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Abstract 

Background: Understanding how HLA polymorphisms may affect both susceptibility, course and severity of Covid-

19 infection could help both at the clinical level to identify individuals at higher risk from the disease and at the epi-

demiological one to explain the differences in the epidemic trend among countries or even within a specific country. 

Covid-19 disease in Italy showed a peculiar geographical distribution from the northern most affected regions to the 

southern ones only slightly touched.

Methods: In this study we analysed the regional frequencies for the most common Italian haplotypes from the Ital-

ian Bone Marrow Donor Registry (HLA-A, -B, -C and -DRB1 at four-digit level). Then we performed Pearson correlation 

analyses among regional haplotypes estimated frequency in the population and Covid-19 incidence and mortality.

Results: In this study we found that the two most frequent HLA haplotypes in the Italian population, HLA-A*:01:01-

g-B*08:01 g-C*07:01g-DRB1*03:01g and HLA-A*02.01g-B*18.01g-C*07.01g-DRB1*11.04g, had a regional distribution 

overlapping that of Covid-19 and showed respectively a positive (suggestive of susceptibility) and negative (sugges-

tive of protection) significant correlation with both Covid-19 incidence and mortality.

Conclusions: Based on these results, in order to define such HLA haplotypes as a factor effectively associated to the 

disease susceptibility, the creation of national networks that can collect patients’ samples from all regions for HLA typ-

ing should be highly encouraged.
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Background
�e novel coronavirus identified in the last months of 

2019 (SARS-CoV-2) belongs to the family of already 

known human CoVs of zoonotic origin, along with 229E, 

OC43, HKU1, NL63, that are community acquired 

CoVs, well adapted to humans, causing mild respira-

tory diseases. �e CoVs causing severe acute respiratory 

syndrome (SARS-CoV) and Middle East respiratory 

syndrome (MERS-CoV), that are on the contrary highly 

pathogenic and cause severe respiratory disease with 

significantly high case fatality (9.6% for SARS-CoV and 

34.4% in MERS-CoV), also belong to this family [1]. 

SARS-CoV-2-induced pneumonia, named by World 

Health Organization as coronavirus disease 2019 (Covid-

19), has been declared a pandemic on the 11th of March 

2020 since its first appearance in Wuhan, China, in 

December 2019 [2]. Italy was the first European country 

to report an outbreak of infections with two hot spots 
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located in the northern of Italy, which led to the Lom-

bardia and Veneto regions being defined as red zone, 

followed by complete isolation of these areas from the 

21th of February onward. By that time, the epidemic had 

spread all over Italy and the lockdown was extended to 

the entire country on the 9th of March to further limit 

the diffusion and avoid the collapse of the public health 

system [3]. Since then, for many weeks Italy has been 

the country with the highest number of cases and deaths 

worldwide. With the pandemic evolving it has settled in 

sixth place for the number of confirmed infections in the 

world (more than 233,000) and third for the number of 

deaths (more than 33,300) as of the 31st of May (https ://

coron aviru s.jhu.edu/map.html) [4]. �ese numbers could 

even be an underestimation, because of hidden asymp-

tomatic or pauci-symptomatic individuals not subjected 

to the control swab. Even death counts could have been 

underreported especially in the climax of the emergency, 

as supported by several studies and by a report analysis 

of mortality in the period of epidemic from Covid-19 by 

National Institute for Social Security (INPS) [5, 6]. Dur-

ing this time the assistance and monitoring network was 

unprepared to face a pathology still unknown in many 

respects, hospitals and intensive care units were over-

crowded and many people may have died in their homes 

without testing. A recent observational study conducted 

on a small community in Nembro, a little town located 

in Lombardia, one of the most affected areas of northern 

Italy, reported an all-cause mortality between January 

and April 2020, several times higher than that recorded 

in the previous 8 years in the same time frame, reaching 

a peak of 154.4 per 1000 person years in March 2020 vs 

a range 1.0 to 21.5 per 1000 person years between Janu-

ary 2012 and February 2020 [5]. Overall, Covid-19 deaths 

were mostly observed in males and older patients with 

pre-existing comorbidities [7, 8]. However, the still inex-

plicable high Case Fatality Rate that has been reported in 

Italy compared to other countries for the age group over 

60, has not proven relationship with the demographic 

characteristics and the percentage in the elderly popula-

tion [9, 10].

Even though Covid-19 pathogenesis has not yet been 

fully disclosed, the host antiviral response undoubtedly 

plays a key role in the disease course. Immunopatho-

genesis and induction of a proinflammatory cytokine 

storm are the key event in disease progression into 

severe forms leading to acute respiratory distress syn-

drome (ARDS). When the adaptive immune response 

fails to clear the infection from the host, the disease 

progresses to more severe stages since the virus rap-

idly spreads into different organs (lungs, intestine, kid-

ney) eliciting a massive tissue destruction and a strong 

inflammatory response. �ese are mediated by innate 

immune cells, mainly macrophages and granulocytes, 

that induce a severe or even fatal clinical outcome 

caused by multi-organ dysfunction, through a cytokine 

storm that spreads throughout the body [11]. High sys-

temic levels of IL-6, IL-7, TNFα, IL-10, G-CSF, MCP-1 

and MIP1α have been observed in the blood of Covid-

19 patients, with a correlation to disease severity [12].

A fundamental question that urgently deserves an 

answer is why, even considering only symptomatic 

patients, the disease progresses into a severe form 

compromising respiratory function only in a frac-

tion of the infected individuals. One factor could be 

the appropriateness of the immune response to elicit 

a specific antiviral immunity without destroying the 

host tissues, which depends both on environmental 

and genetic factors. In this context, the human leuko-

cyte antigen (HLA) complex, which is well known to 

influence the efficacy of T cell recognition of foreign 

antigens, could play a major role. �e presentation of 

viral antigens through HLA II by APC cells is a key 

event in the establishment of the anti-viral adaptive 

immune response in addition to HLA I direct presen-

tation to cytotoxic CD8 T cells. �e HLA locus is the 

most polymorphic region in the human genome. �e 

polymorphism of HLA proteins controls the possible 

repertoire of bound epitopes, thus shaping the immune 

response profile of an individual [13, 14]. Genetic poly-

morphisms have been reported to influence population 

and individual predisposition to multifactorial, auto-

immune and infectious pathologies [15]. Susceptibility 

to viral infections like human immunodeficiency virus 

(HIV), human hepatitis B virus (HBV), human hepati-

tis C virus (HCV) and human papilloma virus (HPV), 

to name just a few, has been reported to be influenced 

by HLA specific subtypes [16–19]. Noteworthy, studies 

conducted on a meaningful data set of high-resolution 

HLA-typed individuals, revealed significant differences 

in single allele and haplotypes frequencies among the 

Italian regions [20]. Understanding how genetic vari-

ation in HLA may affect both susceptibility as well as 

course and severity of Covid-19 infection, could help 

to identify and stratify individuals at higher risk from 

the disease. Moreover, it could help to give a possible 

explanation at the epidemiological level why the epi-

demic in Italy, even though spread all over the coun-

try, showed a strong regionality with northern regions, 

above all Lombardia, reporting higher rates than cen-

tral and southern regions.

On these premises, in this work we performed a geo-

graphical epidemiological analysis in order to find if 

in the Italian population there are particular frequent 

haplotypes and HLA alleles, whose distribution among 

the Italian regions overlaps with Covid-19 regional 

https://coronavirus.jhu.edu/map.html
https://coronavirus.jhu.edu/map.html
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distribution and thus formulate and test the hypothesis of 

their potential association with Covid-19 incidence and 

severity, to identify sub-populations most at risk of sus-

ceptibility to the infection.

Methods
Data sources

For our analyses we used the large dataset from the Ital-

ian Bone Marrow Donors Registry (IBMDR) maintained 

at E.O. Ospedali Galliera di Genova https ://www.ibmdr 

.galli era.it/ibmdr / [20]. In the study, we used the dataset 

2, which is constituted by a sample of 104,135 donors 

with available data about the city of birth, typed for HLA-

A, -B, -C and -DRB1 at a high-resolution (HR) level by 

ASHI or EFI-accredited tissue typing laboratories using 

HR molecular biology techniques (SBT, SSO, SSP, NGS) 

as described [20]. �e data, based on the donor’s birth 

region, were divided into the 20 geographical regions of 

Italy that are in alphabetical order: Abruzzo, Basilicata, 

Calabria, Campania, Emilia Romagna, Friuli Venezia 

Giulia, Lazio, Liguria, Lombardia, Marche, Molise, Pie-

monte, Puglia, Sardegna, Sicilia, Toscana, Trentino Alto 

Adige, Umbria, Valle d’Aosta and Veneto. �e datasets 

used as reference are the CWD 2.0.0 catalogue (ASHI 

CWD) from worldwide population and the EFI CWD 

catalogue for the European population [21, 22]. Sardegna 

and Valle D’Aosta regions were excluded from correla-

tion analyses because of their widely recognized genetic 

difference, even within the HLA locus, with respect to 

the rest of Italy due to genetic isolation as previously 

reported [23].

With regard to the number of Covid-19 cases and 

deaths, we used the data collected by the Italian National 

Institute of Health (Istituto Superiore di Sanità [ISS]), 

which are daily reported by the Civil Protection Depart-

ment Headquarters and published at http://www.salut 

e.gov.it.

Moreover, we obtained data on the number of inhab-

itants for each Italian region that is freely available from 

the Italian National Institutes of Statistics (ISTAT), the 

main provider of official statistics in Italy, for both citi-

zens and policy-makers.

Statistical analysis

All statistical analyses were performed using R version 

4.0.0 (R Core team) [24]. Pearson correlations, as meas-

ure of the strength of the linear relationship between two 

variables (− 1 < r ≤ + 1) and accompanying P-values, were 

calculated using the package ‘Hmisc’. Correlation plots 

were generated using the package ‘ggpubr’. P values were 

considered statistically significant below 0.05 (* < 0.05, 

** < 0.01, *** < 0.001).

Results
Geographical distribution of Covid-19 epidemic in Italy

We analysed the number of Covid-19 cases confirmed 

by a real-time reverse transcriptase–polymerase chain 

reaction (RT-PCR) assay of nasal and pharyngeal swabs 

from patients and the number of deaths reported by ISS 

for each Italian region. �e analysis was performed at 

four meaningful time points of the epidemic: before the 

lockdown start (8th of March), 1 month later during the 

exponential phase of the epidemic (8th of April), at the 

end of the lockdown (3rd of May) and 3 weeks later (24th 

of May) (Table 1). �e values for the number of cases and 

deaths were normalised to the total of inhabitants of each 

region, in order to take into account the different popula-

tion sizes, based on statistics reported by ISTAT for 2019 

(Additional file  1: Table  S1). At every time point, there 

is a clustering of the twenty regions for number of cases 

and deaths in three groups reflecting the geographical 

localization, with the northern regions showing the most 

cases and deaths (Fig. 1). 

Regional distribution of most frequent HLA haplotypes

Given the key role of the host immune response against 

the SARS-CoV-2 virus in the pathogenesis of the disease 

and the high degree of HLA polymorphism, we subse-

quently tried to determine, at the general population 

level, if there are significative differences in the frequency 

of the most frequent HLA haplotypes in the Italian popu-

lation among the northern, central and southern regions. 

We performed our analyses on the five most common 

Italian haplotypes as ranked by the Italian Bone Mar-

row Donor Registry (IBMDR), the most extensive Italian 

collection consisting of more than 131,000 high resolu-

tion HLA-A, -B, -C and -DRB1 typed individuals at the 

four-digit level. �e registry contains complete infor-

mation about the region of provenience and ethnic ori-

gin for a sample of 104,135 subjects, thus providing a 

reliable estimation of HLA frequencies within the Ital-

ian population [20]. �e estimated national frequen-

cies for these haplotypes, calculated using the Arlequin  

programme by the EM algorithm, sum up to 6.9%:  

HLA-A*:01:01g-B*08:01g-C*07:01g-DRB1*03:01g 

(2.54%); HLA-A*02.01g-B*18.01g-C*07.01g-DRB1*11.04g 

(1.14%); HLA-A*30.01g-B*13.02g-C*06.02g-DRB1*07.01g 

(1.09%); HLA-A*29.02g-B*44.03g-C*16.01g-DRB1*07.01g 

(1.08%); HLA-A*03.01g-B*07.02g-C*07.02g-DRB1*15.01g 

(1.02%). �e regional frequencies estimated from the 

data set sample are depicted in Table  2. We observed 

that the most frequent five Italian haplotypes were not 

https://www.ibmdr.galliera.it/ibmdr/
https://www.ibmdr.galliera.it/ibmdr/
http://www.salute.gov.it
http://www.salute.gov.it
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Fig. 1 Trend over time relative to the number of Covid-19 cases/100,000 inhabitants and deaths/100,000 inhabitants. The graphs report the 

number of Covid-19 cases/100,000 inhabitants (a) and deaths/100,000 inhabitants (b) at four time points of the epidemic. Red symbols are used for 

northern regions, blue symbols for central regions and green symbols for southern regions

Table 2 Frequencies of the 5 most common haplotypes observed in the Italian population

The # indicates the ranking of the haplotype for frequency in the Italian population

Region Frequencies (%)

#1

HLA-A*:01:01g-B*08:01g-

C*07:01g-DRB1*03:01g

#2

HLA-A*02.01g-B*18.01g-

C*07.01g-DRB1*11.04g

#3

HLA-A*30.01g-B*13.02g-

C*06.02g-DRB1*07.01g

#4

HLA-A*29.02g-B*44.03g-

C*16.01g-DRB1*07.01g

#5

HLA-A*03.01g-

B*07.02g-C*07.02g-

DRB1*15.01g

Italy 2.54 1.14 1.09 1.08 1.02

Abruzzo 2.08 1.90 1.40 0.00 1.34

Basilicata 1.21 2.87 1.25 0.00 1.40

Calabria 0.82 1.75 1.26 0.00 0.00

Campania 1.42 1.69 1.33 0.73 0.70

Emilia Romagna 2.64 0.97 1.12 1.55 1.29

Friuli Venezia Giulia 3.15 0.80 0.80 0.70 1.10

Lazio 2.01 1.36 1.13 0.84 1.19

Liguria 3.02 1.05 1.24 1.35 1.20

Lombardia 2.83 1.03 1.01 1.38 1.03

Marche 2.58 1.83 1.30 0.00 0.88

Molise 1.74 2.02 3.26 1.96 0.00

Piemonte 2.64 1.04 0.90 1.32 1.10

Puglia 1.32 2.28 1.46 0.00 0.90

Sardegna 1.07 1.08 0.00 0.00 0.00

Sicilia 1.45 1.51 1.30 0.66 0.00

Toscana 3.09 0.86 1.37 1.13 1.11

Trentino Alto Adige 4.47 0.68 1.17 1.38 1.67

Umbria 2.17 1.22 0.91 1.06 0.91

Valle D’Aosta 1.22 0.00 1.22 0.00 0.00

Veneto 3.48 1.07 1.00 1.36 1.08
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uniformly distributed in all regions and, in some regions, 

they were totally missing. Sardegna and Valle D’Aosta 

regions which are widely recognized for their genetic dif-

ference in the HLA locus with respect to the rest of Italy 

due to genetic isolation, even if reported in the Tables 

to have an overall picture of the geographic distribution 

of HLA haplotypes in the Italian population, have been 

indeed excluded from all subsequent correlation analyses 

[23]. �e haplotypes ranked#1 HLA-A*01:01g-B*08:01g-

C*07:01g-DRB1*03:01g and #2 HLA-A*02:01g-B*18:01g-

C*07:01g-DRB1*11:04g showed the highest dispersion 

from the mean national value and an almost net cluster-

ing among northern, central and southern regions in the 

opposite direction for #1 and #2 (Fig. 2). 

Correlation among HLA haplotypes regional frequency 

and Covid-19 incidence and mortality

Next, in order to find if there is an overlap among the 

most frequent haplotypes distribution and the inci-

dence of Covid-19 at the regional level, we calculated, 

using Pearson correlations, if and how the regional fre-

quencies of each haplotype in the population linearly 

correlate with the regional number of both Covid-19 

cases and deaths/100,000 inhabitants. We found that 

the haplotype ranked #1 HLA-A*01:01g-B*08:01g-

C*07:01g-DRB1*03:01g shows a positive (sugges-

tive of susceptibility) significant correlation with both 

Covid-19 incidence and mortality. Conversely, the hap-

lotype ranked #2 HLA-A*02:01g-B*18:01g-C*07:01g-

DRB1*11:04g shows a negative correlation (suggestive of 

protection). �is correlation is observed at all significant 

time points of the epidemic except for the 8th of March 

when the numbers were still too low. Pearson’s correla-

tion coefficients and relative P values for each bivari-

ate analysis are reported in Table  3. For the haplotype 

#1 HLA-A*01:01g-B*08:01g-C*07:01g-DRB1*03:01g, 

the distribution is characterized by a net clustering of 

the regions in three groups, with the northern regions 

reporting high frequency values and corresponding 

highest incidence and mortality, the central regions 

Table 3 Bivariate correlation analysis among regional haplotypes estimated frequency in the population and COVID-19 

incidence and mortality

Correlation = Pearson Correlation Coe�ciency. Statistical signi�cance P < 0.05

N°cases/100,000 inhabitants

Haplotype 8 March 8 April 3May 24 May

Correlation P Correlation P Correlation P Correlation P

HLA-A*01:01g-B*08:01g-C*07:01g-DRB1*03:01g 0.34 0.171 0.75 0.0004*** 0.74 0.0004*** 0.72 0.0008***

HLA-A*02:01g-B*18:01g-C*07:01g-DRB1*11:04g − 0.33 0.181 − 0.62 0.006** − 0.63 0.005** − 0.61 0.007**

HLA-A*30:01g-B*13:02g-C*06:02g-DRB1*07:01g − 0.18 0.476 − 0.33 0.183 − 0.33 0.175 − 0.30 0.224

HLA-A*29:02g-B*44:03g-C*16:01g-DRB1*07:01g 0.36 0.141 0.48 0.042* 0.51 0.032* 0.52 0.027*

HLA-A*03:01g-B*07:02g-C*07:02g-DRB1*15:01g 0.17 0.502 0.51 0.033* 0.52 0.028* 0.49 0.038*

N°deaths/100,000 inhabitants

Haplotype 8 March 8 April 3 May 24 May

Correlation P Correlation P Correlation P Correlation P

HLA-A*01:01g-B*08:01g-C*07:01g-DRB1*03:01g 0.24 0.347 0.52 0.026* 0.57 0.013* 0.57 0.014*

HLA-A*02:01g-B*18:01g-C*07:01g-DRB1*11:04g − 0.28 0.265 − 0.44 0.065 − 0.50 0.034* − 0.51 0.032*

HLA-A*30:01g-B*13:02g-C*06:02g-DRB1*07:01g − 0.19 0.441 − 0.25 0.311 − 0.28 0.257 − 0.29 0.239

HLA-A*29:02g-B*44:03g-C*16:01g-DRB1*07:01g 0.31 0.208 0.36 0.137 0.42 0.083 0.43 0.078

HLA-A*03:01g-B*07:02g-C*07:02g-DRB1*15:01g 0.16 0.538 0.36 0.148 0.40 0.098 0.41 0.094

Fig. 2 Frequencies of the 5 most common haplotypes observed in 

the Italian population. The horizontal bars indicate the mean national 

values plus the 95% confidence interval. The # refers to the ranking 

of the haplotype for frequency in the Italian population. Red symbols 

are used for northern regions, blue symbols for central regions and 

green symbols for southern regions
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displaying intermediate values and the southern regions 

the lowest values for the haplotype #1 (Fig.  3). �e 

Pearson correlation coefficient among the frequency 

of HLA-A*01:01g-B*08:01g-C*07:01g-DRB1*03:01g 

haplotype and Covid-19  N° cases/100,000 inhabit-

ants ranges from 0.34 (at the 8th of March) to 0.75 (at 

Fig. 3 Bivariate correlation analysis among the regional frequency of HLA-A*01:01g-B*08:01g-C*07:01g-DRB1*03:01g haplotype and the N° 

cases/100,000 inhabitants and N° deaths/100,000 inhabitants. The graphs show the bivariate correlation analysis relative to 3rd May time point. High 

HLA-A*01:01g-B*08:01g-C*07:01g-DRB1*03:01g frequency in the population is significantly correlated with a high number of both cases (a) and 

deaths (b)/100,000 inhabitants

Fig. 4 Bivariate correlation analysis among the regional frequency of the HLA-A*02.01g-B*18.01g-C*07.01g-DRB1*11.04g haplotype with the N° 

cases/100,000 inhabitants and N° deaths/100,000 inhabitants. The graphs show the bivariate correlation analysis relative to 3rd May time point. High 

HLA-A*02.01g-B*18.01g-C*07.01g-DRB1*11.04g frequency in the population is significantly correlated with a low number of both cases (a) and 

deaths (b)/100,000 inhabitants
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Table 4 Frequencies of the single alleles and allelic combinations of the HLA-A, -B, -C, -DRB1 loci of the haplotype HLA-

A*01:01g-B*08:01g-C*07:01g-DRB1*03:01g in the Italian population

Frequency (%)

Regions HLA-A*01:01g HLA-B*08:01g HLA-

DRB1*03:01g

HLA-

A*01:01g- 

B*08:01g

HLA-A*01:01g-

C*07:01g

HLA-A*01:01g-

DRB1*03:01g

HLA-B*08:01g-C*07:01g

Italy 11.53 5.76 9.47 3.45 4.63 2.89 5.16

Abruzzo 11.40 4.34 7.24 2.59 3.73 2.57 3.73

Basilicata 10.28 2.92 7.21 1.33 3.26 1.45 1.35

Calabria 10.37 3.06 5.95 1.38 3.14 0.95 2.34

Campania 11.27 3.97 7.76 1.87 3.62 1.70 3.04

Emilia Romagna 11.84 6.40 8.94 3.61 4.56 2.91 5.76

Friuli Venezia Giulia 11.42 6.49 10.73 4.09 5.25 3.51 5.86

Lazio 11.10 4.70 8.68 2.51 3.66 2.52 4.02

Liguria 12.50 6.33 9.37 3.91 5.03 3.45 5.75

Lombardia 11.84 6.32 9.42 3.74 4.90 3.14 5.78

Marche 12.41 5.22 7.89 3.11 4.49 3.11 4.75

Molise 10.22 3.91 7.17 2.39 3.70 2.61 3.48

Piemonte 11.53 5.79 9.04 3.61 4.68 2.95 5.22

Puglia 11.75 3.56 6.84 1.90 3.46 1.67 2.78

Sardegna 5.33 2.53 21.20 1.36 1.95 1.38 2.26

Sicilia 11.34 3.96 7.02 2.02 3.98 1.80 3.00

Toscana 11.98 6.44 9.78 3.95 5.14 3.36 5.74

Trentino Alto Adige 12.70 8.23 10.67 5.84 6.76 4.76 7.82

Umbria 11.48 6.04 10.12 2.69 3.62 2.84 4.92

Valle D’Aosta 9.02 5.37 7.80 1.22 2.44 1.71 4.39

Veneto 12.45 7.30 10.23 4.82 5.91 3.90 6.87

Frequency (%)

Regions HLA-B*08:01g-

DRB1*03:01g

HLA-

C*07:01g-

DRB1*03:01g

HLA-A*01:01g-

B*08:01g-

C*07:01g

HLA-A*01:01g-

B*08:01g-

DRB1*03:01g

HLA-A*01:01g-C*07:01g-

DRB1*03:01g

HLA-B*08:01g-C*07:01g-

DRB1*03:01g

Italy 4.20 4.30 3.40 2.57 2.58 3.80

Abruzzo 3.11 3.21 2.59 2.08 2.08 3.03

Basilicata 1.77 2.20 1.33 1.21 2.08 0.44

Calabria 1.86 2.35 1.36 0.82 2.08 0.60

Campania 2.95 3.11 1.76 1.47 1.51 2.35

Emilia Romagna 4.58 4.65 3.57 2.66 2.67 4.22

Friuli Venezia Giulia 4.97 4.78 4.07 3.15 3.18 4.56

Lazio 3.59 3.78 2.47 2.03 2.09 3.17

Liguria 4.67 4.86 3.88 3.04 3.11 4.33

Lombardia 4.74 4.75 3.68 2.87 2.87 4.37

Marche 3.86 4.05 3.08 2.58 2.69 3.58

Molise 2.61 2.83 2.39 1.74 1.74 2.39

Piemonte 4.16 4.31 3.57 2.66 2.70 3.79

Puglia 2.43 2.50 1.83 1.37 1.32 1.85

Sardegna 1.84 3.32 1.29 1.14 1.11 1.60

Sicilia 2.75 2.87 1.92 1.53 1.49 2.15

Toscana 4.74 4.65 3.88 3.09 3.11 4.38

Trentino Alto Adige 6.23 6.19 5.79 4.50 4.47 6.01

Umbria 4.08 3.41 2.47 2.39 2.17 3.41

Valle D’Aosta 3.90 3.90 1.22 1.22 1.22 2.93

Veneto 5.38 5.45 4.78 3.50 3.52 5.09
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Table 5 Frequencies of the single alleles and allelic combinations of the HLA-A, -B, -C, -DRB1 loci of the haplotype HLA-

A*02.01g-C*07.01g-DRB1*11.04g in the Italian population

Frequency (%)

Regions HLA-A*02.01g HLA-B*18:01g HLA-C*07:01g HLA-

DRB1*11:04g

HLA-A*02.01g-

B*18.01g

HLA-A*02.01g-

C*07.01g

HLA-A*02.01g-

DRB1*11.04g

Italy 22.82 9.52 17.11 10.07 3.05 4.08 2.59

Abruzzo 24.46 9.97 17.84 12.83 4.47 5.48 4.32

Basilicata 20.69 12.17 19.58 18.05 4.61 5.80 4.73

Calabria 22.25 10.30 21.81 15.27 4.14 5.87 3.99

Campania 21.42 11.01 19.43 14.31 3.64 5.66 3.31

Emilia Romagna 22.63 8.01 16.50 9.57 2.66 4.05 2.37

Friuli Venezia 

Giulia

24.07 7.66 14.91 8.32 2.27 2.90 2.37

Lazio 22.54 9.12 18.36 11.21 3.17 4.54 3.20

Liguria 22.77 9.54 16.96 9.51 2.81 3.73 2.56

Lombardia 24.19 8.52 15.80 8.98 2.66 3.71 2.58

Marche 22.16 8.86 18.43 10.80 3.55 4.69 3.01

Molise 21.09 10.22 18.48 15.43 3.35 4.35 3.68

Piemonte 22.43 8.99 16.15 9.83 2.81 3.68 2.37

Puglia 20.69 12.08 18.73 16.61 4.20 5.33 4.25

Sardegna 20.46 25.42 24.28 7.33 5.92 5.22 2.04

Sicilia 20.22 10.38 18.52 14.03 3.44 4.74 3.14

Toscana 21.76 8.39 17.15 8.53 2.53 4.04 2.01

Trentino Alto 

Adige

24.77 6.56 16.24 5.71 2.47 3.54 1.97

Umbria 23.57 8.46 18.13 11.33 2.77 4.91 2.82

Valle D’Aosta 23.90 6.59 15.12 7.07 1.95 1.95 1.46

Veneto 24.73 8.15 16.37 8.14 3.07 3.80 2.30

Frequency (%)

Regions HLA-B*18.01g- 

C*07.01g

HLA-B*18.01g-

DRB1*11.04g

HLA-C*07.01g-

DRB1*11.04g

HLA-A*02.01g-

B*18.01g-C*07.01g

HLA-A*02.01g-

B*18.01g-

DRB1*11.04g

HLA-A*02.01g-

C*07.01g-

DRB1*11.04g

HLA-B*18.01g-

C*07.01g-

DRB1*11.04g

Italy 4.53 3.22 2.81 0.77 1.33 1.28 2.01

Abruzzo 5.41 3.47 3.20 3.13 2.18 2.04 2.09

Basilicata 7.53 6.48 6.17 4.11 3.17 2.95 4.63

Calabria 6.02 4.50 4.72 3.23 2.24 1.93 2.94

Campania 5.66 4.53 4.35 2.80 1.98 1.88 2.76

Emilia Romagna 3.79 2.81 2.42 1.88 1.13 1.06 1.67

Friuli Venezia Giulia 3.82 2.39 2.09 1.40 0.93 0.87 1.60

Lazio 4.50 3.64 3.30 2.25 1.66 1.52 2.10

Liguria 4.15 2.63 2.01 1.84 1.32 1.08 1.60

Lombardia 3.90 2.85 2.27 1.74 1.30 1.22 1.65

Marche 5.44 3.54 3.81 3.09 1.94 2.03 2.64

Molise 6.30 5.76 4.13 3.02 2.35 2.26 3.36

Piemonte 4.39 3.01 2.71 1.94 1.28 1.10 1.89

Puglia 7.16 6.44 5.33 3.40 2.58 2.34 4.54

Sardegna 6.11 2.98 2.13 3.20 1.20 1.13 1.48

Sicilia 5.41 4.47 3.70 2.70 1.81 1.63 2.49

Toscana 3.93 2.21 1.99 1.97 1.05 0.92 1.42

Trentino Alto Adige 3.48 1.75 1.82 1.65 0.79 0.83 1.24

Umbria 3.47 3.86 2.65 2.01 1.52 1.22 1.75

Valle D’Aosta 3.17 1.71 1.22 1.22 0.98 0.49 0.73

Veneto 4.25 2.61 2.40 2.01 1.15 1.27 1.84
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the 8th of April). When considering the N° of Covid-19 

deaths/100,000 inhabitants as the correlated variable, 

the Pearson’s coefficient varies from 0.24 to 0.57 (Table 3 

and Fig.  3). On the contrary, for the #2 HLA-A*02:01g-

B*18:01g-C*07:01g-DRB1*11:04g haplotype the regions 

are inversely clustered in three groups, with the south-

ern regions reporting higher frequencies for the haplo-

type and low numbers of both cases and deaths, whereas 

central and northern regions show respectively interme-

diate and low frequencies and progressively increasing 

reported incidence and mortality of Covid-19 (Figure 4). 

For this haplotype, the Pearson correlation coefficient 

among its frequency and Covid-19 incidence varies from 

− 0.33 (at the 8th of March) to − 0.63 (at the 3rd of May). 

When considering mortality as the correlated variable 

the Pearson’s coefficient extends from −  0.28 to −  0.51 

(Table 3 and Fig. 4).  

�e haplotypes ranked #4 HLA-A*29:02g-B*44:03g-

C*16:01g-DRB1*07:01g and #5 HLA-A*03:01g-B*07:02g-

C*07:02g-DRB1*15:01g only show a slight significant 

correlation with the N° of cases, without a net clustering 

of the regions in the three areas (north, center, south), 

whereas the haplotype #3 doesn’t have any correlation 

(Table  3). Given that single specific alleles are repre-

sented in thousand haplotypes in different combinations 

inside the Italian population, covering a larger percentage 

Table 6 Correlation analysis of the single alleles and allelic combinations of the HLA-A, -B, -C, -DRB1 loci of the haplotype 

HLA-A*01:01g-B*08:01g-C*07:01g-DRB1*03:01g with N° cases and deaths/100,000 inhabitants

N° cases/100,000 inhabitants

Haplotype 8 March 8 April 3 May 24 May

Correlation P Correlation P Correlation P Correlation P

HLA-A*01:01g 0.35 0.158 0.68 0.002** 0.67 0.002** 0.64 0.004**

HLA-B*08:01g 0.40 0.097 0.76 0.0002*** 0.75 0.0004*** 0.72 0.0007***

HLA-DRB1*03:01g 0.28 0.257 0.60 0.009** 0.58 0.012* 0.56 0.016*

HLA-A*01:01g- B*08:01g 0.35 0.152 0.75 0.0003*** 0.75 0.0003*** 0.73 0.0006***

HLA-A*01:01g-C*07:01g 0.32 0.201 0.71 0.001** 0.71 0.001** 0.68 0.002**

HLA-A*01:01g-DRB1*03:01g 0.32 0.201 0.71 0.001** 0.70 0.001** 0.68 0.002**

HLA-B*08.01g-C*07.01g 0.42 0.080 0.78 0.0002*** 0.76 0.0002*** 0.74 0.0004***

HLA-B*08.01g-DRB1*03:01g 0.40 0.096 0.76 0.0003*** 0.74 0.0004*** 0.72 0.0007***

HLA-C*07.01g-DRB1*03:01g 0.43 0.078 0.79 0.0001*** 0.78 0.0001*** 0.76 0.0002***

HLA-A*01:01g-B*08:01g-C*07:01g 0.35 0.151 0.75 0.0003*** 0.76 0.0003*** 0.73 0.0005***

HLA-A*01:01g-B*08:01g-DRB1*03:01g 0.33 0.175 0.75 0.0004*** 0.74 0.0005*** 0.71 0.0009***

HLA-A*01:01g-C*07:01g-DRB1*03:01g 0.30 0.232 0.72 0.0008*** 0.71 0.0009*** 0.68 0.002**

HLA-B*08.01g-C*07.01g-DRB1*03:01g 0.41 0.094 0.75 0.0003*** 0.74 0.0004*** 0.72 0.0007***

N° deaths/100,000 inhabitants

Haplotype 8 March 8 April 3 May 24 May

Correlation P Correlation P Correlation P Correlation P

HLA-A*01:01g 0.26 0.289 0.53 0.025* 0.56 0.015* 0.56 0.015*

HLA-B*08:01g 0.31 0.216 0.54 0.022* 0.58 0.011* 0.58 0.011*

HLA-DRB1*03:01g 0.21 0.399 0.38 0.121 0.42 0.080 0.43 0.078

HLA-A*01:01g- B*08:01g 0.25 0.317 0.52 0.026* 0.58 0.012* 0.58 0.012*

HLA-A*01:01g-C*07:01g 0.22 0.379 0.49 0.038* 0.54 0.020* 0.54 0.022*

HLA-A*01:01g-DRB1*03:01g 0.20 0.419 0.48 0.042* 0.53 0.024* 0.52 0.025*

HLA-B*08.01g-C*07.01g 0.32 0.198 0.56 0.016* 0.61 0.008** 0.60 0.008**

HLA-B*08.01g-DRB1*03:01g 0.31 0.206 0.55 0.019* 0.59 0.010* 0.59 0.010*

HLA-C*07.01g-DRB1*03:01g 0.33 0.177 0.58 0.011* 0.63 0.005** 0.63 0.005**

HLA-A*01:01g-B*08:01g-C*07:01g 0.25 0.315 0.52 0.025* 0.58 0.011* 0.58 0.012*

HLA-A*01:01g-B*08:01g-DRB1*03:01g 0.23 0.350 0.52 0.028* 0.57 0.014* 0.56 0.015*

HLA-A*01:01g-C*07:01g-DRB1*03:01g 0.21 0.408 0.50 0.036* 0.54 0.020* 0.54 0.021*

HLA-B*08.01g-C*07.01g-DRB1*03:01g 0.31 0.216 0.54 0.019* 0.59 0.010* 0.59 0.010*
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of the population, the next step was to determine if the 

distribution of single HLA-A, -B, -C, -DRB1 alleles 

of the haplotypes #1 and #2 may in turn overlap with 

Covid-19 regional distribution. We therefore analysed 

the estimated frequencies of each allele alone and in all 

possible double or triple combinations of the four con-

sidered HLA-A, -B, -C, -DRB1 loci (Tables 4 and 5). We 

found that the regional frequencies of the alleles HLA-

A*01:01g, HLA-B*08:01g and HLA-DRB1*03:01g were 

all directly correlated with a higher Covid-19 regional 

incidence and mortality, with the northern regions hav-

ing higher frequencies for these alleles. �e same was 

for all the allelic combinations, with a stronger signifi-

cance for those containing the HLA-B*08:01g and/or the 

HLA-DRB1*03:01g allele (Table 6) In contrast, the allelic 

frequencies of HLA-B*18:01, HLA-C*07:01 and HLA-

DRB1*11:04 were all inversely related to the number of 

Covid-19 cases and deaths, having the southern regions 

higher frequencies and lower incidence and mortality 

associated to the infection. �e same result was observed 

Table 7 Correlation analysis of the single alleles and allelic combinations of the HLA-A, -B, -C, -DRB1 loci of the haplotype 

HLA-A*02.01g-C*07.01g-DRB1*11.04g with N° cases and deaths/100,000 inhabitants

N° cases/100,000 inhabitants

Haplotype 8 March 8 April 3 May 24 May

Correlation P Correlation P Correlation P Correlation P

HLA-A*02:01g 0.33 0.175 0.59 0.009** 0.56 0.015* 0.55 0.019*

HLA-B*18:01g − 0.39 0.113 − 0.68 0.002** − 0.64 0.004** − 0.62 0.006**

HLA-C*07:01g − 0.47 0.050 − 0.71 0.001** − 0.72 0.001** − 0.72 0.001**

HLA-DRB1*11:04g − 0.41 0.093 − 0.75 0.0003*** − 0.75 0.0004* − 0.72 0.001**

HLA-A*02:01g-B*18:01g − 0.38 0.122 − 0.61 0.008** − 0.60 0.009** − 0.59 0.010*

HLA-A*02:01g-C*07:01g − 0.41 0.095 − 0.66 0.003** − 0.68 0.002** − 0.68 0.002**

HLA-A*02:01g-DRB1*11:04g − 0.39 0.110 − 0.66 0.003** − 0.66 0.003** − 0.64 0.004**

HLA-B*18.01g-C*07.01g − 0.37 0.128 − 0.64 0.004** − 0.63 0.005** − 0.61 0.007**

HLA-B*18.01g-DRB1*11.04g − 0.35 0.150 − 0.69 0.002** − 0.69 0.002** − 0.67 0.002**

HLA-C*07.01g-DRB1*11.04g − 0.36 0.137 − 0.67 0.002** − 0.67 0.002** − 0.66 0.003**

HLA-A*02:01g-B*18:01g-C*07:01g − 0.37 0.132 − 0.63 0.005** − 0.64 0.004** − 0.63 0.005**

HLA-A*02:01g-B*18:01g-DRB1*11:04g − 0.35 0.150 − 0.65 0.003** − 0.66 0.003** − 0.64 0.005**

HLA-A*02:01g-C*07:01g-DRB1*11:04g − 0.29 0.238 − 0.60 0.009** − 0.61 0.007** − 0.60 0.009**

HLA-B*18.01g-C*07.01g-DRB1*11.04g − 0.32 0.190 − 0.61 0.008** − 0.61 0.008** − 0.59 0.009**

N° deaths/100,000 inhabitants

Haplotype 8 March 8 April 3 May 24 May

Correlation P Correlation P Correlation P Correlation P

HLA-A*02:01g 0.30 0.222 0.45 0.063 0.46 0.057 0.46 0.056

HLA-B*18:01g − 0.27 0.287 − 0.47 0.048* − 0.49 0.037* − 0.48 0.042*

HLA-C*07:01g − 0.40 0.098 − 0.56 0.016* − 0.62 0.006** − 0.62 0.006**

HLA-DRB1*11:04g − 0.31 0.206 − 0.55 0.017* − 0.60 0.008** − 0.60 0.008**

HLA-A*02:01g-B*18:01g − 0.31 0.212 − 0.45 0.060 − 0.49 0.037* − 0.49 0.038*

HLA-A*02:01g-C*07:01g − 0.33 0.185 − 0.51 0.031* − 0.57 0.013* − 0.58 0.012*

HLA-A*02:01g-DRB1*11:04g − 0.28 0.263 − 0.47 0.050 − 0.52 0.025* − 0.53 0.025*

HLA-B*18.01g-C*07.01g − 0.32 0.201 − 0.47 0.048* − 0.51 0.030* − 0.51 0.029*

HLA-B*18.01g-DRB1*11.04g − 0.27 0.270 − 0.51 0.032* − 0.56 0.015* − 0.57 0.014*

HLA-C*07.01g-DRB1*11.04g − 0.31 0.218 − 0.50 0.036* − 0.55 0.017* − 0.56 0.015*

HLA-A*02:01g-B*18:01g-C*07:01g − 0.33 0.177 − 0.47 0.047* − 0.53 0.024* − 0.54 0.022*

HLA-A*02:01g-B*18:01g-DRB1*11:04g − 0.28 0.267 − 0.46 0.055 − 0.52 0.028* − 0.52 0.027*

HLA-A*02:01g-C*07:01g-DRB1*11:04g − 0.25 0.320 − 0.42 0.083 − 0.48 0.042* − 0.49 0.038*

HLA-B*18.01g-C*07.01g-DRB1*11.04g − 0.27 0.284 − 0.45 0.062 − 0.50 0.036* − 0.50 0.034*
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for all the possible double or triple combinations of the 

four considered HLA-A, -B, -C, -DRB1 loci (Table 7).   

Discussion
In the present study, through a geographical epidemio-

logical analysis, we observed that there are significa-

tive regional differences in the frequency of the two 

most common HLA haplotypes in the Italian popula-

tion among the northern, central and southern regions 

with HLA-A*01:01g-B*08:01g-C*07:01g-DRB1*03:01g 

(ranked #1 at the national level) showing a decreasing fre-

quency gradient and HLA-A*02:01g-B*18:01g-C*07:01g-

DRB1*11:04g (ranked #2) an increasing frequency 

gradient from North to South. �e geographical distribu-

tion of these haplotypes overlaps with that of Covid-19 

in Italy, being linearly correlated in a positive/direct way 

for the haplotype #1 and in a negative/inverse way for 

the haplotype #2. �is means that a high incidence and 

mortality was observed in the northern regions where the 

population has high frequency values of the haplotype 

HLA-A*01:01g-B*08:01g-C*07:01g-DRB1*03:01g and all 

the allelic combinations of the four considered HLA-A, 

-B, -C, -DRB1 loci, containing at least one of these alleles, 

particularly those with the B*08:01g and DRB1*03:01g 

polymorphism, suggestive of potential ‘susceptibility’ to 

the disease. On the contrary, a low incidence and mor-

tality for Covid-19 was observed in the central-south-

ern regions with high frequency values of the haplotype 

HLA-A*02:01g-B*18:01g-C*07:01g-DRB1*11:04g and of 

its alleles B*18:01g, C*07:01g and DRB1*11:04g in all their 

possible combinations containing at least one of such 

alleles, suggestive of potential ‘protection’ from the infec-

tion. Hence, the population of central-southern Italy that 

shows the highest prevalence of the protective haplotype 

HLA-A*02:01g-B*18:01g-C*07:01g-DRB1*11:04g and 

its allelic combinations and, at the same time, the low-

est frequencies of the disadvantageous haplotype HLA-

A*01:01g-B*08:01g-C*07:01g-DRB1*03:01g and its allelic 

combinations, could be genetically shielded from Covid-

19. Such findings are only descriptive in nature and need 

to be validated through retrospective observational case–

control studies on Covid-19 patients typed for HLA com-

paring the frequencies of the potential ‘protective’ and 

‘unfavourable’ HLA haplotypes and alleles highlighted 

in the general Italian population with those observed 

in the Covid-19 patients cohort, in order to define such 

HLA polymorphisms as a factor effectively associated to 

the disease susceptibility as already done for other viral 

infections, communicable diseases and autoimmune 

pathologies [15–19]. However, also in these pathologies 

such geographical epidemiological approaches have given 

important clues to identify sub-populations most at risk 

of susceptibility to the infection also taking into account 

as a susceptibility parameter HLA specific alleles and 

haplotypes [13].

To the best of our knowledge, this is the first study 

that estimated, through a population frequency analy-

sis, the potential association of specific HLA alleles and 

haplotypes with the incidence and mortality of Covid-19. 

Although the primary scope of a bone marrow registry 

is to increase the possibilities to find allogenic compat-

ible donors for transplants, it is also a unique source of 

precious HLA data from the widest and most representa-

tive sample available at the national level, which makes 

it possible to reliably estimate haplotypes frequencies 

in a given population and carry out association studies 

in many disease contexts. We conducted our study on a 

large sample of 104,135 subjects typed at high resolution 

four-digit level, subdivided in the 20 Italian regions, with 

a regional sample size adequately statistically representa-

tive of the resident population for each region [20].

Our study is the first to propose HLA as a susceptibility 

marker to SARS-CoV-2 infection and highlight its poten-

tial impact on the epidemic trend within a specific country, 

Italy, that has been hit particularly hard. However, similar 

associations may also be observed within other countries, 

bringing to light common genetic patterns or new country-

specific protective or unfavourable HLA polymorphisms, 

that could explain some of the differences observed in the 

epidemic between one country and another. Such geo-

graphical epidemiological studies, conducted at the gen-

eral population level, need to be confirmed in Covid-19 

patients’ cohorts of asymptomatic, mildly symptomatic, 

severely affected individuals to draw fundamental conclu-

sions with important implications not only at the epidemi-

ological level but also at the clinical one. Indeed, particular 

HLA haplotypes/alleles could be associated with a stronger 

immune response and hence a better host response to the 

virus. Some useful information can also be inferred by pre-

vious researches on SARS and MERS, where it has been 

reported that several HLA polymorphisms are associated 

to SARS susceptibility (HLA-B*46:01, HLA-B*07:03, HLA-

DRB1*12:02 and HLA-Cw*08:01) [25–27]. On the con-

trary the allelotypes HLA-DR*03:01, HLA-Cw*15:02 and 

HLA-A*02:01 seem to be protective from SARS infection 

[28]. HLA-DRB1*11:01 and HLA-DQB1*02:02 are related 

to MERS-CoV infection susceptibility [29]. On these 

premises, it is conceivable that several HLA associations 

could be unfavourable or protective also for the course of 

Covid-19 infection.

Very recent works employed different bioinformatic 

approaches to predict the best SARS-CoV-2 derived B 

and T cell epitopes and their associated HLA alleles, that 

may help to design effective vaccines and find protec-

tive antibodies [30–35]. Employing HLA binding affin-

ity prediction tools, it has been observed that HLA-A 
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and HLA-C alleles exhibited the relatively most and 

least capacity to present SARS-CoV-2 antigens, respec-

tively. However, depending on the specific study and the 

bioinformatic approach used, the best and worse pre-

dicted presenters of conserved peptides reported are 

not the same. We found that the alleles analysed in our 

study are present in the database recently made avail-

able by Nguyen et al., that reports the list of 32,257 8- to 

12-mers peptides from the SARS-CoV-2 proteome and 

their binding affinity to 145 different HLA A, B, C alleles, 

predicted by bioinformatic tools [30]. In particular, all 

the alleles pointed out in our study have been predicted 

to have an overall good capacity to present viral peptides, 

independently of their potential correlation with Covid-

19 regional incidence and mortality, with HLA-A*02:01 

being the best (1062 total peptides, 268 with a very high 

binding affinity < 50 nM), followed by HLA-B*08:01 (225 

total, 25 high affinity), HLA-A*01:01 (183 total, 44 high 

affinity), HLA-B*18:01 (101 total, 12 high) and HLA-

C*07:01 (44 total, 4 high) (Additional file 1: Fig. S1) [30].

It is important to note that all the bioinformatic pre-

dictions made on SARS-CoV-2 epitopes and their HLA 

binding, have the limit to be exclusively theoretical and 

thus need to be experimentally validated in in vitro bind-

ing assays and in the ability to effectively elicit T and B 

cell mediated responses. Indeed, it is widely recognised 

that antigenicity, immunogenicity and, for T cells, the 

TCR avidity to the antigen/HLA and hence the functional 

immune responses elicited, are not directly related with the 

peptide binding affinity [36, 37]. No information is available 

to date regarding the binding of HLA II molecules, whose 

polymorphic variants could play a relevant role in orches-

trating a functional adaptive immune response.

Undoubtedly, the method of analysis used in our study 

presents some limits and could be affected by an inevi-

table selection bias, since it takes into consideration the 

region of birth of the typed individuals but not the region 

of residence, whereas data about Covid-19 infections 

are reported per region where the infection occurred, 

independently of birthplace. However, we can reason-

ably exclude the influence of migration flows (that in 

Italy are historically directed from the southern regions 

to the northern) on the regional frequencies used in our 

computations, since they are equivalent to those from 

previous studies with information concerning both the 

region of birth and residence and so, thanks to the large 

dimension of the regional subgroups analysed, independ-

ent from the migratory movements [38, 39]. �e infor-

mation about Covid-19 cases and deaths relies on public 

resources, daily updated on the basis of laboratory analy-

sis of swabs tested positive for the virus by RT-PCR at the 

regional accredited centers, following confirmatory test-

ing by the Italian National Institute of Health in Rome. 

As above reported, these values could have been under-

estimated for reasons depending on several factors like a 

stringent testing policy, limited to severely affected symp-

tomatic individuals, that excluded from testing the bulk 

of asymptomatic ones, shortage of testing materials in 

the peak of the emergency, limited access to overcrowded 

hospital facilities, to name just a few. Noteworthy, a 

higher overall mortality rate than previous years has been 

observed in Nembro, a little town of Lombardia region, 

indicative of both direct and indirect disease burden and 

has been also highlighted by a recent report published by 

Italian National Institute for Social Security [5, 6].

Apart from the epidemiological value in tracing the 

distribution of Covid-19 and understanding its immu-

nopathogenesis, the identification of specific HLA hap-

lotypes as potential risk, susceptibility or protective 

biomarkers, can be of great help in stratifying the popu-

lation, in order to identify those patients more at risk to 

develop a severe infection, thus allowing to adopt proper 

preventive strategies and early intervention measures.

It is important to note that the HLA region is known for 

its linkage disequilibrium, therefore, other genes very near 

to HLA could be eventually responsible for the association 

with Covid-19 regional distribution. Genetic polymorphisms 

in the HLA locus or in other genes encoding key compo-

nents of the immune-inflammatory response observed in 

SARS-CoV-2 infection (KIR receptors, inflammasome com-

ponents, cytokines and chemokines like CXCL10) may help 

to explain the high variable spectrum of disease manifesta-

tions, progression and outcome (from asymptomatic, to 

mild-moderately symptomatic and severely affected patients 

requiring intensive care and respiratory support).

With this in mind, even though the collected knowledge 

is still limited to few studies, some susceptibility markers 

other than HLA have been proposed for Covid-19. An 

association with ABO blood antigens has been observed in 

a cohort of Chinese patients, with the type A and 0 being 

respectively at highest and lowest risk to be infected, as 

previously been reported for other viral infections [40]. 

�is observation was confirmed in a genomewide study 

on Spanish and Italian patients’ cohorts. Indeed, a skew-

ing of ABO blood antigens distribution among Covid-

19 patients who suffered from respiratory failure was 

reported, whereas no significant association was found 

between HLA polymorphisms in Covid-19 patients and 

respiratory failure (oxygen supplementation or mechani-

cal ventilation) [41]. To the best of our knowledge this is 

the only study available to date that takes into account the 

association of HLA polymorphisms and Covid-19 sever-

ity, but it is important to note that it was performed in a 

limited Italian population, including only patients from 

Lombardia region, without taking into account geograph-

ical patterns of HLA distribution. Genetic polymorphisms 
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of key genes of the virus entry machinery (Ace2, Tmprss2, 

CtsB, and CtsL) or of the inflammatory/immune response 

(e.g. cytokines and their receptors) or epigenetic mecha-

nisms may influence virus susceptibility and the severity/

outcome of the infection among different individuals and 

populations, too [42, 43]. A novel susceptibility locus con-

taining a cluster of six genes (SLC6A20, LZTFL1, CCR9, 

FYCO1, CXCR6, and XCR1) on chromosome 3p21.31, 

most of whose involved in the regulation of inflammatory 

and immune response, has been indeed found [41].

We recognize that other factors, e.g. climatic differences, 

pollution, lockdown effect that limited the diffusion from 

North to South, could be responsible alone or in combina-

tion with genetic factors for the different Covid-19 infec-

tion rates among Italian regions. Our reported potential 

association of two haplotypes with the differential 

regional incidence and mortality for Covid-19 in Italy may 

explain, from the point of view of the genetic diversity of 

the Italian population, why the epidemic hit the northern 

regions so hard and instead had a small impact on those of 

the central-south, a figure which cannot be explained on 

the basis of population, urban density, movements to and 

from large urban and industrial areas, pollution or climate 

alone. Indeed, several central and southern metropolitan 

areas like those of Rome, Naples, Bari, Palermo (respec-

tively located in Lazio, Campania, Puglia, Sicilia) have an 

urban density comparable or even higher (Naples) than 

Milan and Lombardia, atmospheric emissions of PM10, 

PM2.5 and  NO2 levels above threshold, and high flows of 

mobility through public transports [44]. Furthermore, the 

climatic variations in Italy are very limited and not com-

parable to those occurring in wider countries like China, 

US or Brasil [45].

Our correlation analysis among HLA regional frequen-

cies and Covid-19 cases/deaths numbers, having been car-

ried out at different times over the epidemic, also takes 

into account the potential effects elicited by the displace-

ment of thousands of off-site students and workers from 

the northern (mainly Lombardia, the fire of the epidemic) 

to the southern regions (Campania, Puglia, Calabria, 

Sicilia), which occurred in two large waves, the night 

before the start of the lockdown (the 9th of March, totally 

uncontrolled) and at the end of the lockdown (after the 

3rd of May, with some monitoring from region to region). 

�ese uncontrolled exoduses and especially the first one, 

although occurring in a phase of mobility restrictions and 

contact reduction, could have caused the epidemic to 

break out in the southern Italian regions, which instead 

did not occur and which makes the hypothesis of a pro-

tective genetics even more plausible in the populations of 

central-southern Italy.

Genetic variations and HLA polymorphisms alone 

cannot help to understand other significant features of 

Covid-19, like the higher mortality observed in men vs 

women (2.8% vs 1.7%) or the higher morbidity and mor-

tality in old vs young people [46–48]. However, it is fun-

damental to take into account that significant differences 

at the immunological level exist among these groups and 

such differences could be dependent on HLA polymor-

phisms and, overall, on the genetic, hormonal and meta-

bolic background. Indeed, HLA genes are involved in the 

decline of anti-viral response mediated by T cells that is 

observed with aging.

Conclusion
Our study proposes for the first time that some HLA poly-

morphisms in the Italian population may be potentially 

associated to the different regional incidence and mortal-

ity for Covid-19, likely activating a better and more pow-

erful antiviral response, with central-southern regions 

being most protected from the epidemic. Such evidence, 

obtained at the general population level, needs to be con-

firmed in retrospective case–control studies on wide 

cohorts of Covid-19 patients from all the Italian regions in 

order to define HLA polymorphisms as a factor involved 

in disease susceptibility. Moreover, since the bioinformatic 

predictions on HLA-viral peptides binding affinity alone 

are of limited functional significance, it is fundamental to 

identify through proper in vitro and in vivo studies, if such 

HLA genetic loci are effectively associated to the induc-

tion of a protective T and B-cell mediated antiviral immu-

nity. Research efforts aimed to explore genetic associations 

with the immune response in Covid-19 could be particu-

larly useful both at the epidemiological and clinical level, 

to identify patients most at risk to develop severe com-

plications, that should hence have priority to vaccination 

access, when it will be available, and to evaluate the differ-

ential efficacy of the vaccination in subjects with different 

HLA genetic background. HLA typing, that can be easily 

done through cost-efficient methodologies, also along with 

Covid-19 testing, should hence be envisaged and encour-

aged at the clinical level and by policy makers through the 

creation of a national network that may collect DNA sam-

ples from patients from all regions.
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