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Summary. Periodic gravity perturbations, known as earth tides, produce 
minute expansions and contractions of subsurface geologic formations. The 
motions induce water level oscillations in wells connected to the deep reser- 
voirs, and a measurable phase lag occurs between the maximum gravity and 
the maximum water level. The amplitude of the water level oscillations 
induced by the small harmonic gravity variations of the earth tides and the 
phase lag relative to the tide are related to the reservoir porosity and perme- 
ability. 

The motions of an elastic subsurface reservoir are analysed by considering 
an axially symmetric system of finite volume which is activated by oscilla- 
tions of a rigid rock mass overlying the reservoir. The geometric parameters 
involved are the thickness of the reservoir, radial extent, depth and fluid level 
in the well. The physical parameters for which data are available or satis- 
factory estimates can be made are the fluid viscosity, densities, temperature, 
compressibilities and shear modulus. These properties refer to in situ condi- 
tions at large overburden pressure. Permeability and porosity at in situ 

conditions are not directly measurable, and methods of indirect estimation 
are of practical interest. This analysis correlates these two parameters with 
the amplitude and phase lag of the induced well fluid oscillation. 

For the very small strains and fluid volume fraction changes induced by 
the tides, slow flow of a viscous fluid through an isotropic porous matrix is 
assumed. An axially-symmetric analysis for a uniform permeable layer 
perturbed by the oscillations of the rigid overburden rock yields explicit 
expressions for the oscillation amplitude and phase in the well. Selected 
results from numerical solutions having a wide range of realistic parameter 
values are presented. The results clearly show the dependence of amplitude 
and phase lag on the dimensionless permeability, and the near proportionality 
of the amplitude on the reciprocal of the porosity (porosity has no other 
significant influence). Finally, it is shown how asymptotic approximations of 
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the direct solution allow an inversion which determines the permeability and 
porosity in terms of the amplitude and phase lag, given the other reservoir 
properties. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIntroduction 

The fluid level of a well connected to a subsurface fluid reservoir responds to the semi- 
diurnal and diurnal tides in two readily measurable modes, phase lag and water level varia- 
tion. Dilation and compression of the reservoir occurs on a periodic basis in step with the 
changes of gravity. The resulting periodic fluctuations of the fluid level in the well are out o f  
phase with the changes in gravity due to resistance of the reservoir to the flow of fluid into 
and out of the well bore (Fig. 1). The amplitude of the water level fluctuation is related to 
the porosity of the reservoir. Although the relative gravity variation in earth tides does not 
exceed a magnitude of it has a significant effect on ground fluid flow, as noted in 
earlier reviews (Sperling 1953; Rinehart 1972, 1976; Melchoir 1983; Robinson zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Bell 197 1;  
Marine 1975). The oscillation amplitude and phase lag relative to the tide provide two 
independent quantities that can be determined accurately. We present a correlation of these 
two well motion parameters with in situ parameters describing the reservoir properties, and 
in particular their strong dependence on the permeability and volume fraction of fluid in the 
reservoir matrix. Explicit estimates of reservoir permeability and fluid volume fraction are 
derived in terms of these measurable well parameters. 

Rinehart (1975) proposed a simple mechanism of a rigid impermeable rock mass 
oscillating vertically with the earth tide and perturbing the matrix and fluid of an underlying 
permeable reservoir, which in turn produces an oscill6ting volume flux in and out of a 
penetrating well. The very small amplitude overburden oscillation over a sufficiently large 
area produces sufficient lateral flux to induce a measurable oscillation of the fluid level in 
the well. Since the matrix strains, changes of fluid volume fraction, and velocities, 
accompanying the oscillatory motion are extremely small, it is appropriate to model the 
oscillatory motion, superimposed on the static stress-strain fields defined by the mean 
gravity configuration, as slow linearly viscous flow through a porous linearly elastic matrix. 
Assuming isotropy, a matrix-fluid mixture theory (Morland 1978) involves a mixture shear 
modulus and four mixture compressibilities, the fluid viscosity, the matrix permeability, and 
the volume fraction of fluid. Plane and axially symmetric flow analyses for a deep reservoir 
o f  large lateral extent, uniform in thickness and properties, have been presented by Morland 
(1977), where the magnitude of the well oscillation was estimated to demonstrate that it 
could reach a measurable size. We now extend and refine the axially sypmetric analysis to 

Figure 1. Gravity variation (-) and well level fluctuation (- - -) showing phase lag A t .  

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ji/a

rtic
le

/7
9
/3

/7
0
5
/7

6
6
6
7
1
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



Reservoir porosity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand well oscillations 
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707 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Figure 2. Axially-symmetric well-reservoir geometry with reference to cylindrical polar coordinates zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(r, 0 , ~ ) .  

determine explicit expressions for both amplitude and phase lag in terms of the in situ reser- 
voir parameters, and in particular to highlight the influence of fluid volume fraction and 
matrix permeability. Asymptotic approximations with wide validity yield an inverse solution 
which estimates the permeability and fluid volume fraction in terms of the amplitude and 
phase lag, given the other reservoir properties. 

Fig. 2 shows the axially symmetric well-reservoir geometry with reference to cylindrical 
polar coordinates ( r ,  8, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz ) ,  and the reservoir motion in the matrix-fluid layer r I  < r < 1, 
-h G z < 0, is assumed to depend only on r, z and time t ,  independent of 8. The base 
z = -h and outer wall r = 1 are rigid, fixed and impermeable, and the upper boundary z = 0 
(r l  G r zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ 1) is rigid and impermeable, but oscillates due to the earth tide influence on the 
overburden rock. It is supposed that any vertical drag from the far field overburden is 
negligible so that the vertical overburden motion between r = r l  and r = 1 is due solely to the 
gravity variation and reservoir pressure perturbation on z = 0 ( r l  G r zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 1). This assumption 
and the fixed base assumption, reflecting Rinehart's (1 975) proposal, are idealizations which 
may not be realized, but at present we have no evidence for alternative boundary conditions. 
The approximation of rigid overburden and rigid basement is an assumption that the strain 
increment induced by gravity variation in these regions is much smaller than the strain incre- 
ment in the reservoir matrix or the dilatation increment in the reservoir fluid. That is, we 
suppose that the reservoir matrix of fluid is much more compressible than the surrounding 
rock. The assumption of a fixed basement, however, lacks strong physical justification. The 
well-matrix interface r = r l  is supposed open to simplify the interface conditions, whch are 
then simply balances between the well fluid pressure and matrix and reservoir fluid normal 
pressures without the introduction of an unknown casing interaction pressure. The latter 
may be significant in many practical situations, but will require a more difficult analysis. 

The earth tide effect is restricted to a vertical gravity variation 

g =go(l +g cos wt) = go + Re[gog exp( io t ) l ,  (1) 

where for half-day and day tides w = 1.454 x sC1 and w = 0.727 x s- ' ,g = 0 (lo-') 
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(Rinehart 1975). If the oscillatory displacement of the well fluid level is d (in the z-direc- 
tion), then setting zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL. W. Morland and E. C. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBADonaldson 

d zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= h,gDocos[w(t-At)] = h,gDoRefexp[io(t-At)] ] ,  

D = D o  exp(-iwAt) (3 ) 

(2 1 

where h, is the overburden depth, introduces a dimensionless complex displacement 

such that o A t  = T defines the phase lag. Forg  = h, = 103m, the oscillation amplitude is 
10-2Do cm, so that Do of order zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlo2 is required for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd = 0 (1 cm). Dimensionless well radius 
R 1 ,  top pipe radius R ,  if the well is packed, reservoir radius L ,  overburden depth H ,  and 
mean well fluid level Hw , are defined relative to the layer thickness h by 

r l  = h R 1 ,  r p  = hR, ,  I =  hL, h, = hH, hw = hHw, (4) 

L s l ,  H > H w a l ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(5 ) 

and Morland's (1977) solution requires the strong inequalities 

which are common in practical situations. 
Phase lag depends primarily on the drag between fluid and matrix, and hence on the fluid 

viscosity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp and matrix permeability k .  The extension and refinement of Morland's (1977) 
analysis shows that p ,  k and o, enter the solution only through a dimensionless reciprocal 
permeability 

where p f  is the fluid density. It is shown that the combination of significant amplitude Do 
and significant phase lag T ( 2  11") requires n to lie in an approximate range 

0.04 2 n 5 0.2, (7 1 
with the lower limit (upper limit of k )  required for significant phase lag and the upper 
limit (lower limit of k )  required for significant amplitude. Since p can increase by a factor 
of 100 from water through light to heavy oils, the corresponding range of k to satisfy (7) 
differs widely between fluids. However, the ratio p / k  which defines a reciprocal drag 
coefficient (dimensional) in Darcy's law is determined by n for given o, r p ,  p f  and h .  A 
range of k for the half-day tide, o x  1 . 5 ~  10-4s-', with h = l O m ,  r p  = r l = O . l m ,  
p f =  l o3  kg mT3, is 0.6 x 10-14-0.6 x 10-l2m2 for p FJ 0 . 4 ~  10-3Pa s (water) to 
0 . 4 ~  10-'Pa s (heavy oil), which at n = 0.1 corresponds to a range of k from 0.6 x 
to 0.6 x lo-" m2. For a packed well with smaller r p ,  k decreases, and hence the correspond- 
ing k decreases at given n .  

It is also shown that the phase lag is not significantly affected by a change of the mean 
fluid volume fraction Go,  nor is the product GODo, so that the amplitude Do is essentially 
proportional to the reciprocal of Go,  and a significant amplitude requires small Go.  This 
general conclusion was deduced in the previous magnitude estimates (Morland 1977), but 
the inference there, without analysis, that the amplitude is also proportional to r: /r; ,  and 
hence increased signficantly by packing the well and introducing a pipe of small radius, is 
not correct. The present analysis shows that r p  enters only through the parameter n and has 
little influence on the amplitude once it attains a significant size. The magnitude estimate 
for Do depends also on the relative magnitudes of the four compressibilities associated with 
the matrix-fluid mixture, Before analysing the formal solution we discuss the reservoir 
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Reservoir porosity and well oscillations zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA709 

elasticity in terms of the compressibilities used in Morland (1977) and in terms of an alter- 
native set more common in petroleum engineering (Amyx, Bass zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Whiting 1960). 

Previous correlations of earth tide effects on well fluid with reservoir properties by 
Bredehoeft (1967), Bodvarsson (1970), Robinson & Bell (1971) and Rhoads & Robinson 
(1979) follow an analysis of well pressure variations due, for example, to seismic disturb- 
ances given by Cooper et el. (1965). In all these treatments the reservoir is described by its 
porosity, fluid bulk modulus, and an overall bulk modulus, and permeability does not 
appear explicitly. Our analysis incorporates the permeability, four independent compressi- 
bilities, and the matrix shear modulus. The shear modulus is shown to have a significant role 
in the axisymmetric balances, and a significant well fluid oscillation has implications for the 
relative magnitudes of the four compressibilities. Furthermore, the above analyses start from 
assumed dilatations inferred from gravity tide effects on a homogeneous elastic earth; that is, 
there is no solution for the matrix deformation and fluid flow induced by the gravity 
variation. A given gravity variation (tidal stress distribution) must induce very different 
deformation in the reservoir if it has distinct elastic properties from the surrounding rock. 
Here we have adopted the limit case of rigid surround, but treat the full mass and momen- 
tum balances for the permeable elastic matrix and compressible fluid under a prescribed 
vertical gravity oscillation. We have not included possible effects of any horizontal 
component of the gravity tide, and cannot assess what influence it, would have on the well 
fluid motion. Our conclusions, therefore, must be regarded as specific to the particular 
boundary conditions and gravity variation. However, the analysis has demonstrated the 
influence of reservoir elasticity and permeability on oscillations induced in a connected well, 
and the mixture theory provides the framework for alternative formulations of gravity tide 
effects, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAReservoir elasticity 

We suppose that the very small matrix strains and very small change in fluid volume fraction 
induced by the earth tides are described by linear isotropic elastic matrix relations with 
constant moduli, a fluid pressure-dilatation law with constant compressibility, and a poro- 
sity variation relation linear in the matrix and fluid partial pressures. All the constant 
coefficients define properties at the in situ conditions. The term porosity is used to denote 
the fluid volume fraction, and the term matrix to denote the structured solid-void medium 
containing the fluid, Thus the matrix is not necessarily fluid saturated, but the solid-void 
structure is treated as a single constituent of the mixture. Let the intrinsic compressibility 
of this matrix be zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK , ,  and that of the fluid zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK f ,  measured at in situ conditions. Adopting the 
mixture theory developed by Morland (1972, 1975, 1978), if zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp s  and pf are the partial 
pressure increments from the equilibrium (mean gravity) conditions, and qj is the porosity 
with equilibrium value Go, then 

where a and b are positive constants whose magnitudes are of compressibility order. A 
relative porosity change (qj-&,)/@o is therefore of infinitesimal strain order. 

It is assumed that the mean area fraction of fluid across an arbitrary mixture plane is also 
9, and so 1 - @ is the area fraction of matrix. Hence the partial and intrinsic (pore pressure) 
fluid pressures p f  and Ep f ,  and partial and intrinsic matrix stresses zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAus and 'us, are related 
by 

pf = qjoEpf, us= (l-qjo)EuS, (9) 
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where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA@ is evaluated as the mean value q50 in view of the infinitesimal changes. Further, the 
partial and intrinsic infinitesimal dilatations e and Ee are related by 

where the partial dilatations are given by the respective trace of the mean constituent 
displacement fields viewed as continuous fields over the mixture region. The intrinsic 
compression relations are 

E f  E s -  E s  Eef=-Kf  p ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE - - K ,  p , 

and the mixture deviatoric stress-strain relation has a modulus G. By (B), (9), (10) and (1 1), 
the partial pressure-dilatation relations become (Morland 1978) 

(12) 
-pS=cllES+C12e f , -pf=C21ES+C22e, f 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A = K, K f  + &(Ksb + Kfa). (14) 

Rejecting the symmetry relation c21 = c12 (until confirmed by tests for the given mixture), 
there are four mixture compressibilities cij zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(i, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj = 1 ,  2) and a shear modulus G. The 
coefficients a and b can be eliminated in terms of two mixture compressibilities. A jacketed 
test which allows the pore fluid to drain at constant intrinsic fluid pressure, that associated 
with in situ reservoir conditions, determines the bulk compressibility (Biot & Willis 1957; 
Geertsma 1957; Amyx et al. 1960) Kb. Thus the intrinsic pressure increment Epf = 0 ,  which 
in turn implies E ~ f  = 0 and pf = 0 (when K f  # 0), so that 

denoted K by Morland (1978). From (12), (13), (14). 

In an unjacketed test the pore pressure is the same as the confining pressurep, so that 

(17) E f =  E s  Pf=@o p 6oP, pS=( l -60)p ,  p = p ,  

and the unjacketed compressibility is defined by (Biot & Willis 1957) 

using (17), (12), (13), (14). By (16) and (18), the coefficients a and b can be expressed in 
terms of Kb, 6,  and K,. Note that the ‘compressibility of the rock matrix c,’ introduced by 
Geertsma (1957) has no meaning unless K f  = K,, when c, = K,, since only then are the intrin- 
sic dilatations of matrix and fluid identical when subjected to  the same intrinsic pressure 
increments as required by Geertsma’s definition. Morland’s ( 1977) reservoir analysis is 
expressed in terms of the four compressibilities K, ,  K f ,  Kb, 6. The symmetry relation 
C21 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= C 1 2 *  6 = K,. 
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Reservoir porosity und well oscillations 71 1 

Two alternative mixture compressibilities (Amyx et zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQZ. 1960) are the formation compac- 
tion K~ and effective rock compressibility K,. In a jacketed test with draining at Epf zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= pf = 0, 

where V is a mixture element voiume Vo(l + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8 )  with initial value Vo. Hence, by (8) and 
(1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5), 

by (16). In a jacketed test at constant confining matrix pressure ps and increasing pore 
pressure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp , E f  

4 0  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAb + b )  = , zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
C 2 2 C l l  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA--C12c21 

= G o (  

using (8), (9), (12), (13), (14). Now the mixture relations can be expressed in terms of the 
four compressibilities K f ,  K b ,  K ~ ,  K, by using the identities 

K s  = K b - G O K p ,  a = K p - K b ,  Gob = ( I - d J O ) K e ,  (22) 

when (13), (14) become 

when K s / K b  is not close to unity, that is, when the free draining compressibility of the 
saturated matrix is much higher than the intrinsic compressibility of the matrix material. 
In the final solution we set 

(26) 
K S  

K p  - - - uKb , zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv = ] - - - <  1, 
4 0  Kb 

and show that significant well oscillation amplitude requires that Go is small and v = 0(1), 
that is, K~ 3 K b ,  that GK, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 G K f  2 1, and that K, is not of greater magnitude than K b .  Since 

(27) 
Kb - f2 Ks 

+ - >  
x€! b Gob 

and we expect pf and ps to have similar effects in the porosity variation (8), that is, b and Q 

to have similar magnitudes, (27) suggests that K b  = O(K,), or K b  > K, if K, = O(b) and 40 is 
small. The requirement of large K~ relative to K b  is simply a statement that fluid is squeezed 
out of (and into) the matrix easier than the matrix compresses (expands) under external 
pressure increase (decrease), which is consistent with the larger flux of fluid into the well. 
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These compressibility comparisons are required at the in situ reservoir conditions, and may 
not apply in low-pressure laboratory measurements. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW. Morland and E. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC. Donaldson zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3 Reservoir and well coupling 

An axially symmetric solution of the harmonic oscillatory motion of matrix and fluid in 
the reservoir was presented by Morland (1977), and the analysis will not be repeated. The 
complex amplitude D, incorporating the real amplitude Do and phase lag T, of the well 
oscillation is coupled to the reservoir matrix and fluid motions by flux and pressure 
conditions at the interface r zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= r l ,  -h zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz G 0 (Fig. 2)  and the reservoir motion is linked to 
the overburden oscillation by a pressure-acceleration relation at the upper boundary 
z = 0, rl G r 4 1. The analysis is presented in terms of dimensionless complex stress and 
velocity amplitudes, P, C,,, ZZz,  Vf, VS of the oscillatory perturbation defined by 

pf = -Re[ PogohgP e x p ~ w t ) ~ ,  (or,, 022) = Re[pogohg exp(iwf) ( C r r ,  L)I ,  
(vf ,  vs )  = Re[ioKbpogohZg exp(iwt) (vf, v‘)], (28) 

where po is the equilibrium mixture density and or,, uzz are the partial radial and vertical 
stresses in the matrix. On the upper boundary z = 0, V{= Vi’= V, the vertical velocity 
perturbation of the overburden rock. The use of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI/ as the element volume, equations 
(19) and (21), is no longer required.) The boundary conditions result in four complex linear 
equations for D and 

where do ,  Go, measure the difference and sum of radial matrix and fluid velocities at the 
interface. 

For the purpose of correlating the well oscillation with the flux at the well-reservoir 
interface, it is supposed that the fluid column in the well is incompressible so that the flux 
is transmitted directly to the surface. Then, modifying Morland’s (1 977) expression to allow 
for packing and a pipe of radius rp  = hR, , 

The dimensionless pressure perturbation Pw in the well at the interface level (averaged over 
the layer thickness) is 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp,(Z) is the well fluid density with surface value pws = p,(Hw) and value at the 
layer pwo = pw (0). We will adopt the approximation pw p f  for illustration, when 
Y = (H, + %)/H; the previous solution also adopted Hw = H & %, giving Y = 1. The open 
interface conditions are 

R = R i ,  P=@oPw, Z,r=(I-&)Pw. (32) 

Momentum balance for the oscillatory motion of the rigid overburden of density pr requires 
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but the final momentum term in Vis negligible compared to unity. The new features are the 
term Y (in place of unity) in Pw (28)  and the pipe radius R ,  G R 1  entering the D expression 
(30). It will be shown that Y of order unity has no influence on T or on a significant ampli- 
tude zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBADo, and that R ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ R 1  influences only r. 

The reservoir solution (Morland 1977) expresses the stresses P ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZ,, on R = R 1  and P,  C,, 
on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz = 0 in terms of Go,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 0 ,  f so that (30), (3 l), (32), (33) result in four simultaneous linear 
complex equations for D ,  Go, io, f. Kramer’s rule was used to estimate the magnitude Do 
under various assumptions on the reservoir geometry and elasticity. We now present the 
modified four equations in terms of the alternative compressibilities K f ,  Kb,  K ~ ,  K , .  The 
following dimensionless real parameters arise: 

where a pipe radius R ,  + R 1  leads to the replacement of S in the previous solution by 3 .  
There is also a complex drag parameter 

inversely proportional to R , ,  with associated complex parameters 

a = A ( ]  - T )  + M21 T/M22, B = [M12A(I - T )  + Mi1 TI IM22, (39) 

where Io ,  Il and K O ,  K 1  are modified Bessel functions of the first and second kind respec- 
tively (Magnus, Oberhettinger & Soni 1966). 

The flux relation (30) becomes 

~ K D P ~ ~ D  + K p p o S  {Go - ( I -  2@0)Go} = 0. (40) 

Eliminating D from the well pressure expression (31) by (40) and applying the interface 
fluid pressure balance (32)1 gives 

2KDPwsY 
(1 + i ) G o  + {Cu-(1-2@,)S) i o -P= 

K p  P o  

Eliminating Pw between (32)1 and (32)2gives 

{ do(M12 + M22 6) - (1 - @o)M22} 6 0  + M22 { $ o < P - G >  - (1 - $o)Q I Go 

- { do(M12 - c) - ( 1  - @o)M22 1 ?= 0. 
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Finally, the overburden balance (33), neglecting the momentum term, becomes 

L. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW. Morland and E. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC. Donaldson 

The four complex equations (40)-(43) determine zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAGo, io and vwhen all the coefficients, 
defined by the reservoir geometry and properties, are known, and from D we obtain the 
amplitude Do and phase lag 7. An explicit solution for D will now be derived. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4 Oscillation amplitude and phase lag 

Solution of the equations (40)-(43) by algebraic expansion of the determinants does not 
yield a useful expression for D. However, equation (42), which expresses the proportionality 
between matrix and fluid partial radial stresses at the interface, gives an excellent approxi- 
mate relation between zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAGo and io because of the relative magnitude of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6. Then equations 
(41) and (43) determine Go and io explicitly and D is given by (40). Since Mll and M l z  
are order unity, and M22 and M l z  are order unity if K~ = O ( K ~ / @ ~ )  as anticipated, or order 
Go if K~ = O(Kb) and @o is small, we have 

A =0(1), la1 = maxO(T, I), 

I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP I = max O(T, 1) or max O(T/@,, l/G0). (44) 

Similarly, supposing G zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 1/Kb, 

G 2 (t)’. (45 ) 

Now I hR1 I e 1 for all feasible ranges of reservoir parameters, but I XL I may be small or 
exceed unity. Asymptotic results (see Appendix) show that 

and hence 

Since R ,  = 0(10-*) and L Z 10 in practice, and L = 10 would represent a lower limit of the 
necessary strong inequality ( s ) ~ ,  611 T I  z lo6 for I X L  I < 1. Similarly, for I X L  I z I 
corresponding to larger L and the upper ranges of Go and n ,  numerical examples indicate 
that I XR1 I S so again 611 TI 2 lo6. 

Thus, in all practical situations, supposing Go 2 lo-’, 

G o & %  1, G O L  IaI, G >  I P I ,  (48) 

where the ratios are at least lo4, and generally much greater. In equation (42) therefore, the 
coefficients of Go and io are respectively @oM226 and -@OM22G,  while the coefficient of 
f is of order M z 2 ,  so provided that ?is of order Go and io,  an excellent approximation is 

Go = 40. (49) 

Equation (43) confirms that cannot exceed Go and io in magnitude. Recalling the 
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Reservoir porosity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand well oscillations 715 

definitions (29), the relation (49) implies 

VrSIR=R, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0 ;  (50) 

that is, the matrix has no radial velocity at the interface and the flux into the well is entirely 
fluid. This result was not evident in the magnitude estimates made by Morland (1977). It 
does not follow in the plane flow solution, being associated with radial focusing. Eliminating 
? between (41) and (43) together with the relation (49) determines zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG o ,  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAio, and substitu- 
tion in (40) gives 

Using the definitions (24), (26) and (35)-(39) leads, after some manipulation, to an expres- 
sion in terms of physical parameters: 

(1 + 4/3 c) (Kf + Ke) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA‘/3 GKe -’ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-1 

B =  ( 1 +  ( l  ‘:ibG)KD t2) = ( l t  VKb --J Kb , < l .  (53) 
Kb 

It is now clear that the maximum magnitude of GODo is unity, and this is reached only 
when 

We suppose C = KbG 2 1, so B = 0(1) requires 

Kb 2 K e  and V K b  2 GKD * v(1 + GK,) 2 C(Kf + Ke). (55) 

The latter requires v = 0(1) when GK, 2 GKf 2 1 as assumed in our illustrations, and values 
of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv in the range 0.1-0.9 are adopted. Setting 

the amplitude and phase lag are given by 

and it remains to  estimate x and y in terms of n. 
From (37), and applying (26), 

A*  = idonK, K = __ 

and K is order unity for a practical range of parameters. Thus 

I ~ R I I = R ~ ( @ ~ ~ K ) ” ~ <  1 ,  I X L I = L ( @ o n K ) ” 2 ,  (59) 

and IXLI2  10(@on)‘/2 for L k  10, allowing IhL I -0 .1  when @,,=0.01, n = O . O l , L = l O .  
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With pws zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= pf ,  asymptotic results (Appendix) show that 

L. W. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMorland zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand E. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC. Donaldson zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
71 

x - l t - n ,  
8 

1 
I t - ,  

n 
1+- - - 

[ h L  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAl 2  KL2@rJ 

y -  -%nln I%XRI I ,  -%nIn IR1/L I ,  

so that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx, y > 0 as required for 0 < r < n,’2. Now -In IRI /L  12 7 for R1/L zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 while 
-In I MARl I is approximately 11 for a wide range of parameters, so y 5 1 when n 5 0.2, 
which also implies x = 0(1) since KLz@o zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 1; this confirms the significant amplitude limit 
of the range (7). A phase lag exceeding 11” requires tan r Z 0.2, and hencey a little greater 
since zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx is close to unity for significant amplitude, suggesting the lower bound n - 0.04 of the 
range (7). Though R, influences n ,  A is independent of R,, so both Do and r are influenced 
only through n and in particular the maximum magnitude o fDo  is not influenced by R,. 

While the asymptotic results (60) may be used to  estimate zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBADo and r ,  these have been 
computed from the full expressions (57) using integral representations for the modified 
Bessel functions of complex argument (see Appendix). The important inverse problem of 
determining from (57) two reservoir properties from measured Do and r will require inter- 
polation from extensive tables or graphs of (Do,  r )  for a wide range of the various parameters, 
since all the parameters arise in the complex arguments of the Bessel functions. However, 
using the asymptotic results (60) leads to  approximate non-linear algebraic equations from 
which two parameters may be estimated by direct numerical methods. The four compressi- 
bilities arise in the two combinations B and K,  so if B and K are estimated, given @o and n ,  
then in principle any pair of compressibilities can be estimated given the other two and G. 
We now present the analysis for estimating the porosity go and permeability parameter n ,  
and demonstrate the accuracy of the estimates by comparison with the direct calculations 
from (57). 

Define 

then with B = 0(1), @o small, as required for significant amplitude, (57) can be approximated 
to  

B cos 7 B sin r 
, y = - ,  x=- 

40 4 0  

where B and T are given by the measured phase lag and oscillation amplitude. First consider 
I XL I < 1, then the asymptotic results (60) give 

independent of the n estimate, then 

2 8  sin r 

InIL/RII ( ~ c o s ~ - l / K L ~ }  ‘ 

n =  (64) 

By (58) and these estimates, the estimated I XL I = L(K@on)1’2, < 1 for validity of (63) and 
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Reservoir porosity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand well oscillations 717 

(64). Now consider zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI hL I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 1, when (60) implies 

, nIn1%XR11+2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB cos T 

1 + (n/8)n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA$0 = 

where $o has only a weak dependence on the estimated n when n is small. Eliminating h by 
(58) and (69 ,  leads to the algebraic equation for n :  

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
c1 = -ln(%KRTB cos T )  - - tan T ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA71 

c2 = 4 tan zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 
2 

For practical values c1 3 c2 > zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 ,  so F(O)= -c2 < 0, F(1)= c1 -c2  + In(1 + n/8) > 0, and 
there is necessarily a root n on (0, 1). A standard numerical algorithm has determined a 
unique root on (0, 2) in all cases treated. Validity of (65) requires the estimated 
L(K@,n)"' 2 1. An alternative composite expansion has also been applied by using 

which adds the small I hL I contribution to x for I hL 1 2 1. This may improve the [ hL I 5 1 
results without disturbing the 1 XL 1 3 I results when the extra term is negligible. With (68) 

B cos r - 1 / K L 2  
$0 = 

and n is the root of F(n) = 0 defined by (66) with 

1 + (71/8)n ' 

Comparisons and accuracy of the three sets of estimates are discussed with the numerical 
illustrations. 

5 Numerical illustrations 

It is clear that the full solution (57) is not significantly influenced by sensible variation of 
the parameters H ,  H,, R1, R,, po, p r ,  p f  (with pw pf here), K f ,  K, and G, so we focus on 
the effects of varying L ,  h, Kb, v, Go and n. Our calculations use the fixed values 

o = 1.454 x s-', go = 9.81 m s-', 

H = 1 0 0 ,  Hw=50, R1=0.01,  Rp=O.O1, 

( L J O , P ~ , P ~ ) = ( ~ , ~ . ~ ,  l ) ~ l O ~ k g m - ~ ,  

( K f r  K,) = (4.3,7)x lO-"Pa-', G = 10'OPa. 

The viscosity I-( enters only through the parameter k ,  and hence affects only required 
permeability k for a given value of n in the solution, and the tide magnitude g (- is 
simply a factor in the scaling d + Do. We have calculated and r for the lateral extents 
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718 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
L zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 10, 20, 30, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA50, 70, 100 with h = 10 and 20m, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAKb = 10 and 1 x IO-"Pa-', &, over the 
range 0.01-0.1, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn over the range 0.01-1 which encompasses the estimated range of 
significance (7). 

The first conclusion is that change of L above L = 20 has little effect on Do or zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7, with the 
main influence shown near the lower limit L = 10. Detailed results will be presented only 
for L = 50 and 10. This means that the lateral extent L cannot be determined from the 
inverse solution, Next we find that 7 is little changed by variation of v =  &Kp/Kb,, other 
parameters fixed, but that Do increases more than linearly with v. Figs 3 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 show GODo 

L. W. Morland and E. C Donaldson 

I 

+, '001 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv - 0 9  

n . 0 2 0  ioq zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( k i k )  =o 7 
n . 0 0 4  l o q ( h / E ) : l  4 

75-+---- 0 7  10 1 4  

P E R M E A E I L I T Y  P A R A M E T E R  (LOGl, ( h / k l  

Figure 3. Influence of permeability on porosity and phase lag. 

P I  I 

// L = 5 0  I 

I I I 
0 7  1 0  1 4  

75" 2 

P E R M E A B I L I T Y  P A R A M E T E R  (LOGIO ( k / k l  

Figure 4. Influence of permeability on porosity and phase lag. 
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Reservoir porosity and well oscillations zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA719 

and r as functions of  loglo(k/@ for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0.9, @0=0.01 and 0.1, at L = 50 and 10, and Figs 5 
and 6 show the corresponding curves at v =  0.7, all with h = 10m and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAKb = 10-9Pa-'. The 
marked points loglo(k/K) = 0.7 and 1.4 correspond to  n = 0.2 and 0.04 respectively, between 
which the combination o f  significant Do and significant zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT was estimated t o  lie zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(7), confirmed 
by these illustrations. @oD0 increases with k, but is nearly uniform by n = 0.01. I t  is clear that 
4oDo is not significantly changed between &,= 0.01 and 0.1 at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL = 50, so Do is roughly 
proportional to &', but increases with increase of @o at L = 10. However, L = 50 provides 
the greater value of  GODo for both values of Go, and hence the greater Do. Similarly, T is only 

L = 10 

L = 5 0  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2 50" + , = o  I iz5;rFz v = o  7 

I I 

t 

L.50 ! I  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
a 

I I I 

1 I I I 
0 7  10 1 4  

75" 
2 

PERMEABILITY PARAMETER ( L O G I O  ( k / k )  

Figure 5. Influence of permeability on porosity and phase lag. 

I I I i 
1 4  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 7  I 0  2 

759 

PERMEAEILITY PARAMETER (LOGlO ( k / k l  

Figure 6. Influence of permeability on porosity and phase lag. 
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720 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL. W. Morland and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE. C. Donaldson zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Table zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1. Influence of h and Kb on and r .  

L 

5 0  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 0  

5 0  

10 

5 0  

10 

5 0  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
10 

5 0  

10 

50 

10 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
$0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0.01 

0.01 

0.1 

0. I 

0'01 

0.01 

0 . 1  

il ' I 

0.01 

0'01 

0.1 

0.1 

0.2 0.1 

G O D O  700 6000 7 :  

h = lorn, Kb = i 0 - 9 P a - 1  

0 . 2 0 6  3 5 . 4  0 . 2 4 2  19.9 

0 , 1 7 9  3 2 . 7  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 . 2 0 9  1 9 . 4  

0.100 1 2 . 9  0 . 1 0 2  6 . 6  

0 . 1 7 3  2 7 . h  0 . 1 9 0  1 4 . 7  

h = 20m, ~b = iO-'Pa-' 

0 . 2 0 9  3 5 . 5  0 . 2 4 7  2 0 . 3  

0 . 1 4 2  18.5 0 . 1 4 3  9 . 5  

0 . 1 8 2  31.4 0 - 2 1 0  18 .5  

0 . 1 8 2  2 9 . 1  0 . 2 n 3  i ; . ~  

h = lorn, K* = 1 0 - l O P a - '  

0 . 0 9 4  3 5 . 6  0.110 2 0 . 1  

0 . 0 5 3  1 5 . 2  0 . 0 5 4  7 . 8  

0 . 0 6 2  3 2 - 2  0 . 0 7 2  19.0 

0 . 0 6 1  2 3 . 4  0 . 0 6 7  1 5 . 3  

0.05 

@ O D 0  

0 . 2 5 4  

0 . 1 0 3  

0 . 2 2 2  

0.195 

0 . 2 6 1  

0 . 1 4 9  

0 . 2 2 2  

0.210 

0.116 

0.055 

0 . 0 7 h  

0 . 0 6 9  

70" 

1 0 . 3  

3 . 3  

10 .6  

7.1 

10 .6  

4 . 9  

1 0 . 1  

8 . 1  

1 0 . 5  

3 . 9  

1 0 - 4  

7 . 8  

influenced strongly by Go at L = 10. Generally T decreases as L decreases, and shows marked 
decrease as k increases as expected - decreasing phase lag as the drag decreases. 

The influences of h and Kb are demonstrated by the selection of values shown in Table 1 
for the pairs h = l o r n ,  Kb = 1 0 - ~ ~ a - ' ;  h = 2 0 m ,  Kb=10-~pa-' ;  h = 1 0 m ,  Kb=lO-loPa-l; 
with u = 0.9. First we see that both GODo and T increase with h at L = 10 and G o =  0.01, but 
show little change at L = 50 or 10 and Go = 0.1. So h does not influence the maximum 
amplitude that can be attained significantly, as evident in equation (57)1; the inverse 
solution cannot determine h from measured Do and T .  However, the decrease of Kb by a 
factor 10, from a value exceeding K f  and K, to one below, yields a significant decrease in 
GODo, arising from the term ( ~ f  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt K,)/VKb in B-', (53), recalling G = KbC. T is not appreci- 
ably changed at any L ,  combination since the solution is not strongly sensitive to the 
modest variation of A with change of Kb (58). 

Finally, we examine the asymptotic estimates of Go and n when Do and T are known, by 
using values of Do, T ,  calculated by (57) for a range of given $o and n values, and comparing 
the estimates with the given values. Let n l ,  n 2 ,  n3  be the estimates of n from (64), I XL I < 1, 
from (66), (67), I XL I 2 1, and from (66), (70), the alternative I XL I 2 1 expansion, with 
dl, G2,  #3 the corresponding estimates of b0. Table 2 shows a selection of comparisons using 
h = IOm, Kb = 10-9Pa-1, u = 0.9, for L = 50 and 10, with the respective values of I XL I. An 
asterisk * in the I hL I column indicates that both nl  and G1 are better estimates than n2 and 
G2, and is shown in the 'G1 or G2' column, these results fall in the range I XL I G 1.73. The 
non-* results have both nz  and G2 better than nl  and Is1. A dagger in the I XL I column 
indicates that both n3 and 43 are better estimates than nz and (b2 (and nl and G1), 
corresponding to the range I hL I 2 4.3 1. A dagger in the n3 column indicates that n3 is a 
better estimate than n2 (and n l ) ,  but G3 is a worse estimate than &, corresponding to  the 
range 1.54 G I XL I Q 3.86. At I XL I = 1.54, n3 is a better estimate than n l  as well as n z ,  but 
G3 is not as good as &, and n 3  = n l  at I XL I = 1.22. A rough guide suggested by these results, 
based on estimated values of I XL I from the inverse solutions, is to  adopt the following 
estimates 

IhL I < 1.9 1 . 9 ~ l h L I ~ 4  IXL1>4 

n1, $1 n39 $2 n3, $3 
(72) 
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Reservoir porosity and well oscillations zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA72 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Table 2. Estimates zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA@ o  and n by asymptotic inversions, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5 0  2 . 4 4  0.01 

10 0 * 4 9 *  0.01 

5 0  1 . 9 3  0.01 

10 0 . 3 9 '  0.01 

5 0  1 . 2 2 *  0.01 

10 0 . 2 4 *  0.01 

5 0  0 . 7 7  0.01 

10 0.15" zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0-01 

5 0  5.46.: 0 . 0 5  

10 1.09*  0 . 0 5  

SO 4 . 3 1 t  0 . 0 5  

10 0 . 8 6 *  0 . 0 5  

5 0  2 - 7 3  0.05 

10 0 . 5 5 *  0.05 

5 0  1 . 7 3 '  0.05 

10 0 . 3 5 *  0 . 0 5  

5 0  7 - 7 2 '  0.1 

10 1 - 5 4 '  0-1 

5 0  6 . 1 0 '  0.1 

10 1 . 2 2 *  0.1 

5 0  3 . 8 6  0.1 

10 0 . 7 7 *  0.1 

5 0  2 . 4 4  0.1 

10 0 * 4 9 *  0.1 

0.0100 

0.0100 

0.0101 

0.0100 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0.0101 

n.0100 

0.0100 

0.0100 

0 . 0 5 0 7  

0 . 0 5 0 9  

0 . 0 5 0 4  

0 . 0 5 0 3  

0.0500 

0 . 0 5 0 1  

0 * 0 5 0 2  

0*0500 

0 . 1 0 1 4  

0 . 1 0 3 4  

0.1008 

0 . 1 0 1 3  

0 . 1 0 0 3  

0 . 1 0 0 2  

0~1000 

0.1000 

0 . 0 5 0 0  0 . 4  

0 . 4  

0 . 0 4 9 7  0 . 2 5  

0 . 2 5  

0 - 0 4 9 3  0.1 

0.1 

0.04 

0 . 0 4  

0 . 1 0 0 7  0 . 4  

0 . 0 9 0 1  0 . 4  

0 . 1 0 0 2  0 . 2 5  

0 . 0 9 3 3  0 . 2 5  

0 . 0 9 9 6  0.1 

0.1 

0 . 0 9 9 3  0 . 0 4  

0.04 

0 . 3 3 3 2  

0 - 3 5 5 3  

0 . 2 1 9 3  

0 . 2 2 2 6  

0.0906 

0 . 0 8 9 1  

0 . 0 3 6 4  

0 . 0 3 5 7  

0 .2R4R 

0 . 3 5 0 2  

0 . 1 9 4 3  

0 . 2 2 1 3  

0 . 0 8 7 1  

0 . 0 8 9 ~  

0 . 0 3 6 2  

0 . 0 3 5 7  

0 . 2 6 9 '  

0 . 3 4 3 6  

0 . 1 8 3 5  

0 . 2 1 9 6  

0 . 0 8 3 C  

0 . 0 8 R 9  

0 . 0 3 5 6  

0 . 0 3 5 6  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

n1 

0 . 3 6 5 2  

0.1131 

0 . 2 2 1 5  

0 . 0 6 7 5  

0 . 0 8 2 1  

0 . 0 2 5 0  

0 . 0 3 0 6  

ro- ou 9 7 

0 . 3 6 2 4  

0 . 2 6 3 3  

0 . 2 2 8 7  

0 . 1 5 4 4  

0 - 0 9 1 9  

0 .0563  

0.0353 

0.0208 

0 . 3 6 0 6  

0 . 2 2 7 3  

0 . 3 1 6 6  

0 . 1 8 6 1  

0 . 0 9 2 1  

0 . 0 6 7 6  

0 . 0 3 6 5  

0 . 0 2 5 0  

n3 

0 . 3 9 1 4  

0 - 3 2 6 6  

0 . 2 3 7 2 '  

0 . 1 8 9 2  

0.0878 

0.0327 

0 . 0 6 8 6  

0 . 0 2 5 4  

0 . 3 6 7 3  

0 . 3 6 2 6  

0 . 2 3 1 8  

0 . 2 1 0 2  

0 . 0 9 3 2  I 

0 .0758  

0 .0358  

0 . 0 2 5 0  

0 . 3 6 3 0  

0 - 1 7 5 6 1  

0 . 2 2 3 8  

0 . 2  1 96 

0 . 0 9 2 7 7  

0 . 0 7 9 3  

0 . 0 3 6 8 -  

0 . 0 2 9 3  

Note that n2 is never the best estimate of n. From the numerical examples the worst error in 
n is 14 per cent, using n, at J hL I = 1 S4, while the worst error in b0 is 5 per cent using 
at I hL I = 1.09, with much better estimates in many cases. Overall, the estimates (72) give 
very satisfactory agreement with the correct values of n and @,,. 

6 Concluding remarks 

The axisymmetric elastic matrix model analysed here allows explicit solutions for the ampli- 
tude and phase lag of well fluid oscillations arising from earth tide induced motions in a deep 
reservoir. Amplitudes of order 1 cm can be attained only when the bulk compressibility Kb 

exceeds the fluid compressibility K f  and effective rock compressibility zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK , ,  and when the 
formation compaction K~ = O(Kb/@o) and the fluid volume fraction 4o is of order 0.01. The 
solutions are relatively insensitive to sensible changes of the lateral extent and thickness of  
the reservoir, but depend strongly on the fluid volume fraction and on the permeability k 
through a dimensionless parameter n relating permeability to the fluid viscosity p and 
density p f ,  tide frequency o, layer thickness h ,  and well (or pipe) radius rl(rp). A range of 
?I yielding a combination of significant amplitude and significant phase lag is obtained. 
Asymptotic expansions allows inverse solutions to determine Go and n from measured 
amplitude and phase lag, given the other reservoir properties, and numerical examples show 
that good accuracy is obtained. 

A packed well pipe radius rp enters only through the parameter n,  so has little influence 
on the amplitude once a significant amplitude has been attained. However, estimates of n 
from Do,  r0 values observed for different r p  in the same well-reservoir configuration should 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ji/a

rtic
le

/7
9
/3

/7
0
5
/7

6
6
6
7
1
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



722 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMorland and E. C. Donaldson 

confirm the proportionality, ( 6 ) ,  

and determine one of the parameters p ,  p f ,  h, k in the right-hand constant, given the other 
three, Well packing can therefore provide some further information about the reservoir 
properties. 

It is reasonable to suppose that the vanishing of  the matrix velocity at the well interface 
will extend to non-symmetric configurations and to  multi-well configurations involving 
interactions. Coupled with the successful vertical-horizontal separation (Morland 1977), this 
should provide a useful simplification in seeking numerical solutions of  the resulting two- 
dimensional horizontal balance equations. Weak interactions of  two wells far apart on the 
reservoir thickness scale may even yield to  asymptotic methods. The incorporation of a 
perforated pipe in contrast to the open interface analysed here is the important extension, 
and now a vanishing matrix velocity at the wall is reinforced, and provides a starting point 
for the new interface conditions. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Reservoir porosity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand well oscillations 723 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Appendix A: Bessel function formulae 

The basic results for the modified Bessel functions of the first and second kind, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAl o ( z ) ,  I,(z) 
and Ko(z) ,  K l ( z ) ,  respectively, where z is a complex variable, are given by Magnus zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAef at. 
(1966). Numerical evaluations of4,(z), fl(z), were made from the integral representations zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
lo@) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= - exp(-z sin @) de zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt _I exp(z) i,"z exp[-z(l -sin d@, 

" 0  s"i2 71 

cos2e exp(-z sin e )  de + ___ cos2@ exp[-z(l-sin @)] d@, (A2) 

which provide high accuracy using a simple 5-point quadrature rule for all z such that 
Re@) > 0. Recall that Re(X) > 0. Similarly, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

dS 
Ko(z)  = lo1 exrj[-z(s + r/s)l- ( '43) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

S 

is accurate for Re(z) > 0 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIz 1 > 0.2, while the asymptotic result 

Ko(z)=  -y-lo(z) In(z /2)+%(I -7)z2 +z-6(1 .5-y)z4+0(z6) ,  y=O.57722, (A4)  

is excellent for Iz I < 0.2. Finally,K,(z) is evaluated from the identity 

1 
Io(z)K1(z) + Il(Z)KO(Z) = ;. (A51 

The asymptotic formulae for Iz I e 1 are (A4) and 

1 
l0(z) = 1 t %z2 + o ( ~ ~ ) ,  l l (z )  = %z t %z3 t O ( Z ~ ) ) , K ~ ( Z )  =- t lizz In(z/2) t o(z). 

lhRl l  Q 1 ,  

S2 = XRlln(%XRI) - XRIK1(XL)/I1(AL) + O(hR1), 

('46) 
Z 

The asymptotic results (46), (47) and (60), follow from the expansion for R, (38), when 

('47) 

where (Rl/L)' is neglected in comparison with unity when I XL I << 1 .  Thus 

2hR1 
lXRll < 1, IXL I Q 1, IRl/L I Q 1: R - -- -XRlln(L/RI). 

(XL)* 

Appendix B: list of symbols 

A 
3 
d well fluid surface displacement 
D 
DO magnitude of D (2) 
g gravity acceleration 
go mean gravity acceleration 

dimensionless parameter related to reservoir elasticity (36) 
dimensionless parameter related to reservoir elasticity (53) 

complex dimensionless displacement of well fluid surface (3) 

('49) 
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724 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
ii zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
G zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
c 
G 
h 

hr 
hw zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
k 
k zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 

f zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
P 

E s  
P 

PEf 

P S  

P 
pw 

L. W. Morland and E. C. Donaldson 

dimensionless amplitude of gravity variation (1) 
matrix shear modulus 
dimensionless shear modulus (34) 
dimensionless modulus related to 
reservoir thickness 
overburden thickness, H zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= hr/h 
height of well fluid surface above reservoir,Hw = hw/h 
permeability unit defined by configuration and gravity variation (6) 
permeability of matrix, n = k /k  
reservoir radius, L = l/h 
partial pressure increment in fluid 
intrinsic pressure increment in fluid 
partial pressure increment in matrix 
intrinsic pressure increment in matrix 
complex amplitude of dimensionless partial fluid pressure increment (28) 
complex amplitude of dimensionless well fluid pressure increment at reservoir level 

difference of scaled radial velocity increments of fluid and matrix at well interface 

radius of well, R1 = r l /h  
radius of well pipe, R ,  = r,/h 
dimensionless parameter related to reservoir geometry and elasticity (36) 
complex parameter related to geometry and drag (38) 
velocity increment of fluid 
velocity increment of matrix 
complex amplitude of dimensionless velocity increment of fluid (28) 
complex amplitude of dimensionless velocity increment of matrix (28) 
complex amplitude of dimensionless vertical velocity of overburden, ?= 2 V/H 
radial component of Vf at well interface 
radial component of Vs at well interface 
sum of scaled radial velocity increments of fluid and matrix at well interface (29) 
dimensionless height related to weight of well fluid column (3 1) 
complex parameter related to T and reservoir elasticity (39) 
complex parameter related to T and reservoir elasticity (39) 
unjacketed compressibility (1 8) 
partial dilatation increment in fluid 
intrinsic dilatation increment in fluid 
partial dilatation increment in matrix 
intrinsic dilatation increment in matrix 
bulk compressibility of reservoir at constant pore pressure (1 5) 
effective rock compressibility of reservoir (2 1) 
intrinsic fluid compressibility at reservoir conditions 
formation compaction of reservoir (19) 
intrinsic matrix compressibility at reservoir conditions, 
see (24), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv see (26) 
complex drag parameter (37) 
reservoir fluid viscosity 
intrinsic reservoir fluid density 
density of overburden 

and geometry (34) 

(31) 

(29) 
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Reservoir porosity and well oscillations zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA725 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
reservoir density in equilibrium 
well fluid density at reservoir level 
well fluid density at surface 
partial stress increment in matrix 
intrinsic stress increment in matrix 
radial component of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAus 
vertical component of us 
complex amplitude of dimensionless radial stress (28) 
complex amplitude of dimensionless vertical stress (28) 
phase lag of well fluid level oscillation, wAt (3) 
matrix porosity 
matrix porosity in equilibrium 
gravity variation frequency 
complex parameter related to geometry and drag (38) 
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