2|1) € SU (2, 2|2), all matrix elements
of h(z) (2.19) withi, j = 2 should vanish, and hence we have to set

[A\lgzj\glzo, i[\llz —i[\ggZ(;' — 0. (41)

Therefore, theV' = 1 U(1) R-transformation is a combination ¢f = 2 U (1) and special
SU (2) R-transformations.
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Keeping equation (4.1) in mind, from th€ = 2 supercurrent transformation law (3.5)
one deduces the transformation of fkfe= 1 currents (1.10)
8J =—EJ —2(c+6)J
8Jy = —EJy + &P Jp — (30 +25) J, (4.2)
8Jaic = =& Jui * (0087 + i 8.0) g5 — (0 +6) o
These superconformal transformations are uniquely singled out by the relevant conservation
equations
D*J =D%*J =0
D*J, = D*J, =0 (4.3)
D%Jyy = D%Jpy = 0.

In the case of\" = 2 flavour current superfield’/, its most interesting’ = 1 component
containing the conserved current,

L=ic2 =1L (4.4)

satisfies the standasd = 1 conservation equation
D?’L = D?L =0, (4.5)
and, therefore, its superconformal transformation rule is simildr, to
SL=—¢L—2(c+6)L. (4.6)

The sameV = 1 transformation follows from (3.7).

4.1. Two-point functions

Using the explicit form (3.9) of th&/” = 2 supercurrent two-point function, one can read off
the two-point functions of tha/ = 1 quasi-primary superfields containedirt

1
(J(z)J (z2)) = cg—>3-
X12°X31
7. YT (xli)aﬁ
<Ja (Zl)‘]ﬂ (ZZ)) - 4ICJ xizz(xélz)z ) (47)
_ ‘ _ 64 (xp)ep(a1)pa
(Jaer(21) Jﬁﬂ (z2)) = 3 cg (x122x212)2 .

These results are in agreement with= 1 superconformal considerations [9]. Similarly, the
two-point function of the\V = 1 flavour current superfield (4.4) follows from (3.13)

1
(L(z)L(22) = et —5——- (4.8)
X127%321

T Here and below, all building blocks are expressed/ia= 1 superspace.
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4.2. Three-point functions

We now present several = 1 three-point functions which are encoded in that ofthe= 2
supercurrent, given by equations (3.17) and (3.23). First of all, for the leading 1
component of7 one immediately obtains

(J(z1)J (z2)J (z3)) A ( L2 ) (4.9)
<1 22 B)) = ——5 5 S|\ 05T =5 .
Xig'x31°%33°%3" \ Xa?  X3?

The second term in (3.23) does not contribute to this three-point function, @itfcis equal
to zero forg, = 62 = 0.

The derivation of three-point functions involving thé = 1 supercurrent is technically
more complicated. In accordance with equation (1.10),is obtained from7 by applying
the operator

Ao = 2[DZ, Dip] — (D2, Dl (4.10)

and, then, the Grassmann variabfigsand 62 have to be switched off. One can prove the
following useful relations:

(¥13 Dy (Fai Dya
2

(Juae(20)J (22)J (23)) = Ay’ H(Z3)|,

2.2, 2.

X137X317X337X32

(¥13 Daj (Fa1 Hya Gz g5 (B Dsp (4.112)
X132X31 2557 x35?

<Ay M) H(Z3)|

(Jaa (z1) Jgp(22) J (z3)) =

whereH (Z5) is given by equation (3.23) and the operatarg, and A g, are constructed in
terms of the conformally covariant derivatives (3.18)

Ap)*® = 3[D§. D*¥] — §[D§. D™, A =3[05. 0" — }[05. 0.  (4.12)
Direct calculations lead to
1
(J(20)J (22) Jair(23)) = —35(8A — BB) —————
«“ 12 x132x312x232x522
2(P3 - X3) X305 + X3% P -
X ( (X32)2 + (X3 <~ —X3) s (413)
4 (¥13)ay (¥31)par (X23) g5 (*32) 55
Joi Py J = ——(8A+3B
(Jua (z1) g3 (22) I (23)) 9( ) Cr1g2 22 32)
ng)'/ngSS 1 8;/683'/[3 —
+Z + (X3 —X 4.14
( X2¢  2(X22 (X3« —X3) |, (4.14)
with P, defined by [9]
X, - X,=iP,, P, = 200,0. (4.15)

Equation (4.14) presents itself a nice consistency checkN la= 1 superconformal
field theory, the three-point functioi,, J4; L) of two supercurrents with one flavour current
superfieldL is uniquely determined up to an overall constant [9]. Afy= 2 superconformal
field theory, considered as a particuler = 1 superconformal model, possesses a special
flavour current superfield, = J. Therefore, the only possible arbitrariness in the structure of
the correlation function/., J4; /) is an overall constant. However,andJ,; are parts of the
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N = 2 supercurren/, and hence the three-point function,; J4; J) follows from (7.7.7).
Since the latter contains two linearly independent forms, given in equation (3.23), there are
two possibilities: (a) either tha- or B-term in (3.23) does not contribute {d,. /45 J); (b)
both theA- and B-term produce the same functional contributiong, J4; J) modulo overall
constants. Equation (4.14) tells us that option (b) is realized.

The calculation of J,; J44J, ;) is much more tedious. To derive this correlation function,
one has to act with the operator (4.10) on each argumeQf &f1).J (z2) 7 (z3)). However,
since by constructioi in (3.17) is a function ofZ3, it turns out to be quite difficult to control
superconformal covariance at intermediate stages of the calculation when acting,yitm
the third argument of 7 (z1) 7 (z2) J (z3)). A way out is as follows. One first computes

(X153 Dao Fai HDoa

X19%X312X532X35°

x (867, ,072 H (Z3) + 2007, ,u2(23) D" H(Z3) — L072u5" (219) DY H (Z3)
+Hug* (z19uP(z30) — Suif (219wt (za0) }[DY, D' H(Z3))

and next expressd$(Z3), Dy H(Z3) and [D7, D°!|H (Z3) as functions ofZ; with the help
of identities (2.30). After that it is a simple, but time-consuming procedure, to complete the
computation of J,; J44J, ;). The result reads

(Age T (21) T (22) T (23)) =

(x 13)aa (-x31)<7a (xzs),sa (x32)8ﬂ 58 S

( 2 2 2 2)2 HmT yy(X?n X3),
_ _ X13°X317X33°X32 (4.16)
HOOP (X3, Xa) = h°0% (X3, X3) + 1507 (— X3, —X3),

(Joa (21) g3 (22) Jyy (23)) =

where

- — 64 i b
aa,Bp . _ 9 Ba sa oB
h yy(X,X)— 2—7(26A—ZB)WX 51/5)-/

8 1 do pp : o
—57(84 - 9B)m<2(x PP+ XPP P X,

oo (P X)
—3x%ox PP (PW +2 XW>
+2((P - X)X — XZP“d)Sf(Sf +2((P - X)XPP — X2PPP)sess
+(4(P - X)X + szaﬁ)afag +(4P - X)XP + szﬂd)agaf). (4.17)

It is convenient to rewrite this result in vector notation
h (X, X) = ——(o“)m(o“)ﬁﬁ(a%”hw B (X, X)

= —2_7(26A 9B) (Xanbc +anac _ chab + igahchd)

(XZ)2
——(8A 93)( 2)3<2(X“P”+XbP”)XC

(P-X)
X2

-3x“X” (PC +2 XC) — (P - X)(3(X " + X"n*) — 2X 1)

%X (Panbc + Phn‘” + P¢ ab)) (4.18)
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Our final relations (4.16) and (4.18) agree perfectly with the general structure of the three-point
function of the supercurrent it = 1 superconformal field theory [9].

Using the results of [9], it is easy to expressind B in terms of the anomaly coefficients
[12]

a=20Gny +np), ¢ = 5(2ny +np), (4.19)
whereny andrny denote the number of fre¥ = 2 vector multiplets and hypermultiplets,
respectively. We obtaint

_ 3
"~ 6476

In N/ = 1 supersymmetry, a superconformal Ward identity relates the coefficient in the
two-point function of the supercurrent (4.7) to the anomaly coefficiexst follows [9]:

A (4a — 3c), B = i6(4a — 5c¢). (4.20)
8

3
Cj = QC. (421)
In terms of the coefficientd and B this relation reads
2
—¢g =8A —3B. (4.22)
T

In A/ = 1 supersymmetry, there also exists a superconformal Ward identity which relates
the coefficients in the following correlation functions:

cr
(L(z)L(z2)) = —5 -
X127X31
D 2(Ps - X3) X305 + X3 Paog
(L(z1)L(z2) Jua (23)) = ( +c.c.
X132X31%X33% X357 (X32)?

of a current superfield.. A nice consequence of our consideration is that = 2
supersymmetry allows us to fix up this Ward identity without working it out explicitly. The
point is that the\V' = 2 supercurrent contains a special current superfield, thiatTherefore,
from the first relation in (4.7) and equation (4.13) we deduce

1

D=———c].
62 -

(4.23)

Let us turn to the three-point function of ti = 2 flavour current superfield given by
equations (3.28) and (3.32). From these relations one reads off the three-point function of the
N =1 component (4.4)

_ = ~ 1 - i 1 1
(L*(z1)L"(22) L (z3)) = —f”hcl—2 ( ) (4.24)

4 xiazxélzxészxéz X_?,z - X32
Here we have used the identities
u1'(Z3)| = detu(Zs)], u13(Z3)| = uz’(Z3)| = 0, u?(Z3)| = 1. (4.25)

It is worth noting that Ward identities allow us to represgft® as a product of, and the
structure constants of the flavour symmetry group, see [9] for more details.

T Our definition of the\" = 1 supercurrent corresponds to that adopted in [35] and differs in sign from Osborn’s
convention [9].
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In N = 1 superconformal field theory, the three-point function of flavour current
superfieldd. contains, in general, two linearly independent forms [9]:

_ — _ 1 o 1 1 - 1 1
(L9(z1)LP (z2) L° (z3)) = —{if[""“] (— — —) +4d@0 (— + —)}

X132X31%X23%X35° X32 X342 X32  Xg?

The second term, involving a completely symmetric group teddor, reflects the presence
of chiral anomalies in the theory. The field-theoretic origin of this term is due to the fact that
the ' = 1 conservation equatioP?’L = D?L = 0 admits a non-trivial deformation

Dz ( LE) ” daBEWEa W(f

when the chiral flavour current is coupled to a background vector multiplet. Equation (4.24)
tells us that the flavour currents are anomaly freg\in= 2 superconformal theory. This
agrees with the facts that: (AJ = 2 super-Yang—Mills models are non-chiral; (b) the= 2
conservation equation (3.6) does not possess non-trivial deformations.

Finally, from the three-point function (3.35) we immediately deduce

_ — d 1 1 1
<La(Z1)Lb(Z2)J(ZS)> = —Babﬁ (—2 + ——),
2 xigfra®ragtra” \ Xa® Xi?
= 1

@ b 2d
(L (20) L (22) Ju (z3)) = ——-8%

- (4.26)
3 xiszxélzxészxézz

2(P3 - X3) X305 + X3%Paog
X
(X3%)?
Now, the Ward identity (4.23) implies

+ (X3 <> —X3)).

1

d= PCL.

(4.27)

5. Discussion

Our main objective in this paper was to determine the restrictions of the general structure
of two- and three-point functions of conserved currents imposetf' by 2 superconformal
symmetry. This was done in a manifestly supersymmetric formalism. The results are contained
in sections 3.2 and 3.3. In particular, we have shown that the three-point function of the
supercurrent allows for two independent structures. Inthe appendices we show that the minimal
supergravity multiplet can be described in harmonic superspace by two real unconstrained
prepotentials: harmoni& and analyticvz*. This is the superfield parametrization which
allows us to derive the supercurrent and multiplet of anomalies as the response of the matter
action to small disturbances of the supergravity prepotentials.

In this paper, the results about the structure of the correlation functions were completely
determined byV" = 2 superconformal symmetry. The results for specific models only differ
in the value of the numerical coefficients. They can be determined in perturbation theory using
supergraph techniques.

An interesting open problem is the issue of non-renormalization theorems for the
correlation functions of conserved currents. For a recent discussiov ferd, see [46].

There exists an off-shell formulation ¢f = 3 SYM theory, [47]. SinceV' = 3 and
N = 4 SYM are dynamically equivalent, it can be used to find further restrictions and possible
non-renormalization theorems on thé= 4 correlation functions.
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Another interesting problem is the structure of superconformal anomalid$ ef 2
matter systems in a supergravity background. Such anomalies are responsible for the three-
point function of the\ = 2 supercurrent studied in section 3. The results of appendices A and
B provide the natural prerequisites for the analysis ofthe- 2 superconformal anomalies.
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Appendix A. Supergravity multiplets

In this appendix we briefly review harmonic superspace and discuss the Weyl multiplet and
the minimal supergravity multiplet in some detail.

In rigid supersymmetry, all know = 2 supersymmetric theories in four spacetime
dimensions can be described in terms of fields living\in = 2 harmonic superspace
R*® % SU(2)/U(1) introduced by GIKOS [39]. Along with the standard coordinates
z=(x" 6%, 6.) of R (6% = 9%), this superspace involves the internal harmonic variables
uF which are constrained by*u; = 1 and defined modulo phase rotations with charge
+1. Harmonic superspace possesses a supersymmetric subspace, with half the fermionic
coordinates of the full superspace, defined to be spanned by the variables

{e™, uft}, oM = (0 = (x™, %, G (A1)

wheret

Xy =x" = 2i0%6"07 ujuj, 0F¢ = 9% y*, (A.2)
The analytic subspace (A.1) is closed undér= 2 super-Poincé& and superconformal
transformations [23,39]. In addition, it is invariant under the generalized conjugation
defined as [39]

V. .m m + n+ n+ + +i + + +i
LXY = Xy, 6, — 0, 0, — —06,, u™ — —u;, u; —>u-.

The fundamental importance of analytic subspace (A.1) lies in the fact thaf tae matter
multiplets (hypermultiplets and vector multiplets) can be described in terms of unconstrained
analytic superfields living in the analytic subspace (A.1).

In harmonic superspace, there is a universal gauge principle to introduce couplings to
Yang-Mills and supergravity [39]. Consider the rigid supersymmetric operdétsand
D~ defined as

D** = 9+t — 2i0%0"0%),, + 043, (A.3)
whered** = u*'9/9u™, 3, = 9/dx}, 37 = 3/36¥4. The fundamental property @** is
that if ¢ is analytic, i.e. ifd]¢ = 0, then so isD**¢. It turns our that switching on the Yang—
Mills or supergravity couplings is equivalent to the requirement &t must be deformed
to acquire a connection or non-trivial vielbeins, in such a way that the deformed operator still
preserves analyticity.

T Equation (A.2) defines the so-called analytic basis of harmonic superspace, while the original bgfs}iis called
central. In what follows, we mainly use the analytic basis and do not indicate the subacegplicitly.



Correlation functions of conserved currents 685

A.1. Weyl multiplet

In this subsection we start by reviewing the harmonic superspace realization [23, 24] of the
Weyl multiplet [26] describingVv = 2 conformal supergravity and comprising 24 + 24 off-
shell degrees of freedom. Then, we will present a new parametrization for the conformal
supergravity prepotentials and describe several gauge fixings.

According to [23, 24], the conformal supergravity gauge fields are identified with the
vielbein components of a real covariant derivative

D — 3+++H++M3M +H(+4)3__ +H+&ag (A.4)

that is required to move every analytic superfield into an analytic one. HaRté =
(K™ 1 ey and H*Y are analytic, while*® = (H*, H**) are unconstrained
superfields. The supergravity gauge transformations ag€t'érand a scalar superfield via
the rule ©° = u*9/9u* — u="9/9u™")

D™ =[r+p, D]+ A7 DO, sU =\ +p)U (A.5)
where

A= AMay +AT p=p0; (A.6)
such that every analytic superfield@{1) chargep, ®»’, remains analytic

sV = 1), 7o = jlsd” = 0. (A7)

Therefore, the parameter¥ = (A, A**, 1*%) andA** are analytic, whilep =% = (p=2, %)
are unconstrained superfields.

The supergravity gauge transformations are induced by special reparametrizations of
harmonic superspace

s¢M = Mz, w),
Sutl = -2, u)u_i, Su' =0, (A.8)
8074 = —p~(, 07, u)

which leave the analytic subspace invariant.

SinceD** contains a number of independent vielbeins, it is far from obvious in the above
picture how to generate a single scalar supercurrent from the host of harmonic vielbeins. In
addition, there is a technical complication—some vielbeins possess non-vanishing values in
the flat superspace limit (A.3). To find a way out, it is sufficient to recall the standard wisdom
of superfieldV = 1 supergravity [40]. In equations (A.4) and (A.6) the covariant derivative
and gauge parameters are decomposed with respect to the superspace partial derivatives. To
have a simple flat superspace limit (which would correspond to vanishing values for all the
supergravity prepotential), it is convenient to decompb4€ and 1, p with respect to flat
covariant derivative®**, Dy, = (3,,, D;, D;) andD} = 3/307%; i.e.

D" =D+ H™MDy + H*D =+ H" D} (A.9)
A=AMDy +ATD " p=p oD} (A.10)

whereH* = H®*¥ A* = A**. In such a parametrization, the vielbeid$*™ and H*%
are no longer independent, but they are instead expressed via a single unconstrained superfield.
Really, since we must have

DD =0,
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for any analytic superfield”, using the algebra of flat covariant derivatives leads to
DIH™ P — 2isf B = 0, DIH™ =0,
* « “o (A.11)
D;-H+++ﬂ _ 85H(+4) — O, D:;H+++ﬁ — 0
The general solution to these equations (and their conjugates) reads
H* = —iD*™D"™G,
H** = —1p*™(D")%G, H* = I1D*™(D")?G, (A.12)
H(+4) — 1—16(D+)2(D+)2G = (D+)4G
with G(z,6~,u) a real unconstrained harmonic superfield, = G. The prepotential
introduced is defined modulo pre-gauge transformations
3G = H(DH2Q + L(DYHRa (A.13)
whereQ~~ is a complex unconstrained parameter.
Similar to H*** and H*¥, the gauge parameters” and A** in equation (A.10) are

expressed via a single real unconstrained supeffielt;, 6, u), [~ =1, as
A% = —iD* D], AT = (DY,
+ 1 o 2 X +a 1 y+a +\2 (A14)
A = —gD™(D)T ", A = 3D™ (D).

From equation (A.5) one can read off the transformationg 9, H* and H*¢:

SHYM = y\qg**M _ D™ AM SH™ = AH™ — D™ A*™*
+& +& +& ’ ++ —@ ’ (A.15)

SH™ = (A +p)H*™ — AY — D" p~¢,
where

ﬁ++ — D++ _ H+&Dt
Since the parametegs @ are unconstrainedy *® can be gauged away

H* =0. (A.16)
Then, the residual gauge freedom is constrained by

D p=d = —AY, (A.17)

In what follows, we will assume equation (A.16), herfe& andD** coincide.
From (A.15) it is easy to read off the transformation lawflt is sufficient to note the
identities

[D;,A] =0, [D;, D] =0 (A.18)

where the latter holds for (A.16) only. Therefore, from equations (A.12), (A.14) and (A.15)
we deduce

8G =1G —D"I . (A.19)

Now, equations (A.13) and (A.19) determine the full supergravity gauge group.
It is instructive to examine (A.19) in linearized theory

8G = —D*I . (A.20)
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In the central basi®** coincides withd*™*, andG(z, u) and/~~(z, u) are

J1 n’

oo
Gz, u) = G(z) + Z G(il“'i'ljl"'j")(z)u;rl .. u;;MT ceeuT
n=l (A.21)

Jn+1

o0
1" (z,u) = Zl(llmlH‘llm']"ﬂ)(Z)”;rl . u;—lu;l -
n=1

whereG(z), G2 (z) andli2)(z) are unconstrained superfields. Side&u; = 0 and
D*u; = u;, equation (A.20) tells us that all the compone@ité ), n = 1,2, ..., can be
gauged away to arrive at the gauge condition

D**G =0. (A.22)

The surviving gauge freedom consists of those combined transformations (A.13) and (A.19)
which preserve the above gauge condition, that is

8G(z) = 1l2Dij Qij () + j%zbij Qij (2) (A23)

where Q¥ (z) is the leading component in the harmonic expansiorf2of (z, u) (A.13).
The linearized prepotential of conformal supergravityz) and its gauge freedom (A.23)
is precisely what follows from the structure of thé = 2 supercurrent discussed in the
introduction.

Instead of imposing the gauge condition (A.22), one can take a different course. Since
H®¥ is analytic, it follows from (A.15) that we can achieve the gauge [23, 24]

H® =0 (A.24)
which restricts the residual gauge freedom to

DA™ =0. (A.25)
Now, from (A.12) and (A.24) we obtain

G = D™V + D" (A.26)

where W7 (z,u) is an unconstrained harmonic spinor superfield Ibf1) charge —1.
Equation (A.25) defines a linear analytic superfield in conformal supergravity background.
In linearizedtheory, the general solution of equation (A.25) is well known:

AT = (DYYu;u; DIV (2) +uju; DUV ()}, (A.27)
Therefore, from here and (A.14) we can completely specify the residual gauge freedom:
[T (z,u) = D+“TOE_3) (z,u) + l_)mfé(fg)(z, u) + u;u;(DijV(z) + l_)ijV(z)) (A.28)

with an unconstrained harmonic paramérér?® (z, u). UsingY{~® transformations, we can
gauge away all; but the leading component in its harmonic expansion

U (z,u) = W (2u; (A.29)

V! (z) is nothing but the Gates—Siegel prepotential [25].
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A.2. Minimal multiplet

The so-called minimal supergravity multiplet [26] is obtained by coupling the Weyl multipletto
an Abelian vector multiplet which is a real analytic superfigld(¢, u). VZ*(¢, u) transforms
as a scalar under (A.5) and possesses its own gauge freedom [23, 24, 39]

Vet =-D" s (A.30)

with A5(¢, u) an arbitrary real analytic parameter. This vector multiplet is a gauge field for the
central chargeA that can be understood as the derivative in an extra bosonic coordafate

A = 9/3x°, on which matter supermultiplets may depend. For matter supermultiplets with
central charge, the definition (A.4) should be replaced by

DY =D +VITA (A.31)
and the transformations (A.5) extend to
SD =[r+p+ArsA, D+ A7 DO, SU=M+p+ArsA)U. (A32)

The limit of rigid supersymmetry corresponds to the choice wheH alielbeins in (A.9)
vanish and’;* can be brought to the form

Vsta =1 (0077 = 6%7). (A.33)

Thatis whyV;* must in general satisfy a global restriction that its scalar componentfiaig
defined by
Vst (G u) ~ O Z(x, u) + @2 (x, w),
X A.34
Z(x,u) = Z(x) + Z Z(ll»».lnfl“‘]n)(x)u;'l .. u:lu]—l oo ul—” ( )
n=1
be non-vanishing over the spacetin®(x) # 0. Then, ordinary local scale and chiral
transformations (contained in (A.10)) can be used to befg) to its flat form (A.33) (all
remaining components in (A.34) turn out to be gauge degrees of freedompiL dd,; and
D** be the flat covariant derivatives with central charge. In the central Hasis,coincide
with 9**, while D!, andD;; are
. I L - a . =
Dl = — +i(0™6")d, —i6.A, Dy = ——— — i1(6:;6™)q0m — i0i A. (A.35)
89-0[ 890{[

1

In the analytic basis which we mainly usB; coincide withD; and the other derivatives are
[39]: D, = D; — 2i0; A, D** = D** +i((6%)? — (9%)?)A.

The above global restriction o™ gets automatically accounted for if, instead of using
the representations (A.9) and (A.10), we start decomposing the harmonic covariant derivative
and gauge parameters with respect to the flat covariant derivatives with central charge

DY =D +H"™Dy + H* D™~ + H*D} + V.*A (A.36)
A+isA =AYDy + AYTDTT + AsA. (A.37)

Then, the flat superspace limit would correspon#$6é = 0. However, such a representation

is sensible only if the matter multiplets under consideration are characterized by a constant
central chargeAU’ = iM!;U’, with M = (M’ ) a constant mass matrix independent of
the supergravity prepotentials. Such a situation appears, for example, for hypermultiplets
described by unconstrained analytic superfields. However, it is well known that there exist
N = 2 supermultiplets which contain finitely many auxiliary fields and possess an intrinsic
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central charge. This means that setting the central charge to be constant is equivalent to putting
the theory on-shell (for example, this applies to the hypermultiplet with 8 + 8 off-shell degrees
of freedom). To have a finite number of component fields in such theories, one has to impose
special constraints on ‘primary’ superfieldsin order that the serief/, AU, AAU, ...}
contains only a few functionally independent representatives. The constraints imposed must
determine not only the field content but also specify the off-shell central charge as a non-trivial
functional of the supergravity prepotentials. For such theories, the representation (A.36) is
useless, because the flat derivatii@s* and.D,, involve the ‘curved’ central charge.

In the representation (A.36) the requirement

DD e =0

for any analytic superfield”, implies that the set of equations (A.11) should be extended to
include one more relation

DyVe*t —2iH;"™ =0. (A.38)

Now, the general solution of the constraints (A.11) and (A.38) is given by equation (A.12)
along with

Ve* = (D"?G — 3(D")?G + g, Divit=0. (A.39)
The pre-gauge invariance (A.13) turns into

8G = 2(DMH2Q + 1(DH2Q, (A.40)
Suit =i(DMH*Q T — (DN . '

We see that the minimal multiplet is described by the two prepoter@iaadv:*, the latter
being a real analytic superfield.

The operator (A.37) must move every analytic superfield into an analytic one. This restricts
the parametera™ andA** to have the form (A.14), whilés reads

As = Si(DHA™ — 5(DHA™ + s, Diis=0 (A.41)

whereis is an arbitrary real analytic superfield.
In the gauge (A.16)H**M, H™*% and V™ transform as follows

SHY™M — )y g+t™M _ D++AM’ SH™ — A H® _ pH A+t
SV AV D Ag (n42)
and hence
Svit = it — D s (A.43)

As concerns the prepotenti@l, from (A.42) we again deduce its transformation (A.19).

Appendix B. Supercurrent and multiplet of anomalies

Given a matter system coupled to the minimal supergravity multiplet, we define the supercurrent
and multiplet of anomalies

PR U ©

=2 B.1
5G vt (B.1)
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wheres is the matter action. Here the variational derivatives with respect to the supergravity
prepotentials are defined as follows:

++ 08
5 Sva*’

5S=/dlzzdu8G::—g+/dud§(_4)8v (B.2)

As is seen, the supercurreftis a real harmonic superfield, = 7, while the multiplet of
anomaliesT ** is a real analytic superfield;** = 7+*, D;T** = 0. By construction, botty
and7** are inert with respect to the central charge transformations.

The action is required to be invariant under pre-gauge transformations (A.40). This means

68 = %/dlZZ du j(D+)ZQ—— +i / du d{(_4) T++(D+)4Q__ teoc.

= / d2zdu Q" {3(DY)?T +iT**} +cc.=0
for arbitraryQ2~~. As a consequence, we obtain
1(DHAT +IT™ =0, 1(DHAT —iT™ =0. (B.3)

The action must also be invariant under the superspace general coordinate transformation
group. The group acts on the prepotent@isndv:* according to equations (A.19) and (A.43),
respectively. These transformations should be supplemented by those of the matter superfields.
On-shell, the invariance df with respect to (A.19) and (A.43) turns out to imply very strong
restrictions on7 and7 **, in addition to the conservation law (B.3). Let us describe here the
implications of general coordinate invariance for the simplest and most interesting case of a
flat superspace wheti = v = 0 (in general, the analysis is basically the same but requires

more involved technical tools). For such a background equations (A.19) and (A.43) reduce to
the linearized transformations

§G =—-D"I"", Svit = —D™hs. (B.4)

Now, the invariance of with respect to thé~~ transformations means
88 = _/dlzz du (D™177)J = /dlzz dul""D""J =0 (B.5)

for arbitrary/=—, and hence

D77 =0. (B.6)
We see that the matter supercurrent in Minkowski superspmmtmpengent] =J(z). On
the same grounds, the invarianceSWith respect to the central charge-transformations
implies

DT =0. (B.7)
The general solution of this equation in the central frame reads

T (o) =TV Quju’. (B.8)

Since7 **(z, u) has to be analytic, the multiplet of anomaliES” () satisfies equation (1.1).

Appendix C. Matter models in the supergravity background

In this section we will describ&” = 2 supersymmetric models, both with an intrinsic central
charge and models with a constant central charge.
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C.1. Models with intrinsic central charge

We will use analytic densitie®{?) transforming as

8O = (A +AsA) D) + wAD), Do) = Dsd) =0 (C.1)

w} —

where the variation of the analytic subspace measurdzt® with respect to general
coordinate transformations (A.8) is given by the analytic superfield

A=DY"DyAY + DAY, DA =0. (C.2)

We will be mainly interested in analytic densitié'é[’,’}z} on which we can consistently impose
the constraint

1 (»)
(D™ +Vgt A+ 3pT™ ) WP, =0 (C.3)

where the analytic connectidih'™* is defined by [33]

' =)Dy H™ + D~ H®Y, DiIr** =0 (C.4)
and transforms as

STH =A™ — DA — 2A*. (C.5)

The above constraint turns out to be gauge covariant only=f2w.
To construct a supersymmetric action, let us specify an analytic deﬂ%}tyz L** subject
to the constraint (C.3). Then, the integral

S = / du de P VI L (C.6)

proves to be invariant under the supergravity gauge transformations. Indeed{sirisean
analytic density of weight 1, andt ™ is a scalar superfield, their product transforms into a total
derivative

S (V5++£++) — (—1)MDM (AMV5++£++) +D (A++V5++,C++),
= (DD~ (" VL) (C.7)

under (A.8), and the action (C.6) remains invariant. Here we have used equation (A.14). As
concerns the central charge transformations, we have

SVt = —D"1s S = AsALT (C.8)

and, modulo total derivatives, the variation®¥anishes
88 = [du deTY s (D +VETA+T™) L™ =0 (C.9)

as a consequence of (C.3). The above prescription to construct supersymmetric invariants is a
natural generalization of the action rule given in [41]f6r= 2 rigid supersymmetric theories
with a gauged central charge.

Now, let us turn to a hypermultiplet with intrinsic central charge in a conformal
supergravity background. The hypermultiplet is described by a constrained analytic superfield
q = \IJ{(ll}Z} and its conjugateg*. It can be shown that the analyticity gf and the basic
constraint

(D™ +VIA+3T™) ¢ =0 (C.10)
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determine the central chargk as a non-trivial operator depending on the supergravity
prepotentials. The hypermultiplet dynamics is described by the Lagrangian

£ =14""A q" —imd'q". (C.11)
The corresponding equation of motion enforces the central charge to be constant [42]

3S + ; +

e 0 = Aq =imgq. (C.12)

C.2. Models with constant central charge

Let us consider a dual, for applications a more useful description of the hypermultiplet in terms
of anunconstrainedcanalytic superfield;* (¢, u) and its conjugatg*(¢, u). The dynamical
superfield is defined to transform as a density of we@ht

8" = (L +AsA) g" + IAq" (C.13)
and its central charge is chosen to be constant
Aqt =imq* (C.14)

off-shell. The dynamics is described in curved superspace by the action
S=— / du dz =¥ {%cf D gt + imV;+c7+q+} (C.15)

whichreducestothatgivenin[24] fer = 0. The actionis invariantunder all local symmetries.
The corresponding equation of motion reads

3S

8q*
Comparing equations (C.10) and (C.12) with (C.16) and (C.14), we see that the two
hypermultiplet models are equivalent. However, the equation of motion in one model turns
into the off-shell constraint in the other and vice versa.

The basic advantage of this model is that off the mass shell the dynamical variabkn
unconstrained superfield independent of the supergravity prepotentials. That is why one can
readily vary the action with respect to these prepotentials. Using equations (A.12) and (A.39)
gives

qv+D++q+ + imvg+é+q+ — é+ ++q+ + (D+)4{é+GD__q+} + imvg+qv+q+. (Cl?)

=0 = (D"+VI'A+II")q" =0. (C.16)

We therefore obtain
J=-%"D ¢, T = —img*q*. (C.18)

Letus compute the supercurrent and multiplet of anomalies (C.18) in flat superspace where
the equation of motion (C.16) becomes

D*q* =0, (C.19)

In the central basisD** coincide withd**, and the on-shell superfields read

q" =q'(@u], q = qiu", gi=q'. (C.20)
Now, equation (C.18) leads to

J = —3Giq', T =T ()ufu?, T =img‘q”. (C.21)
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What we have derived is exactly thé = 2 supercurrent and multiplet of anomalies found by
Sohnius [14].

The above consideration can be generalized to the case of a general renormalizable super-
Yang—Mills system in curved superspace with action

1 —
S = ngtr/ol“x d4®5W2—/du de % g {g D +++iv+++ivg+M}q+. (C.22)

Here V™ = V/*(¢, u)R, is the Yang—Mills gauge superfield, amtl is the corresponding
covariantly chiral strength¢ denotes theV" = 2 chiral density [32,43]. The constant mass
matrix M is required to be Hermitian and to commute with the gauge grauf, M] = 0.

In flat superspace, the corresponding supercurrent and multiplet of anomalies read

1. 1., — :
J = = tr(WW) - 24" v g, T = —ig*Mq* (C.23)

whereV~~ denotes the proper gauge covariant harmonic derivative. In the central\asis,
coincides witha~—, and on-shell

q" =q' (u, Vigh =vig) =0 (C.24)

whereV’ andVv* denote ordinary-independent gauge covariant derivatives. Therefore, from
equation (C.23) we obtain

J = g—lztr Www) — %c]iqi, TV =ig"Mq”. (C.25)
It is worth noting that (C.22) describes a curved superspace extension &f thed super-
Yang—Mills theory if M = 0 and ifg* transforms in the adjoint representation of the gauge
group.

It is well known thatNV' = 2 Poincaé or de Sitter supergravity cannot be formulated
solely in terms of the minimal multiplet [26,42]. To find a consistent action for Poincar
supergravity, one has to couple the minimal multiplet to an auxiliary multiplet whose role is
to compensate some local transformations. Such a compensator may contain finitely many
[26] or an infinite number [24] of off-shell component fields. The three known minimal
formulations [26] comprising 40 + 40 off-shell degrees of freedom and their compensators
are: () nonlinear multiplet; (II) hypermultiplet with intrinsic central charge (C.10); (IIl)
improved tensor multiplet. In principle, one can elaborate on non-minimal supergravity
formulations withn + n off-shell degrees of freedom, 4@ n < oco. Finally, there exists
the maximal formulation [24] whose compensator is a singlénypermultiplet considered
in this subsection. In all cases, the supergravity action is a sum of the action of the minimal
multiplet and that for the compensator [24, 26].

No matter what compensator we choose, it does not enter the minimal classical action
(C.22) corresponding to generdl = 2 renormalizable SYM models. Therefore, the choice of
compensator has no impact on the structure of the supercurrent at the classical level. The main
effect of the compensator is to ensure self-consistency of the dynamics of the full supergravity—
matter system.

If we give up the requirement of renormalizability, the compensator can tangléivith2
matter. This is the case for general quaternionic off-shell sigma models in curved harmonic
superspace [34]. However, then we deal with effective field theories (e.g. low-energy string
actions) and can treat the compensator as part of the matter sector cougled 2oconformal
supergravity.
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As an example of more general dynamics, let us consideYthe?2 rigid supersymmetric
sigma model

S=-3 / dude™ {4* D "g" + 3ha@" 7 (C.26)

with A the coupling constant. The bosonic sector of this model describes the Taub—NUT
gravitational instanton with a scalar potential generated by the central charge. To lift the
model to curved superspace, one has to couple the dynamical superfields not only to the
minimal supergravity multiplet, but also to an unconstrained analytic deng2g, 24]. As a

result, the coupling to supergravity is characterizeg/bgnd7 ** given, in the flat superspace

limit, by (C.18) along with the analytic superfield*® = §S/sw = —3i(G*¢*)?. The
conservation equations (B.3) and (B.7) remain unchanged, but equation (B.6) gets modified to
DY T+D T =0 (C.27)

and therefore7 becomesu-dependent (note thatD**)?7 = 0, since D**(§*q*) =
D**(g*q") = 0 on-shell).
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