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a b s t r a c t

We discuss some methods to quantitatively investigate the properties of correlation matri-

ces. Correlation matrices play an important role in portfolio optimization and in several

other quantitative descriptions of asset price dynamics in financial markets. Here, we dis-

cuss how to define and obtain hierarchical trees, correlation based trees and networks from

a correlation matrix. The hierarchical clustering and other procedures performed on the cor-

relation matrix to detect statistically reliable aspects of it are seen as filtering procedures of

the correlation matrix. We also discuss a method to associate a hierarchically nested factor

model to a hierarchical tree obtained from a correlation matrix. The information retained

in filtering procedures and its stability with respect to statistical fluctuations is quantified

by using the Kullback–Leibler distance.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Many complex systems observed in the physical, biological and social sciences are organized in a nested hierarchical

structure, i.e. the elements of the system can be partitioned in clusters which in turn can be partitioned in subclusters and

so on up to a certain level (Simon, 1962). The hierarchical structure of interactions among elements strongly affects the

dynamics of complex systems. Therefore a quantitative description of hierarchies of the system is a key step in the modeling

of complex systems (Anderson, 1972).

The analysis of multivariate data provides crucial information in the investigation of a wide variety of systems. Multi-

variate analysis methods are designed to extract the information both on the number of main factors characterizing the

dynamics of the investigated system and on the composition of the groups (clusters) in which the system is intrinsically

organized. Recently, physicists started to contribute to the development of new techniques to investigate multivariate data

(Blatt et al., 1996; Hutt et al., 1999; Mantegna, 1999; Giada and Marsili, 2001; Kraskov et al., 2005; Tumminello et al., 2005;

Tsafrir et al., 2005; Slonim et al., 2005). Among multivariate techniques, natural candidates for detecting the hierarchical

structure of a set of data are hierarchical clustering methods (Anderberg, 1973).

The modeling of the correlation matrix of a complex system with tools of hierarchical clustering has been useful in the

multivariate characterization of stock return time series (Mantegna, 1999; Bonanno et al., 2001, 2003), market index returns
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of worldwide stock exchanges (Bonanno et al., 2000), and volatility of stock return time series (Miccichè et al., 2003), where

the estimation of statistically reliable properties of the correlation matrix is crucial for several financial decision processes

such as asset allocation, portfolio optimization (Tola et al., 2008), derivative pricing, etc. We have termed the selection of

statistically reliable information of the correlation matrix with the locution “filtering procedure” as in Tumminello et al.

(2007a). Hierarchical clustering procedures are filtering procedures. Other filtering procedures which are popular within

the econophysics community are procedures based on the random matrix theory (Laloux et al., 1999; Plerou et al., 1999;

Rosenow et al., 2002; Coronnello et al., 2005; Potters et al., 2005; Tumminello et al., 2007a), and procedures using the concept

of shrinkage of a correlation matrix (Ledoit and Wolf, 2003; Schäfer and Strimmer, 2005; Tumminello et al., 2007b). Many

others might be devised and their effectiveness tested.

The correlation matrix of the time series of a multivariate complex system can be used to extract information about

aspects of hierarchical organization of such a system. The clustering procedure is done by using the correlation between

pairs of elements as a similarity measure and by applying a clustering algorithm to the correlation matrix. As a result of

the clustering procedure, a hierarchical tree of the elements of the system is obtained. The correlation based clustering

procedure allows also to associate a correlation based network with the correlation matrix. For example, it is natural to

select the minimum spanning tree, i.e. the shortest tree connecting all the elements in a graph, as the correlation based

network associated with the single linkage cluster analysis. Different correlation based networks can be associated with the

same hierarchical tree putting emphasis on different aspects of the sample correlation matrix. Useful examples of correlation

based networks different from the minimum spanning tree are the planar maximally filtered graph (Tumminello et al., 2005)

and the average linkage minimum spanning tree (Tumminello et al., 2007c).

In correlation based hierarchical investigations, the statistical reliability of hierarchical trees and networks is depending

on the statistical reliability of the sample correlation matrix. The sample correlation matrix is computed by using a finite

number of records T sampling the behavior of the N elements of the system. Due to the unavoidable finiteness of T, the

estimation of the sample correlation matrix presents a degree of statistical uncertainty that can be characterized under

widespread statistical assumptions. Physicists (Laloux et al., 1999; Plerou et al., 1999) have contributed to the quantitative

estimation of the statistical uncertainty of the correlation matrix by using tools and concepts of random matrix theory.

However, theoretical results providing the statistical reliability of hierarchical trees and correlation based networks are still

not available and, therefore, a bootstrap approach has been used to quantify the statistical reliability of both hierarchical

trees (Tumminello et al., 2007d) and correlation based networks (Tumminello et al., 2007c).

The hierarchical tree characterizing a complex system can also be used to extract a factor model with independent

factors acting on different elements in a nested way. In other words, the number of factors controlling each element may

be different and different factors may act at different hierarchical levels. Tumminello et al. (2007d) have shown how to

associate a hierarchically nested factor model to a system described by a given hierarchical structure.

Having available a large number of filtering procedures, researchers encounter the necessity to have a quantitative

methodology able to estimate the information retained in a filtered correlation matrix obtained from the sample correlation

matrix. It is also important to quantify the stability of the filtering procedure in different realizations or replicas of the

process and a distance of the filtered correlation matrix from a given reference model. For all the above listed purposes, a

very useful measure is the one using the Kullback–Leibler distance that was introduced in Tumminello et al. (2007a). This

distance presents the important characteristics that its value quantifying the distance between a sample correlation matrix

and the correlation matrix of the generating model turns out to be independent from the specific correlation matrix of the

model both for multivariate Gaussian variables (Tumminello et al., 2007a) and for multivariate Student’s t variables (Biroli

et al., 2007; Tumminello et al., 2007b).

In the present paper we discuss in a coherent and self-consistent way (i) some filtering procedures of the correlation

matrix based on hierarchical clustering and the bootstrap validation of hierarchical trees and correlation based networks,

(ii) the hierarchically nested factor model, (iii) the Kullback–Leibler distance between the probability density functions of

two sets of multivariate random variables and (iv) the retained information and stability of a filtered correlation matrix.

We apply the discussed concepts to a portfolio of stocks traded in a financial market. The paper is organized as follows. In

Section 2 we discuss how to obtain hierarchical trees and correlation based trees or networks from the correlation matrix

of a complex system and we discuss the role of bootstrap in the statistical validation of hierarchical trees and correlation

based networks. In Section 3 we discuss the definition and the properties of a factor model with independent factors which

are hierarchically nested. In Section 4 we present an empirical application of the hierarchically nested factor model. Section

5 discusses how to quantify the information and stability of a correlation matrix by using a Kullback–Leibler distance and

Section 6 presents the quantitative comparison of different filtering procedures performed with the same distance. Section

7 briefly presents some conclusions.

2. Correlation based hierarchical organization and networks

Hereafter we discuss a simple example illustrating two filtering procedures of a correlation matrix performed with

methods of hierarchical clustering. In our approach, by using the correlation between elements as the similarity measure

and by applying a given hierarchical clustering procedure, we first obtain a hierarchical tree. The information present in

the hierarchical tree is completely equivalent to the information stored in the filtered matrix and, when the correlation is

non-negative for each pair of elements, this matrix is positive definite (Tumminello et al., 2007d).
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Our example considers the correlation matrix of N = 10 daily stock returns traded at the New York Stock Exchange during

the time period from January 2001 to December 2003. The investigated stocks are AIG, IBM, BAC, AXP, MER, TXN, SLB, MOT,

RD, and OXY. The above presentation order of stocks is given according to their market capitalization at December 2003.

In this paper, we indicate stocks with their tick symbols. The tick symbol, company name and other information of each

company are given in tables of Supplementary Material. From the tables we note that three stocks (OXY, RD, SLB) belong to

the energy sector, three (IBM, MOT, TXN) to the technology sector and four (AIG, AXP, BAC, MER) to the financial sector.

The stock return correlation matrix computed by using T = 748 records is the following1

C =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1.000 0.413 0.518 0.543 0.529 0.341 0.271 0.231 0.412 0.294

1.000 0.471 0.537 0.617 0.552 0.298 0.475 0.373 0.270

1.000 0.547 0.592 0.400 0.258 0.349 0.370 0.276

1.000 0.664 0.422 0.347 0.351 0.414 0.269

1.000 0.533 0.344 0.462 0.440 0.318

1.000 0.305 0.582 0.355 0.245

1.000 0.193 0.533 0.592

1.000 0.258 0.166

1.000 0.591

1.000

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟
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⎟

⎟

⎟

⎠

(1)

where the order of elements of the correlation matrix from left to right and from top to bottom is the one based on

capitalization given above.

A large number of hierarchical clustering procedures can be found in the literature. For a review about the classical

techniques see, for instance, Anderberg (1973). In this paper we focus our attention on the single linkage cluster analysis

(SLCA) and average linkage cluster analysis (ALCA).

The starting point of both the procedures is the empirical correlation matrix C. The following procedure performs the

ALCA giving as an output a hierarchical tree and a filtered correlation matrix C<
ALCA:

(i) Set B = C.

(ii) Select the maximum correlation bhk in the correlation matrix B. Note that h and k can be simple elements (i.e. clusters

of one element each) or clusters (sets of elements). ∀ i ∈ h and ∀ j ∈ k one sets the elements �<
ij

of the matrix C<
ALCA as

�<
ij

= �<
ji

= bhk.

(iii) Merge cluster h and cluster k into a single cluster, say q. The merging operation identifies a node in the rooted tree

connecting clusters h and k at the correlation bhk.

(iv) Redefine the matrix B:

{

bqj =
nh bhj + nk bkj

nh + nk
if j /∈ h and j /∈ k

bij = bij otherwise,

where nh and nk are the number of elements belonging respectively to the cluster h and to the cluster k before the

merging operation. Note that if the dimension of B is m × m then the dimension of the redefined B is (m − 1) × (m − 1)

because of the merging of clusters h and k into the cluster q.

(v) If the dimension of B is larger than 1 then go to step (ii), else stop. By replacing point (iv) of the above algorithm with

the following item

(iv)
′

Redefine the matrix B:

{

bqj = Max
[

bhj, bkj

]

if j /∈ h and j /∈ k

bij = bij otherwise,

one obtains an algorithm performing the SLCA and the associated filtered correlation matrix C<
SLCA.

1 When we write the correlation matrix by using a finite number of digits (three in the example) a degeneracy not present in real data might be introduced.

In the present example, element �3,5 = 0.59171896 is less than �7,10 = 0.59171955.
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Fig. 1. Average linkage cluster analysis. Illustrative example of a hierarchical tree associated to a system of N = 10 stocks (tick symbols label stocks at the

bottom of the hierarchical tree. Each element of the system is also labeled with an integer number). The color of line indicates the primary economic sector

of the stock, red for technology, blue for energy, and green for financial. The labels of the nodes of the hierarchical tree are used in the discussion of the

hierarchically nested factor model of Section 3 (For interpretation of the references to color in this figure legend, the reader is referred to the web version

of the article.).

The hierarchical trees obtained from the sample correlation matrix of Eq. (1) by applying the ALCA and the SLCA are

given in Fig. 1 and in Fig. 2 respectively. A hierarchical tree is a rooted tree, i.e. a tree in which a special node (the root)

is singled out. In our example this node is ˛1. In the rooted tree, we distinguish between leaves and internal nodes.

Specifically, vertices of degree 1 represent leaves (vertices labeled 1, 2, . . . , 10 in Fig. 1) while vertices of degree greater

than 1 represent internal nodes (vertices labeled ˛1, ˛2,. . ., ˛9 in Fig. 1). The two trees are slightly different showing

that each clustering method produces a different output putting emphasis on different aspects of the sample correlation

matrix.

Fig. 2. Single linkage cluster analysis. Illustrative example of a hierarchical tree associated to a system of N = 10 stocks (tick symbols label stocks at the

bottom of the hierarchical tree). The color of line indicates the primary economic sector of the stock, red for technology, blue for energy and green for

financial (For interpretation of the references to color in this figure legend, the reader is referred to the web version of the article.).



44 M. Tumminello et al. / Journal of Economic Behavior & Organization 75 (2010) 40–58

The filtered correlation matrix associated with the ALCA is

C<
ALCA =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1.000 0.501 0.501 0.501 0.501 0.412 0.308 0.412 0.308 0.308

1.000 0.536 0.577 0.577 0.412 0.308 0.412 0.308 0.308

1.000 0.536 0.536 0.412 0.308 0.412 0.308 0.308

1.000 0.664 0.412 0.308 0.412 0.308 0.308

1.000 0.412 0.308 0.412 0.308 0.308

1.000 0.308 0.582 0.308 0.308

1.000 0.308 0.562 0.591

1.000 0.308 0.308

1.000 0.562

1.000

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(2)

whereas for the SLCA we obtain

C<
SLCA =

⎛

⎜

⎜

⎜

⎜

⎜
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⎜

⎜

⎜

⎜
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⎜

⎜

⎜

⎜

⎝

1.000 0.543 0.543 0.543 0.543 0.543 0.440 0.543 0.440 0.440

1.000 0.592 0.617 0.617 0.552 0.440 0.552 0.440 0.440

1.000 0.592 0.592 0.552 0.440 0.552 0.440 0.440

1.000 0.664 0.552 0.440 0.552 0.440 0.440

1.000 0.552 0.440 0.552 0.440 0.440

1.000 0.440 0.582 0.440 0.440

1.000 0.440 0.591 0.592

1.000 0.440 0.440

1.000 0.591

1.000

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟
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⎟

⎟
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⎟

⎟

⎠

(3)

For the sake of comparison, here the ALCA and SLCA filtered correlation matrices are both written with the same order of

stocks of the sample correlation matrix. By comparing the sample and the filtered matrices one immediately notes that the

filtered ones contain less information being defined by a number of distinct correlation coefficients equals to N − 1 whereas

the original matrix has N(N − 1)/2 distinct correlation coefficients. The two filtering methods detect different information.

In fact the ALCA uses the average correlation coefficient between distinct groups of elements whereas the SLCA uses the

maximal correlation. The two choices filter correlation coefficients characterized by a different degree of representativeness

and statistical reliability.

It is worth noting that the hierarchical methods reveal the sectorial structure of the considered set of stocks. Specifically,

in both cases the stocks belonging to the energy sector form a cluster. Fig. 1 shows that for the ALCA dendrogram the node

˛2 splits the stocks in two sets, one composed by two technology stocks and one composed by the financial stocks plus the

IBM. For the SLCA dendrogram the separation of the set in the technology and financial subsectors is less sharp (see Fig. 2).

However in general hierarchical methods perform quite well in identifying groups of stocks belonging to the same economic

sector (Mantegna, 1999; Bonanno et al., 2001; Coronnello et al., 2005).

In addition to the hierarchical trees and to the related filtered correlation matrices one can also obtain correlation based

networks. Here we briefly recall how to select a correlation based graph out of the complete graph describing the system.

A complete graph is a graph with links connecting all the elements (or nodes in the graph terminology) of the system of

interest. In correlation based networks a weight, which is monotonically related to the correlation coefficient of each pair

of elements, can be associated with each link. Therefore one can directly associates a weighted complete graph with the

correlation matrix among N elements of interest. A complete graph is too rich of information and therefore a “filtering” (or

“pruning”) of it can improve its readability. For this reason a procedure can be set to select a subset of links which are highly

informative about the hierarchical structure of the system. By using clustering algorithms as filtering procedures a certain

number of correlation based graphs have been investigated in the econophysics literature. Correlation based networks which

have been found very useful in the elucidation of economic properties of stock returns traded in a financial market are the

minimum spanning tree (MST) (Mantegna, 1999), the planar maximally filtered graph (PMFG) (Tumminello et al., 2005) and

the average linkage minimum spanning tree (ALMST) (Tumminello et al., 2007c). In the cited cases all the elements of the

system are connected within the graph. Correlation based graphs with elements disconnected from a giant component can

also be obtained starting from the correlation matrix. For example, an extension from trees to more general graphs generated

by selecting the most correlated links has been proposed in Onnela et al. (2003). However, this last method selects only a

subset of the investigated elements controlled by an arbitrarily chosen threshold.
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Fig. 3. Minimum spanning tree associated with the SLCA of the example. The vertices indicate the stocks. Colors indicate the different economic sectors,

red for technology, blue for energy and green for financial. The thickness of links is proportional to the bootstrap percentage and this value is the number

close to each link (For interpretation of the references to color in this figure legend, the reader is referred to the web version of the article.).

The MST is a correlation based tree associated with the SLCA. An illustrative algorithm providing the MST is the following.

Let us first recall that the connected component of a graph g containing the vertex i is the maximal set of vertices Si (with i

included) such that there exists a path in g between all pairs of vertices belonging to Si. When the element i has no links to

other vertices then Si reduces just to the element i. The starting point of the procedure is an empty graph g with N vertices.

A MST algorithm can be summarized in 6 steps:

(i) Set Q as the matrix of elements qij such that Q = C.

(ii) Select the maximum correlation qhk between elements belonging to different connected components Sh and Sk in g. At

the first step of the algorithm connected components coincide with single vertices in g.

(iii) Find elements u, p such that �up = Max
{

�ij, ∀i ∈ Sh and ∀j ∈ Sk

}

(iv) Add to g the link between elements u and p with weight �up. Once the link is added to g, u and p will belong to the same

connected component S = Sh

⋃

Sk.

(v) Redefine the matrix Q:
⎧

⎪

⎨

⎪

⎩

qij = qhk, if i ∈ Sh and j ∈ Sk

qij = Max
{

qpt, p ∈ S and t ∈ Sj ,with Sj /= S
}

, if i ∈ S and j ∈ Sj

qij = qij, otherwise;

(4)

(vi) If G is still a disconnected graph then go to step (ii), else stop.

The resulting graph g is the MST of the system and the matrix Q is the correlation matrix associated to the SLCA. The

presented algorithm is not the most popular or the simplest algorithm for the construction of the MST but it clearly reveals

the relation between SLCA and MST. Indeed connected components progressively merging together during the construction

of g are nothing else but clusters progressively merging together in the SLCA. In Fig. 3 we show the MST associated with the

considered example. It should be noted that the correlation based tree contains more information than the hierarchical tree

or the filtered correlation matrix. For example, the fact that the connection between the cluster of two technology stocks

(MOT and TXN) and the cluster of mostly financial stocks (MER, AXP, AIG, BAC and IBM) occurs through IBM is something

which is not contained in the hierarchical tree but it is present in the MST.

By replacing Eq. (4) with
⎧

⎪

⎨

⎪

⎩

qij = qhk, if i ∈ Sh and j ∈ Sk

qij = Mean
{

qpt, p ∈ S and t ∈ Sj, with Sj /= S
}

, if i ∈ S and j ∈ Sj

qij = qij ,otherwise;

(5)

in the step (v) of the above procedure one obtains an algorithm performing the ALCA and the final Q of the procedure is the

correspondent correlation matrix. The obtained tree g that we termed ALMST (Tumminello et al., 2007c) is a tree naturally

associated with such a clustering procedure. The choice of the link at step (iii) of the ALMST construction algorithm does not
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Fig. 4. Planar maximally filtered graph of the correlation matrix of the considered example. The vertices indicate the stocks. Colors indicate the different

economic sectors, red for technology, blue for energy and green for financial. The thickness of links is proportional to the bootstrap percentage and this value

is the number close to each link (For interpretation of the references to color in this figure legend, the reader is referred to the web version of the article.).

affect the clustering procedure but specifies the construction of the correlation based tree. More precisely by selecting any

link between nodes u ∈ Sh and p ∈ Sk the matrix Q representing the result of ALCA remains the same in terms of hierarchical

tree. This degeneracy allows one to consider different rules to select the link between elements u and p at the step (iii) of the

construction algorithm. Different rules at step (iii) give rise to different correlation based trees. The same observation holds

true for the algorithm that generates the MST. This fact implies that in principle one can consider spanning trees which are

different from the MST and are still associated with the SLCA. However, we have already recalled that the MST is unique

in the sense that, when an Euclidean distance is defined between links of the spanning tree, MST is the spanning tree of

shortest length (West, 2001).

For the present example the ALMST is essentially indistinguishable from the MST and for this reason we will not display

it here. It is worth noting that whereas the hierarchical trees obtained with ALCA and SLCA show slight differences, these

differences essentially disappear at the level of the associated correlation based trees.

Starting from the sample correlation matrix one can also obtain correlation based networks having a structure more

complex than a tree. One of such correlation based networks is the PMFG (Tumminello et al., 2005). This correlation based

network has associated a hierarchical structure which is the one given by SLCA but it presents a graph structure which

is richer than the one of the MST. In fact, the PMFG has loops and cliques. A clique of k elements is a complete subgraph

that links all k elements. Due to topological constraints, only cliques of 3 and 4 elements are allowed in the PMFG. To

illustrate the PMFG algorithm, let us first consider a different construction algorithm for the MST. Following the ordered

list Sord of correlation coefficients starting from the couple of elements with largest correlation one adds a link between

element i and element j if and only if the graph obtained after the link insertion is still a forest or it is a tree. A forest is a

disconnected graph in which any two elements are connected by at most one path, i.e. a disconnected ensemble of trees.

With this procedure, equivalent to the algorithm above detailed, the graph obtained after all links of Sord are considered is

the MST. In direct analogy, Tumminello et al. (2005) introduce a correlation based graph obtained by connecting elements

with largest correlation under the topological constraint of fixed genus G = 0. The genus is a topologically invariant property

of a surface defined as the largest number of nonintersecting simple closed curves that can be drawn on the surface without

separating it. Roughly speaking, it is the number of holes in a surface. The construction algorithm for such graph is: following

the ordered list Sord starting from the couple of elements with largest correlation one adds a link between element i and

element j if and only if the resulting graph can still be embedded on a plane or a sphere, i.e. topological surfaces with G = 0.

A basic difference of the PMFG with respect to the MST is the number of links which is N − 1 in the MST and 3 (N − 2) in the

PMFG. Moreover, the PMFG is a network with loops whereas the MST is a tree. It is worth recalling that Tumminello et al.

(2005) have proven that the PMFG always contains the MST.

In Fig. 4 we show the PMFG obtained for the considered example. In the figure the length of the links is not related to the

similarity measure between the two vertices they connect. We are using this kind of representation to put emphasis on the

topological planarity of the network. In fact from the figure it is evident that there are no crossings of links, and the entire

network is topologically embedded in a plane. By comparing Figs. 3 and 4 we note that the stock MER which turns out to

be of central reference in the MST and ALMST is the only stock participating to all the seven 4-cliques which are observed

in the PMFG. In other words, the PMFG allows to consider more details present in the sample correlation matrix than those

selected by the MST or ALMST. For example the PMFG of Fig. 4 shows that two stocks of the financial sector (AXP and MER)
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Fig. 5. Average linkage cluster analysis. Illustrative example of the estimation of the bootstrap value associated with each node of the hierarchical tree.

The color of horizontal lines indicate the bootstrap value b of the node according to the following color code: green 0.4 ≤ b < 0.6, cyan 0.6 ≤ b < 0.8, and

purple 0.8 ≤ b ≤ 1.0 (For interpretation of the references to color in this figure legend, the reader is referred to the web version of the article.).

are connected to stocks of both the technology and energy sector. Such a property was not present in the MST (or ALMST)

where only MER was linking two stocks of the two sectors (specifically RD and IBM). The PMFG is therefore showing more

details on the interrelations present among stocks than the MST. The PMFG has been recently used to investigate stock

return multivariate time series in references Tumminello et al. (2005, 2007e); Coronnello et al. (2005).

The statistical reliability of regions of hierarchical trees and correlation based graphs cannot be theoretically evaluated

in spite of the fact that the statistical reliability of the spectral properties of the correlation matrix can be assessed under the

assumption of multivariate normal distribution for the time series of the elements of the investigated set. In the absence of

such a theoretical approach we have devised a method to evaluate the statistical reliability of nodes in a hierarchical tree

and links in a correlation based graph obtained by using the correlation matrix as a similarity measure. The method is based

on a bootstrap procedure of the time series used to compute the correlation matrix of the system. The method is detailed

in Tumminello et al. (2007d,c). Here we just sketch the most important aspects of the procedure allowing to associate a

bootstrap value to each internal node of a hierarchical tree. Consider a system of N time series of length T and suppose to

collect data in a matrix X with N columns and T rows. A bootstrap data matrix X∗ is formed by randomly sampling T rows

from the original data matrix X allowing multiple sampling of the same row. For each replica X∗, the associated correlation

matrix C∗ is evaluated and a hierarchical tree is constructed by hierarchical clustering. A large number (typically 1000) of

independent bootstrap replicas is considered and for each internal node of the original hierarchical tree we compute the

fraction of bootstrap replicas (commonly referred to as bootstrap value) preserving the internal node in the hierarchical tree

of bootstrap replicas. Given an internal node ˛k of the original hierarchical tree, we say that a bootstrap replica is preserving

that node if and only if a node ˛∗
h

in the replica hierarchical tree exists and identifies a branch characterized by the same

leaves identified by ˛k in the original hierarchical tree. For instance, we say that the node ˛3 of the hierarchical tree in Fig. 1

is preserved in some replica hierarchical tree D∗ if and only if a node of D∗ exists such that it connects all and only the leaves

1, 2, 3, 4, and 5.

In Fig. 5 we show the result of the application of the bootstrap procedure to the ALCA hierarchical tree of the example

shown in Section 2. From the figure it is evident that different nodes have a different statistical reliability as quantified

through the bootstrap value.

An analogous uncertainty is observed and quantified in correlation based graphs with a similar methodology. For each

bootstrap replica X∗, the associated correlation matrix C∗ is evaluated and a correlation based graph is constructed. By

applying the procedures described in the previous subsection to C one can construct, for example, the MST, the PMFG and

the ALMST of the system. For each replica X∗
i the correlation matrix is evaluated and the correlation based graph of interest

is obtained. The result is a collection of correlation based graphs. For example, in the case of MSTs, {MST∗
1, . . . , MST∗

r }. To

associate the so called bootstrap value to a link of the original correlation based graph (in the present example a MST) one

evaluates the number of MST∗
i where the link is appearing and normalizes such a number with the total number of replicas,

e.g. r = 1000. The bootstrap value gives information about the reliability of each link of a correlation based graph. It is worth

noting that the bootstrap approach does not require the knowledge of the data distribution and then it is particularly useful

to deal with high dimensional systems where it is difficult to infer the joint probability distribution from data. One might

then be tempted to expect that the higher is the correlation associated with a link in a correlation based network the higher

is the statistical reliability of the link. Tumminello et al. (2007c) show that such hypothesis is not always coherent with what



48 M. Tumminello et al. / Journal of Economic Behavior & Organization 75 (2010) 40–58

is observed in empirical results of sets of stock returns traded in a financial market. High bootstrap stability can sometime

be observed in spite of a low correlation value and vice versa indicating a different degree of stability with respect to metric

and topological aspects.

In Figs. 3 and 4 the bootstrap values associated with each link are reported in the figure as the number close to each link.

For a detailed discussion about the use of the bootstrap procedure to estimate the reliability of correlation based graphs see

Tumminello et al. (2007c).

3. A hierarchically nested factor model

The filtering procedure of the correlation matrix provides filtered correlation matrices carrying information on the hier-

archical structure of the investigated system. A hierarchical factor model associated with such a matrix is useful in the

modeling of hierarchical complex systems. In this section we discuss the hierarchically nested factor model (HNFM). The

HNFM is introduced in Tumminello et al. (2007d) in such a way that its correlation matrix coincides with the similarity

matrix C< filtered by a chosen hierarchical clustering procedure.

Hereafter, we illustrate the methodology associating a nested factor model with a multivariate data set. The association

is done by retaining all the information about the hierarchies detected by a hierarchical clustering. This is achieved by

considering a factor model in bijective relation with a hierarchical tree. We are going to present our method by making use

of the illustrative hierarchical tree given in Fig. 1. We first note that to each leaf i (or internal node ˛h) one can associate a

genealogy G(i) (G(˛h) for the internal node ˛h) which is the ordered set of internal nodes connecting leaf i (internal node ˛h)

to the root ˛1. For instance the genealogy associated to the leaf 3 in the figure is G(3) = {˛6, ˛4, ˛3, ˛2, ˛1} and the genealogy

of the internal node ˛7 in the figure is G(˛7) = {˛7, ˛2, ˛1}. Note that the internal node ˛7 is included in G(˛7). We say that

an internal node w is the parent of the node v and we use the notation w = g(v) if w immediately precedes v on the path from

the root to v. For example ˛2 = g(˛7) in Fig. 1. Beside the topological structure, hierarchical trees obtained through clustering

algorithms of the correlation matrix have also metric properties. In fact clustering algorithms associate with each internal

node ˛i a correlation coefficient �˛i
. Our internal node labeling implies that �˛i

≤ �˛i+1
and here we consider �˛1

≥ 0. In C<

there are at most N − 1 distinct coefficients (see discussion in Section 2). Exactly N − 1 distinct coefficients are obtained in

case of binary rooted trees.

In Tumminello et al. (2007d) we introduce the factor model

xi(t) =
∑

˛h ∈ G(i)

˛h
f (˛h)(t) + �i �i(t) (6)

where i ∈ {1, . . . , N}, �i = [1 −
∑

˛h ∈ G(i)
2

˛h
]
1/2

, the h-th factor f (˛h)(t) and �i are i.i.d. random variables with zero mean and

unit variance. By fixing the  parameters as

˛1
= √

�˛1

˛h
=
√

�˛h
− �g(˛h) ∀ h = 2, . . . , N − 1

(7)

the model of Eq. (6) is the factor model characterized by a correlation matrix equal to a given matrix C<. It should be noted

that by assuming �˛1
≥ 0, all the coefficients ˛h

are non negative real numbers. In Tumminello et al. (2007d) we prove

that correlation �<
ij

= �˛k
. In fact, the cross correlation2〈xixj〉 only depends on the factors f (˛h) which are common to xi

and xj . Since one associates a factor to each internal node, one needs to identify the internal nodes belonging to both the

genealogies G(i) and G(j). One can verifies that G(i) ∩ G(j) = G(˛k). For example, in Fig. 1 we have that G(5) = {˛3, ˛2, ˛1} and

G(6) = {˛7, ˛2, ˛1} so that G(5) ∩ G(6) = {˛2, ˛1} = G(˛2). By making use of Eqs. (6) and (7) the cross correlation between

variables xi and xj is

〈

xixj

〉

=
∑

˛h ∈ G(˛k)

2
˛h

= �˛k
= �<

ij . (8)

For example with reference to Fig. 1 we have 〈x5x6〉 = 2
˛2

+ 2
˛1

= �˛2
− �˛1

+ �˛1
= �˛2

. Thus the matrix C< is the correlation

matrix associated with the factor model of Eq. (6). It is worth noting that the existence of a factor model whose matrix C<

is the correlation matrix implies that the matrix C< is always positive definite if �˛1
≥ 0.

In the case in which negative correlations are associated with some nodes in the dendrogram, it is sometimes possible

to suitably modify Eqs. (7) by introducing multiplicative sign variables in order to get a HNFM describing the system. The

description of the most general case is left for a future work. Here we just consider the case in which only �˛1
< 0, because

this is the case in the empirical application described in Section 4. Let us assume that all the correlations associated with

nodes in the dendrogram are non negative but �˛1
< 0. Furthermore assume that |�˛1

| < �˛2
(this constraint is satisfied

2 Here and in Section 6 we indicate with the notation 〈x〉 the mean value of the x variable. Moreover, the variables xi and xj have zero mean and unit

variance.
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in the empirical application of Section 4). In order to construct the HNFM, we divide the elements of the system into two

groups. These are the two groups of elements merging together at root node. The coefficient ˛1
shall be different for elements

belonging to different groups. Specifically,

1
˛1

= −
√

|�˛1
| for all the elements of the first group,

2
˛1

=
√

|�˛1
| for all the elements of the second group,

(9)

whereas we do not need to distinguish among elements belonging to different groups for the other  coefficients. Specifically

˛h
=
√

�˛h
− |�g(˛h)| ∀ h = 2, . . . , N − 1. (10)

We note that the constraint |�˛1
| < �˛2

is required by Eq. (10) in order to have a real value of  coefficients. It is also to

notice that |�g(˛h)| = �g(˛h) ∀ g(˛h) /= ˛1, and accordingly, the  coefficients associated with all of the nodes different from

the root node and its children as given in Eq. (10) coincide with the corresponding coefficients as defined in Eq. (7).

Eq. (6) defines a HNFM of N − 1 factors obtained from a hierarchical tree of N elements. In general the number of factors

determining the dynamics of the system can be significantly smaller than N − 1. Moreover a correlation coefficient matrix

obtained from a finite multivariate time series has associated an unavoidable statistical uncertainty that might introduce

spurious factors. To overcome this problem, in Tumminello et al. (2007d) we propose a method devised to select the HNFM

characterized by the largest number of factors (although in any case less than N) compatible with a predefined threshold of

statistical reliability of retained factors. The method of Tumminello et al. (2007d) exploits the technique of non parametric

bootstrap (Efron, 1979; Efron and Tibshirani, 1994). The bootstrap technique allows to associate a bootstrap value to each

internal node of a hierarchical tree. Due to the one to one relation between nodes in the hierarchical tree and factors in the

HNFM, the bootstrap value associated with a certain node of the hierarchical tree is associated also with the corresponding

factor in the HNFM.

Since the bootstrap value is a measure of the node’s reliability, we propose to remove those nodes, and therefore the

corresponding factors, with bootstrap value smaller than a given threshold b. This is done by merging each node with a

bootstrap value smaller than b with its first ancestor node in the path to the root having a bootstrap value greater than b

and then constructing the HNFM associated with this reduced hierarchical tree. The question is how to select the threshold

b. The bootstrap value of a certain node (factor) cannot be straightforwardly related to the probability that the node (factor)

belongs to the true and unknown hierarchy (model) of the system. For example, in phylogenetic analysis Hillis and Bull

(1993) have shown that bootstrap values of more than 70% correspond to a probability of more than 95% that the true

phylogeny has been found. In Tumminello et al. (2007d) we do not choose a priori the value of b but we infer a suitable value

of the threshold from the data in a self consistent way. The detailed procedure used to determine the threshold from data is

discussed in Tumminello et al. (2007d).

4. An empirical application: a set of stocks traded in a financial market

As an application of the described technique to real data we examine the set of daily equity return of N = 100 highly

capitalized stocks traded at the NYSE during the period 2001-2003 (T = 748). Specifically, we apply the ALCA to the cor-

relation matrix of the system and we obtain the hierarchical tree shown in Fig. 6. In the figure, the identity of each stock

is labeled by an integer number. The correspondence between each number and the tick symbol of the stock is provided

in Supplementary Material. In the same Supplementary Material we also provide information about the company name,

economic sector and sub-sector classified according to Yahoo Finance.

To evaluate the statistical robustness of each node and to simplify the description in terms of a HNFM we use the bootstrap

technique discussed above. In particular, we select in a self-consistent way (see Tumminello et al., 2007d) the bootstrap value

threshold, which turns out to be b = 70% for the considered dataset. The corresponding reduced hierarchical tree has 27 nodes

and it is reported in Fig. 7.

Let us first comment the properties of the reduced HNFM. In the figure we observe several clusters and sub-clusters. As

already noticed in previous studies (Mantegna, 1999; Bonanno et al., 2001; Tumminello et al., 2005), the detected clusters

and sub-clusters are overlapping in part with economic classification such as, for example, the one provided by the Yahoo

Finance (at April 2005). This can be seen in Figs. 6 and 7 where we use this classification to characterize with a specific color

each stock. Most of the groups detected by hierarchical clustering are characterized by the same color. For example, financial

firms are represented as green lines in the hierarchical tree in Figs. 6 and 7.

The root of the dendrogram of Fig. 7 is associated with a parameter �˛1
= −0.004. This value is negative even if it is not

statistically significantly different from zero given that the error associated with the correlation coefficient is 1/
√

T = 0.036.

The fact that �˛1
< 0 requires the introduction of sign variables as explained at the end of Section 3. Since it is �˛2

= 0.2 >
|�˛1

|, we can use Eqs. 9 and 10 to determine the parameters of the model. The root node ˛1 splits the set of stocks in two

subsets, one composed by one stock (NEM, a gold mining company, see Supplementary Material) and another composed

by 99 stocks. The value of �˛1
is consistent with the interpretation that NEM is uncorrelated to the rest of the stocks. By

using Eq. (9) we set 1
˛1

= −0.063 and 2
˛1

= +0.063. The second factor (node) ˛2 describes the market mean behavior and

it is associated with the parameter ˛2
= 0.44. The other 25 factors describe clusters of stocks that are often significantly

homogeneous with respect to the sector activity of the stocks. In Fig. 7 we have highlighted 8 clusters by using rectangles at



50 M. Tumminello et al. / Journal of Economic Behavior & Organization 75 (2010) 40–58

Fig. 6. Hierarchical tree of the set of daily equity return of 100 highly capitalized stocks traded at the NYSE during the period 2001-2003 obtained by

applying the average linkage clustering algorithm to the correlation matrix. Colors are chosen according to the stock economic sector according to the

classification of Yahoo Finance. Specifically these sectors are Basic Materials (violet), Consumer Cyclical (tan), Consumer Non Cyclical (yellow), Energy

(blue), Services (cyan), Financial (green), Healthcare (gray), Technology (red), Utilities (magenta), Transportation (brown), Conglomerates (orange) and

Capital Goods (light green) (For interpretation of the references to color in this figure legend, the reader is referred to the web version of the article.).

the bottom of the figure. Specifically, F1 is the sub-sector of investment services and F2 contains the sub-sectors of regional

banks and money center banks. Both F1 and F2 belong to the economic sector of Financial; T and E are indicating the economic

sectors of Technology and Energy respectively; H1 indicates the sub-sector major drugs of the economic sector Healthcare;

S1 and S2 indicate the two sub-sectors of retail and communication services of the sector of Services respectively. Finally, X

is a cluster which is not homogeneous with respect to sector and sub-sector classification. It comprises stocks in the sector

of basic materials, stocks of the sub-sector constructions of capital goods and stocks as EMR (classified as technology) and GM

(classified as consumer cyclical).

Fig. 7. Hierarchical tree with 27 internal nodes obtained by node reduction of the ALCA hierarchical tree shown in Fig. 6. Rectangles at the bottom are

indicating 8 clusters and the associated symbols label the classification of stocks in terms of economic sectors or sub-sectors according to the classification

of Yahoo Finance (see text for the legend). Colors of lines indicate stock sectors as in Fig. 6. The labeled internal nodes are discussed in the text. In the figure

we do not comment on clusters composed by only two leaves.
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Let us now discuss the group of technology stocks (group T in Fig. 7). The first two stocks (their tick symbols are TXN and

ADI) from left to right of the group labeled as T in the reduced HNFM of Fig. 7 are described by the equation

xF
i (t) = ˛23

f (˛23)(t) + ˛4
f (˛4)(t) +

2
∑

h=1

˛h
f (˛h)(t) + �F �i(t) = 0.57f (˛23)(t) + 0.51f (˛4)(t) + 0.44f (˛2)(t) + 0.063f (˛1)(t)

+ 0.47�i(t) (11)

The factors f (˛1)(t) and f (˛2)(t) are common to almost all stocks whereas f (˛4)(t) and f (˛23)(t) are specific to these stocks.

The other four technology stocks (which are EMC, IBM, MOT and CA) are described by the equation

xF
i (t) = ˛4

f (˛4)(t) +
2
∑

h=1

˛h
f (˛h)(t) + �F �i(t) = 0.51f (˛4)(t) + 0.44f (˛2)(t) + 0.063f (˛1)(t) + 0.74�i(t). (12)

In this last case only the f (˛4)(t) factor is present in addition to the f (˛1)(t) and f (˛2)(t) factors common to almost all stocks.

It is therefore natural to consider f (˛4)(t) as a factor characterizing technology stocks whereas f (˛23)(t) is an additional factor

further characterizing only the two stocks TXN and ADI. It is worth noting that ADI and TXN both belong to the sub-sector

of Semiconductors of the Technology sector. A similar organization in nested clusters is observed in all the groups detected

by the reduced HNFM. The number of factors characterizing the various stocks is ranging from one to five.

It is worth to compare Figs. 6 and 7. The comparison shows that the self-consistent reduction of the number of factors

allow a robust statistical validation of the groups that are detected from the data analysis. Only the information which is

statistically robust at the 95% level is retained in the reduced HNFM. For example, the financial cluster observed at the left

end of the hierarchical tree in Fig. 6 is not robust at the selected confidence level whereas the two sub-clusters indicated as

F1 (LEH, BSC, MER and SCH) and F2 (NCC, STI, ONE, PNC, BAC, WFC, BK and MEL) in Fig. 7 are. This empirical analysis shows

the usefulness of HNFM in the empirical investigation of hierarchically organized complex systems.

5. Information and stability of a correlation matrix via the Kullback–Leibler distance

In Tumminello et al. (2007a) we propose to measure the performance of filtering procedures by using the Kullback–Leibler

distance introduced by Kullback and Leibler (1951). The Kullback–Leibler distance (see, for instance, Cover and Thomas, 1991)

or mutual entropy is a measure of the distance between two probability densities, say p and q. It is defined as

K(p, q) = Ep

[

log

(

p

q

)]

, (13)

where Ep[·] indicates the expectation value with respect to the probability density p. The Kullback–Leibler distance is asym-

metric with respect to the two probability densities because the expectation value is evaluated according to the p probability

density in Eq. (13).

We consider first the Kullback–Leibler distance between multivariate Gaussian probability densities (Tumminello et al.,

2007a). We consider variables with zero mean and unit variance without loss of generality because we are interested in

the comparison of the correlation matrices of the two sets of variables. In this case, the Gaussian multivariate distribution

associated with the random vector X is completely defined by the correlation matrix � of the system. In the following

we indicate the probability density function with P(�, X). Given two different probability density functions P(�1, X) and

P(�2, X), we have

K(P(�1, X), P(�2, X)) = EP(�1,X)

[

log

(

P(�1, X)

P(�2, X)

)]

=
∫

P(�1, X) log

[

P(�1, X)

P(�2, X)

]

dX, (14)

By performing the integral in Eq. (14) one obtains

K(P(�1, X), P(�2, X)) =
1

2

[

log

(

|�2|
|�1|

)

+ tr
(

�
−1
2 �1

)

− N

]

, (15)

where N is the dimension of the space spanned by the X variable, |�| indicates the determinant of � and tr is the trace of the

matrix. From now on we indicate K(P(�1, X), P(�2, X)) simply with K(�1, �2). It is worth noting that the Kullback–Leibler

distance takes naturally into account the specific nature of correlation matrices. Indeed K(�1, �2) is well defined only

provided that the matrices �1 and �2 are positive definite. This property is not common to other measures of distance

between matrices. However this property can also be a limitation. The Kullback–Leibler distance cannot be used to quantify

the distance between semi-positive correlation matrices that are observed, for example, when the length T of data series is

smaller than the number N of elements of the system.

The Kullback–Leibler distance is also related to the maximum likelihood factor analysis (Mardia et al., 1979). In fact, the

log-likelihood function to be maximized in order to describe a system of N elements with sample correlation matrix C is a
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function of the Kullback–Leibler distance between the C and the model correlation matrix (see Tumminello et al. (2007a)

for details).

We have obtained the value of the Kullback–Leibler distance between two multivariate distribution as a function of the

two corresponding Pearson correlation matrices. We are interested to the case in which one or both correlation matrices are

sample correlation matrices and thus are random variables. Since different realizations of the process give rise to different

sample correlation matrices, a Kullback–Leibler distance having one or two sample correlation matrices as arguments is a

function of one or two random matrices.

In the case of multinormally distributed variables, we consider a random vector X of dimension N with a model correlation

matrix �. Let C1 and C2 be two sample correlation matrices obtained from two independent realizations of the system both

of length T. It is known that in this case sample covariance matrices belong to the ensemble of Wishart random matrices

and many statistical properties of Wishart matrices are known (Mardia et al., 1979). By making use of the theory of Wishart

matrices, we obtained (Tumminello et al., 2007a) that

E [K(�, C1)] =
1

2

{

N log

(

2

T

)

+
T
∑

p=T−N+1

[

� ′(p/2)

� (p/2)

]

+
N(N + 1)

T − N − 1

}

, (16)

E [K(C1, �)] =
1

2

{

N log

(

T

2

)

−
T
∑

p=T−N+1

[

� ′(p/2)

� (p/2)

]

}

(17)

and

E [K(C1, C2)] =
1

2

N(N + 1)

T − N − 1
, (18)

where � (x) is the Gamma function and � ′(x) is the derivative of � (x).

It is important to observe that all the expectation values given in Eqs. (16)–(18) are independent of �, i.e. they are indepen-

dent of the specific model generating or describing the data. The independence property implies that (i) the Kullback–Leibler

distance is a good measure of the statistical uncertainty of correlation matrix which is due to the finite length of data series

and (ii) the expected value of the Kullback–Leibler distance is known also when the underlying model hypothesized to

describe the system is unknown. This fact has important consequences. Suppose one knows that the observed data are well

approximated by a multivariate Gaussian distribution and that one measures a sample correlation matrix C. In order to

remove some unavoidably present statistical uncertainty, the observer applies a filtering procedure to the data obtaining

the filtered3 correlation matrix Cfilt. If the filtering technique is able to recover the model correlation matrix, i.e. Cfilt = �,

the Kullback–Leibler distance K(C, Cfilt) must be equal on average to the value given in Eq. (17). This expected value is

independent on the (unknown) model correlation matrix �. Therefore large deviations from this expectation value indicate

that the filtered matrix is not consistent with the true matrix of the system. If K(C, Cfilt) is significantly smaller than the

expectation value of Eq. (17) the filtered matrix is keeping some of the statistical uncertainty due to the finite length T.

If, on the other hand, K(C, Cfilt) is significantly larger than the value of Eq. (17), it means that the filtered matrix is either

filtering too much information or distorting the signal. The distance between K(C, Cfilt) and the expected value of Eq. (17) is

a measure of the goodness of the filtering procedure in keeping the maximal amount of information which can be present

in sample correlation matrices estimated with a finite number of records.

A second aspect concerns the stability of the filtered correlation matrix obtained from a sample matrix. Let us suppose

to apply a certain filtering procedure to the correlation matrices C1 and C2 of two independent realizations of the system,

obtaining two filtered correlation matrices Cfilt
1 and Cfilt

2 . If it turns out that K(Cfilt
1 , Cfilt

2 ) is larger than the expected value

of K(C1, C2) described by Eq. (18), one can conclude that the filtering procedure produces correlation matrices less repro-

ducible than the sample correlation matrices and therefore the procedure is not suitable for the purpose of filtering robust

information from the empirical correlation matrices C1 and C2.

In summary, in Tumminello et al. (2007a) we have shown that the Kullback–Leibler distance is very good for comparing

correlation matrices. Its main properties are that (i) it is an asymmetric distance and therefore it can distinguish between

quantities observed in real systems and used to model the empirical observations, e.g. the sample correlation matrix and

the filtered correlation matrix respectively and (ii) the expectation values of the Kullback–Leibler distance given in Eqs.

(16)–(18) are model independent, indicating that this distance is a good estimator of the statistical uncertainty due to the

finite size of the empirical sample. These properties are not observed in other widespread distances between matrices. For

example, Tumminello et al. (2007a) have shown that these properties are not observed for the Frobenius distance, which is

a standard measure of the distance between matrices.

Biroli et al. (2007) have extended the above results on the Kullback–Leibler distance to a general class of elliptic distribu-

tions. Specifically, they considered random variables xi(i = 1, . . . , N) that can be generated by starting from random variables

yi(i = 1, . . . , N) following a generic multivariate distribution and by setting xi = syi, where s is a positive random variable.

3 In this and in the following sections we use the superscript to indicate the filtering procedure, whereas in Section 2 we used the subscript.
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As a specific example, which is also relevant for financial data, they considered the multivariate Student’s t-distribution.

In this case the variables yi are taken from a multivariate normal distribution with correlation matrix � and s is distributed

according to

P(s) =
2

� (�/2)
exp

[

−
s2

0

s2

]

s
�
0

s1+�
(19)

where s2
0

= 2�/(� − 2) in such a way that s has unit variance. The joint probability density function for the xi is

P(x1, x2, . . . , xN) =
� ((N + �)/2)

� (�/2)
√

(��)N |�|

1
⎛

⎝1 + 1
�

∑

i,j

xi(�
−1

)ijxj

⎞

⎠

(N+�)/2
(20)

where the parameter � gives the degrees of freedom of the distribution and describes the tail behavior of the marginal

distribution of any xi since P(xi)∼x
−1−�
i

.

Let us assume that the correlation matrix is computed with the Pearson estimator for correlation coefficients. Biroli et al.

(2007) show that the Kullback–Leibler distance between two multivariate Student’s t-distributions with the same scaling

parameter �, and correlation matrices �1 and �2 is

K(�1, �2) =
1

2

[

log

(

|�2|
|�1|

)

+ (N + �)

∫

dsP(s) log

(

1 + tr
(

�
−1
2 �1

)

/(2s)

1 + N/(2s)

)]

, (21)

In the limit �/N → ∞ this expression coincides with the one obtained for the Gaussian case above, whereas in the limit

�/N → 0 Biroli et al. (2007) obtain

K(�1, �2) =
1

2

[

log

(

|�2|
|�1|

)

+ N log

(

tr
(

�
−1
2 �1

)

N

)]

. (22)

Now consider a random vector X of dimension N with correlation matrix � and distributed according to Eq. (20).

Let C1 and C2 be two sample correlation matrices obtained from two independent realizations of the system both

of length T. It is possible to show (Biroli et al., 2007) that, similarly to the Gaussian case, the expectation values

E[K(�, C1)], E[K(C1, �)] and E[K(C1, C2)], where the Kullback–Leibler distance is calculated according to either Eq. (21)

or Eq. (22), are not depending on �, i.e. the expectation values are model independent. This important property is

valid not only for Gaussian multivariate variables but it holds true in general for elliptic multivariate distributions.

This is due to the fact that for generic multivariate distributions the Kullback–Leibler distance can be written as

K(�1, �2) = tr[f (�
−1
2 �1)], where f is a function independent of the correlation structure of the system (Biroli et al.,

2007).

It is interesting to compare the expression of Kullback–Leibler distance for Gaussian and Student’s variables. Specifically,

we can compare Eq. (15) and Eq. (22). The right-hand side of both the equations is the sum of two terms. The first term,

1/2 log
(

|�2|/|�1|
)

, is the same for both the equations. Let us then focus our attention on the second terms of the equations

and, in particular, on the second term of Eq. (22), which is N/2 log
[

(1/N)tr
(

�
−1
2 �1

)]

. Suppose that the correlation matrix

�1 is very close to �2, i.e. �1 ≃ �2. Then, under this assumption, (1/N)tr (�
−1
2 �1) ≃ 1. Under this assumption, at first order

in (1/N)tr
(

�
−1
2 �1

)

− 1, we have

N

2
log

[

1

N
tr
(

�
−1
2 �1

)

]

≃
N

2

[

1

N
tr
(

�
−1
2 �1

)

− 1

]

, (23)

which is exactly the second term of the right hand side of Eq. (15). This calculation shows that whenever the correlation

matrices involved in the Kullback–Leibler distance are very close one to the other (�1 ≃ �2) then the expression of the

Kullback–Leibler distance for Student’s t-distributions with small � coincides, at the first order of approximation, with the

expression of the Kullback–Leibler distance obtained for Gaussian random variables.

As a further remark we note that there is way to compute the expected value of a Kullback–Leibler distance which does

not make use of the Pearson estimator. It is known that the Pearson’s estimator of the correlation matrix is not the maximum

likelihood estimator when the variables are non-Gaussian. In the case of the Student’s t-distribution of Eq. (20) there exists

a recursive equation for the maximum likelihood estimator C̄ which is (Bouchaud and Potters, 2003)

C̄ij =
N + �

T

T
∑

t=1

xi(t)xj(t)

� +
∑

pq

xp(t)(C̄
−1

)pqxq(t)
(24)
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Since the maximum likelihood estimator of Eq. (24) of correlation matrix follows a Wishart distribution in the large N limit,

then the expectation values above can be calculated by making use of Wishart theory also in the case of Student’s variable

(Biroli et al., 2007; Tumminello et al., 2007b).

Finally, it is worth noting that there exists a straightforward modification of the HNFM of Eq. (6) to generate hierarchically

organized random variables with the multivariate Student’s t-distribution. Specifically, the hierarchical model is described

by the equations

xi(t) =
∑

˛h ∈ G(i)

˛h
f (˛h)(t)

√

�

2s(t)
+ �i �i(t)

√

�

2s(t)
. (25)

6. Comparison of filtering procedures

The Kullback–Leibler distance can therefore be used to quantify and compare the performance of different filtering pro-

cedures of correlation matrices (Tumminello et al., 2007a). A good filtering procedure should have two important properties:

(i) being able to remove the “right” amount of noise from the data in order to recover the signal and (ii) produce filtered

matrices which are stable when one makes different observations of the same system. These two requirements are often

in competition one with the other. The proposed procedure to evaluate the performance of a filtering procedure is the

following.

Suppose we are given with a data sample X and we have our favorite filtering procedure. We generate M bootstrap

replicas Xi (i = 1, . . . , M) of the data. We then compute the sample correlation matrix Ci and apply the filtering procedure

obtaining the filtered matrix Cfilt
i to each replica Xi. In order to measure the stability of the filtering procedure, we consider

the average of the quantity K(Cfilt
i , Cfilt

j ) over the replicas. An optimal filtering procedure should be perfectly stable (i.e.

〈K(Cfilt
i , Cfilt

j )〉 = 0) because from each realization the filtering recovers the model matrix. In order to measure the filtered

information we consider the average of K(Ci, Cfilt
i ) over the replicas. This quantity measures the information present in the

sample correlation matrix Ci that has been discarded by the filtering procedure. We have seen above that for Gaussian

variables the Kullback–Leibler distance 〈K(Ci, �)〉 is different from zero and independent from the model �. Therefore if our

filtering procedure is recovering the true underlying model we should expect that K(Ci, Cfilt
i ) is equal to the right hand side

of Eq. (17). We have thus a reference value for both the stability and the information of the correlation matrix expected from

an optimal filtering and these values are independent from the underlying model. We represent the result of the analysis in

a plane where the x axis reports the stability 〈K(Cfilt
i , Cfilt

j )〉 and the y axis reports the information 〈K(Ci, Cfilt
i )〉. In this plane

the optimal point, labeled �, has coordinate x = 0 and y equal to the right hand side of Eq. (17). A filtering procedure will be

considered good if the corresponding point in the stability-information plane is close to �.

To provide representative examples of quantitative analysis performed with the Kullback–Leibler distance of filtering

procedures based on hierarchical clustering, as in the previous sections, we consider SLCA and ALCA. We also consider

filtering procedures based on the shrinkage technique (Ledoit and Wolf, 2003) and on the random matrix theory (RMT)

(Laloux et al., 1999; Plerou et al., 1999; Rosenow et al., 2002; Potters et al., 2005). For the case of the shrinkage procedure

we construct a filtered matrix as

CSHR(˛) = ˛T + (1 − ˛)C, (26)

where 0 ≤ ˛ ≤ 1 and T is a target matrix. As commonly done in financial literature, we choose the target matrix as a matrix

with tii = 1 and tij = 〈cij〉 for i /= j. We estimate the performance of the shrinkage procedure for different values of ˛. It is

interesting to note that there exist analytical methods to obtain the optimal value ˛∗ according to a cost function based

on standard quadratic (or Frobenius) norm (Schäfer and Strimmer, 2005). In the figures we also show the point (labeled

CSHR(˛∗)) corresponding to the value ˛∗.

In the econophysics literature, a widespread filtering procedure of the correlation matrix is based on the random matrix

theory (Metha, 1990). If the N variables are independent and with finite variance then in the limit T, N → ∞, with a fixed

ratio Q ≡ T/N ≥ 1, the eigenvalues of the Pearson sample correlation matrix C are bounded from above by the value �max =
�2(1 + 1/Q + 2

√

1Q/) where �2 = 1 for correlation matrices. In some practical cases, such as for example in finance, one

finds that the largest eigenvalue �1 of the empirical correlation matrix is definitely inconsistent with RMT. In these cases,

Laloux et al. (1999) propose to modify the null hypothesis so that correlations can be explained in terms of a one factor

model and �2 = 1 − �1/N. The filtering procedure considered here has been proposed by Potters et al. (2005) and it works

as follows. One diagonalizes the correlation matrix and replaces all the eigenvalues smaller than �max with their average

value in the diagonal matrix. Then one retransforms back the modified diagonal matrix in the standard basis obtaining a

matrix HRMT of elements hRMT
ij

to preserve the trace. Finally, the filtered correlation matrix CRMT is the matrix of elements

cRMT
ij

= hRMT
ij

/
√

hRMT
ii

hRMT
jj

.

In Fig. 8 we show the Kullback–Leibler distance in the plane stability-information for these filtering procedures applied

to artificial data generated according to two different models. The left panel shows the result for a model whose correlation

matrix is block diagonal with 12 blocks, whereas the right panel shows the result for a HNFM with 23 factors. In both panels
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Fig. 8. Stability of the filtered matrix (x axis) against the amount of information about the correlation matrix that is retained in the filtered matrix (y axis).

The points labeled with CSHR(˛) correspond to the shrinkage procedure (see Eq. (26)) and the parameter ˛ goes from 0 to 1 when one goes from the bottom

right to the top left corner. Left panel shows the result for a block diagonal model of N = 100 elements divided in 12 groups and simulated for T = 748

points. Right panel shows the result for a hierarchically nested model of 100 elements following the HNFM with 23 factors of Tumminello et al. (2007d).

we show the points corresponding to the RMT, SLCA, and ALCA filtering procedures. We also show the points corresponding

to the shrinkage filtering procedure of Eq. (26) for different values of ˛. The shrinkage method is capable to achieve a

very good compromise between stability and information. From this analysis it is possible to extract an optimal value of ˛
minimizing the distance from the point labeled with �. It should be noted that this value in general does not coincide with

the value ˛∗ obtained with the method of Schäfer and Strimmer (2005), i.e. by minimizing the Frobenius norm.

We now consider an application to a real system. We investigate the daily returns of N = 100 highly capitalized stocks

traded at the NYSE in the period 2001–2003 (T = 748). In present study, differently than in Tumminello et al. (2007a) where

we worked in the Gaussian approximation, we assume stock returns to be Student’s t-distributed according to Eq. (20). The

scaling parameter � in the distribution of Eq. (20) is assumed to be the same for all of the stocks in the portfolio. Accordingly,

we determine � as the average value of the maximum likelihood estimates of � independently evaluated for each stock. The

result is � = 5.9 with a standard deviation �� = 1.8. The ratio �/N = 0.059 is much less than one and therefore ensures that

Eq. (22) is a good approximation of the Kullback–Leibler distance for the present case. In Fig. 9 we show the performance

of different filtering procedures in the plane stability-information. In the figure the Kullback–Leibler distance is calculated

according to Eq. (22).

The filtering procedures based on RMT, SLCA and ALCA have different properties in terms of stability and information

(Tumminello et al., 2007a). SLCA is the most stable even if it is the least informative, whereas RMT is the least stable but the

most informative. ALCA has intermediate properties both with respect to stability and to information. The filtering procedure

based on shrinkage seems to outperform the other filtering techniques for selected values of the ˛ parameter. In Fig. 9, we

also highlight (red color) a point corresponding to the optimal value ˛K = 0.55 of the shrinkage parameter ˛ in the plane

stability-information. This point is obtained by minimizing the Euclidean distance between the points (0, 〈K(Ci, �)〉) and

(〈K(CSHR
i (˛), CSHR

j (˛))〉, 〈K(Ci, CSHR
j (˛))〉) in the space stability-information. The point (0, 〈K(Ci, �)〉) is expected for a filtering

procedure able to perfectly detect the correlation matrix � of the system. Our aim is now to estimate 〈K(Ci, �)〉. By using the

estimate of �, we evaluate the quantity 〈K(Ci, �)〉 by exploiting the model independency of the Kullback–Leibler distance.

During our analysis we realized that for Student’s t-distributions the bootstrap replicas, which we actually use to deal with

real data, can introduce a bias with respect to independent simulations. By performing numerical simulations of Student’s

t-distributed random variables characterized by different values of �, we notice that this bias does not appear in the case

of normal or close to normal distributions (typically when � is greater than 10). In order to overcome the problem when

Student’s t-distributed random variables with a low value of � describe the data better than Gaussian random variables,

we perform 100 independent simulations of Student’s t-distributed data series of length T = 748 (the same as real data)

according to the model of Eq. (25) with scaling parameter � = 5.9 and we construct 100 bootstrap replicas of each simulated

data series. It is to notice that the choice of Eq. (25) does not affect the generality of results because the expectation values

of the Kullback–Leibler distance do not depend on the correlation structure of the model. We indicate the correlation

matrix of simulated series with Cj (j = 1, . . . , 100), and the correlation matrix of a bootstrap replica associated with Cj

with Cb
ji (i=1,. . .,100). Because the expectation value of the correlation matrix Cb

ji is Cj and the expectation values of the

Kullback–Leibler distance are model independent, we can estimate the value of 〈K(Ci, �)〉 as 〈K(Cb
ji, Ci)〉, where the average

is taken over both the indices i and j. The result we obtain 〈K(Cb
ji, Ci)〉 = 6.01. This result is shown in the Fig. 9 as a blue

circle. Finally, in order to associate an error bar with this value, we apply the same procedure used to obtain the estimate

of 〈K(Ci, �)〉 for values of � equal to �min = � − �� = 5.9 − 1.8 = 4.1 (providing the value at the top of the error bar in the

figure) and �max = � + �� = 5.9 + 1.8 = 7.7 (providing the value at the bottom of the error bar in the figure). A series of
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Fig. 9. Stability of the filtered matrix (x axis) against the amount of information about the correlation matrix that is retained in the filtered matrix (y axis)

for N = 100 stocks of the NYSE in the period 2001–2003 (T = 748). The points labeled with CSHR(˛) correspond to the shrinkage procedure (see Eq. (26))

and the parameter ˛ goes from 0 to 1 when one goes from the bottom right to the top left corner. The point CSHR(˛K ) is obtained for ˛ = ˛K = 0.55, which is

the value of the shrinkage parameter that minimize the Euclidean distance in the plane stability-information between the curve corresponding to CSHR(˛)

and the point associated with �. The latter point represents the expectation value for a filtering procedure able to recover the true correlation matrix of

the system. See the text for more details.

numerical simulations performed with different models generating the dynamics of the random variables show that the bias

introduced by bootstrapping data instead of performing independent simulations turns out to be approximately independent

of the actual correlation matrix of the system and for � = 5.9, N=100, and T = 748 the bias is equal to −10.8% ± 1.7%, i.e. the

bootstrap based estimation gives an underestimate of 〈K(Ci, �)〉. However, in the investigations summarized in Fig. 9 the bias

is the same for all of the points and therefore the comparison of filtering procedure is possible. Our numerical simulations

also show that the value of the bias tends to increase as the value of � decreases.

It is also worth noting that results very similar to those shown in Fig. 9 can be obtained by using the expression of

Eq. (15) (valid for Gaussian variables) to evaluate the Kullback -Leibler distance instead of Eq. (22) (valid for Student’s

t-distributed variables with �/N << 1). This fact can be interpreted by observing that the correlation matrices involved

in the Kullback–Leibler distance do not differ much one from the other and, therefore, Eq. (22) gives estimates of the

Kullback–Leibler distance similar to those obtained by using Eq. (15) that is strictly speaking only valid for Gaussian variables,

and which has been used in Tumminello et al. (2007a). A final remark concerns the shrinkage technique. We note that the

shrinkage parameter ˛K = 0.55 is significantly different than ˛∗ = 0.16, obtained by minimizing the Frobenius norm. The

point associated with ˛∗ = 0.16 (green circle in Fig. 9) in the plane stability-information is quite far from the point of an ideal

filtering procedure able to perfectly detect the correlation matrix � of the system (blue circle in Fig. 9). This observation

suggests that by using the Frobenius distance to get an estimate of the shrinkage parameter ˛ one puts too much faith on

the statistical robustness of the sample correlation matrix. Conversely, ˛K represents a more reliable estimate of the optimal

shrinkage parameter.

7. Conclusions

This paper discusses several methods to quantitatively investigate the properties of the correlation matrix of a system

of N elements. In the present work, we consistently investigate the correlation matrix of the synchronous dynamics of the

returns of a portfolio of financial assets. However, our results apply to any correlation matrix computed starting from the

series of T records belonging to N elements of a system of interest.

Specifically, we discuss how to associate to a correlation matrix a hierarchical tree and correlation based trees or graphs.

In previous papers, we have shown that the information selected through these clustering procedures and the construction of

correlation based trees or graphs are pointing out interesting details on the investigated system. For example, the hierarchical

clustering is able to detect clusters of stocks belonging to the same sectors or sub-sectors of activities without the need of

any supervision of the clustering procedure. We have also shown that the information present in correlation based trees
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and graphs provides additional clues about the interrelations among stocks of different economic sectors and sub-sectors.

It is worth noting that this kind of information is not present in the information stored in the hierarchical trees obtained by

ALCA and SLCA clustering procedures or, equivalently, in the associated ultrametric correlation matrices. The information

obtained from what we call the “filtering procedure” of the correlation matrix is subjected to statistical uncertainty. For this

reason, we discuss a bootstrap methodology able to quantify the statistical robustness of both the hierarchical trees and

correlation based trees or graphs.

The hierarchical trees and correlation based trees and graphs associated with portfolios of stocks traded in financial

markets often show clusters of stocks partitioned in sub-clusters, sub-clusters partitioned in sub-sub-clusters and so on

until the level of the single stock. The ubiquity of this observation has motivated us to develop a hierarchically nested factor

model able to fully describe this property. Our model is a nested factor model characterized by the same correlation matrix as

the empirical set of data. The model is expressed in a direct and simple form when all the correlation coefficients are positive

or very close to positive (for a precise definition of the limits of validity of this extension see Section 3). The number of factors

of the model is by construction equal to the number of elements of the system. Again, the selection of the most statistically

reliable factors detected in a real system is obtained by a procedure based on bootstrap with a bootstrap threshold selected

in a self-consistent way.

The amount of information and the statistical stability of filtering procedures of the correlation matrix are quantified by

using the Kullback–Leibler distance. We report and discuss analytical results both for Gaussian and for Student’s t-distributed

multivariate time series. In both cases the expectation values of the Kullback–Leibler distance are model independent, indi-

cating that this distance is a good estimator of the statistical uncertainty due to the finite size of the empirical sample. These

properties are not observed in other widespread distances between matrices such as, for example, the Frobenius distance,

which is a standard measure of the distance between matrices. In our example with real data, we estimate the amount of

information retained and the stability of the filtering procedure used in a data set of 100 stocks approximately described by a

multivariate Student’s t-distribution. For this set of data, we are able to discriminate among filtering procedures as different

as ALCA, SLCA, random matrix theory and a shrinkage procedure.
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