General Disclaimer

One or more of the Following Statements may affect this Document

e This document has been reproduced from the best copy furnished by the
organizational source. It is being released in the interest of making available as
much information as possible.

e This document may contain data, which exceeds the sheet parameters. It was
furnished in this condition by the organizational source and is the best copy
available.

e This document may contain tone-on-tone or color graphs, charts and/or pictures,
which have been reproduced in black and white.

e This document is paginated as submitted by the original source.

o Portions of this document are not fully legible due to the historical nature of some
of the material. However, it is the best reproduction available from the original
submission.

Produced by the NASA Center for Aerospace Information (CASI)



Correlation of Turbulent Trailing Vortex Decay Data 2
JAMES D. IVERSEN* \

Iowa State University, Ames, Iowa

Abstract

A correlation function, derived on the basis of self-similar vari-
able eddy-viscosity decay, is introduced and utilized to correlate air-
craft trailing vortex velocity data from ground and flight experiments.
The correlation function collapses maximum tangential velocity data from
scale-model and flight tests to a single curve., The resulting curve clearly
shows both the inviscid plateau and the downstream decay regions. A com-
parison between experimental data and numerical solution shows closer
agreement with the variable eddy viscosity solution than the constant vis-
cosity analytical solution.

Notation

a = Squire's coefficient, Eq. (1)
R = aspect ratio, b2/S
b = wing span

2 = mixing length

~N

N = similarity variable, r

T = vortex radial coordinate
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r; = vortex core radiis (at maximum tangential speed)
rg = initial core radius
S = wing area
t = time
U, = free-stream speed
\ = tangential vortex speed
Vi = maximum tangential vortex speed
X = distance downstream from generating aircraft
a = mixing iength proportionality constant
Y = reduced circulation, rV
Yo =Y at large radius
T = circulation, 2my
'y = circulation at core radius
g = circulation at large radius
v = kinematic viscosity
vpo F turbulent eddy viscosity

A correlation function is introduced and utilized to correlate aircraft
trailing vortex velocity data from ground and flight experiments. Recent
water channel tests by Ciffone and Orloffl have identified two distinct
streamwise regions in the decay of trailing vortices. The near-field is
an essentially inviscid 'plateau' region, existing for some distance
downstream after rollup, in which vortex decay is very slow. Farther
downstream, the vortex decays as a function of the square root of down-

stream distance, as would be expected from a similarity type solution.




Since the water-channel data and existing wind-tunnel test results
concerning trailing vortices have been obtained at relatively low Reynolds
numbers, a search was initiated for a correlation function that would sub-
stantiate ground-based scale-model data by comparison with large Reynolds
nunber flight test. The correlation function introduced in this paper is
derived on fhe basis of self-similar turbulent decay of a line vortex.
Since the function is based on similarity of an isolated, infinitely
long vortex, it would be expected to strictly hold only for the similarity
region far downstream of the generating aircraft, where three-dimensional
effects would be negligible. However, it is shown that the similarity
parameter can be manipulated (considering plateau-region vortex charac-
teristics) so that maximum tangential velocity data from a large range of
Reynolds numbers can be collapsed to one curve. The final result clearly
illustrates both the near-field plateau region and the downstream decay
region.

The correlation function is derived by numerical solution of the
similarity differential equation, using a variable eddy viscosity model,
The only empiricism involved is the evaluation of a mixing-length pro-
portionality factor by using large Reynolds number flight data in the
similarity region. The correlation function substantiates the validity
of small Reynolds number experiments as long as they are correctly inter-
preted and should aid in understanding the turbulent vortex decay problem.

Eddy Viscosity and Circulation Relationship

Squire? hypothesized that, since the principal permanent character-
istic of the line vortex is the circulation for large radius, Tp, the
eddy viscosity VT. could be assumed to be proportional to Ty, i.e.:

vy = alp/2m = ayp (1)
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Since Eq. (1) is equivalent to the assumption of a constant eddy viscos-
ity that is independent of radius, the solutiond for laminar viscous
flow could be used, hopefully, to interpret experimental data; it has been
so used by various investigators. Owen," partialiy on the basis of exper-
imental data from various sources, derived an expression for Squire's coef-
ficient §  as a surprisingly strong function of Reynolds number (Tp/v):
a = 2nr2(r /v)1/2 (2)
where A2 was presented as approximately constant.
Decay of a Line Vortex
If it is assumed that the flow in a trailing vortex is approximately
analogous to the time-dependent flow of an infinite line vortex, then,
for variable viscosity, the equation for circulation vy (=rv) can be
written
dy/ot = r(a/ar)[vTr(a/ar)(y/rZ)] + ZvTr(alar)(Y/rz) (3)
Assume that the flow is similar, so that vy = y(N), where N = r2/4yot.
Condition 1: If v = vp, a constant, the Lamb vortex results

T
e'Yol\‘/\)o) = N/a

Yy = YO(I 'Yo(]. -e ) (4)

Condition 2: If v, = 22|r3/ar(y/r?| + v, where 2 is a mixing

T
length, and v is molecular kinematic viscosity, an eddy viscosity vari-
ation more representative of turbulent flows is obtained. For similarity,
it is necessary that the mixing length be proportional to radius, & = ar,
which is satisfying on physical grounds and is representative of recent

numerical calculation.S

Equation (3) then beccmes
-¥. = (4|Ny. - v| + v/a2yq)y-. (5)
N N NN
Thus

Y=y, vePy) (N =a?N, vy o= veY)
0 0




where a is either a constant or perhaps a function® of v/Tg, so that

Y= YN, v/v) (6)

Solution for Variable Eddy Viscosity

Numerical solutions of Eq. (6), satisfying boundary conditions
¥(0) =0 and Y(») = 1, vhere obtained for values of azyo/v ranging
from 0.01 to 10000. The solutions approach purely viscous flow for very
small values of this parameter, and become independent of molecular vis-
cosity for large values. Equation (6) can be rewritten
Vb/yy = (B/TIYWN , v/vg) M
At the core radius (point of maximum tangential velocity)
Vib/yy = (b/11)¥(r12/4vyt , v/vg) (8)
But 1;2/4v,t = rlzua/4y°x = N;, a constant. Thus
b/ry = (bA_/4Nyyox)1/2
and |
Vib/yg = [(b/x) (U b/Y ) /48111 /25 (Ny , v/vg)
or
(V1b/T) [ (x/b) (To/Ub)11/2 = Cog(To/v) (9
Values of the quantity on the left-hand side of Eq. (9) were found
from flight data from Refs. 6-9. The average value of 46 data points
(far downstream values to ensure that the data points were all in the
similarity region) was found to be 5.80, so that Cj is 5.80 if 4 is
set equal to one for large Tg/v. The maximum value of (y/8Y/2), cor-
responding to maximum tangential velocity, was found from the numerical
solutions to approach a constant value for large Tg/v of 0.539. Since
(Vb/Tg) [ (x/b) (To/U_P)1V/2 = (3/RV/2)/(2(2m) /%]
a is found from the flight data to be 0.01854.




Once a is known, and if it is assumed to be independent of Reynolds
number, velocity profiles corresponding to solutions of Eq. (6) can be
found for any Reynolds number, I'y/v. The velocity profile for large
Reynolds number is shown in Fig. 1, along with the constant eddy viscosity
solution for the same value of maximum tangential speed (vT = 0.0000766Tg).
Comparisons bf the computed variable eddy viscosity profile with experimental
data from Refs. 1, 6, and 10 are shown in Figs. 2 through 4, with better
agreement than for constant viscosity. Figures 2 and 3 illustrate that
the value of the ratio of core-radius circulation to large-radius circula-
tion, I'y/Ty, is much larger for the constant eddy viscosity solution than
for either the experimental data or the numerical solution of Eq. (5).

The large data scatter in Fig. 4 has two causes: (i) Since the data points
are instantaneous readings and not time-averaged, turbulence is a factor,
(ii) If the measuring instrument (in this case a laser-doppler velocimeter)
misses the vortex core, then the velocity data will be lower than the
desired value on the average, and, as shown, most of the scatter falls
below the theoretical curve. For this relatively low Reynolds number, a
comparison of the velocity profiles for constant and variable eddy vis-
cosities shows that these curves are not far apart, however, the variable
viscosity curve seems to represent the data more closely, if the two
causes for scatter are taken into account.

The variation of circulation with radius is shown for three Reynolds
numbers in Fig. 5. The left curve is essentially identical to Lamb's solu-
tion. The right curve holds for large Reynolds number, and the central curve
illustrates an intermediate Reynolds number example in the region in which

eddy and molecular viscosities are of the same order of magnitude. The value




of circulation at a position of maximum tangential velocity is shown as a
function of Reynolds number in Fig. 6. The values of maximum velocity and
core radius are shown as a function of Reynolds number in Figs. 7 and 8,
respectively. The data points shown in Figs. 6 and 7 substantiate the trends
of the numerical solution.

Concerﬁing the lack of circulation overshoot (i.e., y > 1) somewhere
within the vortex profile (Fig. 5), as predicted by Govindaraju and Saffman}!
and Saffman,!? for large Reynolds numbers; Govindaraju and Saffman state
that the turbulent shear stress tends to zero for large radius faster than
1/r2; they obtain an expression for their angular momentum function J(x)
dependent upon Reynolds number. According to Saffman's result, the core
radius T, is proportional to (vI;)!/%t1/2 for a self-similar vortex
so that J(x) approaches zero for large Reynolds number; this indicates
the necessity for circulation overshoot in order to conserve angular momen-
tum. In the current model, however, the shear stress tends to zero exactly
as 1/r?2 for large radius; thus Saffman's function J(x) remains finite
for large Reynolds number. Also, the core radius r;, for large Reynolds
number, is proportional to T!/2tl/2, which is independent of Reymolds
number. The function J(x) then remains finite as mentioned, and cir-
culation overshoot is not necessary, which agrees with experimental data,
as Saffmanl? notes.

Data Correlation

Recent water channel data! show that a 'plateau' region exists in
the vor;ex trail for some distance aft of the generating aircraft, in
which vortex decay is much slower than required for similarity. The
characteristics of the plateau region may be at least partly due to non-

equilibrium turbulence, and similarity would not be expected to hold until
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equilibrium is reached. Calculations®;13 which include nonequilibrium
turbulence models show evidence of the plateau region. Velocity profiles
of the vortices within the plateau region have been used by Rossow!* to
obtain span loadings by means of an inviscid inverse-Betz method. These
span loadings agree well with experimental and theoretical span loadings,
which 1ndic§tes that the plateau-region velocity profiles have not beea
greatly affected by viscqsity or turbulence except in the relatively small
core region.

If similarity is reached far downstream, Eq. (9) should be useful
as an experimental correlation parameter. Spreiter and Sacks!® equated
the kinetic energy of rotation in the vortex core per unit length to the
induced drag of the wing, and thus found an expression for core radius
that is proportional to wing span. However, the experimental data con-
sidered in this investigation do not justify their result. If instead,
it is assumed that the axial momentum deficit in the core is related to
the momentum deficit caused by the wing boundary layer, then the core
radius must be related to the wing chord, since momentum loss within the
wing boundary layer increases with chordwise distance. The best correla-
tion of experimental data in the plateau region (for aspect ratios of
5.33 to 12) is obtained if it is assumed that the core radius in the
plateau region is proportional to the average chord S/b. Then, since
the velocity in the vortex would be proportional to centerline circula-
tion Tp, the maximum velocity V; would be proportional to Tp/rg or

Virg/To - V1S/Tgb = Vyb/ToR & CONSTANT (10)

in the plateau region. Equation (9) can be rewritten

Vib/ToMR= Co/[(x/b) (Fg/U_Db) (R)Z£(Tg/v)]}/2 a1




or, including the plateau region,

Vib/ToR = £1[(x/b)(To/Ub) (R)? £(Tp/v)] (12)
where

£(To/v) = (5.80)2/[(V1x/Tg) (Tg/U x)1/2)2 (13)
Note that the functional relationship, Eq. (12) also holds for Eq. (4), if
Squire's coefficient 8 1is assumed to be a function .of Tp/v.

Experimental water-channel, wind-tunnel, and flight data from Refs. 1,
6 through 9, and 16 through 19 are plotted in terms of V;b/ToR and
(x/b) (Tg/Ub) (R)2£(Fp/v) in Fig. 9. The solid line represents a value
for Vy[(x/U_Tg)£(To/v)]1/2 of 5.80. The similerity region appears to
begin at a value of the abscissa of about 50, corresponding to approximately
12 span-lengths aft of a typical aircraft at a lift coefficient of 1. The
function f(ly/v) is shown in Fig. 10.

An effective constant eddy viscosity, based on maximum tangential speed
and Eq. (4), was calculated from similarity region data and also from the
variable eddy viscosity solutions. The results (Fig. 11) show that, for a
constant eddy viscosity assumption, Squire's hypothesis, Eq. (1), is valid
for values of Tg/v > 10%, A different value of eddy viscosity would be
obtained if circulation TI'; or radius r; were used as a basis, since the
Lamb solution, Eq. (4), does not well represent velocity profile data or the
variable eddy viscosity solution.

A correlation equation, based on Owen's result, Eq. (2), would result in

£(To/v) - (To/v)~1/2
This equation would approximate Eq. (13) only in a narrow region from
To/v = 10 to 3(10)“, and a correlation equation, based on Owen's result,

cannot be used to correlate scale-model and flight data.




Conclusion

The numerical solution of the decay of a self-similar line vortex
with variable eddy viscosity has been used to derive a correlation func-
tion for comparison of scale-model and flight data. It has been shown that
the velocity and circulation profiles vary significantly from the constant-
eddy-viscosity Lamb solution. Plotting the scale-model and flight data in
terms of the vortex velocity scaling parameter V;b/TyR versus the distance
scaling parameter (x/b)(To/ u_b) (R)2f (Fo/v) effectively collapses the
data to a single curve. Although there is, of cocurse, much scatter in the
data correlated in Fig. 9, the correlation Eq. (12) collapses the data
reasonably well, and should serve as a basis for evaluation of future scale-
model and flight tests.
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