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Abstract

Background: Holistic profiling and systems biology studies of nutrient availability are providing more and more insight 
into the mechanisms by which gene expression responds to diverse nutrients and metabolites. Less is known about 
the mechanisms by which gene expression is affected by endogenous metabolites, which can change dramatically 
during development. Multivariate statistics and correlation network analysis approaches were applied to non-targeted 
profiling data to investigate transcriptional and metabolic states and to identify metabolites potentially influencing 
gene expression during the heterotrophic to autotrophic transition of seedling establishment.

Results: Microarray-based transcript profiles were obtained from extracts of Arabidopsis seeds or seedlings harvested 

from imbibition to eight days-old. 1H-NMR metabolite profiles were obtained for corresponding samples. Analysis of 
transcript data revealed high differential gene expression through seedling emergence followed by a period of less 
change. Differential gene expression increased gradually to day 8, and showed two days, 5 and 7, with a very high 
proportion of up-regulated genes, including transcription factor/signaling genes. Network cartography using spring 
embedding revealed two primary clusters of highly correlated metabolites, which appear to reflect temporally distinct 
metabolic states. Principle Component Analyses of both sets of profiling data produced a chronological spread of time 
points, which would be expected of a developmental series. The network cartography of the transcript data produced 
two distinct clusters comprising days 0 to 2 and days 3 to 8, whereas the corresponding analysis of metabolite data 
revealed a shift of day 2 into the day 3 to 8 group. A metabolite and transcript pair-wise correlation analysis 
encompassing all time points gave a set of 237 highly significant correlations. Of 129 genes correlated to sucrose, 44 of 
them were known to be sucrose responsive including a number of transcription factors.

Conclusions: Microarray analysis during germination and establishment revealed major transitions in transcriptional 
activity at time points potentially associated with developmental transitions. Network cartography using spring-
embedding indicate that a shift in the state of nutritionally important metabolites precedes a major shift in the 
transcriptional state going from germination to seedling emergence. Pair-wise linear correlations of transcript and 
metabolite levels identified many genes known to be influenced by metabolites, and provided other targets to 
investigate metabolite regulation of gene expression during seedling establishment.

Background
Germination is a phenomenon with complex regulation

that is a balance between the release of dormancy and the

promotion of germination. This reflects the relationship
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between the hormones gibberellic acid (GA) and abscisic

acid (ABA), environmental cues [1,2], and the spatial dis-

tribution of hormone action and gene expression [3-5].

Considerable effort has been put into elucidating the

molecular mechanisms controlling seed germination

with greater application of gene expression profiling.

These studies have highlighted the roles of gene expres-

sion changes in mediating GA and ABA interactions in

the control of dormancy and germination [6-10]. To com-

plement the growing number of gene expression studies,

Fait et al. [11] conducted an integrated metabolomic and

gene expression study of various seed developmental

stages from maturation through germination. They iden-

tified distinct metabolite profiles associated with the vari-

ous developmental stages and suggested that seeds are

metabolically primed for germination during desiccation

and subsequent metabolic programming during imbibi-

tion and germination is essential for seedling establish-

ment. An integrated metabolomic and transcriptomic

study of photomorphogenesis in red light and far-red

light treated seedlings showed that even though tran-

script profiles were relatively similar, phenotypic differ-

ences could be explained by significant differences at the

level of the metabolome [12].

Prior to seed germination, the mobilization of stored

triacylglycerol (TAG) begins in earnest in order to feed

the developing seedling. The processes by which germi-

nation and lipid mobilization are regulated have been

found to be distinct [13], and it is likely that reserve mobi-

lization is governed by abscisic acid-related processes

within the embryo [4]. In Arabidopsis, stored sugars are

consumed by the time the radicle has emerged, and

within 48 h after germination lipid and protein stores

have been consumed [14]. At this point, the seedling

must become photosynthetically competent. It has been

suggested that metabolic signals may regulate the transi-

tion from heterotrophy to autotrophy in seedlings in

order to maximize the use of storage compounds [15].

Exploiting the altered behavior of seed germination and

of seedling vigor for forward genetic screens of Arabidop-

sis mutants has been instrumental in revealing the poten-

tial signaling properties of metabolites, primarily sugars

[16], and nutrients [17]. Mutant studies have revealed the

interaction of sugars and hormones [18,19] and the con-

cept of a carbon:nitrogen 'matrix effect' in metabolic reg-

ulation [20]. Through a forward genetic screen using the

toxic analogue monofluoroacetic acid, we identified

mutants disrupted in their ability to metabolize exoge-

nously supplied acetate through the glyoxylate cycle

[21,22]. A physiological analysis of the mutants provided

evidence that carbohydrate responses of seedlings may be

impaired within the mutants. This suggests a cross-talk

between organic acid and carbohydrate signaling in

developing seedlings [22] with the possibility of either

acetate or down-stream metabolites influencing gene

expression in developing seedlings.

Many forward genetic screens have relied on observing

differential sensitivity of mutants to added compounds.

This approach does not work for many metabolites, since

artificially high concentrations must be used and unde-

sired traits are selected. For example, organic acids pose

this problem because they are weak acids, and mutant

selection for specific responses may be confounded by

responses to altered intracellular pH. Integrated analysis

of metabolite and transcript data offers a way to identify

co-regulatory networks of metabolites and genes [23,24].

This has been applied successfully to identify potential

genetic regulation of metabolite levels concerning sulfur

stress [25-29], glucosinolate metabolism [30], and nitro-

gen responses [31,32] in Arabidopsis and fruit develop-

ment in tomato [28,33-35]. The suggestion that strong

correlations between metabolites and transcripts may

reflect metabolite effects on gene expression [27,28,36],

therefore, enables integrated analysis to be used to iden-

tify potential signaling metabolites for subsequent

detailed studies. We obtained metabolite and transcript

profiling data from a series of samples spanning germina-

tion and establishment, and analyzed the data to identify

pair-wise combinations of genes and metabolites strongly

correlated over this developmental transition. We discuss

how analysis of metabolite-gene correlations provided

evidence for differential regulation of a common ontolog-

ical class of genes. Furthermore, the network correlation

analysis approach can provide supplemental information

on the progression of metabolic and transcriptional states

during developmental transitions [27,28]. Both types of

profiling data were mined for interesting gene expression

and metabolite patterns and relationships. Principle

Component Analysis (PCA) and network correlation

analysis based on spring-embedding [37] were used to

integrate and visualize the data to obtain information

about the metabolic and transitional states present dur-

ing germination and seedling development.

Results
Gene expression during seedling development

The combined use of a threshold cut-off value of 1.5-fold

and 99% confidence limits for statistical significance pro-

duced 10,605 differentially-expressed (DE) genes in total,

both up-(UR) and down-regulated (DR) over the eight

pairwise comparisons (Fig. 1A). This total number of DE

events is similar to those reported in analogous studies.

For example, over 10 stages of development of tomato

exposed to ethylene, Alba et al. [38] estimated that almost

3,500 DE events would have occurred. They concluded

that this was a large underestimate for the fruit as a

whole, since only the pericarp was analyzed. Between

days 0 and 1 and days 1 and 2 there appear to be an equiv-
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alent total number of DE genes divided equally between

those UR and DR. Between days 2 and 3, there is an

increase in DE genes of about 25%. Notably, DR genes

comprised more than 80% of the DE genes between these

days. There was a 2-fold decrease in total DE genes

between days 3 and 4, which was a majority of DR genes.

The number of DE genes begins to increase in later days,

but with UR becoming more predominant at alternate

stages. This was most apparent comparing days 4 and 5

and days 6 and 7. Using the ontological assignments avail-

able at TAIR, we looked more closely at two different

classes of genes, nuclear genes encoding chloroplast and

plastid proteins and those encoding transcription factors

(TF) and signaling genes (Fig. 1B). The former would

indicate changes to the autotrophic state, whereas the lat-

ter would reflect overall regulatory activity. In general,

the expression profiles of these classes of genes were sim-

ilar, which is not unexpected with the requirement for

transcriptional control of photosynthetic development.

The differences in the number of DE genes observed

between the two classes preceded emergence, which

occurred from day 2 to day 3. From day 2 to day 3 other

ontological classes associated with regulatory processes,

such as nucleic acid binding or kinase activity were pro-

portionately higher among DR genes compared to UR

genes (data not shown). There was substantial UR of both

TF/signaling and chloroplast/plastid gene expression at

days 5 and 7 when compared with the previous day. The

proportions of each ontological class among both UR and

DR genes were similar at day 5 compared with day 4, with

only cell wall-classified genes showing a relative higher

proportion the UR category (3% UR versus 0.8% DR, data

not shown). This was also the case for day 7 compared

with day 6 with only the receptor binding class appearing

substantially DR (0.8% versus 0.1%). These are processes

that are occurring primarily in cotyledons and the hypo-

cotyl leading to leaf growth, since true leaves do not make

up a substantial proportion of seedling mass until about

day 8 [39].

Behavior of metabolites during development

A total of 27 metabolites corresponding to a variety of

known and unknown metabolites including four soluble

carbohydrates, nine amino acids and five organic acids

were quantified from the 1H-NMR spectra of seedling

extracts. Although these metabolites comprise a small

proportion of the total metabolic complement of a cell,

these metabolites are the most abundant ones. They

reflect the nutritional state of the tissue as an immediate

source of carbon and/or nitrogen and serve as respiratory

substrates for energy production. A direct comparison of

data from our NMR profiling platform with GC-MS

acquired data demonstrated a similar capacity to distin-

guish metabolic states [40]. Additionally, a number of the

metabolites are well known effectors of gene expression

and some, such as sucrose, isoleucine and glutamine,

Figure 1 Trends in differential gene expression. DE genes were de-

termined between each successive day at a threshold cut-off level of 

1.5-fold. Each comparative stage, i.e. day, was measured in triplicate 
and the mean of the hybridization intensities calculated prior to DE 

analysis. (A) Total number of DE genes and the split between UR and 

DR genes. (B) The proportion given as percentages of total DE genes 
comprised by either chloroplast/plastid protein or TF/signaling protein 

encoding genes as given in the TAIR gene ontology database. Open 

and closed bars represent UR and DR genes, respectively.
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have high regulatory potential as determined by correla-

tion analysis [28]. The values obtained for each metabo-

lite are given in Additional File 1.

In order to understand better the general trends in

metabolite behavior over the developmental series we

produced two-dimensional self organising maps (2D-

SOMs) that grouped like-varying metabolites (Fig. 2A). A

number of metabolites decreased throughout the devel-

opmental period shown in Cluster 1. As expected, this

cluster included sucrose [13,41], which is known to

decrease upon the initiation of germination. Clusters 2

and 3 contain metabolites that fluctuate with no particu-

lar trend or increase slightly during development. Clus-

ters 4-6 contain 9 metabolites that show a biphasic profile

of increasing then decreasing levels. Malate (cluster 4)

shows a relatively sharp increase and decrease compared

to valine, leucine and isoleucine (cluster 5) although each

attains a maximum level on the same day. Cluster 6 shows

3 metabolites, glutamine, fructose and an unknown com-

pound that attain maximum levels about a day later. We

are particularly interested in metabolites that changed

over the course of development (or part of it), since they

would be candidates for metabolic control factors.

The relationships between individual metabolites are

clearer when correlations are included in the visualiza-

tion as shown in the spring embedding plots (Fig. 2B-C).

Our threshold p-value produced a correlation coefficient

cut-off value of 0.68. We observed significant correlations

between 19 metabolites that appear to be separated into

three clusters. The cluster containing glutamine, fructose,

fumarate and unkD8.0 are linked to the lactate cluster

(Fig. 2B) via sucrose. The lactate cluster contains those

metabolites that are decreasing over time, such as trigo-

nelline, threonine, citrate, and alanine (Fig. 2C). Malate

has also been included within this cluster and has a rela-

tively high correlation to alanine. This could reflect a par-

titioning of malate into alanine either via oxaloacetate or

pyruvate. The third cluster (Fig. 2D) consists of the ali-

phatic amino acids and the compounds choline, and for-

mate. It was expected that the three amino acids leucine,

isoleucine and valine would be highly correlated as they

share common synthetic and catabolic pathways.

Transcriptional states of developing seedlings

In order for us to compare transcriptional states among

days, only genes that were expressed at each of the 9 sam-

pling points were included. However, in order to maxi-

mize the number of genes in the analysis only one

expression value per time point was required. This filter-

ing process resulted in a final set of 10,235 genes (Addi-

tional File 2). Initially, a principal component analysis

(PCA) scores plot was produced in order to investigate

the relationships among days according to gene expres-

sion profiles (Fig. 3A). This revealed a general progres-

sion of time points across PC1 with the transition from

day 2 to 3 and from day 4 to 5 contributing mostly to PC2.

Days 5 to 8 appear to form a loose cluster, which would be

expected if the expression of photosynthetic genes has

begun in earnest by day 5, which agrees with the gene

expression profiling data (Fig. 1). The PCA scores plot for

individual sample is given in Additional File 1. The load-

ings analysis indicated that the most variant genes were

chlorophyll a/b binding proteins and small subunits of

ribulose bisphosphate carboxylase (data not shown). It is

also evident that PC2 comprises some technical variation

due to differences in slide hybridization since the appar-

ent outliers do not correspond to any one particular sam-

pling set. Spring embedding was used to investigate

further the relationships between time points in the data-

set of transcript profiles [37]. The spring embedding

algorithm is non-linear, and so is able to amplify any clus-

tering in the data to make it more visually clear compared

to standard PCA analysis. Due to the size of the data set

and the possible number of correlations that can be

obtained, the cut-off threshold was set to 0.7. The spring

embedding was clearer in showing the division of tissue

samples into two clusters comprising days 0-2 and days 3-

8 (Fig. 3B). When the threshold was dropped to 0.6 the

connections between day 2 and the later days became

more apparent and the spring embedding plot began to

mimic the PCA plot with day 2 moving from day 1 and

lying more closely to days 6 to 8 than to day 3.

Metabolic states of developing seedlings

A PCA scores plot of time points based on metabolite

profiles revealed a curvature in the points (Fig. 4A). Vari-

ation among days 0 and 2 was shown almost exclusively

in PC2 and subsequent differences to day 8 were shown

in gradual shifts in both PC1 and PC2. The PCA scores

plot for individual samples is given in Additional File 1.

The loading plots confirmed our conclusions from the

visual inspection of the data in that the major differences

between days 0 and 1 were the levels of metabolites that

decreased substantially, such as sucrose, glucose and

unkM5.18 (Additional File 1). The clustering in the PCA

loadings plot mirrored that of the spring embedding plot

for the metabolites alone (Fig. 2) and suggested a steady

transition in states from day 1 to later days. Spring

embedding was used to clarify the relationships among

the days, based on the metabolite data (Fig. 4B). At a

threshold correlation value of 0.6 two clusters became

apparent. There was a relatively high correlation between

day 0 and day 1 and among days 2-8, with a lower correla-

tion between day 1 and day 2. As the threshold correla-

tion is decreased the groups move closer together, but the

clustering was not lost until a correlation cut-off below

0.5 was used. If the threshold cut-off is increased to 0.7,

then the link between day 1 and day 2 is severed. The
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Figure 2 Relationships between metabolites. (A) Clusters of metabolites with similar profiles generated by 2D-SOM. Hierarchal and K-means clus-

tering were used to estimate the optimal number of bins for 2D-SOM analysis. Metabolites in cluster 1: sucrose, rhamnose, citrate, alanine, trigonelline, 

lactate, glucose, threonine, unkS7.37, unkM1.85; Cluster 2: arginine, formate; Cluster 3: fumarate, proline, glutamate, unkD8.0, unkM5.18, unkD3.12; 
Cluster 4: malate; Cluster 5: valine, isoleucine, leucine, choline, unkD5.69; Cluster 6: fructose, glutamine, unkM7.9. (B) Spring embedding plots showing 

relationships based on correlations. The plot shows metabolites as nodes and Pearson correlation coefficients over days as connections. The color of 

the connecting line describes the strength of the correlation between the nodes; a dark red color indicates a strong positive correlation and a dark 
blue line represents a weaker positive correlation according to the scale of correlation coefficients on the right of the graph. Only correlations above 

a Bonferroni-adjusted P-value < 0.0001 are shown. (C) Enlargement of the lactate cluster. (D) Enlargement of the valine cluster. Since values start from 

an initial random configuration, the directions separating cluster in each spring embedding plot are arbitrary, but they provide an indication of dis-
tance separating nodes and edges.
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apparent separation of day 0 from day 1 is due mainly to

the second replicate sample of day 1 (Additional File 1).

The other two day 1 samples clustered very closely to the

three day 0 samples and all the samples from day 2 to day

8 showed a strong correlation. In order to identify the

metabolites with a significant difference in measured lev-

els between days 1 and 2, which are the developmental

stages that mark the division of the two clusters, we

applied a Student s t-test to the data (FDR < 0.1). A signif-

icant difference was observed for the levels of several

metabolites (Additional File 1). We can only speculate

that relatively high sucrose, rhamnose, lactate, citrate,

alanine, trigonelline and unkM1.85, and relatively low

fructose, glutamine and unkD8.0 comprise part a meta-

bolic state that is conducive for germination, and that

change in these metabolites promotes emergence and

establishment. Less abundant metabolites that were not

quantifiable by NMR also will be very important in defin-

ing metabolic states.

Metabolite and transcript co-analysis

The majority of the metabolites measured demonstrated

altered levels throughout the time course allowing corre-

lations to be identified with gene transcript levels. Spring

Figure 3 Day-by-transcript relationships. (A) PCA scores plot of the 
time points sampled during germination and seedling establishment 

based on the average transcript levels. Each number 0 to 8 represents 

one day (24 h) from imbibed seeds (0) to 8 days (8) of age, respectively. 
(B) Higher order relationships among days based on mean values of 

transcript levels from the 3 replicates visualized by spring embedding. 

The plot shows day 0 (d0) to day 8 (d8) as nodes and the relative de-
gree of transcript correlation as edges. Clustering was based on Pear-

son correlation coefficients at a threshold cut-off of 0.7. The color bar 

on the right of the figure provides the relative degree of correlation.

Figure 4 Day-by-metabolite relationships. (A) PCA scores plot 

where each number represents one day (24 h) from imbibed seeds (0) 

to 8 days of age (8). (B) Spring embedding plot where the symbols d0 

to d8 correspond to the samples in A. Each point is a node represent-
ing the mean value and each line gives the relative degree of correla-

tion. The threshold Pearson correlation coefficient for the spring 

embedding was 0.7. The color bar on the right of each figure provides 
the relative degree of coloration. Both types of analysis were based on 

the mean values (n = 3) of 3 replicates (2 replicates for day 3).
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embedding was used to visualize relationships between

genes and metabolites based on significant correlations

over all the sampling points (Fig. 5). Using a false discov-

ery rate (FDR) [42] of 10% to generate the threshold P-

value (see legend), a total of 237 pair-wise correlations

were identified among 20 metabolites and 210 genes

(Additional File 3). We emphasize that the Bonferroni

and Benjamini and Hochberg FDR adjustments that were

used to establish thresholds of significance are very strin-

gent. Nevertheless, in order to check our use of a FDR

threshold, the time point labels of the gene and metabo-

lite data were randomly permuted 1000 times and each

time the cross-correlations were calculated using the

same threshold level of significance Across the 1000 per-

mutations, the median number of significant correlations

was 28. This corresponds to 11% of the 237 seen in the

non-permuted data and is close to the desired FDR of

10%.

The metabolites are presented as nodes to which the

correlated genes radiate outwards. As expected, both

positive and negative correlations were identified. Table 1

lists the metabolites identified as showing a correlation

with one or more genes along with the nature of the cor-

relation(s). The metabolite profile is described as increas-

ing, decreasing, or as biphasic throughout the

developmental series. The gene ontology from the TAIR

database was used to identify the function for each gene

listed. Of the 237 correlated genes, 19% were identified in

the TAIR database as encoding an "expressed" or a "hypo-

thetical" protein. Of the remaining 196 correlations, 25%

Figure 5 A spring embedding model revealing relationships between metabolites and genes from days 0 to 8. Pearson correlation coeffi-

cients were determined between every metabolite and gene over the 9 time points. Metabolites are central nodes from which connected genes ra-
diate outwards. The coloured lines represent edges describing the nature of the correlation; a dark red line represents a strong positive correlation 

whereas a dark blue line represents a strong negative correlation. A total of 237 correlations were identified between 20 metabolites and 209 genes 

at the threshold cut-off of (p < 0.0001, r > |0.95|). The plots inset show the profiles of the average expression values for the transcription factors IAA14, 
ARF10 and ABI3 used to calculate correlation coefficients.
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of the genes were associated with a known regulatory

aspect of plant development, for example, phytohormone

or light response, or had previously been identified as

demonstrating seed-specific expression. A further 12% of

the genes with an assigned identity in the TAIR database

were involved with signal transduction. Sixty-one percent

of the genes (129 out of 210) showed significant correla-

tion with sucrose. All sucrose-gene correlations were

positive, since the FDR only gave the most significant cor-

relations, which were independent of sign. Most of the

regulatory/signal transduction genes correlated with

sucrose indicating that they decrease rapidly upon trans-

fer of seeds to germination conditions. These included

the transcription factors PHYTOCHROME INTERACT-

ING FACTOR 1 (PIF1), ABSCISIC ACID INSENSITIVE 3

(ABI3), and ATMYB56 (AT5G17800), and the light-

receptor/kinase genes PHYA and PHYD (Table 2). Corre-

lations with other metabolites revealed progressive

changes in the transcript level of other transcription fac-

tors that might interact, such as Auxin Response Factor 10

(ARF10) and ABI3 [43] and the Aux/IAA protein family

TF SOLITARY-ROOT (SLR)/IAA14. As ABI3 drops

immediately following transfer to growth conditions,

ARF10 remains constant and does not drop until after

germination, and IAA14 is present in imbibed seeds and

then increases prior to germination (Fig. 5, inset).

An example of the relationships between a metabolite

and a connected gene is given for lactate (Additional File

1). Lactate was negatively correlated with 21 genes, five of

which had no assigned identity in the TAIR database. Of

the 17 genes with an assigned identity, seven showed an

involvement in photosynthetic-related functions. Eight of

the genes within the group are also affected by abiotic or

biotic stress. These include 1-aminocyclopropane-1-car-

boxylate oxidate (ACO4, At1g05010), calmodulin-like 9

(At3g51920) and the PIP2A aquaporin (At3g53420),

which is induced during dehydration stress. Due to our

stringent statistical cut-off, none of the 21 genes of the

lactate cluster include any of the 19 hypoxia inducible

genes reported by Loreti [44]. However, the genes encod-

ing alanine aminotransferase (At1g17290), alcohol dehy-

drogenase (At1g77120), Class I non-symbiotic

hemoglobin (At2g16060), and pyruvate decarboxylase 1

(At4g33070) reported as anoxia inducible by Sachs et al.

[45] - and which are included in the set of 19 inducible

genes - were positively correlated with lactate at a p-value

less than 0.03 (r > 0.72). Although a number of gene

expression profiles were correlated with more than one

metabolite concentration, it was observed that of the

seven photosynthetic genes correlated to lactate, only

three showed correlations with other metabolites.

Besides the two TFs shown in Table 2, the unknown

metabolite unkM1.85 was negatively correlated with 17

other genes, seven of which were assigned photosynthetic

functions.

Discussion
More and more, integrative approaches are being

employed to describe the function of molecular systems

in development (for reviews see [24,46-49]. Whereas

most metabolite-gene interaction studies have been from

the point of view of understanding the genetic bases for

changes in metabolism, such studies can be integral to

understanding the control of gene expression by meta-

bolic factors [28,49]. In fact, strong correlations between

metabolite and transcript levels more likely reflect

metabolite regulation of transcription than vice versa

[36]. A recent study reported that a series of distinct met-

abolic switches were characteristic of the transition from

dormant, dry seed to germinating embryo [11]. The

results presented in this work extend the analysis to pro-

vide an overview of metabolite and transcriptome pro-

files from imbibed, non-dormant seeds through to

Table 1: Correlations between metabolites and transcript 

levels in developing seedlings.

Metabolite Number of 

Relationships*

Direction of 

Correlations†

Glucose 1 N

Sucrose 129 P

Fructose 1 P

Rhamnose 1 N

Malate 3 N (1), P (2)

Citrate 7 N (6), P (1)

Fumarate 3 N (2), P (1)

Formate 1 N

Lactate 21 N

Glutamine 7 N

Alanine 4 N (1), P (3)

Valine 3 N

Threonine 5 N

Trigonelline 16 N (15), P (1)

Choline 1 N

unkD8.0 6 N (2), P (4)

unkM7.9 4 N

unkS7.36 3 N

unkM5.18 2 N (1), P (1)

unkM1.85 19 N (18), P (1)

*Number of significant Pearson correlations between the metabolite 

and genes above p = 9.8 × 10-5 (FDR = 5%) determined over the 9 

sampling periods, day 0 to day 8. †The direction of the linear 

regression, either positive (P) or negative (N) and the number in each 

direction in parentheses.
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Table 2: Identified regulatory genes correlated with metabolites.

Locus Metabolite r = † Gene Symbol Gene Description†

Transcription factors

AT1G30970 Sucrose 0.9672 SUF4 Suppressor of Frigida 4

AT2G20180 Sucrose 0.9493 PIF1 Myc-related bHLH transcription factor

AT2G24500 Sucrose 0.9628 FZF C2H2 zinc finger protein FZF

AT2G25930 unkM7.9 -0.9752 ELF3 Early Flowering 3

AT2G28350 unkM7.9 -0.9667 ARF10 Auxin Response Factor 10

AT2G31370 fumarate - 0.9495 POSF21 bZIP transcription factor POSF21

AT2G43010 unkM1.85 -0.9529 PIF4 Nuclear localized bHLH protein that interacts with active 

PhyB

AT3G15030 unkS7.37 -0.9586 TCP4 Arabidopsis thaliana TCP

Family transcription factor

AT3G24650 Sucrose 0.9721 ABI3 Homologous to the maize transcription factor Viviparous-1.

AT4G14550 unkM1.85 -0.9588 SLR/IAA14 IAA14 is a member of the Aux/IAA protein family. Solitary 

Root locus.

AT4G35570 Sucrose 0.9803 HMGB5 High Mobility Group B 5

AT5G17800 Sucrose 0.977 ATMYB56 Member of the R2R3 factor gene family

Kinases &Receptors

AT1G09570 Sucrose 0.9777 PHYA Phytochrome A

AT4G16250 Sucrose 0.9581 PHYD Phytochrome D

AT3G16030 alanine

-

0.9519 CES101 Callus Expression of RBCS

DNA/RNA binding

AT1G61040 Sucrose 0.9495 VIP5 Vernalization Independence 5 putative heterogeneous 

nuclear ribonucleoprotein

AT2G33410 Sucrose 0.9771

AT2G37020 Sucrose 0.9522 DNA binding, Chloroplast

AT3G16810 Sucrose 0.9735 APUM24 Arabidopsis Pumilio 24

AT4G14520 Sucrose 0.9625 Homologous to the DNA-directed RNA polymerase II 

subunit (At5g59180)

AT4G25500 Sucrose 0.9721 ATRSP35 arginine/serine-rich splicing factor

AT4G36020 Sucrose 0.9577 CSDP1 Cold shock domain protein

AT5G07290 Sucrose 0.9538 AML4 ARABIDOPSIS MEI2-LIKE 4

AT5G14270 glutamine -0.9566 ATBET9 Arabidopsis thaliana Bromodomain and Extra terminal 

Domain protein 9

AT5G38890 Sucrose 0.9898 Exoribonuclease-related

AT5G53180 fumarate - 0.9593 ATPTB2 Polypyrimidine tract-binding (PTB) Protein

† Pearson correlation coefficients based on a false discovery rate at a significance threshold < 0.05. The sign gives the direction of correlation.
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established seedlings with the aim of identifying potential

targets of metabolic control during seedling development

covering the heterotrophic to autotrophic transition.

Differential gene expression activity coincides with 
developmental stage
In the present work, we observed a relatively high level of

transcriptional change occurring over the first three days

of seedling development, which encompasses germina-

tion and emergence. Fifty percent of all DE events

occurred during the first three days. Of these, more than

7% were genes categorized as either TF or signaling

genes. This implies large changes in transcriptional activ-

ity during emergence. Alba et al. [38] made a similar con-

clusion from their analysis of gene expression in

developing pericarp of ethylene treated tomatoes. Of 628

known DE genes during the 10 developmental stages they

analyzed, 11% were either TF or signaling genes. We

observed a substantial increase in DE at day 3 compared

to day 2, with most genes comprising both chloroplast/

plastid and TF/signaling genes. A high degree of tran-

scriptional alteration may not be required for seedling

development (i.e. cell division or differentiation) at this

time, since they are geared for a constant rate of lipid deg-

radation [50,51], and cell expansion is the principal

means of seedling growth [14]. Subsequently, relative

gene UR and DR appears to follow a cyclic pattern during

the subsequent days, and it is interesting that this corre-

sponds to likely transitional stages of development. Tran-

scriptional transition is lowest between days 2 and day 4,

since TF gene expression is DR. By day 4, all lipid reserves

have been depleted and so by day 5 any potential catabo-

lite repression would be eliminated to permit full devel-

opment of autotrophy, which would be revealed by a

relative increase in UR genes, such as those encoding

chloroplast/photosynthetic proteins. Between days 6 and

7 rapid leaf growth begins [39] and a corresponding UR

of gene expression may ensue. Accordingly, spikes of

chloroplast/plastid and TF/signaling UR take place at

days 5 and 7.

Metabolic state establishes prior to germination and the 

switch in transcriptional programming

The changes to levels of various metabolites going from

imbibition to early germination follow similar patterns as

reported previously [11,13]. Fait et al. [11] observed a

change of metabolic activity during post-imbibition ger-

mination 24 h after transfer of seedlings from cold to a

germination inductive temperature. The grouping of the

metabolite profiles produced during this experiment sup-

ports these findings, demonstrating that in the cold, a rel-

atively stable metabolic state for the major metabolites is

present and then changes relatively little for 24 h. A larger

metabolic switch occurs from day 1 to day 2 but the met-

abolic state stabilizes during seedling establishment even

though a number of metabolites show transient increases

(Fig. 4).

Although gene expression profiles are changing from

day 0 to day 2, there is a more dramatic change from day 2

to day 3 (Fig. 3). By this point, the seedling has emerged,

but attainment of full photosynthetic competence does

not appear to happen quickly. From the large DR of

expression from day 3 to day 4, it is interesting to specu-

late that prior to the emergence of the radicle, i.e. by day

2, the embryo has attained a metabolic state that primes

the seedling to reduce aspects of gene expression in pref-

erence for emergence and reserve mobilization.

Revealing potential metabolic signals by correlation 

analysis

Deciphering metabolic contributions to switches in tran-

scriptional states, such as observed during seedling devel-

opment, will entail identifying individual signaling

metabolites, the genes they affect and the concerted

degree of affect [52]. Although any metabolic regulation

during the heterotrophic to autotrophic transition would

be complex, it should be possible to identify metabolites

involved in signaling gene expression events by examin-

ing their behavior in relation to the expression of specific

genes [36]. We determined linear correlations between

each metabolite-gene pair with the assumption that the

strength of correlation would indicate the potential for a

regulatory relationship to exist (Fig. 5). Sucrose levels

showed positive correlations with 129 gene transcripts.

Comparison of the gene transcripts correlated with

sucrose levels with previous microarray experiments and

online databases showed that 44 of the 129 genes had pre-

viously been identified as sucrose-responsive [36,53-56].

The correlation of sucrose levels with a large proportion

of previously identified sucrose-responsive gene tran-

scripts reinforces the validity of the use of correlation

coefficients to identify interesting relationships. Two

well-studied TFs that were highly correlated with sucrose

were PIF1 and ABI3. PIF1 has been identified as a nega-

tive regulator of photomorphogenesis in seedlings [57,58]

and ABI3 may play a role in sugar-induced seedling

developmental arrest [59]. The TF genes IAA14 and

ARF10 showed high negative correlation with the

unknown metabolites unkM1.85 and unkM7.9, respec-

tively. In order for correlations to be identified a gene had

to be expressed at each time point. Therefore, it may act

in some capacity outside the developmental stage in

which it is commonly associated. For example, Penfield et

al. [60] concluded that factors controlling cotyledon

expansion in imbibed seeds -- a gibberellin mediated pro-

cesses -- continue well into seedling establishment. The

CHO1 AP2 domain TF that functions in the glucose sig-

naling pathway downstream of ABI4 also appears to func-
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tion well into seedling establishment [61]. In support of

these views, it is interesting that we observe expression of

genes known to be involved in the imposition of dor-

mancy well into seedling establishment.

ABI3 expression decreases within two days of imbibi-

tion to remove dormancy and permit seed germination.

ARF10 is believed to increase seed sensitivity to ABA [62]

and its delayed suppression would likely contribute to a

graded control of ABA responses while ABI3 transcript

levels decline. In contrast, the levels of SLR/IAA14 tran-

scripts are increasing until day 4-5. SLR/IAA14 is known

to repress ARF7 and ARF19 during initiation of lateral

roots [63] and it is interesting to speculate that it may

play an additional role to restrict the expression of ARF10

to vascular tissue in cotyledons and roots in older seed-

lings [43]. Even if metabolic regulation of highly corre-

lated genes is shown not to occur or is minimal,

observing the behavior of expression within a broader

physiological and biochemical context through a network

correlation analysis may reveal as of yet unknown inter-

actions.

Identifying mechanisms of metabolic regulation

Imbibition results in seeds undergoing a period of anoxia

during which lactate production occurs [1,41]. In ani-

mals, elevated lactate has been shown to alter gene

expression in certain tumor types [64-66] and may

involve carbohydrate response-like elements [67]. We

looked for elements within the promoters of photosyn-

thetic genes correlated to lactate and unkM1.85 as a start

toward identifying regulatory mechanisms (Supplemen-

tal Table 2) in a manner analogous to co-regulated genes

identified by microarray analysis [68]. Genes correlated

with lactate contained Ocs-like elements responsive to

oxidative stress, auxin and salicylic acid [69,70] and

motifs showing similarity to those involved in light-

responses. Since it is difficult to distinguish between the

effects of light and metabolic stimulus [71,72], it is possi-

ble that elements identified as light responsive might be

metabolite responsive instead. Interestingly, the potential

promoter motifs identified in the photosynthetic genes

correlated with metabolite unkM1.85 predominantly

included elements associated with response to various

stresses and did not contain any light-responsive ele-

ments. The differences between the potential promoter

motifs identified in the two sets of photosynthetic genes

indicate that distinct regulatory mechanisms may be

operate in groups of genes that may be considered ini-

tially as functionally similar through ontological classifi-

cation. Identification of the TFs that bind to these motifs,

and the characterization of identified, but unknown pro-

moter elements will help elucidate the signaling pathways

involved in the expression of these genes and potential

involvement of metabolic regulation.

The pair-wise analysis of metabolite and transcript lev-

els appears to be a useful investigatory tool to identify

potential links between genes and metabolites, thereby

providing a number of targets for further examination.

However, the identification of a correlated gene and

metabolite does not provide information relating to the

causality within the relationship, i.e. metabolite affecting

gene expression or vice versa. It is also difficult to deter-

mine whether the observed relationship results from a

direct interaction between a gene and a metabolite, or

whether a downstream signaling event is involved. Such

questions can be addressed, in part, by repeating the

metabolite measurements in the appropriate mutant and/

or by direct measurement of transcript levels in rigor-

ously controlled metabolite feeding experiments.

Conclusions
A systems biology approach was adopted to investigate

the interactions of metabolites and gene expression dur-

ing seedling development. Both transcript and metabolite

data were analysed at various levels and the results visual-

ized using PCA and correlation-based network cartogra-

phy. The analysis of transcript data alone showed that

germination and seedling development is marked by

stages of differing gene expression activity. These stages

fall at important developmental points, such as at the

beginning of seedling emergence, the end of reserve

mobilization and the onset of leaf formation. Metabolite

levels were revealed to fall into two clusters that reflect

the pattern and timing of change, principally those that

decrease post-imbibition and those that show a transient

increase after seedling emergence. Network cartography,

whereby the degree of correlation between variables was

used as the basis of sample comparison, provided a

clearer picture of the relationship among samples than

PCA. This network analysis indicates a shift in the state

of nutritionally important metabolites precedes the major

shift in transcriptional state going from germination to

seedling emergence. Therefore, a suitable metabolic state

achieved prior to germination may be necessary for the

initiation of gene expression programs for efficient seed-

ling development. Some aspects of gene expression may

be regulated by specific metabolites. The key is to identify

signaling metabolites and the genes they affect, which

may be accomplished by holistic profiling and correlation

analysis. In addition, network correlation analysis may

reveal component interactions when visualised within the

context of a dependent or regulatory process, such as we

noted with potential TF relationships uncovered by

metabolite correlations.
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Methods
Plant material and growth conditions

All Arabidopsis thaliana L. (ecotype Col-0) seeds were

surface sterilized and sown onto 0.8% agar media plates

containing 1/2-strength MS salts, pH 5.7 [73]. The sow-

ing density was approximately 500 seeds evenly spread on

a 9 cm Petri dish. Agar and MS salts were purchased from

Fisher Scientific and Sigma, respectively. The edges of

each plate were wrapped in 3 MM surgical tape and the

plates were incubated in the dark at 4°C for 4 days before

transferring to the growth room. Transfer of plates

occurred at 09:00 h. Seeds were germinated at 20°C at 70

μmol of photons m-2 s-1 constant illumination using stan-

dard white fluorescent bulbs (General Electric). A drop of

less 2 μmol of photons m-2 s-1 was observed going from

the centre to the edges of the shelf. We used seeds from

completely brown siliques that had been after-ripened for

at least 3-weeks after harvesting. The seeds were imbibed

for 4 days prior to transfer to the growth room with dor-

mancy being maintained by incubation at low tempera-

ture. Images of the stages at which we selected seedlings

for analysis is given in Rylott et al. [39].

Design of tissue sampling

Sample harvesting and preparation was conducted in

three sets of nine samples with each set encompassing the

time points Day 0 to Day 8 after transfer to the growth

room [39]. We alternated tissue harvesting regimes to

obtain sets of tissue for total RNA and metabolite extrac-

tion, thus corresponding tissue samples were used to

compare metabolite and transcript profiles. A shelf in the

growth room was divided into three sections and plates

for each set were arranged horizontally around the shelf,

such that each section contained an equal number of

plates. Tissue was harvested each day at 09:00 h and only

one sample per day was harvested resulting in three bio-

logical replicates for each time point. Each tissue sample

consisted of pooled seedlings from an equal number of

plates from each section. The total number of plates

selected for each sample varied depending on the devel-

opmental stage. Each plate was examined under a micro-

scope to ensure that seedlings were harvested at the

required stage of development. Only those plates with

greater than 95% of seedlings at the appropriate develop-

mental stage were used. For sample days 0-4, approxi-

mately 0.4 g of seeds or seedlings was washed from the

surface of the agar petri dishes with distilled sterile water

into a filtration unit. Once the water had passed through,

the seedlings were washed in 10 ml more water, weighed

and immediately frozen in liquid nitrogen. For sample

days 5-8, approximately 0.4 to 0.5 g of seedlings were

removed from plates by forceps, rinsed briefly, and

immediately frozen in liquid nitrogen. The time from

opening the petri dish to freezing the sample was at most

3 min with rinsing times for all samples being within one

and a half to two minutes.

Transcript profiling and DE Analysis

Total RNA was isolated using a borate-based extraction

protocol [4]. Production of labelled cDNA, quality check-

ing, and slide hybridization were conducted as described

in by Armengaud et al. [74]. For each labelling reaction 1

μg of Oligo dT20 primer was added to 100 μg of total RNA

in a total reaction volume of 20.5 μl. Printed 70-mer oli-

gonucleotide microarrays were obtained from the labora-

tory of Prof. David Galbraith at the University of Arizona.

Versions 1 and 3 arrays containing 29 K elements were

used in these experiments. The identity of each spot in

the meta-grid was obtained from the Galbraith labora-

tory http://www.ag.arizona.edu/microarray/. Only one

cDNA sample was hybridized per slide. Since transcrip-

tome profiles were produced from more than one

microarray print version, only those genes common to all

microarrays were used in this analysis.

Hybridized slides were scanned using an Affymetrix

428 scanner set on a gain setting to yield no more than 10

saturated spots per slide and gain settings were varied to

account for the quality of the hybridization. Spot check-

ing and intensity determination were done using

ImaGene™ (BioDiscovery Inc., CA, USA). The quantified

gene expression data produced by ImaGene was normal-

ized using GeneSight™ version 4.1 (BioDiscovery Ltd.).

Background signals were subtracted and spots designated

as poor hybridization events were discounted from future

analysis. In order to address the problem of negative

spots, signal intensities below a set value of 20 were

raised to that value. The raw expression data after spot

removal has been deposited into the ArrayExpress data-

base under the accession number M-MEXP-2493 http://

www.ebi.ac.uk/microarray-as/ae/. A standard normaliza-

tion procedure was applied to the quantified gene expres-

sion values obtained for each printed microarray to

facilitate comparisons among individual microarrays

(Affymetrix GeneChip Expression Analysis technical

Manual, 2004). In brief, the top and bottom 2% of the sig-

nal values were removed and the mean calculated for the

96% of the values remaining. A value, the scaling factor,

was calculated to adjust the mean of the remaining values

to 100. Each of the signal intensities on the array was then

multiplied by the appropriate scaling factor to normalize

signal intensities on an array-by-array basis. A file of

combined normalized data is also available from

ArrayExpress under the accession number E-MEXP-

2493. A group of differentially up-regulated and down-

regulated genes was identified between each day at a con-

fidence interval of 99% based on the bootstrapping proce-

dure reported by Kerr & Churchill [75], which is resident

within Genesight™. The groups of differentially expressed

http://www.ag.arizona.edu/microarray/
http://www.ebi.ac.uk/microarray-as/ae/
http://www.ebi.ac.uk/microarray-as/ae/
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genes were filtered further with a threshold cut-off value

of 1.5-fold. Functional analysis by ontology was done

using the information obtained from the TAIR database

http://www.arabidopsis.org.

Quantitative RT-PCR

In order to verify the robustness of our hybridizations

and data normalization, we compared the relative expres-

sion levels of the genes encoding ACT2 (ACT2,

At3g18780) and ribosomal protein genes S9 (At1g74970)

and L32 (At5g46430) from the arrays to expression values

obtained by qRT-PCR. The array and RT-PCR values

were normalized by the expression levels of ubiquitin 10

(At4g05320) to allow direct comparison of data from the

two different quantitative techniques. The levels of tran-

scripts in each extract were determined by real-time RT-

PCR according to Love et al. [76]. Transcript values for

each reference gene were obtained using a standard curve

produced from purified plasmid DNA containing the

appropriate cDNA. All genes (except UBQ10) were cho-

sen, because each was spotted between 13 and 27 times

throughout the microarray depending on the version

used, and thus the average intensity would provide a gen-

eral indication of the quality of the hybridization. These

genes were selected for qRT-PCR analysis prior to

hybridization and processing of the arrays, therefore they

represent an unbiased indication of the quality of the

array hybridization. A plot of array versus qRT-PCR val-

ues produced lines with high correlation (near unity for

ACT2 and RPS9) demonstrating data of suitable quality

for subsequent statistical analysis (Additional File 1).

Metabolite extraction and quantification

Metabolites were extracted according to Weckwerth et al.

[77] and quantified by 1H-NMR as described in Moing et

al. [78]. Briefly, the dried extracts were resuspended in

400 mM phosphate buffer pH 6.0 in D2O and analyzed at

500.162 MHz on a Bruker spectrometer (Bruker Biospin

Avance). Special care was taken to allow absolute quanti-

fication of the individual metabolites through addition of

ethylene diamine tetraacetic acid sodium salt solution (5

mM final concentration in the NMR tube) to improve the

resolution and quantification of organic acids such as

malate and citrate, adequate choice of the NMR acquisi-

tion parameters (pulse angle 90°, relaxation delay 10 s)

and use of an electronic reference (ERETIC mode [79])

calibrated with glucose, fructose, glutamine and glutamic

acid sodium salt solutions as described previously [78].

Individual metabolites were identified using published

data [78,80,81], acquisition of NMR spectra of reference

compounds under exact solvent conditions, and spiking

extracts with reference compounds. They were quantified

using the metabolite mode of AMIX software (Bruker

Biospin v. 3.5.6) based on the number of protons com-

prising the corresponding resonance. Concentrations in

the NMR tube were converted to amounts per g fresh

weight using the mass of sample extracted. Citrate, for-

mate, fumarate, glutamate, lactate and malate are

expressed as μg of the acid form. The concentration of

NMR unknown compounds (named according to the

form of the resonance, S for singlet, D for doublet, M for

multiplet, and its frequency in ppm) was calculated on

the assumption that the measured resonance corre-

sponded to one proton and using an arbitrary molecular

weight of 100 Da. We verified the robustness of the quan-

tification procedure by observing a near 1 to 1 relation-

ship between levels of metabolites when we compared

those measured in a mixture of samples, one from each

day, with the corresponding calculated theoretical mix

(Additional File 1).

Data analysis for network cartography

For the network cartography and correlation analysis,

only those genes which had at least one expression value

for each of the sample days were included in the analysis.

This pre-processing step produced a set of 10,005 genes.

Similar data pre-processing was not required for metabo-

lite levels as they had been quantified absolutely for each

extract. Since material for both the transcript and metab-

olite profiling was collected in three independent groups,

the values were averaged for each day. Hierarchical, K-

means and 2D-SOM clustering were done using the

metabolite data imported into Genesight ™. PCA was per-

formed using MATLAB™ release 2007b ((The Math-

Works, Natick, MA). Visualization of significant

correlations, i.e. network cartography, was conducted

using springScape [37]. Pearson correlation coefficients

(signed r value) were used to generate the similarity

matrices for the spring embedding of metabolite, tran-

script and combined data. MATLAB™ release 2007a was

the mathematics platform for the spring embedding and

metabolite-gene correlation analysis. Depending on the

data set being analysed, the initial similarity matrix was

cut at a threshold value to facilitate the spring embedding

and to enhance the significance of the output correla-

tions. For the similarity matrix of correlations between

the 27 individual metabolites, a Bonferroni adjustment

was applied based on a significance value of 0.1 and 351

tests. The day-by-metabolite and the day-by-gene simi-

larity matrices were adjusted strictly by correlation coeffi-

cient in order to compare directly clustering between the

two data sets. A FDR [42] was used to threshold the level

of significance for the metabolite by gene correlations

based on a significance value of 0.1 and 276,345 (27 ×

10,235) tests. Determination of metabolites differentially

expressed between the two groups of days was conducted

by Student's t-tests also using a FDR of 0.1 (6 × 20 tests)

to determine significance.

http://www.arabidopsis.org


Allen et al. BMC Systems Biology 2010, 4:62

http://www.biomedcentral.com/1752-0509/4/62

Page 14 of 16

Additional material
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(regulation)
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