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ABSTRACT 20 

In order to implement quality control measures and create fine flavor products, an important 21 

objective in cocoa processing industry is to realize standards for characterization of cocoa raw 22 

materials, intermediate and finished products with respect to their processing stages and 23 

countries of origin. Towards this end, various works have studied separability or 24 

distinguishability of cocoa samples belonging to various processing stages in a typical cocoa 25 

processing pipeline or to different origins. Limited amount of success has been possible in this 26 

direction in that unfermented and fermented cocoa samples have been shown to group into 27 

separate clusters in PCA. However, a clear clustering with respect to the country of origin has 28 

remained elusive. In this work we suggest an alternative approach to this problem through the 29 

framework of correlation networks. For 140 cocoa samples belonging to eight countries and 30 

three progressive stages in a typical cocoa processing pipeline we compute pairwise Spearman 31 

and Pearson correlation coefficients based on the LC-MS profiles and derive correlation 32 

networks by retaining only correlations higher than a threshold. Progressively increasing this 33 

threshold reveals, first, processing stage (or sample type) modules (or network clusters) at low 34 

and intermediate values of correlation threshold and then country specific modules at high 35 

correlation thresholds. We present both qualitative and quantitative evidence through network 36 

visualization and node connectivity statistics. Besides demonstrating separability of the two 37 

data properties via this network-based method, our work suggests a new approach for studying 38 

classification of cocoa samples with nested attributes of processing stage sample types and 39 

country of origin along with possibility of including additional factors, e.g., hybrid variety, etc. 40 

in the analysis.  41 

 42 
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1. Introduction 46 

Cocoa, scientifically Theobroma cacao, is a commodity of commercial interest to farmers as a 47 

crop and to businesses as a raw material for producing various cocoa based food products. 48 

Therefore, quality, variety and characteristics of cocoa and its derived food items have become 49 

an important area of research and development. Quality control (Fayeulle et al., 2019; Guehi 50 

et al., 2010; Kongor et al., 2016; Lima et al., 2011) and design of single origin cocoa products 51 

(Oberrauter et al., 2018; Ozretic-Dosen et al., 2007) are two of many focus areas in cocoa 52 

research. The former helps in ensuring whether the stages in a typical cocoa processing pipeline 53 

have been rightly carried to achieve the best possible finished product, and the latter commands 54 

high value among consumers for nuanced taste and aroma of the consumed food item. 55 

Previous research successfully demonstrate characteristic differences between unfermented, 56 

partially fermented and fermented cocoa samples (processing-stages) and even identified 57 

corresponding potentially responsible classes of compounds through multivariate statistical 58 

analysis, e.g., principal component analysis (PCA) (Wold et al., 1987), on the chemical 59 

composition of these samples (Caligiani et al., 2014; D’Souza et al., 2017; Kumari et al., 2018; 60 

Megías-Pérez et al., 2018). Baring a few cases where the number of distinct countries relating 61 

to the samples in dataset at hand is few (D’Souza et al., 2017; Milev et al., 2014; Oliveira et 62 

al., 2016) or based on large continental regions (Acierno et al., 2016, 2018; Bertoldi et al., 63 

2016; Kumari et al., 2018; Marseglia et al., 2016), a successful characteristic differentiation 64 

amongst samples on the basis of their country of origin has remained hard to define through 65 

metabolomic analysis (D’Souza et al., 2017; Sirbu et al., 2018; Vázquez-Ovando et al., 2015). 66 

On the other hand, the ‘language of networks’ (Albert and Barabási, 2002; Newman, 2003) has 67 

proven immensely useful in visualizing and interpreting relationships between multitude of 68 

entities, and across many disciplines—metabolomics (Jeong et al., 2000), genetics (Grimbs et 69 
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al., 2019; Kumar et al., 2018), proteomics (Szklarczyk et al., 2015), social science (Borgatti et 70 

al., 2009), logistics (Becker et al., 2012), gut ecology (Claussen et al., 2017) medicine 71 

(Barabási et al., 2011; Batushansky et al., 2016), finance (Kumar and Deo, 2012; Namaki et 72 

al., 2011), etc. to name a few. Some works have successfully applied this approach in the field 73 

of food science (Ahn et al., 2011; Hochberg et al., 2013; Ursem et al., 2008; Wang et al., 2017). 74 

Here, we apply the framework of network science to simultaneously study the clustering of 75 

cocoa samples with regards to their processing-stage sample types and country of origin. 76 

We start by computing pairwise Spearman and Pearson correlation coefficients between 140 77 

cocoa samples belonging to three different stages in a typical cocoa processing pipeline 78 

(unfermented, fermented and liquor) and 8 countries through their LC-MS profiles in positive 79 

ion mode. On the basis of correlations obtained, we construct correlation networks, at varying 80 

correlation thresholds. In these networks, the nodes are samples and an edge between two 81 

samples is drawn, when the correlation coefficient exceeds the threshold value.  82 

We find that, as we progressively increase the correlation threshold from 0 towards 1, the 83 

clustering of cocoa samples is first dominated by processing-stage sample types at low and 84 

intermediate correlation thresholds, and then by countries of origin at high correlation 85 

thresholds. We show this both qualitatively and quantitatively via network visualizations and 86 

network edge statistics.  87 

Our work demonstrates the presence of processing-stage level grouping on a coarser level and 88 

origin level grouping on a finer level within the former. This nested grouping can be revealed 89 

by successively keeping higher correlations. Further, our works suggests a new approach to 90 

study clustering or classification of food samples upon multiple nested attributes and can prove 91 

an important complement to traditional approaches and strategies. 92 

 93 
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2. Materials and Methods 94 

2.1 Country and Origin details 95 

The LC-MS data set we use here has a total of 140 samples (positive ion mode). The samples 96 

have been gathered and their LC-MS profiling done under COMETA project over a range of 97 

about past five years.  These samples can be grouped into three sample-types (Unfermented, 98 

Fermented and Liquors) and eight origins (Brazil, Cameroon, Ecuador, Ghana, Indonesia, 99 

Ivory Coast, Malaysia and Tanzania). A cross-table of details about number of samples 100 

belonging to particular sample-type and country is given in Table 1. 101 

 102 

 103 

 Brazil Cameroon Ecuador Ghana Indonesia Ivory 

coast 

Malaysia Tanzania All 

Unfermented 4 3 8 0 14 16 6 3 54 

Fermented 4 3 12 0 16 16 3 9 63 

Liquor 0 6 3 5 0 9 0 0 23 

All 8 12 23 5 30 41 9 12 140 

Table 1 Sample division. The LCMS data set can be grouped on twin axes: sample-type and 104 

origin. There are 3 sample-types: Unfermented, Fermented and Liquors, and there are 8 origins 105 

(Brazil, Cameroon, Ecuador, Ghana, Indonesia, Ivory Coast, Malaysia and Tanzania). 106 

2.2 Data pre-processing and cleaning 107 

The data generation, cleaning, standardization and organization has been discussed in an earlier 108 

work (Kumar et al previous manuscript). Briefly, LC-MS data of all the samples was processed 109 
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using MZMine (Pluskal et al., 2010) giving peak area list and corresponding m/z ratio and 110 

retention times. The detected compounds are assigned names/chemical formula on the basis of 111 

four ionization states ([M+H], [M+2H], [M+3H], [2M+H]) when possible, else the compound 112 

was named as ‘Unknown_’ suffixed with the m/z value, e.g., Unknown_865.1927. The samples 113 

were then put in an excel file, where each row represents a sample, and the column contain 114 

information about the sample-type, origin and peak areas of various compounds sorted in 115 

descending order by their mean peak are across all the samples. 116 

2.3 Network production and visualization 117 

Spearman and Pearson correlation analysis, and network generation/transformation was carried 118 

by writing programs from scratch in Python programming language making use of popular 119 

modules such as Pandas (McKinney, 2010, 2011) and NetworkX (Hagberg et al., 2008). 120 

Network visualization has been done in Cytoscape (Shannon et al., 2003). For layout of the 121 

network either of the following two variants of spring layout, which were available in 122 

Cytoscape itself, were used: (a) Edge-weighted Spring Embedded Layout (Kamada and Kawai, 123 

1989), (b) Compound Spring Embedder (CoSE) (Dogrusoz et al., 2009). These layouts take 124 

into account the weight of the edge (in our case the Spearman or Pearson correlation 125 

coefficient) between nodes, so that the nodes with higher weight (correlations) are placed closer 126 

together. 127 

2.4 Null model network or control network 128 

A null model network is made by randomizing the weights (correlations) of edges in the 129 

original correlation network. It is important to note that the null model network so obtained has 130 

the same correlation distribution as that of the original correlation network because the set of 131 

correlations in the network remains unchanged, only the correlations between nodes is 132 

randomized. An ensemble of 100 such null model networks were generated. The reported 133 
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statistics about a studied property on the null model networks is obtained by making 134 

calculations over this ensemble and then reporting the mean and standard deviation of the 135 

studied property. Higher the difference in the studied property between the original network 136 

and null network ensemble, higher the significance of the observed property in the original 137 

network. 138 

3. Results  139 

3.1 Correlation between cocoa samples 140 

A typical LC-MS profile contains information about thousands of compounds present in a 141 

given sample defined by their retention time and associated m/z values (Kuhnert et al., 2013). 142 

Using the areas of peaks as a rough measure for concentration of these compounds across all 143 

samples, we calculate the Spearman and Pearson correlation coefficients (r) for all pairs of 144 

samples in our dataset.  145 

The LC-MS data can be represented as a matrix L with entries 𝑙"
#. The upper index a represents 146 

the sample and lower index i represents the compound. Thus, the scalar quantity 𝑙"
# represents 147 

the concentration of ith compound in the ath LC-MS sample. Correspondingly, 𝑙a is a vector 148 

which represents the LC-MS profile of sample a. The Pearson correlation between two LC-149 

MS samples, say a and b with corresponding profiles 𝑙a and 𝑙b, can be denoted as 𝑟ab. It is 150 

calculated as 151 

𝑟ab =
cov(𝑙a, 𝑙b)

𝜎-.𝜎-b
 152 

Where cov(𝑙a, 𝑙b) represents the covariance between the LC-MS profiles of samples a and b, 153 

while 𝜎-. and 𝜎-b represent the standard deviation in the LC-MS profiles 𝑙a and 𝑙b,  154 

respectively. The Spearman correlation can be defined as the Pearson correlation between the 155 
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ranks of the original variables (i.e., 𝑙a and 𝑙b). The ranked variables 𝑙/a and 𝑙/b, are obtained 156 

from the original variables 𝑙a and 𝑙b by sorting them from lowest to highest and substituting 157 

the values by the position in the sorted list (i.e., the rank of the values). Formally, the Spearman 158 

correlation coefficient is thus calculated as 159 

�̃�ab =
cov(𝑙/a, 𝑙/b)

𝜎-/.𝜎-/b
 160 

The Spearman and Pearson correlations across all pairs of LC-MS samples can be written in 161 

the form of matrices, R2 and R, whose entries denoted by �̃�ab and 𝑟ab, respectively.  162 

The correlation matrices R2 so obtained, i.e. the case of Spearman correlation coefficient, is 163 

visualized through heatmap in Figure 1A. The heat map of Pearson correlation coefficient 164 

matrix, R, is given in Supplementary Information file. By construction the correlation matrices  165 

R2 and R are symmetric. The twin attributes of nodes, namely the processing-stage sample type 166 

and country of origin, have been alternatively marked on the sides. Three blocks corresponding 167 

to Unfermented, Fermented and Liquor samples blocks are clearly distinguishable. It is also 168 

visible that Fermented and Liquor samples are part of a larger block which is separated from 169 

Unfermented samples. This shows that Liquor samples are closer in character to Fermented 170 

samples. This is in consonance with general expectation that liquor follows the fermentation 171 

stage. Furthermore, more chemical changes occur in cocoa when moving from unfermented 172 

stage to fermented stage than occurs from fermented to liquor stage. In case of correlation 173 

heatmap obtained using Pearson correlation (Supplementary Information file) the block of 174 

Unfermented samples is clearly distinguishable from Fermented and Liquor samples, while the 175 

Fermented and Liquor samples are mildly distinguishable. Further, it is important to note that 176 

no block structure on the basis of country is discernable at this level of detail about the 177 

correlations.  178 
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 179 

Figure 1 Correlation between cocoa samples. (A) Correlation heatmap. Darker regions 180 

represent high correlation, and lighter regions represent low correlation. Samples have been 181 

sorted on twin axes, first on processing stage sample-type, and then second internally on country 182 

of origin. Two distinct square block regions are clearly visible along the diagonal of the matrix, 183 

corresponding to Unfermented (smaller block) and Fermented (bigger block) samples.  (B) 184 

Correlation Network. The correlation network made using all correlations between the set of 185 
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cocoa samples using Spearman correlation. The nodes are color coded according to their 186 

processing-stage sample type and shape coded by their country of origin. The colors of edges 187 

code for the strength of correlation between nodes. The network is visualized using Cytoscape 188 

(Shannon et al., 2003) with ‘edge-weighted spring embedded layout’ which keeps nodes 189 

connected with higher correlations closer together. 190 

 191 

Next, we define correlation network using the Spearman (�̃�) and Pearson correlations (r) 192 

obtained above. A network is defined through two sets of entities: nodes (N) and edges (E). 193 

The nodes denote the objects which are related to each other in some way, and the edge 194 

represent the relation between the nodes. For further knowledge about network, see (Albert and 195 

Barabási, 2002; Newman, 2003). In a correlation network, an edge represents the correlation 196 

between two nodes. In our correlation network, the nodes represent the different LC-MS 197 

samples of cocoa or its products sourced from different origins, and the edge between the nodes 198 

represent the correlation between the LC-MS samples. Figure 1B shows the correlation 199 

network obtained by using all correlations (0 to 1) between all LC-MS samples and visualized 200 

with edge-weighted spring layout (see section 2.3 Network production and visualization). 201 

Metadata about the LC-MS samples, such as country, and processing-stage sample type 202 

(unfermented, fermented, or liquor) has been represented through color and shape of nodes, 203 

respectively. The network shown in Figure 1B is the correlation network made using Spearman 204 

correlation and has 140 nodes and 6833 edges, i.e. 140 cocoa LC-MS samples and 6833 205 

correlations (�̃� > 0) between the nodes. The network made using Pearson correlation is shown 206 

in the Supplementary Information file. The label of the node represents the internal LC-MS id. 207 

The strength of correlation is represented by the color of the edge between the nodes, yellow 208 

representing low correlation and violet representing high correlation. The spatial placement of 209 

nodes in Figure 1B, and all of the following networks, is done through variants of spring layout 210 
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algorithms in Cytoscape (Shannon et al., 2003) which places the nodes with higher correlation 211 

closer together (2.3 Network production and visualization).  212 

3.2 Networks at low and intermediate correlation thresholds reveals processing-stage 213 

sample type modules  214 

Next, we analyze correlation networks at low and intermediate correlation thresholds (�̃�th), 215 

varying it from �̃�th = 0.1 to 0.5, in steps of 0.1. The network at a given correlation threshold 216 

contains all the edges with correlation greater than or equal to the set threshold. Some of these 217 

networks are visualized in Figure 2. Panels A, B, C and D in Figure 2 show the network at 218 

correlation thresholds of 0.1, 0.3, 0.4 and 0.5, respectively. In panel A, the nodes belonging to 219 

Unfermented samples are seen little separated from the nodes belonging to the Fermented and 220 

Liquor samples. In panel B, the Unfermented samples are clearly separated from the Fermented 221 

and Liquor samples. Within the Fermented and Liquor samples little grouping starts to form. 222 

In panel C, the separation between the Fermented and Liquor samples becomes enough clear. 223 

And in panel D, all the three samples can be seen clearly separated from one another. This 224 

separation of samples first into two groups: (a) Unfermented, and (b) Fermented and Liquor 225 

samples, and then slowly into three groups: Unfermented, Fermented and Liquor samples, is 226 

in congruence with the earlier result seen in the structure of the correlation matrix heatmap 227 

shown in Figure 1A. Both Figure 1A and Figure 2B,C show that the liquor sample are more 228 

similar to the fermented samples than to the unfermented samples. This is in accordance with 229 

the fact that major chemical and physical changes in cocoa beans takes place during the 230 

processes of fermentation. A movie of the network as a function of progressively increasing 231 

the threshold is attached as supplementary information which clearly shows the evolving 232 

network and separation of samples belonging to different cocoa processing stage. Similar 233 

behavior is noted for the case of correlation network formed using the Pearson correlation 234 
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coefficient (Supplementary Information file) however at different values of correlation 235 

threshold. 236 

 237 

Figure 2 Processing-stage modules in low and intermediate threshold correlation 238 

networks. The figure reveals modules of samples belonging to the same cocoa processing-stage 239 

in a typical cocoa processing pipeline. (A) Network of LC-MS samples at a correlation threshold 240 

of 0.1 revealing separation of unfermented, fermented and liquor cluster. (B, C) Correlation 241 

thresholds 0.3 and 0.4. The separation between different processing-stage sample types 242 

improves. (D) Correlation threshold 0.5. Three groups of unfermented, fermented and liquor 243 

samples are clearly separated. The figure follows same legend as of Figure 1BError! Reference 244 

source not found.. See supplementary information for a movie on evolving network as the 245 

correlation threshold is progressively increased. 246 

3.4 Country enriched modules at high correlation thresholds  247 

A

C

B

D

(!" ≥ 0.1) (!" ≥ 0.3)

(!" ≥ 0.4) (!" ≥ 0.5)
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As the correlation threshold is further increased, the network breaks into various smaller 248 

connected components. The resulting individual connected components primarily have the 249 

processing-stage sample type. However, there are more than one component that belong to 250 

same color or sample type. This reveals the internal structure of the clusters of samples that 251 

initially grouped on the basis of their sample types. This additional sub-structure of the network 252 

reveals grouping which now is primarily governed by the samples belonging to same country 253 

of origin. This is shown in the networks in Figure 3 for correlation thresholds of 0.6, 0.7 and 254 

0.8. Panels A and B provide a bird’s-eye view at respective thresholds, while panel C gives a 255 

detailed view. In contrast to the legend used in previous figures, we now color the nodes on the 256 

basis of countries for a quick comprehension of grouping on the basis of countries. The figure 257 

with the previous legend scheme is given as Supplementary Information. It can be seen from 258 

the figure that same color nodes tend to be present closer together. This feature is visible more 259 

in modules of smaller size, but it is also discernible in larger sized modules. We see that as the 260 

correlation threshold is further increased, most of the larger size modules break into smaller 261 

module, where nodes belonging to the same origin country are increasingly often connected. It 262 

should be noted that processing-stage and country of origin are only the major governing 263 

factors, on which grouping of samples is based. Other factors such as variety of cocoa hybrid, 264 

harvest season, geographical location and landscape of farm in the country etc, can begin to 265 

play an important role with increasing correlation threshold. Hence the clustering is not perfect. 266 

The other governing factors can potentially lead to finer sub-modular structures in the network. 267 

This situation is more likely to be evident at still higher correlation thresholds.  268 
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 269 

Figure 3 Country modules. The structure of correlation network of cocoa samples based on 270 

their LCMS profile at correlation thresholds of 0.80, 0.85 and 0.90. At these correlation 271 

thresholds, several modules with nodes belonging to the same country of origin are revealed. 272 

For a quick and better comprehension and unlike the legend of earlier correlation networks, in 273 

this figure different countries are represented through a different color. The networks with same 274 

thresholds but with previous annotation (i.e. of Figure 1 and Figure 2) is given in Supplementary 275 

Information for comparison. See supplementary information for a movie on evolving network 276 

as the correlation threshold is progressively increased. 277 

 278 

 279 
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As the correlation threshold is gradually increased, edges with correlation less than the 280 

threshold value are lost from the network. On one hand this leads to increased consideration of 281 

the edges with higher correlation in the determination of the layout of the network, while on 282 

the other this, naturally, leads to decrease in the number of edges, and when possible, also 283 

decreases the number of nodes in the resulting network, resulting in network breakage. The 284 

variation of number of edges and number of nodes connecting them is shown in the 285 

Supplementary Information file. In our networks here, only the edges greater than the set 286 

correlation threshold and corresponding nodes are present. A movie of the network as a 287 

function of progressively increasing the threshold is attached as supplementary information 288 

which clearly shows the evolving network and separation of samples belonging to different 289 

countries. 290 

3.5 Similarity of nodes connected by an edge 291 

As a node in our correlation networks has two attributes, namely the processing-stage sample-292 

type and origin, we define two kinds of similarity for a pair of nodes connected by an edge: 293 

sample-type similarity and origin similarity. We define sample-type similarity as the fraction 294 

of edges in a network connecting nodes having the same processing-stage sample-type 295 

attribute, and origin similarity as the fraction of edges in a network connecting nodes which 296 

have same origin attribute. The sample-type and origin similarities as a function of correlation 297 

thresholds based on Spearman correlation networks are shown in Figure 4 (solid lines). They 298 

differ significantly from each other in terms of both the correlation threshold around which 299 

they start to rise and the manner in which they rise. The sample-type similarity starts to increase 300 

right from the smaller values of correlation thresholds itself and in a linear manner until it starts 301 

to saturate around a correlation threshold value of 0.5 to a similarity value close to 1. This is in 302 

agreement with the observed enhancement of the processing-stage sample type character of the 303 
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network architecture right from the beginning of starting values of correlation threshold, to the 304 

almost full appearance of processing-stage sample type character at intermediate correlation 305 

threshold in large and small connected components (cf. Figure 2). The origin similarity remains 306 

almost constant and close to that of null model networks (orange dashed line) for a long range 307 

of correlation threshold (up to 0.5) suggesting a weak or almost negligible role in the clustering 308 

of nodes belonging to the same origin in the layout of network. Only when the correlation 309 

threshold is around 0.5, origin similarity starts to increase, suggesting this is the value of 310 

correlation threshold at which the contribution of origin effects start to contribute in clustering 311 

of nodes belonging to same origin begins.  This clearly shows that the processing-stage sample 312 

type effect precedes the country effects, and the country effects are finer than the sample-type 313 

effect. The origin similarity increases exponentially and reaches a value close to 1. This implies 314 

that at higher threshold almost all edges connect nodes having same sample type and same 315 

country of origin. 316 

 317 
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Figure 4 Connected nodes' similarity. The sample-type similarity (blue line) starts to increase 318 

linearly right from smaller correlation threshold values, reaches close 1 around a correlation 319 

threshold value of 0.5. The origin similarity remains constant for a long range of correlation 320 

threshold (0, 0.50) and then increases exponentially. The dashed lines show corresponding 321 

similarities as expected from an ensemble of control networks.  322 

The dashed lines along with error bars show similarity values and standard deviation expected 323 

from an ensemble of null model networks (control networks) obtained by randomizing edge 324 

weights in the original network (see 2.4 Null model network or control network). The 325 

difference between the similarity values from original network and that obtained null model 326 

networks points to the fact that the networks at higher correlation thresholds are enriched in 327 

edges that have high sample-type and origin similarity. The result corresponding to correlation 328 

network generated using Pearson correlation coefficient is given in Supplementary Information 329 

file. Both show similar behavior, although at slightly different correlation threshold value. 330 

3.6 Closeness of thresholded networks to ideal networks 331 

In this section, we quantify as a function of correlation threshold how accurately our networks 332 

represent the expected ideal networks of cocoa samples given their processing-stage sample 333 

types or country of origin. We consider two ideal networks, one each for the processing-stage 334 

sample type and country of origin. An ideal processing-stage sample type based network will 335 

have a link between a pair of its nodes only when both the nodes belong to the same processing-336 

stage sample type, otherwise the link would be absent. Similarly, an ideal origin-based network 337 

will have a link between a pair of its nodes only when both the nodes belong to the same 338 

country of origin. Thus, in an ideal network based upon processing-stage sample type or 339 

country of origin a link is present only between nodes belonging to same sample type, or nodes 340 

belonging to same origin, otherwise there is no link between dissimilar nodes. After defining 341 

these ideal or true networks, we identify ‘true positive’ and ‘true negative’ links by comparing 342 
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the links in the original network at a given correlation threshold (or thresholded network, for 343 

short) with the links in the ideal networks. A link is counted to be ‘true positive’ when the link 344 

is present both in the original network at the given threshold and the corresponding ideal 345 

network. A link is counted as ‘true negative’ when the link is absent both in the network at the 346 

given threshold and the corresponding ideal network. On the other hand, a link is defined as 347 

‘false positive’ when it is present in the thresholded network but not in the corresponding true 348 

network, and ‘false negative’ when it is absent in the thresholded network but present the true 349 

network. An illustration of this scheme through a toy network is provided in Supplementary 350 

Information file. Using these terms, we define accuracy a as the fraction of ‘true positive’ and 351 

‘true negative’ links in an original thresholded network. Accuracy quantifies how close a 352 

thresholded network is to the ideal expected network. 353 

We find that with increasing correlation thresholds the network becomes closer to the expected 354 

true network as demonstrated by increasing values of accuracy for both processing-stage 355 

sample type and country of origin Figure 5 (Spearman correlation network; Pearson correlation 356 

case in Supplementary Information file). Further, in the region of low correlation threshold the 357 

character of the network is closer to that of the expected true network for the processing-stage 358 

sample type attribute, and in the region of higher correlation threshold the character of the 359 

network is closer to that of the expected true network for country of origin attribute. This result 360 

is in agreement with the previous results with formation of processing-stage sample type 361 

clusters at lower and intermediate correlation thresholds and of country-based clusters at high 362 

correlation thresholds. 363 

 364 
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 365 

Figure 5 Accuracy of links in thresholded correlation networks, or closeness of a 366 

threholded correlation network to expected ideal network based on sample type or origin 367 

attributes of cocoa samples. As the correlation threshold increases the threshold networks 368 

become closer to their ideal counterparts. In regions of lower correlation threshold, the 369 

thresholded networks are describe more the sample type character of the network than the origin 370 

type character. In regions of higher correlation threshold, opposite is true and the thresholded 371 

networks are closer in their character to the origin attribute of LC-MS samples. This is coherent 372 

with the network pictures at various threshold seen in earlier figures. 373 

4. Conclusions and Discussion 374 

We have introduced a new approach for studying grouping in cocoa samples using their LC-375 

MS profile. This new approach is often called ‘network science’, and it already benefits a 376 

multitude of scientific disciplines. Few cases also exist where network approach has been 377 

successfully applied in food science for different purposes (Hochberg et al., 2013; Ursem et 378 
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al., 2008; Wang et al., 2017), however, to the best of our knowledge, we apply it for the first 379 

time to study the classification of cocoa samples based upon their LC-MS profiles. 380 

Classification of cocoa samples on the basis of their country of origin has been found 381 

challenging with limited success obtained in cases with the number of countries being few or 382 

the origin being on continental scale. Differences in unfermented and fermented samples can 383 

be easily seen by simply finding the Spearman correlation between the cocoa samples using 384 

their LC-MS profiles (cf. Figure 1). The liquor samples are closer to the fermented samples. 385 

However, differentiation on the level of country of origin is only revealed upon further analysis. 386 

We make a correlation network using the correlation matrix for cocoa samples, and show that 387 

systematic variation of a single parameter, namely correlation threshold, can be used to reveal 388 

grouping of cocoa samples on the basis of processing-stage, viz. unfermented, fermented and 389 

liquor, and country of origin. In the low and intermediate ranges of correlation threshold 390 

processing-stage sample type clusters are revealed, and in the higher range of correlation 391 

threshold the clustering of cocoa samples on the basis of country of origin is witnessed. We 392 

present our results both qualitatively (cf. Figure 2 and Figure 3) and quantitatively (cf. Figure 393 

4 and Figure 5). Besides a successful working approach, our work shows that differentiation 394 

of cocoa samples on the level of country of origin is on a more subtle level than their 395 

differentiation on the basis of processing-stage sample types. 396 

It is worth comparing our approach to an often-used method in similar situation—the principal 397 

component analysis (PCA). PCA projects the samples into a lower dimensional space whose 398 

axes represent highest possible variation on the basis of the features in the dataset used in the 399 

analysis. Often it turns out that this analysis is also able to provide us a view in which samples 400 

with different classes well separated. However, there is no binding reason for it to be so, as 401 

PCA focuses on maximizing variation amongst the samples on the basis of their features and 402 
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not clustering them per se. Further, only truncated amount of information can be used to 403 

visualize the samples as we are limited to a maximum of three dimensions. On the other hand, 404 

in a correlation network information from all features (compounds used to calculate 405 

correlation) is present. Further, one is able to look at the structure of the network at the level 406 

of different amount of information by pruning the network thereby keeping low/high 407 

correlations as per need. In this sense, the approach of correlation networks is more 408 

sophisticated than that of PCA, omitting PCAs basic philosophy of data reduction.   409 

Our study takes into consideration two factors on which cocoa samples may primarily differ: 410 

processing-stage and country of origin. However, it is worth noting these are not the only 411 

governing factors that affects similarity of cocoa samples. Many other factors such as variety 412 

of cocoa hybrid, soil, climate, terrain, harvesting season, farming practices etc. also have 413 

significant effects (Acierno et al., 2016; Adeniyi et al., 2019; Arévalo-Hernández et al., 2019; 414 

Ehiakpor et al., 2016; Kongor et al., 2016). It would be interesting to consider some of these 415 

factors in future works and see in what range of correlation threshold these effects start to 416 

matter, or can the inclusion of these additional factors give more clear modules of cocoa 417 

samples. Besides providing a new approach to study similarity in cocoa samples, our approach 418 

can be a compliment to the traditional approaches in this field. 419 
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