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Abstract: We consider the correlation functions of Coulomb branch operators in four-

dimensional N = 2 Superconformal Field Theories (SCFTs) involving exactly one anti-

chiral operator. These extremal correlators are the “minimal” non-holomorphic local ob-

servables in the theory. We show that they can be expressed in terms of certain determi-

nants of derivatives of the four-sphere partition function of an appropriate deformation of

the SCFT. This relation between the extremal correlators and the deformed four-sphere

partition function is non-trivial due to the presence of conformal anomalies, which lead

to operator mixing on the sphere. Evaluating the deformed four-sphere partition func-

tion using supersymmetric localization, we compute the extremal correlators explicitly in

many interesting examples. Additionally, the representation of the extremal correlators

mentioned above leads to a system of integrable differential equations. We compare our

exact results with previous perturbative computations and with the four-dimensional tt∗

equations. We also use our results to study some of the asymptotic properties of the

perturbative series expansions we obtain in N = 2 SQCD.
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1 Introduction and conclusions

The correlation functions of local operators are amongst the most well-studied observables

in Quantum Field Theory (QFT). In Conformal Field Theories (CFTs), the two- and

three-point functions of the local operators in the theory completely determine all the

n-point functions.
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In this paper we find a formula that computes exactly the correlation functions1

〈

OI1(x1)OI2(x2) . . .OIn(xn)OJ̄(y)
〉

R4 (1.1)

of any number of chiral primary operators OIi and one anti-chiral primary operator OJ̄ in

four-dimensional N = 2 superconformal field theories (SCFTs). Such correlation functions

are henceforth referred to as extremal correlators. We determine these correlators as func-

tions of the exactly marginal couplings of the SCFT, which span the so-called conformal

manifold of the SCFT.2 Our results apply to any SCFT with exactly marginal couplings

that admit a Lagrangian description somewhere on the conformal manifold.3 Near a weakly

coupled point on the conformal manifold we find that the correlators (1.1) are given by an

infinite series of perturbative corrections dressed by an infinite sequence of nonperturbative

instanton corrections. Special cases of (1.1) are the two- and three-point functions, which

we refer to as the “chiral ring data” of the SCFT. As we will review below, once the chiral

ring data is known, all the extremal correlators can be reconstructed.

Roughly speaking, our strategy is to express the flat space (R4) correlators given

in (1.1) in terms of the four-sphere (S4) partition function of a suitable deformation of the

SCFT4

Zdeformed[S
4] =⇒

〈

OI1(x1)OI2(x2) . . .OIn(xn)OJ̄(y)
〉

R4 . (1.2)

This partition function can be in turn evaluated exactly by supersymmetric localization,

expanding upon Pestun’s computation of the undeformed N = 2 partition function [3]. As

was the case with the undeformed sphere partition function studied by Pestun, Zdeformed[S
4]

is also expressed as integral over the norm of the deformed partition function in the Ω-

background [4] (see section 2.3).

An important subtlety in the relation (1.2) between Zdeformed[S
4] and the extremal

correlators on R
4 is due to conformal anomalies, which cause operator mixing on S4. Di-

agonalizing the operator mixing matrix on S4 à la Gram-Schmidt leads to a representation

of the extremal correlators on R
4 in terms of determinants of derivatives of the deformed

sphere partition function Zdeformed[S
4]. This induces the action of a system of integrable

differential equations on the extremal correlators of N = 2 SCFTs.

As an illustrative example, we can consider SU(2) SQCD with 4 fundamental hyper-

multiplets, which contains precisely one chiral primary operator of dimension 2n for every

integer n ≥ 1. This case is special in that one does not have to consider any deformations

of the S4 partition function in order to calculate extremal correlators. The two-point func-

tions of the dimension 2n chiral primary operators On can be expressed succinctly as the

1Chiral primary operators sit in short representations of the four dimensional N = 2 superconformal

algebra. See section 1.2.
2See section 1.1 for more details.
3The structure we find also applies to SCFTs that are inherently non-Lagrangian.
4Our essential ideas and techniques can be also applied to (2, 2) theories in d = 2. However, we do

not pursue this direction here and concentrate on N = 2 theories in d = 4. In fact, technically the case

of d = 2 is simpler since no new instanton contributions need to be computed in the Coulomb branch

representation [1, 2].
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ratio of determinants

〈

On(0)Om(∞)
〉

R4 =
16nδnm
Z[S4]

det(k,l)=0,...,n

(

∂kτ ∂
l
τZ[S

4]
)

det(k,l)=0,...,n−1

(

∂kτ ∂
l
τZ[S

4]
) , (1.3)

where τ is the complexified coupling constant of the theory. This formula neatly encodes

all the two-point functions of chiral primary operators in terms of the sphere partition

function, which can be computed exactly by supersymmetric localization.

The partition function Zdeformed[S
4], and therefore the extremal correlators, can be

explicitly calculated to all orders in perturbation theory. The instanton corrections to

Zdeformed[S
4] can be computed in some theories using results already available in the litera-

ture, while for other theories it requires first writing down the instanton partition function

of the deformed SCFT in the Ω-background, which is an interesting open problem (see

section 2.3).

Our identification, summarized by the schematic equation (1.2), provides a broad ex-

tension of the formula derived in [5–7] relating the undeformed S4 partition function of the

SCFT to the Kähler potential K on the conformal manifold5

Z[S4] = r−4ae
1
12

K(τ i,τ̄ ī) , (1.4)

where τ i, τ̄ ī are the exactly marginal couplings of the SCFT, a is the Euler conformal

anomaly and r the radius of S4. The two-point functions of the dimension-two chiral

primary operators, denoted by Oi, are determined in terms of the S4 partition function of

the SCFT through
〈

Oi(0)Oī(∞)
〉

R4 = 16
∂

∂τ i
∂

∂τ̄ ī
lnZ[S4] . (1.5)

Our results extend this formula to arbitrary chiral primary operators OI . See, for example,

equation (1.3).

As mentioned above, the chiral ring data obtained from the deformed partition function

Zdeformed[S
4] obeys a system of differential equations with respect to the exactly marginal

couplings τ i, τ̄ ī. For SCFTs with one exactly marginal coupling and a one-dimensional

Coulomb branch, namely for N = 2 SU(2) SQCD with four fundamental hypermultiplets

and N = 4 SU(2) super-Yang-Mills, we show that the equations obeyed by the chiral

ring data obtained from Zdeformed[S
4] are those of a semi-infinite Toda chain, which are

integrable.

The fact that the chiral ring data of these theories obeys the semi-infinite Toda chain

system was exhibited in [10–12] starting from the the tt∗ equations of the four-dimensional

SCFT [13]. In appendix A we show that the tt∗ equations of any four-dimensional N = 2

SCFT are integrable and governed by a Hitchin system, in parallel with the tt∗ equations of

two-dimensional (2, 2) QFTs [14]. In appendix D we show that the chiral ring data of SU(N)

SQCD with 2N fundamental hypermultiplets computed through our correspondence (1.2)

indeed obeys the corresponding tt∗ equations. For the special case of N = 4 super-Yang-

Mills with an arbitrary gauge group G 6= SU(2), the chiral ring can be organized in terms

5Extending the earlier result in two-dimensional N = (2, 2) SCFTs [5, 7–9].
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of decoupled semi-infinite Toda chains. However, this is not the case in SU(N) SQCD with

2N fundamental hypermultiplets.

The tt∗ equations themselves are not sufficient to determine the chiral ring data of the

SCFT since these equations have several solutions. Rather, the chiral ring data is found

through the partition function of the deformed SCFT on S4 via (1.2). One can view (1.2)

as a particular solution to the tt∗ equations. This allows us to obtain new results in

four-dimensional N = 2 SCFTs.

The computation of the correlation function of local operators (1.1) in a four-

dimensional QFT contributes to the recent progress in the exact determination of cer-

tain observables in supersymmetric QFTs. Particularly striking are those observables that

depend non-holomorphically on the coupling constants of the theory. These include the

computation of Wilson loops [3], ’t Hooft loops [15], domain walls [16, 17] and cusp anoma-

lous dimensions at small angles [18] in four dimensional N = 2 QFTs. For some previous

work on the partition function of SCFTs on spheres consult [1–3, 19–22].

The extremal correlators (1.1) should transform under the action of dualities. Indeed,

a chiral ring operator is expected to transform as a modular form under S-duality, with

the modular weight determined by the dimension of the operator (cf. [23, 24]). It would

be interesting to study in detail the action of duality on these correlation functions. The

exact computation of the extremal correlators in this paper can be generalized by adding

supersymmetric circular Wilson loops, ’t Hooft loops and/or domain walls supported on

S3 in R
4, to yield, for example, the correlators6

〈

OI(0)DOJ̄(∞)
〉

R4 , (1.6)

where D denotes a judiciously chosen supersymmetric spherical defect operator in the

SCFT.

The results of our work are complementary to those coming from the superconformal

bootstrap of 4d N = 2 theories [25–28]. In particular, [25, 28] considered four-point

correlation functions of two chiral and two anti-chiral operators and obtained bounds on

various OPE coefficients including some that can be computed from extremal correlators.

Their results pertaining to dimension-2 chiral primaries can be interpreted as bounds on

the curvature of the conformal manifold. It would be interesting to extract bounds on the

curvature of the bundles of higher-dimension conformal operators in a similar way.

The plan of the rest of the paper is as follows. In the remaining of the present section

we provide some relevant preparatory material: a brief discussion of conformal manifolds

in CFTs, a review of the chiral ring of four-dimensional N = 2 SCFTs, and a discussion

of some subtleties that arise in defining CFTs on S4. In section 2 we show that the chiral

ring data of a SCFT can be extracted from the partition function of a deformation of

the SCFT on S4, and we provide an algorithm to determine the Hermitian metric on the

chiral ring. In section 3 we study in detail SU(N) SQCD and N = 4 super-Yang-Mills

and discuss the relation with the four-dimensional tt∗ equations. We also consider some of

6One could also compute correlators in the presence of a surface operator by figuring out the interplay

between vortices and instantons with the higher dimensional chiral primary operators.
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the asymptotic properties of the perturbative expansion in SU(N) SQCD. Many technical

results are collected in five appendices.

1.1 Conformal manifolds

Let us review very briefly the notion of a conformal manifold. Given a CFT in d dimensions,

we suppose that there exists a (Hermitian) scalar marginal operator, O. If we deform

the theory by δS = λ
∫

ddxO with some coefficient λ, then in general there would be a

nontrivial beta function for λ computable in conformal perturbation theory

dλ

d lnµ
= β1λ

2 + β2λ
3 + · · · . (1.7)

However, under some circumstances, all the coefficients vanish βa = 0. We then say that

O is an exactly marginal operator; adding it to the action does not break the conformal

symmetry. The coupling λ in this case defines a line of CFTs along which the critical

exponents can vary continuously. More generally, imagine that there is a set of such

exactly marginal operators Oi. We can define the Zamolodchikov metric [29] in the space

of theories, that is, in the conformal manifold, via

〈Oi(x)Oj(0)〉{λi} =
gij(λ

i)

x2d
, (1.8)

where we evaluate the two-point function in the CFT with couplings λi. While the metric

itself is as usual ambiguous (by choosing appropriate contact terms for our operators, we

can choose the metric and the Christoffel symbols to be trivial at any given point [30]),

there are various invariants such as the Ricci scalar that can be constructed out of it, and

which are interesting observables of the CFT.

The vanishing of all the coefficients βa = 0 in (1.7) is common in c = 1 models in

d = 2 but otherwise requires new symmetries in addition to the conformal symmetry [31].

One such extra symmetry is current algebra symmetry, in which case the spectrum of

exactly marginal operators can be determined [32]. Another additional symmetry is su-

persymmetry. Indeed, exactly marginal operators are common in supersymmetric theories

in 2 ≤ d ≤ 4. Let us consider first N = 1 theories in d = 4. In these theories the con-

formal manifold is a Kähler manifold with local complex coordinates τ i, τ̄ ī associated to

the descendants of N = 1 chiral primaries and anti-chiral primaries of dimension 3. Not

every marginal operator is necessarily exactly marginal, but there are nevertheless many

examples with exactly marginal operators [33, 34]. N = 2 theories, being a special case of

N = 1 theories, also admit a Kähler conformal manifold and the complex coordinates τ i,τ̄ ī

correspond to descendants of N = 2 chiral primaries of dimension 2 (see section 1.2).7 In

an N = 2 theory every marginal operator is necessarily exactly marginal.8 One can further

7This is for exactly marginal operators that preserve N = 2 supersymmetry.
8Here is an argument along the lines of [34]. There is a scheme in which the superpotential is not

renormalized. Then if the beta function is nonzero it has to be reflected by a D-term in the action
∫

d4xd8θ U with U some real primary operator. But since the τ i are classically dimensionless, ∆(U) = 0

in the original fixed point. Therefore, U has to be the unit operator and the deformation
∫

d4xd8θ U is

therefore trivial. This proves that βa = 0.

– 5 –
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argue that in N = 2 theories the Kähler class is trivial, in other words, there are no two-

cycles in the conformal manifold through which the Kähler two-form has flux. This global

restriction implies, for example, that the N = 2 conformal manifold cannot be compact [7].

In four-dimensional N = 2 SCFTs the Kähler potential (and hence the Zamolodchikov

metric) on the conformal manifold can be determined exactly from the partition function

of the SCFT on S4 via (1.4).

In some theories, different points in the conformal manifold may be mapped into

each other by a duality transformation, possibly relating the theory in a regime where

perturbation theory is valid to a strongly coupled regime. This picture can give rise to

an intricate pattern of dualities, where the conformal manifold can acquire an elegant

geometrical and mathematical interpretation, as in [35].

The extremal correlators (1.1) provide novel QFT data that transforms naturally under

dualities. It would be interesting to study in detail the action of strong-weak coupling

dualities on these extremal correlation functions.

1.2 The chiral ring of N = 2 SCFTs

Local operators in R
4 or equivalently states on the cylinder in an N = 2 SCFT fit into uni-

tary highest weight representations of the superconformal algebra su(2, 2|2). The algebra

su(2, 2|2) contains the following generators (in Euclidean signature):

• The conformal algebra so(5, 1)

• The Poincaré supercharges Qa
α, Q

a
α̇ and the conformal supercharges Sa

α, S
a
α̇ (a = 1, 2)

• The su(2)R × u(1)R R-symmetry

The (anti)-commutation relations can be found, for example, in [36].

A highest weight representation is labeled by the quantum numbers (∆; jl, jr; s;R)

of its highest weight state under dilatations, Lorentz, and su(2)R × u(1)R. This state is

created by a superconformal primary operator O, defined by [Sa
α,O(0)] = [S

a
α̇ ,O(0)] = 0.

An interesting class of superconformal primaries are the so-called chiral primary oper-

ators OI , annihilated by

[Q
a
α̇ ,OI ] = 0 , (1.9)

together with the conjugate anti-chiral primaries OĪ

[Qa
α,OĪ ] = 0 . (1.10)

Unitarity of the SCFT and the anticommutators of the N = 2 superconformal algebra

{Qa
α, S

b
β} = ǫαβǫ

ab

(

∆+
R

2

)

+ ǫabMαβ + ǫαβJ
ab (1.11)

{Qa
α̇, S

b
β̇} = ǫα̇β̇ǫ

ab

(

∆− R

2

)

+ ǫabMα̇β̇ + ǫα̇β̇J
ab (1.12)

– 6 –
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imply that9

OI : ∆ =
R

2
, jr = s = 0 , (1.13)

OĪ : ∆ = −R
2
, jl = s = 0 . (1.14)

Therefore, a chiral primary must transform as a scalar under su(2)R and its dimension is

completely determined by its u(1)R charge R. A priori, a chiral primary can carry Lorentz

spin (jl, 0). However, for SCFTs that admit a Lagrangian description somewhere in their

conformal manifold, one can easily show that all chiral primaries must be Lorentz scalars,

so that jr = jl = 0. Furthermore, no example of a chiral primary with spin has been found

to date in non-Lagrangian theories.10 See [38] for a further discussion about spinning chiral

primaries. Henceforth, we only discuss chiral primary operators that are Lorentz scalars.

These chiral primary operators parametrize the Coulomb branch of vacua of the SCFT,

where su(2)R is preserved and u(1)R is spontaneously broken.

A chiral primary operator of dimension ∆ can be realized as the bottom component

of an N = 2 chiral superfield O of Weyl weight ∆ (we denote the superfield by the same

symbol as the bottom component). This superfield is annihilated by the four-dimensional

N = 2 right-handed superspace derivatives

D
a
α̇O = 0 . (1.15)

The spacetime integral of the top component of a chiral superfield with ∆ = 2, denoted

by C, defines an N = 2 superconformal invariant, constructed by integrating the chiral

superfield over the chiral half of the N = 2 superspace11

∫

d4x d4θO =

∫

d4xC . (1.16)

Therefore, chiral primary operators with ∆ = 2, which we denote by Oi, give rise to

exactly marginal operators, Ci. Geometrically, the Ci can be viewed as tangent vectors to

the conformal manifold.

An important property of chiral primary operators in N = 2 SCFTs is that they cannot

disappear from the spectrum as we explore the conformal manifold. This is because the

short representation of the N = 2 superconformal algebra built out of a chiral primary

highest weight cannot combine (at a generic point) with any other multiplet of the N = 2

superconformal algebra to become a long multiplet (see [39] for the list of possible multiplet

recombinations).

While chiral primary operators cannot disappear, they can mix when transported

around the conformal manifold. Thus, chiral primary operators can be described as sections

9In our conventions [R,Qa
α] = −Qa

α .
10If spinning chiral primaries existed, they would be visible in the superconformal index [37]. We are

grateful to Leonardo Rastelli for a discussion.
11See appendix B for some details about the component structure of a chiral multiplet.
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of a holomorphic vector bundle over the conformal manifold [13]. The connection captures

the operator mixing [30, 40].12

The operator product expansion (OPE) of chiral primary operators is non-singular

since singular terms in the OPE would necessarily violate the unitarity bound ∆ ≥ R/2.

Therefore, chiral primary operators furnish a ring, the chiral ring

OI(x)OJ(0) =
∑

K

CK
IJOK(0) + . . . , (1.17)

where . . . denote Q-exact terms. The multiplicative operation in this commutative ring is

the CFT OPE. It is believed that forN = 2 SCFTs the chiral ring is freely generated, that is,

there exists a finite-dimensional basis of chiral operators such that any element of the chiral

ring has a unique representation as a polynomial in the basis elements. For Lagrangian

N = 2 theories, it is easy to show that indeed the chiral ring is freely generated. The number

of generators of the chiral ring is the dimension of the Coulomb branch of the SCFT.

For a freely generated ring, we can always “diagonalize” the product structure in the

ring such that

OI(x)OJ(0) = OIOJ(0) + . . . , (1.18)

so that the matrix (CI)
K
J in (1.17) has a single nonzero entry for each row. While in this

basis the ring structure constants are trivialized, the two-point functions of chiral primaries

with anti-chiral primaries are nontrivial functions of the coupling constants

〈

OI(x)OJ̄(0)
〉

{τ i,τ̄ ī}
=
GIJ̄(τ

i, τ̄ ī)

|x|2∆I
δ∆I∆J̄

. (1.19)

The metric GIJ̄ defined by the two-point functions (1.19) is a Hermitian metric on the

vector bundle. In this basis, the chiral ring data is captured by the Hermitian metric GIJ̄ .

For completeness we would like to remind that N = 2 SCFTs contain another class

of half-supersymmetric superconformal primary operators, HI . These are annihilated by

supercharges of both chiralities13

[Q 1
α,HI ] = [Q

1
α̇,HI ] = 0 . (1.20)

Unitarity and the anticommutation relations (1.11)(1.12) imply that HI obey

∆ = 2s , jl = jr = R = 0 . (1.21)

Thus, these operators are Lorentz scalars, have vanishing u(1)R charge and the conformal

dimension is completely determined in terms of the su(2)R isospin s. Furthermore, they

are highest weight of su(2)R. The operators HI form a ring under the OPE, but unlike the

12Operator mixing is nontrivial when the curvature of the connection is non-vanishing. In N = 4 super-

Yang-Mills and for the Higgs branch operators in N = 2 SCFTs the situation is rather simple due to the

fact that the corresponding curvatures vanish. This is however not the case for chiral primaries (which we

study in this paper) in N = 2 SCFTs.
13The two conditions are compatible since {Q 1

α, Q
1

α̇} = 0.
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chiral ring, this one is not freely generated. The operators in this ring parametrize the Higgs

branch of vacua of the SCFT, where u(1)R is unbroken and su(2)R is spontaneously broken.

The representations of the N = 2 superconformal algebra with highest weight HI with

s > 3/2 can recombine with other short multiplets of the N = 2 superconformal algebra to

become a long representation.14 The operators which do not recombine can be described as

sections of a vector bundle over the conformal manifold. The curvature of this connection

is vanishing. The ring data associated to these operators is independent of the exactly

marginal couplings [41, 42]. This is unlike the chiral ring data which we study in this

paper, where there is a nontrivial dependence on the exactly marginal couplings.

In this paper we relate the chiral ring data, GIJ̄ , of arbitrary N = 2 SCFTs admit-

ting a Lagrangian description somewhere in the conformal manifold to a certain partition

function of the SCFT on S4. This partition function, in turn, can be computed exactly

by supersymmetric localization. More precisely, one can determine the S4 partition func-

tion to all orders in perturbation theory and in some, but not all, cases also the instanton

corrections. We will discuss this in detail in the main body of the paper.

From the chiral ring of N = 2 SCFTs we can obtain all of the so-called extremal

correlators
〈

OI1(x1)OI2(x2) . . .OIn(xn)OJ̄(y)
〉

(1.22)

everywhere on the conformal manifold, where by the u(1)R selection rule

∆I1 +∆I2 + . . .+∆In = ∆J̄ . (1.23)

These correlators are, in general, non-holomorphic functions of τ i, τ̄ ī. Since there is only

one anti-chiral operator in (1.22), these correlators are, in some sense, the simplest non-

holomorphic local observables in the theory.

Let us now demonstrate that the extremal correlators (1.22) can be obtained from

the chiral ring data. Without loss of generality we can put the operator OJ̄ at infin-

ity by writing as usual OJ̄(∞) ≡ limy→∞ y2∆JOJ̄(y). The next step is to observe that
〈

OI1(x1)OI2(x2) . . .OIn(xn)OJ̄(∞)
〉

is independent of the coordinates xi. One proves this

by differentiating the correlator with respect to the position of the k-th chiral primary and

noting that
∂

∂xαα̇k
OIk(xk) ∝ ǫab{Qa

α̇, [Q
b
α,OIk ]} . (1.24)

By the supersymmetry Ward identity, we can let Q
a
α̇ act on the rest of the operators.

Using that [Q
a
α̇,OI ] = 0 and that Q

a
α̇ acting on OJ̄(y) yields a correlator that decays

as y−2∆J−1 completes the proof. Therefore, since
〈

OI1(x1)OI2(x2) . . .OIn(xn)OJ̄(∞)
〉

is

independent of the coordinates xi we can bring all the chiral primaries on top of each other

and repeatedly use the OPE (1.18) to reduce any extremal correlation function to a two-

point function in the chiral ring. Then, if we know GIJ̄(τ
i, τ̄ ī) for all the I, J̄ , we are done.

In the special case of maximally supersymmetric Yang-Mills theory (N = 4), extremal

correlators have played an important role in the context of the AdS/CFT correspondence.

14We would like to thank Leonardo Rastelli for discussions about multiplet recombination.
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Indeed, it was conjectured in [43–45] that extremal correlators can be computed exactly just

from their tree-level diagrams, which allowed a comparison with supergravity. See [42] for

a field theory proof of these nonrenormalization theorems in N = 4 using Ward identities.

We will see that in general N = 2 theories there are both perturbative and non-

perturbative corrections to extremal correlators.

1.3 Subtle aspects of conformal field theories on S
4

In this subsection our discussion pertains to general CFTs (i.e. not necessarily supersym-

metric ones) in four dimensions. We can start from the CFT in flat space deformed by

sources λI(x) that couple to all the scalar primary operators OI(x)

∫

d4x
∑

I

λI(x)OI(x) .

From the partition function

Z[R4](λI(x))

one can compute all the n-point functions of the scalar primary operators. For example,

it follows trivially that the one-point functions of all the operators other than the unit

operator vanish.

In order to define the theory on S4, one needs to specify various additional contact

terms. This is in spite of the fact that S4 is conformally flat. The simplest example of the

sort of subtleties that arise is the following: if there is an operator O0 with ∆0 ∈ 2N, then

we can add to the action the local counterterm15

α

∫

d4x
√
g λ0R

∆0/2 1 , (1.25)

with R being the Ricci scalar (more generally, it could be a combination of Riemann

tensors). Unlike separated-points correlation functions in flat space, this term depends

on the scheme. As a result, the one-point function of O0 on S4 is scheme dependent

〈O0〉 ∼ αr−∆0 , with r being the radius of the sphere. α = 0 is obviously a preferred

scheme, but it is not guaranteed that a given definition of the theory (say, by some RG

flow) corresponds to this scheme.

Importantly for our analysis later, we can interpret α
∫

d4x
√
g λ0R

∆0/2 1 as a scheme-

dependent operator mixing between O0 and the unit operator 1. This mixing can arise only

in curved space, such as S4. More generally, in curved space, the source for an operator

O∆0 can have scheme-dependent non-minimal couplings to lower-dimensional operators

due to nontrivial background fields, such as the curvature of space. This is only possible if

the operators’ dimensions differ by an even integer. These give rise to scheme-dependent

operator mixing with all the operators of lower dimension in jumps by two units

O∆0 → O∆0 + α1RO∆0−2 + α2R
2O∆0−4 + · · ·+ α∆0/2R

∆0/2 1 . (1.26)

15From now on R will denote the Ricci scalar of the background metric and should not be confused with

the u(1)R charge.
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If the CFT has exactly marginal couplings λi, then the coefficients αk can depend on

them. From the point of view of the CFT in R
4, the terms in (1.26) induce contact terms

between O∆0 and the energy-momentum tensor. These contact terms can be chosen at will

according to the renormalization scheme. But once the theory is put on S4, these contact

terms translate to operator mixing.

The conclusion from this discussion is that even for primary operators in a CFT, the

transition from R
4 to S4 is nontrivial. One has to handle the possible operator mixing that

is induced by various contact terms.

2 The chiral ring in 4d N = 2 SCFTs and S
4

In this section we explain how the chiral ring and the extremal correlators (1.1) of an N = 2

SCFT can be computed everywhere on the conformal manifold. Near a weakly coupled

point on the conformal manifold, the answer can be in principle expanded into a perturba-

tive series in the exactly marginal couplings τ i, τ̄ ī dressed by an infinite sequence of instan-

ton corrections. The key ingredient in obtaining the exact chiral ring data is the relation we

establish below with a partition function on S4. The S4 partition function is of a suitable

deformation of the N = 2 SCFT. For some theories, the partition function can be explicitly

evaluated by supersymmetric localization using formulae already available in the literature.

2.1 Placing the deformed theory on S
4

We are interested in studying the Lagrangian of an N = 2 SCFT deformed by the top

component of a chiral multiplet corresponding to an arbitrary chiral primary operator O,

which we denote by C. This is done by adding to the Lagrangian in R
4 the following term16

− 1

32π2
τO

∫

d4θ O + c.c. = − 1

32π2
τO C + c.c. (2.1)

If ∆(O) 6= 2, this deformation breaks the conformal symmetry as well as the u(1)R sym-

metry, while it preserves su(2)R and the N = 2 super-Poincaré symmetry. If ∆(O) = 2

then the full su(2, 2|2) superconformal symmetry is preserved.

We will show that the deformed SCFT can be placed on S4 while preserving osp(2|4),
the supersymmetry algebra of the most general massive N = 2 theory on S4. The so(2)R ⊂
osp(2|4) is the Cartan generator of su(2)R, and sp(4) is the isometry of S4.

We now explicitly construct the deformed SCFT on S4. Placing the theory on S4

requires deforming the flat space expression (2.1) by specific 1/r and 1/r2 terms, where r

is the radius of S4, as in [46]. The deformed Lagrangian on S4 can be derived by promoting

the coupling τO in (2.1) to a supersymmetric background chiral multiplet of Weyl weight

2−∆(O). The osp(2|4) invariant Lagrangian on S4 is constructed by deforming the SCFT

with the modified top component17 (see appendix B)

C(x) ≡ C(x) + 2
(∆(O)− 2)(∆(O)− 3)

r2
O(x)− i

(∆(O)− 2)

r
τ ij1 Bij(x) , (2.2)

16We change the normalization of the deformation by a factor of 1/32 with respect to [5, 6] in order to

make formulae below simpler. In this normalization, the coefficient multiplying K in equation (1.4) should

be 1/(212 × 3).
17Here τ ij

1,2,3 are the charge conjugated Pauli matrices defined as τ ij
p ≡ {iσ3,−12×2,−iσ1} =: τ∗

pij .
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where Bij is a middle component of the chiral multiplet O (see appendix B for details

of chiral multiplet components). Indeed, if we add to the action of the SCFT on S4 the

deformation − τO
32π2

∫

d4x
√
g C(x)+ c.c., the osp(2|4) supersymmetry on S4 is preserved. In

superspace formalism, the sphere deformation (2.2) is given by the following F-term

− 1

32π2

∫

d4x

∫

d4θ E τO O , (2.3)

where E is the N = 2 chiral density.

Note that for an exactly marginal deformation, which descends from a chiral primary

with ∆(O) = 2, there are no 1/r and 1/r2 corrections in (2.2).

2.2 Chiral primary correlators from the deformed partition function

We denote the partition function on S4 of the deformed N = 2 SCFT by

Z[S4](τ i, τ̄ ī ; τA, τ̄ Ā) . (2.4)

τA are the couplings associated to chiral ring generators OA with ∆ 6= 2. We recall that

τ i are the couplings associated to the chiral primary operators with ∆ = 2, which are also

chiral ring generators, from which the exactly marginal operators are constructed.

We can now study derivatives of the S4 partition function with respect to the sources

τ I and τ̄ J̄ where {τ I} = {τ i} ∪ {τA}. We consider first the normalized second derivative

1

Z[S4](τ i, τ̄ ī)
∂τI∂τ̄ ĪZ[S

4](τ i, τ̄ ī ; τA, τ̄ Ā)

∣

∣

∣

∣

τA=τ̄ Ā=0

=

(

1

32π2

)2 ∫

d4x
√

g(x)

∫

d4y
√

g(y) 〈CI(x)C Ī(y)〉S4 .

(2.5)

This yields the integrated two-point function of the operator CI and C Ī in (2.2) on S4. The

integrated correlator is ultraviolet divergent, for example, due to the appearance of the

unit operator in the OPE of CI and C Ī , and must be regularized and renormalized.

If we were to ignore supersymmetry for a moment, and if the sum of the dimensions

of CI and C Ī were an even integer, the integrated correlation function (2.5) would be

ambiguous due to the local counterterm
∫

d4x
√
g τ I τ̄ Ī F(τ i, τ̄ ī)R(∆(OI)+∆(OĪ))/2 , (2.6)

which shifts the result (2.5) by an arbitrary function F(τ i, τ̄ ī).

Interestingly, in N = 2 supersymmetric theories there is a unique way to regularize

the divergences as x → y in (2.5). In other words, there is a unique way to regularize

the singularity x → y in a way consistent with N = 2 supersymmetry. There are two

equivalent ways to understand this fact:

1. Using a supersymmetry Ward identity on S4 one can prove, extending the analysis

in [6], that (see appendix C for the proof):
∫

d4x
√

g(x)

∫

d4y
√

g(y) 〈CI(x)C Ī(y)〉S4 = (32π2r2)2〈OI(N)OĪ(S)〉S4 . (2.7)
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Therefore, a supersymmetric Ward identity shows that the supersymmetrically renor-

malized integrated correlation function of CI and C Ī in (2.2) equals the two-point

function of the associated chiral primary OI at the North Pole of S4 and of the

anti-chiral primary OĪ at the South Pole.

2. In a supersymmetric regularization, the counterterms (2.6) should be N = 2 super-

gravity invariants. This restricts the allowed counterterms. Since τ I and τ̄ Ī are em-

bedded in a background N = 2 chiral and anti-chiral multiplet respectively, the coun-

terterms that can lead to ambiguities in (2.5) must be D-term counterterms. There-

fore, potential ambiguities can at best arise from superspace integrals over all super-

space (
∫

d4θ d4θ̄ ·). But all the D-terms vanish on supersymmetric backgrounds [47].18

Therefore, the singularity x→ y in (2.5) is regularized in a universal fashion.

In summary, the two-point function of two arbitrary operators in the chiral ring on S4

can be obtained from the partition function of the deformed SCFT on S4. The relation

between S4 and R
4 correlation functions is not entirely straightforward, though. We will

discuss this soon, after we review some properties of these four-sphere partition functions.

2.3 The deformed partition function on S
4

In the previous section we showed that an N = 2 SCFT on S4 can be deformed with

operators that are descendants of operators in the chiral ring while preserving the osp(2|4)
symmetry of S4. By adapting Pestun’s localization computation of the partition function

of undeformed N = 2 theories [3], we can find the exact matrix integral representation for

the partition function of the deformed SCFT on S4.

We can localize the deformed partition function using the same supercharge Q in

osp(2|4) and Q-exact deformation term used in [3]. This supercharge obeys

Q2 = JL
3 +R , (2.9)

where JL
3 is the Cartan generator of the su(2)L ⊂ sp(4) selfdual rotations on S4 and R is

the Cartan generator of the su(2)R R-symmetry. This implies that the partition function

localizes to the two fixed points of JL
3 on S4, that define the North and South Poles of S4.

18This result can be derived by expressing the D-term invariants as F-term invariants, constructed from a

chiral integral over half of the superspace (
∫

d4θ ·) using the chiral projector operator ∆̄ (see [48] for details)

∫

d4x

∫

d4θ d4θ̄ E · =

∫

d4x

∫

d4θ E ∆̄ · , (2.8)

where E is the Berezinian and E the chiral density of N = 2 supergravity. Since all terms in ∆̄ for N = 2

supergravity are built out of the superspace derivatives D
a
α̇ and D a

α and supersymmetric configurations are

annihilated by D
a
α̇ and D a

α , it follows that all D-terms vanish on supersymmetric backgrounds. Since S4 is

a supersymmetric background of a certain off-shell N = 2 Poincaré supergravity theory [6] and the coupling

constants, (τ I , τ̄ Ī), are supersymmetric backgrounds of a chiral multiplet with the appropriate Weyl weight,

all D-term counterterms automatically vanish. This is to be contrasted with the chiral projector in e.g. 4d

N = 1 old minimal supergravity, where ∆̄ = D̄2−8R, and R is a chiral superfield whose bottom component

is the auxiliary field of old minimal supergravity. However, the situation in new minimal N = 1 supergravity

is rather similar to our present case [49]. We would like to thank Daniel Butter for helpful discussions.
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Near the poles, the action of the deformed N = 2 SCFT on S4 approaches the action of

the deformed N = 2 SCFT in the Ω-background [4].

The deformed partition function on S4 therefore localizes to the following matrix in-

tegral19

Z[S4](τ i, τ̄ ī, τA, τ̄ Ā) =

∫

t

da∆(a)
∣

∣ZΩ(a, τ
i, τA)

∣

∣

2
. (2.10)

As above, τA refers to the couplings associated to the chiral ring generators with ∆ 6= 2.

In Lagrangian theories, the τA correspond to the higher Casimirs of the gauge group

while τ i to the quadratic Casimirs. The matrix integral is over the Cartan subalgebra t

of the gauge group G of the SCFT and ∆(a) is the associated Vandermonde determinant.

ZΩ(a, τ
i, τA) is the partition function of the deformed SCFT in the Ω-background evaluated

with equivariant rotation parameters ε1 = ε2 = 1/r and real equivariant parameters a for

the action of G. From now on we set r = 1. ZΩ(a, τ
i, τA) can, in turn, be computed by

supersymmetric localization, and takes the following form

ZΩ(a, τ
i, τA) = ZΩ,cl(a, τ

i, τA) · ZΩ,loop(a) · ZΩ,inst(a, τ
i, τA) . (2.11)

The classical contribution for gauge group20 G = SU(N) is

ZΩ,cl(a, τ, τ
A) = exp

[

iπτ Tra2 + i

N
∑

A=3

πA/2τATraA

]

. (2.12)

The one-loop determinant contribution is the same as in [3], as it arises from the Q-exact

deformation term

|ZΩ,loop(a)|2 =
∏

α>0H
2(iα · a)

∏

w∈rH(iw · a) , (2.13)

where H(x) = G(1 + x)G(1 − x) and G(x) is the Barnes double-gamma-function, which

obeys G(1 + x) = Γ(x)G(x), with Γ(z) being Euler’s gamma-function. The numerator is

the contribution of the vectormultiplet, governed by a product over the positive roots of

the Lie algebra of G.21 The denominator is the hypermultiplet contribution. The product

is over the weights of the representation r of G × GF , where GF is the flavor symmetry

acting on the hypermultiplet.22

ZΩ,inst(a, τ
i, τA) captures the contribution of point-like instantons to the path inte-

gral [4]. The fact that it depends on τA means that one cannot just evaluate the operator

insertions on the saddle points of the undeformed SCFT. This is because the operators are

inserted precisely where point-like instantons and anti-instantons are localized, thus chang-

ing the saddle points themselves. The instanton partition function is generally given by a

series expansion over the instanton charge. Roughly speaking, the contribution at a given

19Z[S4](τ i, τ̄ ī, τA, τ̄ Ā) should be thought of as a generating functional of correlators of chiral primary

operators. We do not need to worry about its convergence properties at finite τA.
20It is trivial to extend this to any simple Lie group G. Then A takes values in the set of orders of the

higher Casimirs of G. The formula easily extends when G is product of simple gauge group factors, each

giving rise to an exactly marginal deformation and a set of higher Casimir couplings.
21The Vandermonde determinant in terms of the roots is ∆(a) =

∏

α>0(α · a)2.
22We set the equivariant parameters for GF , i.e. the mass parameters, to zero.
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instanton charge is obtained by integrating a certain equivariant characteristic class of a

vector bundle over the corresponding moduli space of instantons. Important subtleties arise

because the moduli space of instantons has singularities, and the integrals must be prop-

erly defined. There is a canonical way of defining the integrals over instanton moduli space

when the gauge group is U(N). In this case, singularities in the moduli space are resolved

by turning on noncommutativity (see e.g. [4]). In general, it is an open problem to compute

ZΩ,inst(a, τ
i, τA) for SU(N) with N > 2. Solving this problem will have some applications

for our study of extremal correlators, but one can make some significant mileage even before

this problem is solved. In section 3 we study examples in which ZΩ,inst(a, τ
i, τA) is known as

well as some examples where it is not known, but one can still study the perturbative series.

2.4 The relation between correlators in R
4 and S

4

As we have explained above, using the deformed partition function on S4 (2.10) and the

Ward identity (2.7), we can calculate, in particular, the two-point functions of arbitrary

chiral primary operators on S4

〈OI(N)OJ̄(S)〉S4 . (2.14)

In this section we explain how to obtain the two-point functions of chiral primary operators

in flat space (1.19) from the explicit results of the correlation functions on S4 .

As explained in subsection 1.3, in the dictionary between CFT sphere correlation

functions and flat space correlation functions one expects operator mixing (1.26), induced

by the background fields. In fact, in N = 2 SCFTs we already know that such mixing

must take place from the formula (1.4). This formula shows that the one-point function

〈Oi(N)〉S4 = 1
Z[S4]

∂
∂τ i
Z[S4], is non-vanishing. This is a special case of (1.26) since it can

be interpreted as mixing of Oi with the identity operator 1. This mixing with the identity

operator can be interpreted, in turn, as a conformal anomaly according to [7].

In complete generality, we should allow a chiral primary operator O∆ of dimension ∆

to mix with lower dimensional chiral operators

O∆ −→ O∆ + α1(τ
i, τ̄ ī)RO∆−2 + α2(τ

i, τ̄ ī)R2O∆−4 + · · · , (2.15)

and similarly for the anti-chiral operators. In (2.15) Rk stands schematically for some

contraction of k Riemann tensors evaluated on the sphere. Note that the chiral operator

O∆ can only mix with other chiral operators, and not anti-chiral or the Higgs branch

operators HI discussed in section 1.2. Indeed, while chiral operators are supersymmetric

at the North pole of S4, neither anti-chiral operators nor HI are supersymmetric there.

Anti-chiral operators are supersymmetric, instead, at the South pole of S4, while the Higgs

branch operators cannot be inserted anywhere on S4 while preserving supersymmetry (just

as operators in a long representation of the superconformal algebra). Since operator mixing

is compatible with supersymmetry on S4, chiral primary operators can only mix among

themselves, and analogously for anti-chiral operators.

It is natural to conjecture that the mixing coefficient functions αk(τ
i, τ̄ ī) are captured

by some anomalies, in parallel with the origin of the mixing of Oi with the identity operator.

Operator mixing of the type in (2.15) can only occur when the theory has operators with
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integer-spaced dimensions. We can then expect that the there would be various type-B

“resonance” anomalies. See for example [50–52]. These anomalies generalize the Zamolod-

chikov anomaly studied in [7], which is responsible for the mixing of Oi with the identity

operator. It would be very nice to understand this structure better.

Since the mixing functions αk(τ
i, τ̄ ī) are expected to arise due to anomalies, they are

expected to be universal. There is, however, a holomorphic ambiguity, which acts by

αk(τ
i, τ̄ ī) → αk(τ

i, τ̄ ī) + Fk(τ
i) + Fk(τ̄

ī) . (2.16)

Of course, the holomorphic ambiguity is fixed when the renormalization scheme is fixed.

These holomorphic ambiguities in operator mixing are due to N = 2 supersymmetric coun-

terterms. A special case of this holomorphic counterterm is responsible for the ambiguous

mixing of Oi with the unit operator, which was already constructed in [6, 7]. This coun-

terterm is responsible for the Kähler ambiguity of the partition function of the SCFT on

S4 (1.4).

When mapping the S4 correlation functions to the correlation functions on R
4 we must

deal with the operator mixing in (2.15). Let us first review how this is accomplished for

the special case of chiral primaries of dimension 2, Oi. We recall that their descendants

are the exactly marginal deformations that generate the conformal manifold of the SCFT.

On S4, there is mixing of Oi with the unit operator, as follows from (1.4). In this special

case, it is easy to disentangle the operator mixing: we simply subtract disconnected pieces

in 〈Oi(N)Oj̄(S)〉S4 from the right hand side of (2.7). It is well known that this can be

achieved by taking the logarithm of the sphere partition function (which indeed removes

all the disconnected diagrams). After we have removed this mixing, we can straightfor-

wardly relate the 〈Oi(N)Oj̄(S)〉S4 two-point functions with their flat space counterparts

〈Oi(0)Oj̄(∞)〉R4 , from which the metric is extracted. Therefore, the mixed second deriva-

tives of the lnZ[S4] with respect to the moduli τ i, τ̄ ī compute the Zamolodchikov metric

on the conformal manifold. This is precisely the statement captured by (1.4).

In more generality, for higher-dimensional chiral primaries, there can be nontrivial

mixing with all the chiral primary operators of lower dimension, and taking the logarithm

of the sphere partition would not suffice to remove operator mixing. In this case, di-

agonalization of 〈OI(N)OJ̄(S)〉S4 must be carried out, which can be implemented by a

Gram-Schmidt procedure. This prescription is the appropriate generalization of the ideas

leading to (1.4). As we will see, this approach to computing flat space correlation function

successfully reproduces many perturbative results while providing many new results, and it

satisfies nontrivial all-orders consistency checks. We now summarize the explicit algorithm

to determine the chiral ring data of an N = 2 SCFT.

2.5 Summary of the algorithm

We consider an N = 2 SCFT with exactly marginal couplings τ i, τ̄ ī. The chiral ring is

finitely generated and we take the generators to be φα, α = 1, . . . ,N, with N the number of

generators. N is also the dimension of the Coulomb branch of the SCFT. We denote their

dimensions by ∆(φα) = ∆α. Every element in the chiral ring can be uniquely represented

– 16 –



J
H
E
P
0
1
(
2
0
1
7
)
1
0
3

as a linear combination of

On1,...,nN
= φn1

1 φ
n2
2 . . . φnN

N
. (2.17)

The Lagrangian of the SCFT is constructed from the ring generators with ∆ = 2. We

now deform the SCFT using the chiral ring generators of ∆ > 2, which we denote by φA

SSCFT → SSCFT − 1

32π2

∫

d4x d4θ E
∑

A

τAφA + c.c. (2.18)

This is appropriately supersymmetrized on S4, as explained in subsection 2.1. The associ-

ated partition function (2.10) is denoted by

Z[S4](τ i, τ̄ ī; τA, τ̄ Ā) . (2.19)

Our goal is to compute the two-point functions in flat space

〈On1,...,nN
(0)On′

1,...,n
′
N
(∞)〉R4 .

These are possibly nonzero only if ∆ ≡ ∑

N

α=1 nα∆α =
∑

N

α=1 n
′
α∆α. Given

Z[S4](τ i, τ̄ ī; τA, τ̄ Ā), we must first disentangle the operator mixing of On1,...,nN
and

On′
1,...,n

′
N

on S4 with the lower-dimensional chiral operators, as described in (2.15). In

order to do this, we implement the following procedure:

1. List all chiral operators Om1,...,mN
of dimension

∑

N

α=1 nα∆α−2,
∑

N

α=1 nα∆α−4 etc.

We denote the number of operators up to dimension ∆ − 2 by N∆−2.

2. Compute the N∆−2 + 1 dimensional matrix of two-point functions on the sphere

〈Om1,...,mN
(N)Om′

1,...,m
′
N
(S)〉S4 ≡Mm1,...,mN|m′

1,...,m
′
N

for all the operators listed in the previous step and for the operator On1,...,nN
in

question. This Hermitian matrix is generally nonzero in all its entries. Do the same

for the operator On′
1,...,n

′
N
.

3. From (2.19) we can extract the matrix Mm1,...,mN|m′
1,...,m

′
N
by

Mm1,...,mN|m′
1,...,m

′
N
=

1

Z[S4](τ i, τ̄ ī)

∂m1

(∂τ1)m1

· · · ∂mN

(∂τN)mN

∂m
′
1

(∂τ̄1)m
′
1
· · · ∂m

′
N

(∂τ̄N)m
′
N

Z[S4]

∣

∣

∣

∣

τA=τ̄ Ā=0

(2.20)

4. The mixing of the operator On1,...,nN
on S4 with lower-dimensional operators (2.15)

is encoded in N∆−2 coefficients αk(τ
i, τ̄ ī). These can be determined uniquely by

demanding that the two-point function of On1,...,nN
with each one of the N∆−2 lower

dimension operators vanishes. Do likewise for the operator On′
1,...,n

′
N
.
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5. This algorithm is equivalent to performing a Gram-Schmidt diagonalization proce-

dure of the matrix Mm1,...,mN|m′
1,...,m

′
N
. After completing this procedure for On1,...,nN

and On′
1,...,n

′
N
, the two-point function of orthogonalized operators on S4 are directly

related to 〈On1,...,nN
(0)On′

1,...,n
′
N
(∞)〉R4 .

Let us show that the formula (1.5) is a special case of the procedure outlined above. We

are interested in the two-point functions of ∆ = 2 chiral operators in R
4. Let us assume for

notational simplicity that there is only one such ∆ = 2 operator. The matrix of two-point

functions on the sphere is therefore a 2 × 2 matrix:

1

Z[S4]

(

Z[S4] ∂τZ[S
4]

∂τ̄Z[S
4] ∂τ∂τ̄Z[S

4]

)

. (2.21)

We perform the Gram-Schmidt procedure and find the norm of the corresponding non-

trivial orthogonal vector. This is given by the determinant of (2.21), namely,

〈O(0)O(∞)〉R4 ∼ 1

(Z[S4])2
(

Z[S4]∂τ∂τ̄Z[S
4]− ∂τZ[S

4]∂τ̄Z[S
4]
)

. (2.22)

This combination coincides with ∂τ∂τ̄ lnZ[S
4].

We now discuss several examples to further demonstrate the procedure and its various

applications and consequences.

3 Examples

3.1 SU(2) gauge group

The first example we consider is N = 2 SCFTs with gauge group SU(2). The discussion

in this subsection applies both to superconformal SU(2) SQCD with four fundamental

hypermultiplets and to N = 4 SU(2) super-Yang-Mills.

The chiral ring in this case has one generator, φ2 = −4πiTrϕ2, where ϕ is the complex

scalar in the vectormultiplet. Thus, the chiral ring operators are given by

On = (φ2)
n , n ∈ N , (3.1)

with O0 ≡ 1. The chiral ring OPE is

On(x)Om(0) = On+m(0) + . . . . (3.2)

Since in this case there is a single chiral primary with ∆ = 2, the conformal manifold is

one-complex-dimensional. In gauge theory terms, the complex coordinate in the conformal

manifold is given by the complexified gauge coupling τ = θ
2π+i

4π
g2
, where g is the Yang-Mills

coupling and θ is the theta angle.

We now study the problem of computing all the flat space two-point functions (1.19)

G2n(τ, τ̄) =
〈

On(0)On(∞)
〉

R4 . (3.3)

– 18 –



J
H
E
P
0
1
(
2
0
1
7
)
1
0
3

This determines the chiral ring data and the extremal correlators (1.1). Obviously G0 = 1,

and it follows from (1.5) that

G2 = 16 ∂τ∂τ̄ lnZ[S
4] . (3.4)

Alternatively, this formula can be derived from our Gram-Schmidt procedure as in (2.22).

We now follow the algorithm described in the previous section, and begin by studying

the two-point functions of the operators (3.1) on S4,
〈

On(N)Om(S)
〉

S4 . These two-point

functions define an inner product on the chiral ring. As in (2.20), we express these two-point

functions as derivatives of the sphere partition function23

〈On(N)Om(S)〉S4 =
1

Z[S4]
∂nτ ∂

m
τ̄ Z[S

4] . (3.7)

The basis of operators {On} is not orthogonal with respect to this inner product. We

diagonalize the mixing by carrying out the Gram-Schmidt construction in order to find a

basis {On} → {O′
n}, such that the new operators, given by

O′
n = On −

n−1
∑

m=0

〈On(N)O′
m(S)〉

〈O′
m(N)O′

m(S)〉
O′

m (3.8)

are mutually orthogonal. The two-point functions on S4 in this new basis can now be

identified with the two-point functions in flat space
〈

On(0)On(∞)
〉

R4 . Therefore,

〈O′
n(N)O′

m(S)〉S4 ≡ 1

16n
G2n(τ, τ̄)δnm . (3.9)

The Gram-Schmidt diagonalization procedure (3.8) is recursive, and can be solved ex-

plicitly for arbitrary n. By virtue of (3.7), the orthogonal vectors can be expressed in terms

of derivatives of Z[S4]. Therefore, we can express the chiral ring data G2n(τ, τ̄) in terms

of various derivatives of the S4 partition function Z[S4]. This suggests, in turn, that the

various metrics G2n(τ, τ̄) can be related by differential equations. We will now prove this.

For the purpose of exhibiting the system of differential equations acting on the chiral

ring data it is useful to organize the two-point functions on S4 in (3.7) in an infinite

dimensional matrix

Mm,n = 〈Om(N)On(S)〉S4 , m, n = 0, 1, · · · . (3.10)

23For SU(2) SQCD with 4 hypermultiplets in the fundamental representation one finds (see subsection 2.3)

Z[S4](τ, τ̄) =

∫ ∞

−∞

da e−4π Imτ a2

(2a)2
H(2ia)H(−2ia)

[H(ia)H(−ia)]4
|ZΩ,inst(ia, τ)|

2 , (3.5)

and ZΩ,inst is Nekrasov’s instanton partition function on the Ω-background [4]. By expanding the integrand

in powers of g2 we can compute Z[S4] to any order in perturbation theory, and we can also include

instantons. In SU(2) gauge theory with an adjoint hypermultiplet, i.e. N = 4 SU(2) super-Yang-Mills, the

result is much simpler

Z[S4](τ, τ̄) =

∫ ∞

−∞

da e−4π Imτ a2

(2a)2 . (3.6)
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Let us denote by M(n) the upper-left (n+ 1)× (n+ 1) submatrix of M , and

Dn ≡ detM(n) . (3.11)

This submatrix captures the mixing of the operator On with all operators of smaller di-

mension, i.e. ∆ < 2n. Because the matrices that appear in the Gram-Schmidt procedure

are triangular (operators can only mix with lower-dimensional operators), one can obtain

G2n(τ, τ̄) in (3.9) as a ratio of determinants

G2n(τ, τ̄) = 16n
Dn

Dn−1
. (3.12)

In addition, we can prove that the determinant Dn satisfies the differential equation24

∂τ∂τ̄ lnDn =
Dn+1Dn−1

D2
n

− (n+ 1)D1 . (3.17)

Combining (3.12) and (3.17) we find an equation directly for the two-point functions

G2n(τ, τ̄)

16 ∂τ∂τ̄ lnG2n =
G2n+2

G2n
− G2n

G2n−2
−G2 , n = 1, 2 . . . . (3.18)

Recall that {G2n(τ, τ̄)} obey the following boundary conditions: G0 = 1 and G2 =

16 ∂τ∂τ̄ lnZ[S
4]. By defining G2n ≡ 16n eqn−lnZ[S4], the differential equation (3.18) can

be cast into the form of the semi-infinite Toda chain equation

∂τ∂τ̄qn = eqn+1−qn − eqn−qn−1 , n = 1, 2, · · ·
∂τ∂τ̄q0 = eq1−q0 .

(3.19)

Therefore, the chiral ring data is governed by a system of coupled oscillators with a pre-

scribed dependence on τ, τ̄ for the leftmost oscillator, that is q0 = lnZ[S4]. In this particle

24To prove this, we first write the derivative of lnDn in terms of derivatives of M(n) as follows:

∂τ∂τ̄ lnDn = Tr
(

M−1
(n)∂τ∂τ̄M(n) −M−1

(n)∂τM(n)M
−1
(n)∂τ̄M(n)

)

. (3.13)

Using (3.10) and (3.7), the derivatives of the components of M can be written as:

∂τMi,j = Mi+1,j −M1,0Mi,j , (3.14a)

∂τ̄Mi,j = Mi,j+1 −M0,1Mi,j , (3.14b)

∂τ∂τ̄Mi,j = Mi+1,j+1 −M1,0Mi,j+1 −M0,1Mi+1,j + (2M1,0M0,1 −M1,1)Mi,j . (3.14c)

Using these relations and noting that D1 = M1,1 −M1,0M0,1, we arrive at

∂τ∂τ̄ lnDn =
(

M(n)

)−1

n,n

(

Mn+1,n+1 −
n
∑

i,j=0

Mn+1,i

(

M(n)

)−1

i,j
Mj,n+1

)

− (n+ 1)D1. (3.15)

Using Schur’s complement lemma

Mn+1,n+1 −
n
∑

i,j=0

Mn+1,i

(

M(n)

)−1

i,j
Mj,n+1 =

Dn+1

Dn
, and

(

M(n)

)−1

n,n
=

Dn−1

Dn
, (3.16)

we obtain (3.17).
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picture, we can think of Im τ as physical time. Since Re τ is compact, we can Fourier

decompose in it and imagine that the lattice has two spatial dimensions.

We see that the Toda chain (3.19) arises essentially from the Gram-Schmidt procedure

on S4, with the ratio of some determinants (3.10)–(3.12) playing a central role. This

is in fact reminiscent of the way solutions to the semi-infinite Toda system are actually

constructed in the integrability literature [53].

In [11], the tt∗ equations of four-dimensional N = 2 SCFTs in the holomorphic gauge

were exploited to arrive at the same equations (3.18) (the tt∗ equations do not provide the

boundary condition (3.4)). This agreement with the tt∗ equations is therefore a nontrivial

consistency check of our procedure.

In appendix A we show that the tt∗ equations of an arbitrary four-dimensional N = 2

SCFT are integrable. They can be written as the flatness condition of a one-parameter

family of connections like the tt∗ equations of a two-dimensional (2, 2) QFTs [14]. The tt∗

equations are governed by a Hitchin integrable system.

3.1.1 SU(2) with an adjoint hypermultiplet

It is important to note that due to the simple form of the S4 partition function given in (3.6)

for N = 2 SU(2) with an adjoint hypermultiplet, that is N = 4 SU(2) super-Yang-Mills,

the partition function evaluates to

ZS4 [τ, τ̄ ] =
1

4π(Imτ)3/2
. (3.20)

All the G2n(τ, τ̄) coincide with their tree-level expressions

G2n(τ, τ̄) = Gtree
2n (τ, τ̄) =

(2n+ 1)!

(Imτ)2n
= (2n+ 1)!

(

g2

4π

)2n

. (3.21)

One can easily verify that indeed these expressions obey the Toda equations (3.18).

3.1.2 SU(2) SQCD with four fundamental hypermultiplets

In the case of SU(2) SQCD with four fundamental hypermultiplets, the S4 partition func-

tion given in (3.5) has quite a non-trivial dependence on Imτ = 4π/g2, and the G2n(τ, τ̄)

receive both perturbative and non-perturbative corrections. To reproduce this expansion,

one can start with (3.5) and expand the instanton partition function

ZΩ,inst(ia, τ) = 1 +
1

2
e2πiτ (a2 − 3) + · · · , (3.22)

where the first term corresponds to the zero-instanton sector, the second term to the 1-

instanton sector, etc., as well as expand the functions H in (3.5) at small a. Order by order

in these expansions, the integrals in a are elementary. The first few terms are

ZS4 [τ, τ̄ ] =
1

4π(Imτ)3/2

[

1− 45ζ(3)

16π2(Imτ)2
+

525ζ(5)

64π3(Imτ)3
+ · · ·

]

+
e2πiτ + e−2πiτ̄

8π(Imτ)3/2

[

−3 +
3

8πImτ
+

135ζ(3)

16π2(Imτ)2
+ · · ·

]

+ · · · ,
(3.23)
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G2, pert in SU(2) SQCD

Figure 1. The ratio of consecutive coefficients appearing in the perturbative expansion (3.25) of

G2 in SU(2) SQCD plotted in terms of the loop order n.

where the first line contains the perturbative contributions and the second line contains

the non-perturbative ones starting with the 1-instanton result. As we have explained, this

expression can be used to compute all the G2n in SU(2) SQCD.

For example, in a perturbative expansion around weak coupling, G2 is

G2(τ, τ̄)pert =
6

(Imτ)2
− 135ζ(3)

2π2
1

(Imτ)4
+

1575ζ(5)

4π3
1

(Imτ)5
+O

(

1

(Imτ)6

)

. (3.24)

The first two terms in this result were checked against an explicit, two-loop computation

in [10]. If we denote

G2(τ, τ̄)pert =
6

(Imτ)2

∞
∑

n=0

an
(Imτ)n

, (3.25)

it is possible to calculate the coefficients an up to fairly high order — see figure 1. From this

figure it is clear that the ratio an+1/an asymptotically grows linearly with n with a negative

coefficient. In [54, 55] such behavior was established for the expansion coefficients of the

S4 partition function ZS4 [τ, τ̄ ]. Moreover, it was shown that the perturbative contribution

to ZS4 [τ, τ̄ ] is Borel summable. Since G2 can be obtained by taking two derivatives of

lnZS4 [τ, τ̄ ], it follows that G2,pert is also Borel summable. The one-instanton correction to

the perturbative result is non-trivial; it is given by

G2(τ, τ̄)1-inst = cos θ e
− 8π2

g2

(

6

(Imτ)2
+

3

π

1

(Imτ)3
− 135ζ(3)

2π2
1

(Imτ)4
+O

(

1

(Imτ)5

))

.

(3.26)

The perturbative expression (3.25) can be used to check the conjecture of [56], originally

formulated for the case of QCD. The conjecture is that a Padé approximation of order

(n/2, n/2) obtained from the n-loop result (with n even) can be used to estimate the

value of an+1 with exponentially small error. If we denote the estimate of an+1 using the

symmetric Padé by an+1,estimated, the conjecture is that
∣

∣

∣

∣

an+1,estimated

an+1
− 1

∣

∣

∣

∣

< Ce−σn (3.27)
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Padé estimates for G2, pert in SU(2) SQCD

Figure 2. The relative difference between the Padé estimate of the coefficient an+1 and its actual

value in the case of G2 in SU(2) SQCD. The black line is a linear fit for n ≥ 40.

for some σ > 0 and C > 0. As we show in figure 2, the relation (3.27) is indeed true, with

an exponent σ ≈ 0.7 that can be determined from the slope of the logarithmic plot.25

3.2 SU(N) gauge group

SCFTs based on a single SU(N) gauge group have one exactly marginal coupling con-

stant, τ , as in the SU(2) case. The chiral ring is generated by the N − 1 operators

φk = ik+1(4π)k/2Tr (ϕk), k = 2, . . . , N . The dimension-two operator φ2, as usual, cor-

responds to the exactly marginal deformation. We can use the following basis in the space

of chiral operators

O{ni} =
N
∏

k=2

(φk)
nk . (3.28)

In order to implement the algorithm of subsection 2.4. in these theories, we first deform

the SCFT action on S4 by

SSCFT → SSCFT − 1

32π2

∫

d4x d4θ E
N
∑

a=3

τAφA ,

and compute the S4 partition function Z[S4](τ, τ̄ ; τA, τ̄A) of the deformed SCFT.

We are interested in the two-point functions in flat space 〈O{ni}(0)O{n′
i}
(∞)〉R4 . These

are potentially non-vanishing if
∑N

k=2 knk =
∑N

k=2 kn
′
k. Note that unlike in the case of

SU(2), for higher rank gauge group, there can be more than one operator of a given

dimension and hence mixing already on R
4, for example between (Tr (ϕ3))2 and (Tr (ϕ2))3.

As before, we begin by studying the matrix of two-point functions on S4 M{ni},{n′
i}

=

〈O{ni}(N)O{n′
i}
(S)〉S4 . On S4, this matrix is in general nonzero for all {ni}, {n′i}. We

25If the perturbative series was simply an = (−1)nn!, then (3.27) would have been satisfied with σ = ln(2).

Even though the situation here is more complicated and there are in fact infinitely many poles on the

negative axis of the Borel plane [54, 55], we still seem to find σ ∼ ln(2). It would be interesting to

understand this better.
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could compute the correlators from the S4 partition function Z[S4](τ, τ̄ ; τA, τ̄A) by taking

derivatives

M{ni},{n′
i}

=
1

Z[S4]

∂n2

(∂τ)n2

∂n3

(∂τ3)n3
· · · ∂nN

(∂τN )nN

∂n
′
2

(∂τ̄)n
′
2

∂n
′
3

(∂τ̄3)n
′
3

· · · ∂n
′
N

(∂τ̄N )n
′
N

Z[S4](τ, τ̄ ; τA, τ̄A)

∣

∣

∣

∣

τA=τ̄A=0

.

(3.29)

Then, we perform the Gram-Schmidt procedure to extract the two-point functions in flat

space 〈O{ni}(0)O{n′
i}
(∞)〉R4 .

We can explicitly determine the chiral ring data to all orders in perturbation the-

ory. Unfortunately, the expression for ZΩ,inst(a, τ
i, τA) that appears in (2.10) and (2.11) in

the localization computation of Z[S4](τ, τ̄ ; τA, τ̄A) in SU(N) SQCD with 2N fundamental

hypermultiplets is not yet available in the literature. The dependence of the instanton par-

tition function on the higher Casimir couplings, τA (A = 3, . . . , N) is unknown. (While it

is available for U(N) theories [57–60] it is an open problem to compute them for SU(N).)

Ignoring the instantons, one can nevertheless use (3.29) to derive many interesting re-

sults independent of the specific expression for Z[S4](τ, τ̄ ; τA, τ̄A). One application is the

derivation of the coupled tt∗ equations which are obtained from (3.29) in appendix D. The

general tt∗ equations were first derived in [13]. In addition, we can say quite a bit about

the structure of the solution to the tt∗ equations in the case of SQCD.

3.2.1 SU(N) with an adjoint hypermultiplet

This corresponds to the maximally supersymmetric N = 4 super-Yang-Mills theory. In this

theory, the four-sphere partition receives no instanton corrections [61]. The deformed par-

tition function is given by a quadratic matrix model deformed by the higher Casimirs eval-

uated on the localization locus (our discussion here can be generalized to any gauge group):

Z[S4](τ, τ̄ ; τA, τ̄A) =

∫

dN−1a∆(a)|eiπτ Tr (a2)+i
∑N

A=3 π
A/2τATr (aA)|2 . (3.30)

We show that the relatively simple form (3.30) leads to two main consequences which

we now derive

• The flat-space two-point functions 〈O{ni}(0)O{n′
i}
(∞)〉R4 are saturated by tree dia-

grams. This is a trivial consequence of the form of (3.30). This property of N = 4 is

further discussed in [42–44].

• The chiral ring data can be organized in terms of infinitely many decoupled Toda

chains.

Both of these conclusions are special to N = 4 super-Yang-Mills. As we will see below,

the second conclusion is actually also valid in other theories up to two loops but not to

higher orders.

In order to establish the second point we need to make some simple observations. The

first observation is that multiplying two orthogonal operators that do not explicitly depend
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on τ by powers of φ2 does not change the fact that they are orthogonal:

〈

OI(N)OJ(S)
〉

S4 = 0 ⇒
〈

φn2OI(N)φm2 OJ(S)
〉

S4 = 0 . (3.31)

This follows from (3.30). Indeed, if two operators are orthogonal and if they are indepen-

dent of τ , then by taking derivatives with respect to τ, τ̄ one finds (3.31).

Thus, if we choose a basis of the form

O(m)
n = φn2O(m)

0 , (3.32)

with the operators O(m)
0 constructed such that they are orthogonal to each other

〈

O(m)
0 (N)O(m′)

0 (S)

〉

S4

= 0 , for m 6= m′ , (3.33)

and such that O(m)
0 do not explicitly depend on τ , then in the basis (3.32) our system splits

into orthogonal sectors:

〈

O(m)
n (N)O(m′)

k (S)

〉

S4

= 0 , for m 6= m′ . (3.34)

In [12], the operators O(m)
0 are called C2 primaries because they have, in a sense, the

minimal possible number of φ2 factors.

It is easy to construct the basis (3.32) explicitly and verify that the operators in it are

independent of τ . This is done as follows. We consider the set of operators of the form
∏N

k=3 (φk)
nk (i.e. operators from the basis (3.32) with n2 = 0), and choose an ordering on

this set such that the operators are labeled as Bm, with ∆m ≤ ∆m+1 (thus, B0 = 1, B1 =

φ3,. . . ). We can now define O(m)
0 by an inductive process. For m = 0, we choose O(0)

0 =

B0 = 1. Assuming that we have defined O(m′)
0 withm′ ranging from 0 up tom−1, we define

O(m)
0 to be a linear combination of Bm and operators of the form O(m′)

nm′ = φ
nm′

2 O
(m′)
0 , where

m′ < m and nm′ = ∆m−∆′
m

2 is an integer. Note that Bm and O(m′)
nm′ have the same dimension

∆m. This fact will be important to us soon. The coefficients in this linear combination are

chosen such that

〈

O(m)
0 (N)O(m′)

0 (S)

〉

S4

= 0 will be obeyed for all m′ < m, that is,

O(m)
0 = Bm −

∑

m′

〈

Bm(N)O(m′)
0 (S)

〉

S4
〈

O(m′)
nm′ (N)O(m′)

0 (S)
〉

S4

O(m′)
nm′

, (3.35)

where the sum above is only on m′ such that nm′ = ∆m−∆′
m

2 ∈ N. This construction makes

it obvious that the O(m)
0 are τ -independent, as required. Indeed, since the coefficients

in (3.35) have the same dimension in the numerator and the denominator, and since these

correlators in N = 4 super-Yang-Mills are tree-level exact, the factors of τ cancel. In sum-

mary, we have constructed a basis of operators in the chiral ring that decouple into mutually

orthogonal semi-infinite towers whose bottom operators are explicitly τ -independent.
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For example, the first towers in SU(N) for N ≥ 4 are

O(0)
n = φn2 , O(1)

n = φn2φ3 , O(2)
n = φn2

(

φ4 −
〈φ4(N)〉S4
〈

φ22(N)
〉

S4

φ22

)

. . . . (3.36)

By construction, this new basis satisfies (3.34) and as a result one can perform

the Gram-Schmidt procedure of subsection 2.5 in each tower separately. This leads

to a tremendous simplification. If we denote the matrix elements in this basis by

M
(m)
i,j =

〈

O
(m)
i (N)O

(m)
j (S)

〉

S4

, exactly the same derivation as the one presented in

the case of SCFTs based on SU(2) proves that the chiral data, encoded in G
(m)
2n ≡

〈

O
(m)
n (0)O

(m)
n (∞)

〉

R4

, satisfies

16 ∂τ∂τ̄ lnG
(m)
2n =

G
(m)
2n+2

G
(m)
2n

− G
(m)
2n

G
(m)
2n−2

−G2 ,

16 ∂τ∂τ̄ lnG
(m)
0 =

G
(m)
2

G
(m)
0

−G2 ,

(3.37)

and G2 = 16 ∂τ∂τ̄ lnZ[S
4](τ, τ̄ ; 0, 0).

Equation (3.37) describes decoupled semi-infinite Toda chains, in agreement with [12].

One can explicitly solve for the G
(m)
2n using the fact that

G2 =
2(N2 − 1)

(Imτ)2
. (3.38)

One finds

G
(m)
2n (τ, τ̄) = 4n

n! G̃
(m)
0

(Imτ)∆m+2n

(

N2 − 1

2
+ ∆m

)

n

, (3.39)

where (x)n is the Pochhammer symbol

(x)n = x(x+ 1) . . . (x+ n− 1) (3.40)

and G̃
(m)
0 encodes the normalization of the operator at the bottom of the m-th tower.

As we have already emphasized, this structure of decoupled Toda chains obviously

exists at tree-level in N = 2 SU(N) SQCD as well (actually, in any SCFT at tree level).

As we will show in the next subsection, it persists up to two-loops in SU(N) SQCD.

3.2.2 Decoupled Toda chains at two-loops in SQCD

We now show that the decoupled Toda chain structure (3.37) remains in SU(N) SQCD

up to two-loops. That is, the chiral ring data can be organized in terms of decoupled

semi-infinite Toda chains up to that order in perturbation theory.

The operators O(m)
0 constructed in (3.35) are orthogonal at tree-level, but they are not

guaranteed to stay orthogonal when higher-order corrections are included. If the operators

were to stay orthogonal for all values of the coupling constant, then equation (3.37) would

– 26 –



J
H
E
P
0
1
(
2
0
1
7
)
1
0
3

hold to all orders. Let us explain why the first non-trivial two-loop correction actually does

not ruin the orthogonality that was achieved at tree-level.

The first non-trivial perturbative correction can be obtained by expanding the matrix

integral representation (see section (2.3))26 of the deformed SCFT partition function on S4

1

Z[S4]

∫

dN−1a∆(a)F (a)e−2π Imτ Tr a2
(

1− 3ζ(3)(Tr a2)2
)

=

=
1

Z[S4]

(

1− 3ζ(3)
∂2

∂(2π Imτ)2

)∫

dN−1a∆(a)F (a)e−2π Imτ Tr a2 ,

(3.42)

where F (a) denotes some insertion in the localization formula.

The fact that the first non-trivial correction is obtained from the tree-level result by

differentiating with respect to the coupling constant of the theory implies that the towers

constructed to be orthogonal at tree-level (3.34) will remain orthogonal also up to two-loops

in perturbation theory.

There is no reason to expect that this property will be true also for the next orders,

and indeed the results that we present next contradict the decoupling conjecture already

at the next order in perturbation theory.

3.3 SU(3) and SU(4) SQCD

3.3.1 SU(3) SQCD

We consider SU(3) SQCD with 6 fundamental hypermultiplets to three-loops. We show

that at this order in perturbation theory the bottom operators of the towers we constructed

before become explicitly τ -dependent. This indicates that there is no reason to expect

decoupled Toda chains as in (3.37) anymore.

Let us consider the first few low-lying chiral operators in SU(3) SQCD: {φ2}, {φ3},
{φ22}, {φ3φ2}, {φ23, φ32}, {φ3φ22} and {φ24, φ32φ2}. We are interested in their two-point

functions in flat space (G∆)IJ =
〈

O∆I(0)O∆J(∞)
〉

R4 . G6 and G8 are therefore 2 × 2

matrices while the rest are just functions of the gauge coupling g in perturbation theory.

Following our Gram-Schmidt procedure we can compute these up to three-loops

G2 =

(

g2

4π

)2(

16− 45 ζ(3)

2π4
g4 +

425 ζ(5)

8π6
g6 +O(g8)

)

, (3.43)

G3 =

(

g2

4π

)3(

40− 135 ζ(3)

2π4
g4 +

6275 ζ(5)

48π6
g6 +O(g8)

)

, (3.44)

G4 =

(

g2

4π

)4(

640− 2160 ζ(3)

π4
g4 +

6375 ζ(5)

π6
g6 +O(g8)

)

, (3.45)

26The perturbative matrix integral of SU(N) SQCD is

Z[S4](τ, τ̄ , . . .) =

∫

dN−1a e−2π Imτ Tr a2+...
∏

i 6=j

(wij · a)
∏

i 6=j

H(iwij · a)
∏

i

H(iwi · a)
−2N , (3.41)

where wi, i = 1, . . . , N , are the weights in the fundamental representation, and wij = wi − wj .
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G5 =

(

g2

4π

)5(

1120− 4410 ζ(3)

π4
g4 +

144725 ζ(5)

12π6
g6 +O(g8)

)

, (3.46)

G6 =

(

g2

4π

)6

×





46080− 272160 ζ(3)
π4 g4 + 969000 ζ(5)

π6 g6 i
(

1920− 11340 ζ(3)
π4 g4 + 29875 ζ(5)

π6 g6
)

−i
(

1920− 11340 ζ(3)
π4 g4 + 29875 ζ(5)

π6 g6
)

6800− 57645 ζ(3)
2π4 g4 + 1688875 ζ(5)

24π6 g6





+O(g20) , (3.47)

G7 =

(

g2

4π

)7(

71680− 483840 ζ(3)

π4
g4 +

4936400 ζ(5)

3π6
g6 +O(g8)

)

, (3.48)

G8 =

(

g2

4π

)8

×





5160960− 46448640 ζ(3)
π4 g4+ 194208000 ζ(5)

π6 g6 i
(

215040− 1935360 ζ(3)
π4 g4+ 6412000 ζ(5)

π6 g6
)

−i
(

215040− 1935360 ζ(3)
π4 g4+ 6412000 ζ(5)

π6 g6
)

277760− 2046240 ζ(3)
π4 g4+ 20027000 ζ(5)

3π6 g6





+O(g24) . (3.49)

This is in agreement with [12], where the same correlators were computed up to two-loops

using standard perturbation theory. It would be interesting to verify our three-loop results

by direct perturbative computations.

We now note that in performing the Gram-Schmidt procedure on the dimension 6 and

8 operators, we encounter the following ratios

G6(2, 1)

G6(1, 1)
= −i

(

1

24
− 175 ζ(5)

768π6
g6 +O(g8)

)

, (3.50)

G8(2, 1)

G8(1, 1)
= −i

(

1

24
− 125 ζ(5)

384π6
g6 +O(g8)

)

. (3.51)

The presence of the g6 term means that one cannot diagonalize G4 and G6 with a τ, τ̄

independent basis. This contradicts the conjecture of [12]. Note that the absence of a

term g4 in (3.50), (3.51) is precisely as anticipated in 3.2.2. The decoupling of Toda chains

therefore starts to fail at three-loop order in perturbation theory.

If we define

Gm,pert(g
2) = Gm,tree

∞
∑

n=0

am,n

(

g2

4π

)n

(3.52)

where Gm,tree is the tree-level contribution and so a0 = 1, one can check that the ratio

am,n+1/am,n grows linearly at large n with a negative coefficient, just as was the case for

SU(2) SQCD. See figure 3 for plots of these ratios in the cases m = 2, 3. We expect that

Gm,pert is also Borel summable in this case, but we have not shown this conclusively.

As in the case of SU(2) SQCD, one can use the series expansions above to estimate

whether the (n/2, n/2) Padé, computed only from the first n terms, can be used to estimate

the (n + 1)th series coefficient with an exponentially small error. This is indeed the case,

as can be seen from figure 4 for m = 2, 3. Defining the exponents σm through
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G2, pert in SU(3) SQCD
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G3, pert in SU(3) SQCD

Figure 3. Ratios of consecutive coefficients in the series expansions (3.52) in the case of SU(3)

SQCD.
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Figure 4. The relative difference between the Padé estimate of the coefficient am,n+1 and its actual

value in the case of G2 and G3 in SU(3) SQCD. The black lines are linear fits for n ≥ 40.

∣

∣

∣

∣

am,n+1,estimated

am,n+1
− 1

∣

∣

∣

∣

< Cme
−σmn (3.53)

linear fits of the log plots in figure 4 give σ2 ≈ 0.75 and σ3 ≈ 0.73. These values are rather

close to the corresponding values for SU(2) SQCD.

3.3.2 SU(4) SQCD

The conclusion from our study of SU(4) SQCD is the same as the conclusion from the study

of SU(3) SQCD above. We present it just in order to demonstrate again the cancelation of

the g4 term and to provide additional data that can be compared with direct perturbative

computations. We consider the operators {φ2}, {φ3}, {φ22, φ4} and {φ2φ3} and denote

the corresponding two-point functions by G2, G3, G4 and G5, respectively. Using our
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Gram-Schmidt procedure we find

G2 =

(

g2

4π

)2(

30− 2295 ζ(3)

32π4
g4 +

118575 ζ(5)

512π6
g6 +O(g8)

)

, (3.54)

G3 =

(

g2

4π

)3(

135− 23085 ζ(3)

64π4
g4 +

4100625 ζ(5)

4096π6
g6 +O(g8)

)

, (3.55)

G4 =

(

g2

4π

)4

×





2040− 43605 ζ(3)
4π4 g4 + 1304325 ζ(5)

32π6 g6 i
(

870− 74385 ζ(3)
16π4 g4 + 2351025 ζ(5)

128π6 g6
)

−i
(

870− 74385 ζ(3)
16π4 g4 + 2351025 ζ(5)

128π6 g6
)

1335
2 − 198045 ζ(3)

64π4 g4 + 5681925 ζ(5)
512π6 g6





+O(g16) (3.56)

G5 =

(

g2

4π

)5(

5670− 535815 ζ(3)

16π4
g4 +

248558625 ζ(5)

2048π6
g6 +O(g8)

)

. (3.57)

Again, the two-loop results agree with those that were found by a direct Feynman dia-

grams computation in [12]. In performing the Gram-Schmidt procedure on the dimension

4 operators, we encounter the following ratios

G4(2, 1)

G4(1, 1)
= −i

(

29

68
+

525 ζ(5)

1088π6
g6 +O(g8)

)

. (3.58)

As before, the g4 piece cancels as anticipated but the g6 piece contradicts the conjecture

of [12]. Therefore, we do not expect decoupled semi-infinite Toda chains.
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A Integrability of tt∗ equations

In this appendix we will show that the tt∗ equations together with the WDVV equations for

any 4d N = 2 SCFT are integrable, in the sense that these equations can be written as the

flatness condition of a one parameter family of connections on a certain vector bundle over

the conformal manifold M, which is equivalent to the Lax representation (with spectral

parameter) of a classically integrable system. Recall that the WDVV equations [62–64]

and the tt∗ equation are [13]

∇iC
L
jK = ∇jC

L
iK , ∇īC

L̄
j̄K̄ = ∇j̄C

L̄
īK̄ , (A.1a)

[∇i,∇j ]
L
K = [∇ī,∇j̄ ]

L̄
K̄ = 0, (A.1b)

[∇i,∇j ]
L
K = −[Ci, Cj ]

L
K + gij̄δ

L
K

(

1 +
R

4c

)

, (A.1c)

where i, j run over chiral primaries of ∆ = 2, K,L run over all chiral primaries, and CK
IJ

are OPE coefficients defined as:

OI(x)OJ(0) = CK
IJOK(0) + · · · . (A.2)

CI can be thought of as an operator acting on chiral primaries whose matrix components

are CK
IJ . In (A.1c), R is the R-charge of the chiral primaries that comprise the fibre of the

bundle VR → M on which the covariant derivatives and the Ci’s act, c is the central charge

of the SCFT, and gij̄ is the Zamolodchikov metric on M. We also note the fact that CI

(C Ī) is covariantly holomorphic (antiholomorphic) [13]

∇īCI = ∇iC Ī = 0 . (A.3)

Now consider the holomorphic vector bundle VR ⊗ L⊗n with n = −(4c+R), where L
is the supercharge bundle.27 L is a holomorphic line bundle over M whose curvature is

given by [13]

Fij = Fīj̄ = 0, Fij̄ =
1

4c
gij̄ . (A.4)

This nontrivial curvature encodes the ambiguity in defining the phase of the supercharges,

i.e., the following automorphism of the N = 2 superconformal algebra:

Qi
α → eiθQi

α, Q
ī
α̇ → e−iθQ

ī
α̇, Si

α → e−iθSi
α, S

ī
α̇ → eiθS

ī
α̇. (A.5)

(A.4) implies that the curvature of L⊗n, let it be denoted by Fn, is given by:

Fn
ij = Fn

īj̄ = 0, Fn
ij̄ =

n

4c
gij̄ = −

(

1 +
R

4c

)

gij̄ . (A.6)

Let the covariant derivative on L⊗n be denoted by ∇L
i and define the following one param-

eter family of connections on VR ⊗ L⊗n:

∇ξ
i ≡ ∇i + ξCi +∇L

i , ∇ξ
ī ≡ ∇ī + ξ−1C ī +∇L

ī , (A.7)

27Negative power of a line bundle is defined as the positive power of the dual bundle, i.e., if E → M is a

line bundle then for some negative real number m < 0 we have E⊗m ≡ (E∗)⊗|m|.
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where ∇i and Ci are the same operators that appear in (A.1). The flatness condition of

this connection for any value of the parameter ξ is:

[∇ξ
i ,∇

ξ
j ] = [∇ξ

ī ,∇
ξ
j̄ ] = [∇ξ

i ,∇
ξ
j̄ ] = 0, ∀ ξ ∈ C. (A.8)

Using (A.7), (A.6) and noting that operators on VR commute with operators on L⊗n we

get:

[∇ξ
i ,∇

ξ
j ] = [∇i,∇j ] + ξ(∇iCj −∇jCi) + ξ2[Ci, Cj ] (A.9a)

[∇ξ
ī ,∇

ξ
j̄ ] = [∇ī,∇j̄ ] + ξ−1(∇īC j̄ −∇j̄C ī) + ξ−2[C ī, C j̄ ] (A.9b)

[∇ξ
i ,∇

ξ
j̄ ] = [∇i,∇j̄ ] + [Ci, C j̄ ]−

(

1 +
R

4c

)

gij̄ + ξ−1[∇i, C j̄ ]− ξ[∇j̄ , Ci] . (A.9c)

Equation (A.8) must be satisfied at each order in ξ. The Ci’s commute among themselves

and so do the C ī’s [13], so the O(ξ2) and O(ξ−2) terms vanish. The O(ξ) and O(ξ−1)

terms of (A.9c) vanish due to (A.3). By imposing (A.8) order by order on the rest of terms

in (A.9) we recover precisely (A.1), thus proving integrability of WDVV and tt∗ equations

of four-dimensional N = 2 SCFTs. They are governed by a Hitchin integrable system.

B Deforming N = 2 SCFT on S
4 by chiral operators

When we place an N = 2 SCFT on S4 via the stereographic map, then the Lagrangian

preserves the full superconformal symmetry. However, the partition function and various

other observables need to be regulated in the ultraviolet. The maximal subalgebra that can

be preserved by the regulator is osp(2|4). This is because this subgroup does not include

conformal transformations but only isometries of the sphere. In this appendix we discuss

F -term deformations of the action that preserve osp(2|4), i.e.

S → S − τU

∫

S4

d4x
√
g U(x) , (B.1)

such that the deformation term is osp(2|4) invariant, i.e.

δ

(

τU

∫

S4

d4x
√
g U(x)

)

= 0 , (B.2)

where δ represents an osp(2|4) transformation. Here τU is the coupling constant corre-

sponding to the operator U . If τU has Weyl weight 0 then such a deformation is marginal

but here we are interested in more general deformations where τU can have arbitrary Weyl

weight. The systematic way to find such deformations is to start with an N = 2 super-

field and integrate it over the chiral superspace (
∫

d4θ) with the appropriate measure and

evaluate the resulting term on the S4 background.

In order to achieve this, we begin by promoting the coupling constant τU to an N = 2

chiral multiplet with Weyl weight (2−w) whose bottom component is τU . We also consider

another chiral multiplet of Weyl weight w whose bottom component will be called U . We

will denote these two multiplets as τU and U and denote the component fields of these
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two multiplets as (τU , ψi, bij , f
−
ab, λi, c) and (U ,Ψi, Bij , F

−
ab,Λi, C), respectively.

28 bij , Bij

are symmetric and in Euclidean signature f−ab, F
−
ab are selfdual tensors. Now the following

term is manifestly osp(2|4) invariant:
∫

S4

d4x

∫

d4θ E τU (x, θ)U(x, θ) , (B.3)

where E is the chiral density. Since we want τU to be a background multiplet, we need to

restrict its components in such a way that the required supersymmetry algebra is unbroken.

First, in order to preserve rotational invariance on S4 we can give the spacetime scalars

τU , bij and c constant expectation values and let all the other fields in τU vanish. Super-

symmetry is preserved if the supersymmetry variations of all the background fields vanish.

The SUSY variations of a chiral multiplet of Weyl weight w, with component fields

written as (A,Ψi, Bij , F
−
ab,Λi, C), under an N = 2 superconformal transformation are given

by (see e.g. [5]):

δA =
1

2
ǫiΨi (B.4a)

δΨi = /∇(Aǫi) +
1

2
Bijǫ

j +
1

4
γabF−

abεijǫ
j + (2w − 4)Aηi (B.4b)

δBij = ǫ(i /∇Ψj) − ǫkΛ(iεj)k + 2(1− w)η(iΨj) (B.4c)

δF−
ab =

1

4
εijǫi /∇γabΨj +

1

4
ǫiγabΛi −

1

2
(1 + w)εijηiγabΨj (B.4d)

δΛi = −1

4
γab /∇(F−

abǫi)−
1

2
/∇Bijε

jkǫk +
1

2
Cεijǫ

j − (1 + w)Bijε
jkηk

+
1

2
(3− w)γabF−

abηi (B.4e)

δC = −∇m(εijǫiγ
mΛj) + (2w − 4)εijηiΛj . (B.4f)

where δ is a generic N = 2 superconformal transformation being generated by the

chiral conformal Killing spinors ǫi, ηi and ǫi, η
i, and we use the matrices τ ijp ≡

{iσ3,−12×2,−iσ1} =: τ∗pij . γm are curved space gamma matrices defined in terms of the

vierbein eam and the flat space gamma matrices Γa as γm(x) ≡ eam(x)Γa. The conformal

Killing spinors satisfy the equations:

∇mǫ
i = γmη

i , ∇mǫi = γmηi . (B.5)

The osp(2|4) transformations can be generated by imposing the following constraints on

the conformal Killing spinors:

ηj =
i

2r
τ jk1 ǫk , ηj =

i

2r
τ1jkǫ

k . (B.6)

In the background where the fermions are all vanishing the variations of the bosonic fields

automatically vanish. So for the background fields in τU we demand that the fermionic

28i, j are su(2)R indices and a, b are local frame indices on S4.
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variations in (B.4) vanish:

δψi =
1

2
bijǫ

j +
i

r
(2− w)τOτ1ijǫ

j = 0 (B.7)

δλi =
1

2
cǫjεij −

i

2r
(3− w)bijε

jkτ1klǫ
l = 0 . (B.8)

These equations are satisfied when:

bjk =
2i

r
(w − 2)τ1jkτU , (B.9a)

c =
2

r2
(w − 2)(w − 3)τU . (B.9b)

Now, the product of two chiral multiplets is another chiral multiplet whose bottom com-

ponent is the product of the bottom components of the individual chiral multiplets and

this multiplication is defined in a way such that the integration over the chiral superspace

in (B.3) will simply pick out the top component of the product chiral multiplet τU U . The
general expression for the top component of τU U is given by:

τOC +Oc− 1

2
εikεjlBijbkl + F−

abf
−
ab + εij

(

Ψiλj + ψiΛj

)

. (B.10)

When we use the background values where τU is a constant, fab and all the fermions in τU
vanish and the rest of the fields satisfy (B.9), this becomes:

τU C(x) ≡ τU

[

C(x) +
2

r2
(w − 2)(w − 3)A(x)− i

r
(w − 2)τ ij1 Bij(x)

]

, (B.11)

and (B.3) reduces to:

τU

∫

S4

d4x
√
g C(x). (B.12)

C Ward identity

For a chiral multiplet (A,Ψi, Bij , F
−
ab,Λi, C) of weight w recall the combination (B.11):

C(x) ≡ C(x) +
2

r2
(w − 2)(w − 3)A(x)− i

r
(w − 2)τ ij1 Bij(x) . (C.1)

In this appendix we prove the following identity: if U is some osp(2|4) supersymmetric

operator, i.e. δSUSYU = 0, then

〈(∫

S4

d4x
√
g C(x)

)

U
〉

= 32π2r2〈A(N)U〉 , (C.2)

where N is the North Pole of the sphere. Similarly, for an anti-chiral multiplet we have:

〈

U
(∫

S4

d4x
√
g C(x)

)〉

= 32π2r2〈U A(S)〉 , (C.3)

where S is the South Pole.
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From (B.5) and (B.6) we see that the nonchiral Killing spinors generating the osp(2|4)
algebra preserved on S4 satisfy the equation:

∇mχ
j =

i

2r
γmχ

j , (C.4)

where, χj ≡ ǫj + τ jk1 ǫk. In steregraphic coordinates the solutions to (C.4) are given by:

χj =
1

√

1 + x2

4r2

(

1+
i

2r
xmΓm

)

χj
0 . (C.5)

The constant spinors χj
0 parametrize the eight supercharges of osp(2|4). We choose an

su(1|1) ⊂ osp(2|4) by imposing the following constraints:

PLχ
i
0 = 0, χi

0 = τ ij1 εjkΓ1Γ2χ
k
0 . (C.6)

The chosen Killing spinors and the supersymmetry transformation they generate will hence-

forth be denoted by χi and δ respectively. χi satisfy the following equations:

χi
L
†

‖χL‖2
/∇(Aχj

R)τ2ij = ∇m(UmA)− 8ir

x2
A , ∇mU

m =
8ir

x2
− 4i

r
, (C.7)

where we have defined:

‖χL‖2 ≡ ‖χ1
L‖2 = ‖χ2

L‖2 and, Um ≡ χi
L
†
γmχj

R

‖χL‖2
τ2ij . (C.8)

Now, using the supersymmetry transformation of a chiral multiplet

(A,Ψi, Bij , F
−
ab,Λi, C) of weight w (B.4), (B.6) we can write29

1

2
τ ij1 Bij

mod δ
= ∇m(UmA)− 8ir

x2
A− 2i

r
(w − 2)A (C.9a)

C
mod δ
= −1

4
Um∇mBijτ

ij
1 +

3i

2r
τ ij1 Bij +

i

2r
(w − 2)τ ij1 Bij . (C.9b)

For a chiral multiplet with w = 2 this calculation was done in more detail in [6] and it was

shown that we have the following schematic form:

Cw=2(x)
mod δ
= f(Aw=2(x)) (C.10)

where f is a function that satisfies:

∫

S4

d4x
√
g f(A(x)) = 32π2r2A(N) . (C.11)

29Using (B.4) will also result in some terms proportional to F−
ab and ∇mF−

ab in (C.9), but these terms

are vanishing, because while F−
ab is selfdual in Euclidean signature, their coefficients will be proportional to

χi
L
†
Γabγ(r)χj

L/Rτ3ij , where γ
(r) is a product of r distinct gamma matrices, and these terms are anti-selfdual

as they satisfy: χi
L
†
Γabγ(r)χj

L/R = χi
L
†
Γ∗Γ

abγ(r)χj
L/R = − 1

2
εabcdχ

i
L
†
Γabγ(r)χj

L/R, where Γ∗ is the chirality

matrix.
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We want to repeat this computation now for arbitrary w. We define:

∆C(x) ≡ C(x)− f(A(x)) . (C.12)

To compute ∆C we can use (C.9a) in (C.9b) to write C entirely in terms of A and then if

we consider the expression for C as a polynomial in (w− 2) then ∆C is given by the terms

that depend on (w − 2). After some simplifications using (C.7) we find:

∆C
mod δ
=

2i

r
(w − 2)∇m(UmA) +

16

x2
(w − 2)A+

2

r2
(w − 2)(w − 1)A . (C.13)

Multiplying (C.9a) by −2i
r (w− 2) and adding it to the above equation we find the desired

result

∆C +
2

r2
(w − 2)(w − 3)A− i

r
(w − 2)τ ij1 Bij

mod δ
= 0 , (C.14)

or equivalently:

C(x) +
2

r2
(w − 2)(w − 3)A(x)− i

r
(w − 2)τ ij1 Bij(x) = C(x) mod δ

= f(A(x)) . (C.15)

Integrating the two sides of
mod δ
= on S4 and putting them inside a correlator with U gives

us the desired identity (C.2). The proof of (C.3) follows similarly.

D tt
∗ equations from sphere partition function

In this appendix we prove that the two-point functions in SU(N) N = 2 SQCD (with

2N fundamental hypermultiplets) satisfy the coupled tt∗ equation. We denote by τ, τ̄ the

marginal coupling which parametrizes the conformal manifold. The chiral ring is generated

by the N − 1 generators

φk ∝ Tr (ϕk) , k = 2, . . . , N (D.1)

and a convenient basis for the chiral primaries is

Oi ≡ Oi2,i3,...,iN =
N
∏

k=2

φikk . (D.2)

We will define the matrix of two-point functions on the sphere (dropping the S4 subscript)

Mab =
〈

Oa(N)Ob(S)
〉

. (D.3)

As a consequence of the mixing explained in section 3,Mab is in general not zero even when

Oa and Ob are not of the same dimension. The physical operators {O′
a} can be obtained by

doing a Gram-Schmidt procedure with respect to all the lower-dimensional CPOs (chiral

primary operators):

O′
a = Oa −

∑

∆i<∆a

〈

Oa(N)O′
i(S)

〉

〈

O′
i(N)O′

i(S)
〉O′

i . (D.4)

The physical two-point functions which correspond to the flat space two-point functions

are obtained from

Gab =
〈

O′
a(N)O′

b(S)
〉

, (D.5)
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which is non zero only if ∆a = ∆b.

We will define the matrix M ij
∆′ to be the inverse of the submatrix of Mij that includes

all the operators up to dimension ∆′. Another useful notation is to denote operators of

the form φ2Oa by O∂a, and the corresponding matrix elements are

M∂i,j =
〈

φ2Oi(N)Ōj(S)
〉

, Mi,∂j =
〈

Oi(N)φ2Oj(S)
〉

. (D.6)

Derivatives with respect to τ, τ̄ bring down insertions of φ2, φ̄2 such that the following

relations between the matrix elements hold

∂τMIJ =M∂I,J −M10MIJ

∂τ̄MIJ =MI,∂J −M01MIJ

(D.7)

where

M10 = 〈φ2(N)〉 , M01 =
〈

φ2(S)
〉

. (D.8)

In the proceeding of this section, we will use the indices a, b, c to denote operators of

dimension ∆, indices i, j, k, l to denote operators of dimension smaller than ∆ and I, J,K

to denote operators up to dimension ∆. Contracted indices are summed over all their

possible values unless specified differently. Due to the Gram-Schmidt procedure, we can

write Gab in the following way (∆a = ∆b = ∆)

Gab =Mab −MaiM
ij
∆−2Mjb . (D.9)

It will be useful to show that the inverse of Gab denoted by Gbc is equal to Gbc = M bc
∆ .

Proof:

GabG
bc = (Mab −MaiM

ij
∆−2Mjb)M

bc
∆ =MabM

bc
∆ −MaiM

ij
∆−2MjbM

bc
∆

=MabM
bc
∆ +MaiM

ij
∆−2MjkM

kc
∆ =MabM

bc
∆ +MaiM

ic
∆ = δca .

(D.10)

The tt∗ equations (A.1c) in the holomorphic gauge and in these notations take the form

∂τ̄ (∂τGabG
bc) = G∂a,∂bG

bc −G2δ
c
a −Ga∂iG

ijδc∂j . (D.11)

In order to prove (D.11), we need to compute ∂τ̄ (∂τGabG
bc). Do it in steps:

∂τGab = ∂τ (Mab −MaiM
ij
∆−2Mjb)

=M∂a,b −M10Mab −M∂a,iM
ij
∆−2Mjb −MaiM

ij
∆−2M∂j,b+

+MaiM
ik
∆−2M∂k,lM

lj
∆−2Mjb +M10MaiM

ij
∆−2MjbMaiM

ij
∆−2Mjb

=M∂a,b −M10Gab −M∂a,iM
ij
∆−2Mjb −MaiM

ij
∆−2M∂j,b

+MaiM
ik
∆−2M∂k,lM

lj
∆−2Mjb

=M∂a,b −M10Gab −M∂a,iM
ij
∆−2Mjb −

∑

∂k∈∆

MaiM
ik
∆−2M∂k,b

+
∑

∂k∈∆

MaiM
ik
∆−2M∂k,lM

lj
∆−2Mjb

=M∂a,b −M10Gab −M∂a,iM
ij
∆−2Mjb −

∑

∂k∈∆

MaiM
ik
∆−2G∂k,b

(D.12)
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and

∂τGabG
bc =



M∂a,b −M10Gab −M∂a,iM
ij
∆−2Mjb −

∑

∂j∈∆

MaiM
ij
∆−2G∂j,b



M bc
∆

=M∂a,bM
bc
∆ −M10δ

c
a +M∂a,iM

ij
∆−2MjkM

kc
∆ −

∑

∂j∈∆

MaiM
ij
∆−2δ

c
∂j

=M∂a,bM
bc
∆ −M10δ

c
a +M∂a,iM

ic
∆ −

∑

∂j∈∆

MaiM
ij
∆−2δ

c
∂j .

(D.13)

and finally

∂τ̄ (∂τGabG
bc) = ∂τ̄



M∂a,bM
bc
∆ −M10δ

c
a +M∂a,iM

ic
∆ −

∑

∂j∈∆

MaiM
ij
∆−2δ

c
∂j



 . (D.14)

Compute the different terms:

∂τ̄M∂a,IM
Ic
∆ =M∂a,∂IM

Ic
∆ −M01M∂a,IM

Ic
∆ −M∂a,IM

IJ
∆ (MJ,∂K −M01MJK)MKc

=M∂a,∂IM
Ic
∆ −M01M∂a,IM

Ic
∆ −M∂a,IM

IJ
∆ MJ,∂KM

Kc +M∂a,IM
IJ
∆ M01MJKM

Kc

=M∂a,∂bM
bc
∆ +M∂a,∂iM

ic
∆−M∂a,∂iM

ic
∆−M∂a,IM

IJ
∆ MJ∂bM

bc
∆ =G∂a,∂bG

bc . (D.15)

Second term:

∂τ̄ (−M10δ
c
a) = −(M11 −M10M01)δ

c
a = −G2δ

c
a . (D.16)

Last term:

−
∑

∂j∈∆

δc∂j∂τ̄ (MaiM
ij
∆−2) = −

∑

∂j∈∆

δc∂j(Ma∂iM
ij
∆−2 −MalM

lk
∆−2Mk,∂iM

ij
∆−2)

= −
∑

∂i,∂j∈∆

δc∂j(Ma∂iM
ij
∆−2 −MalM

lk
∆−2Mk,∂iM

ij
∆−2) = −

∑

∂j∈∆

δc∂jGa∂iG
ij .

(D.17)

Putting everything together we get exactly (D.11).

E Scheme independence of the results

The sphere partition function is subject to Kähler ambiguity transformations

lnZ[S4] → lnZ[S4] + f(τ i) + f̄(τ̄ ī) . (E.1)

That is, sphere partition functions that were computed in different regularization schemes

may differ by holomorphic functions in the exactly marginal couplings [6]. More generally,

the deformed partition function Z[S4](τ i, τ̄ ī, τA, τ̄ Ā) is subject to holomorphic ambiguities,

as discussed in section 2.4.

The expressions obtained for the extremal correlators in our prescription are, by con-

struction, unambiguous. The effect of the holomorphic ambiguities on sphere correllators

is in holomorphic contributions to the mixing of chiral primaries with lower dimensional

chiral primaries (see equations (2.15)–(2.16)), and the Gram-Schmidt procedure subtracts
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these holomorphic contributions. The algorithm described in section 2.5 is therefore guar-

anteed to yield results that are scheme independent. Here we would like to demonstrate

how this works.

Let us start with the example of gauge group SU(2). Using the recursive formula (3.18),

the invariance of the extremal two-point functions follows from the invariance of the bound-

ary condition G2 = 16 ∂τ∂τ̄ lnZ[S
4] under Kähler transformations. Alternatively, consider

the formula (1.3) and note that

∂lτ∂
j
τ̄

(

ef(τ)Z[S4]
)

= ef(τ)∂lτ∂
j
τ̄Z[S

4] +
l−1
∑

k=0

(

l

k

)

(

∂l−k
τ ef(τ)

)

∂kτ ∂
j
τ̄Z[S

4] . (E.2)

The second term in the right hand side of the equation above is a linear combination of

the first l columns of the matrix defined by the first term, and therefore does not affect the

determinant,

det
(

∂lτ∂
j
τ̄

(

ef(τ)Z[S4]
))

= det
(

ef(τ)∂lτ∂
j
τ̄Z[S

4]
)

. (E.3)

It follows that equation (1.3) is invariant under holomorphic transformations (and similarly

under antiholomorphic transformations.)

More generally, every extremal two-point function that we would like to compute is

given in our prescription in terms of determinants of the Gram-Schmidt matrix of two-point

functions on the sphere. The holomorphic mixing can always be canceled by subtracting

from columns linear combinations of the previous columns, and therefore the holomorphic

ambiguities do not affect the (appropriately normalized) determinants. Importantly, non-

holomorphic contributions to lnZ[S4], such as the one due to the anomaly discussed in [7],

do not simply mix columns and rows with the previous ones, and they do affect the result

of the Gram-Schmidt procedure.
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