
Correlation Prefetching with a
User-Level Memory Thread

Yan Solihin, Member, IEEE, Jaejin Lee, Member, IEEE, and Josep Torrellas, Senior Member, IEEE

Abstract—This paper proposes using a User-Level Memory Thread (ULMT) for correlation prefetching. In this approach, a user thread

runs on a general-purpose processor in main memory, either in the memory controller chip or in a DRAM chip. The thread performs

correlation prefetching in software, sending the prefetched data into the L2 cache of the main processor. This approach requires

minimal hardware beyond the memory processor: The correlation table is a software data structure that resides in main memory, while

the main processor only needs a few modifications to its L2 cache so that it can accept incoming prefetches. In addition, the approach

has wide applicability, as it can effectively prefetch even for irregular applications. Finally, it is very flexible, as the prefetching algorithm

can be customized by the user on an application basis. Our simulation results show that, through a new design of the correlation table

and prefetching algorithm, our scheme delivers good results. Specifically, nine mostly-irregular applications show an average speedup

of 1.32. Furthermore, our scheme works well in combination with a conventional processor-side sequential prefetcher, in which case

the average speedup increases to 1.46. Finally, by exploiting the customization of the prefetching algorithm, we increase the average

speedup to 1.53.

Index Terms—Prefetching, correlation prefetching, memory-side prefetching, helper threads, intelligent memory architecture,

processing-in-memory, heterogeneous system.

æ

1 INTRODUCTION

DATA prefetching is a popular technique to tolerate long
memory access latencies. Most of the past work on

data prefetching has focused on processor-side prefetching
[6], [7], [8], [15], [16], [17], [18], [23], [24], [28], [30], [32], [35],
[36]. In this approach, the processor or an engine in its cache
hierarchy issues the prefetch requests. An interesting
alternative is memory-side prefetching, where the engine
that prefetches data for the processor is in the main memory
system [1], [4], [9], [14], [27], [35].

Memory-side prefetching is attractive for several reasons.
First, it eliminates the overheads and state bookkeeping that
prefetch requests introduce in the paths between the main
processor and its caches. Second, it can be supported with a
few modifications to the controller of the L2 cache and no
modification to the main processor. Third, the prefetcher can
exploit its proximity to the memory to its advantage, for
example, by storing its state inmemory. Finally,memory-side
prefetching has the additional attraction of riding the
technology trend of increased chip integration. Indeed,
popular platforms like PCs are being equippedwith graphics
engines in the memory system [34]. Some chipsets like
NVIDIA’s nForce even integrate a powerful processor in the
North Bridge chip [27]. Simpler engines can be provided for
prefetching, or existing graphics processors can be augmen-
ted with prefetching capabilities. Moreover, there are

proposals to integrate processing logic in DRAM chips, such
as IRAM [19].

Unfortunately, existing proposals for memory-side pre-
fetching engines have a narrow scope [1], [9], [14], [27], [35].
Indeed, some designs are hardware controllers that perform
simple and specific operations [1], [9], [27]. Other designs
are specialized engines that are custom-designed to pre-
fetch linked data structures [14], [35]. Instead, we would
like an engine that is usable in a wide variety of workloads
and that offers flexibility of use to the programmer.

While memory-side prefetching can support a variety of
prefetching algorithms, one type that is particularly suited
to it is Correlation prefetching [1], [6], [15], [21], [32].
Correlation prefetching uses past sequences of reference or
miss addresses to predict and prefetch future misses. Since
no program knowledge is needed, correlation prefetching
can be easily moved to the memory side.

In the past, correlation prefetching has been supported
by hardware controllers that typically require a large
hardware table to keep the correlations [1], [6], [15], [21].
In all cases but one, these controllers are placed between the
L1 and L2 caches, or between the processor and the L1.
While effective in some cases, this approach has a high
hardware cost. Furthermore, it is often unable to prefetch
far ahead enough.

In this paper, we present a new scheme where correla-
tion prefetching is performed by a User-Level Memory
Thread (ULMT) running on a simple general-purpose
processor in memory. Such a processor is either in the
memory controller chip or in a DRAM chip, and prefetches
lines to the L2 cache of the main processor. The scheme
requires minimal hardware support beyond the memory
processor: The correlation table is a software data structure
that resides in main memory, while the main processor only
needs a few modifications to its L2 cache controller so that it
can accept incoming prefetches. Moreover, our scheme has

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO. 6, JUNE 2003 563

. Y. Solihin is with the Department of Electrical and Computer Engineering,
North Carolina University, Campus Box 7911, Raleigh, NC 27695-7911.
E-mail: solihin@ncsu.edu.

. J. Lee is with the School of Computer Science and Engineering, Seoul
National University, Seoul 151-742, Korea. E-mail: jlee@cse.snu.ac.kr.

. J. Torrellas is with the Department of Computer Science, University of
Illinois at Urbana-Champaign, 1304 W. Springfield Ave., Urbana, IL
61801. E-mail: torrellas@cs.uiuc.edu.

Manuscript received 12 July 2002; revised 3 Feb. 2003; accepted 18 Feb. 2003.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number 116940.

1045-9219/03/$17.00 ß 2003 IEEE Published by the IEEE Computer Society

wide applicability, as it can effectively prefetch even for
irregular applications. Finally, it is very flexible, as the
prefetching algorithm executed by the ULMT can be
customized by the programmer on an application basis.

Using a new design of the correlation table and
correlation prefetching algorithm, our scheme delivers an
average speedup of 1.32 for nine mostly-irregular applica-
tions. Furthermore, our scheme works well in combination
with a conventional processor-side sequential prefetcher, in
which case the average speedup increases to 1.46. Finally,
by exploiting the customization of the prefetching algo-
rithm, we increase the average speedup to 1.53.

This paper is organized as follows: Section 2 discusses
memory-side and correlation prefetching. Section 3 presents
ULMT for correlation prefetching. Section 4 discusses our
evaluation setup. Section 5 evaluates our design. Section 6
discusses related work and Section 7 concludes.

2 MEMORY-SIDE AND CORRELATION PREFETCHING

To provide background, this section describes memory-side
and correlation prefetching. In this paper, we use the terms
prefetching coverage and prefetching accuracy as follows:
Coverage is the fraction of original misses that are eliminated
(partially or totally) by the prefetched lines. Accuracy is the
fraction of the prefetched lines that eliminate (partially or
totally) original misses.

2.1 Memory-Side Prefetching

Memory-Side prefetching occurs when prefetching is in-
itiated by an engine that resides either close to the main
memory (beyond any memory bus) or inside of it [1], [4],
[9], [14], [27], [35]. Some manufacturers have built such
engines. Typically, they are simple hardwired controllers
that probably recognize only simple stride-based sequences
and prefetch data into local buffers. Some examples are
NVIDIA’s DASP engine in the North Bridge chip [27] and
Intel’s prefetch cache in the i860 chipset.

In this paper, we propose to support memory-side
prefetching with a user-level thread running on a general-
purpose core. The core can be very simple and does not
need to support floating point. For illustration purposes,
Fig. 1a shows the memory system of a PC. The core can be
placed in different places, such as in the North Bridge
(memory controller) chip or in the DRAM chips. Placing it
in the North Bridge simplifies the design because the
DRAM is not modified. Moreover, some existing systems

already include a core in the North Bridge chip for graphics
processing [27], which could potentially be reused for
prefetching. Placing the core in a DRAM chip complicates
the design, but the resulting highly-integrated system has
lower memory-access latency and higher memory band-
width. In this paper, we examine the performance potential
of both designs.

Memory and processor-side prefetching are not the same
as Push and Pull (or On-Demand) prefetching [35], respec-
tively. Push prefetching occurs when prefetched data is sent
to a cache or processor that has not requested it, while pull
prefetching is the opposite. Clearly, a memory-side pre-
fetcher can act as a pull prefetcher by simply buffering the
prefetched data locally and supplying it to the processor on
demand [1], [27]. In general, however, memory-side
prefetching is most interesting when it performs push
prefetching to the caches of the processor because it can
hide a larger fraction of the memory access latency.

Memory-side prefetching can also be classified as Passive
or Active. In passive prefetching, the memory processor
observes the requests from the main processor that reach
main memory. Based on them, and after examining some
internal state, the memory processor prefetches other data
for the main processor that it expects the latter to need in
the future (Fig. 1b).

In active prefetching, the memory processor runs an
abridged version of the code that is running on the main
processor. The execution of the code induces the memory
processor to fetch data that the main processor will need
later. The data fetched by the memory processor is also sent
to the main processor (Fig. 1c).

In this paper, we concentrate on push passive memory-
side prefetching into the L2 cache of the main processor.
The memory processor aims to eliminate only L2 cache
misses, since they are the only ones that it sees. Typically,
L2 cache miss time is an important contributor to the
processor stall due to memory accesses, and is usually the
hardest to hide with out-of-order execution.

This approach to prefetching is inexpensive to support.
The main processor core does not need to be modified at all.
Its L2 cache needs to have the following support. First, as in
other systems [14], [18], [35], the L2 cache has to accept a
line from the memory that it has not requested. This line
comes in a message that includes its address, as provided
by the memory. When the line arrives at the L2 cache, the
L2 cache can use a free Miss Status Handling Register
(MSHR). Second, if the L2 has a pending request and a

564 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO. 6, JUNE 2003

Fig. 1. Memory-side prefetching: some locations where the memory processor can be placed (a), and actions under push passive (b) and push

active (c) prefetching.

prefetched line with the same address arrives, the pre-
fetched line simply steals the MSHR and updates the cache
as if it were the reply. Finally, a line arriving at L2 is
dropped in the following cases: the L2 cache already has a
copy of the line, the write-back queue has a copy of the line
because the L2 cache is trying to write it back to memory, all
MSHRs are busy, or all the lines in the set where the line
wants to go to are in transaction-pending state.

2.2 Correlation Prefetching

Correlation Prefetching uses past sequences of reference or
miss addresses to predict and prefetch future misses [1], [6],
[15], [21], [32]. Two popular correlation schemes are Stride-
Based and Pair-Based schemes. Stride-based schemes find
stride patterns in the address sequences and prefetch all the
addresses that will be accessed if the patterns continue in
the future. Pair-based schemes identify a correlation
between pairs or groups of addresses, for example, between
a miss and a sequence of successor misses. A typical
implementation of pair-based schemes uses a Correlation
Table to record the addresses that are correlated. Later,
when a miss is observed, all the addresses that are
correlated with its address are prefetched.

Pair-based schemes are attractive because they have
general applicability: they work for any miss patterns as
long as miss address sequences repeat. Such behavior is
common in both regular and irregular applications, includ-
ing those with sparse matrices or linked data structures.
Furthermore, pair-based schemes, like all correlation
schemes, need neither compiler support nor changes in
the application binary.

Pair-based correlation prefetching has only been studied
using hardware-based implementations [1], [6], [15], [21],
[32], typically by placing a custom prefetch engine and a
hardware correlation table between the processor and
L1 cache, or between the L1 and L2 caches. The typical
correlation table, as used in [6], [15], [32], is organized as
follows: Each row stores the tag of an address that missed,
and the addresses of a set of immediate successor misses.
These are misses that have been seen to immediately follow
the first one at different points in the application. The
parameters of the table are the maximum number of
immediate successors per miss (NumSucc), the maximum
number of misses that the table can store predictions for
(NumRows), and the associativity of the table (Assoc).
According to [15], for best performance, the entries in a
row should replace each other with a LRU policy.

Figs. 4a, 4b, and 4c illustrate how the algorithm works.
We call the algorithm Base. Figs. 4a and 4b show two
snapshots of the table at different points in the miss stream.
Each table row keeps a miss and two of its immediate
successor misses. Such successors are listed in MRU order
from left to right. At any time, the hardware keeps a pointer
to the row of the last miss observed. When a miss occurs,
the table learns by placing the miss address as one of the
immediate successors of the last miss, and a new row is
allocated for the new miss unless it already exists. When the
table is used to prefetch as in Fig. 4c, it reacts to an observed
miss by finding the corresponding row and prefetching all
NumSucc successors, starting from the MRU one.

The designs in [1], [21] work slightly differently. They
are discussed in Section 6.

Overall, past work has demonstrated the applicability of
pair-based correlation prefetching for many applications.
However, it has also revealed the shortcomings of the
approach. One critical problem is that, to be effective, this
approach needs a large table. Proposed schemes typically
need a 1-2 Mbyte on-chip SRAM table [15], [21], while some
applications with large footprints even need a 7.6 Mbyte off-
chip SRAM table [21].

Furthermore, the popular schemes that prefetch several
potential immediate successors for each miss [6], [15], [32]
have two limitations: they do not prefetch very far ahead
and, intuitively, they need to observe one miss to eliminate
another miss (its immediate successor). As a result, they
tend to have low coverage.

3 ULMT FOR CORRELATION PREFETCHING

We propose to use a ULMT to eliminate the shortcomings of
pair-based correlation prefetching while enhancing its
advantages. In the following, we discuss the main concept
(Section 3.1), the architecture of the system (Section 3.2),
modified correlation prefetching algorithms (Section 3.3),
and related operating system issues (Section 3.4).

3.1 Main Concept

A ULMT running on a general-purpose core in memory
performs two conceptually distinct operations: learning and
prefetching. Learning involves observing the misses on the
main processor’s L2 cache and recording them in a
correlation table one miss at a time. The prefetching
operation involves reacting to one such miss by looking
up the correlation table and triggering the prefetching of
several memory lines for the L2 cache of the main
processor. No action is taken on a write-back to memory.

In practice, in agreement with past work [15], we find
that combining both learning and prefetching works best:
The correlation table continuously learns new patterns,
while uninterrupted prefetching delivers higher perfor-
mance. Consequently, the ULMT executes the infinite loop
shown in Fig. 2. Initially, the thread waits for a miss to be
observed. When it observes one, it looks up the table and
generates the addresses of the lines to prefetch (Prefetching
Step). Then, it updates the table with the address of the
observed miss (Learning Step). It then resumes waiting.

Any prefetch algorithm executed by the ULMT is
characterized by its Response and Occupancy times. The
response time is the time from when the ULMT observes a
miss address until it generates the addresses to prefetch. For
best performance, the response time should be as small as
possible. This is why we always execute the Prefetching
step before the Learning one. Moreover, we move as much
housekeeping computation as possible from the Prefetching

SOLIHIN ET AL.: CORRELATION PREFETCHING WITH A USER-LEVEL MEMORY THREAD 565

Fig. 2. Infinite loop executed by the ULMT.

to the Learning step, retaining only the most critical

operations in the Prefetching step.
The occupancy time is the time when the ULMT is busy

processing a single observed miss. For the ULMT imple-

mentation of the prefetcher to be viable, the occupancy time

has to be smaller than the time between two consecutive L2

misses most of the time.
The correlation table that the ULMT reads and writes is

simply a software data structure in memory. Consequently,

our scheme eliminates the costly hardware table required

by current implementations of correlation prefetching [15],

[21]. Moreover, accesses to the software table are inexpen-

sive because the memory processor transparently caches the

table in its cache. Finally, our new scheme enables the

redesign of the correlation table and prefetching algorithms

(Section 3.3) to address the low-coverage and short-distance

prefetching limitations of current implementations.

3.2 Architecture of the System

Figs. 3a and 3b show the architecture of a system that
integrates the memory processor in the North Bridge chip
or in a DRAM chip, respectively. The first design requires
no modification to the DRAM or its interface, and is largely
compatible with conventional memory systems. The second
design needs changes to the DRAM chips and their
interface, and needs special support to work in typical
memory systems, which have multiple DRAM chips.
However, since our goal is to examine the performance
potential of the two designs, we abstract away some of the
implementation complexity of the second design by
assuming a single-chip main memory. In the following,
we outline how the systems work. In our discussion, we
only consider memory accesses resulting from misses; we
ignore write-backs for simplicity, and because they do not
affect our algorithms.

In Fig. 3a, the key communication occurs through queues
1, 2, and 3. Miss requests from the main processor are

566 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO. 6, JUNE 2003

Fig. 3. (a) Architecture of a system that integrates the memory processor in the North Bridge chip or in (b) a DRAM chip.

Fig. 4. Pair-based correlation algorithms: Base ((a), (b), and (c)), Chain ((d), (e), and (f)), and Replicated ((g), (h), and (i)).

deposited in queues 1 and 2 simultaneously. The ULMT
uses the entries in queue 2 to build its table and, based on it,
generate the addresses to prefetch. The latter are deposited
in queue 3. Queues 1 and 3 try to access memory, although
queue 3’s messages have a lower priority: they wait until
queue 1 is empty.

When the address of a line to prefetch is deposited in
queue 3, the hardware compares it against all the entries in
queue 2. If a match for address X is detected, X is removed
from both queues. We remove X from queue 3 because it is
redundant: a higher-priority request for X is already in
queue 1. X is removed from queue 2 to save computation in
the ULMT. Note that it is unclear whether we lost the
opportunity to prefetch X’s successors by not processing X.
The reason is that our algorithms prefetch several levels of
successor misses (Section 3.3) and, as a result, some of X’s
successors may already be in queue 3. Processing X may
help improve the state in the correlation table. However,
minimizing the total occupancy of the ULMT is crucial in
our scheme.

Similarly, when a main-processor miss is about to be
deposited in queues 1 and 2, the hardware compares its
address against those in queue 3. If there is a match, the
request is put only in queue 1 and the matching entry in
queue 3 is removed.

It is possible that requests from the main processor arrive
too fast for the ULMT to consume them and queue 2
overflows. In this case, the memory processor simply drops
these requests.

Fig. 3a also shows the Filter module associated with
queue 3. This module improves the performance of
correlation prefetching, which may sometimes try to
prefetch the same address several times in a short time.
The Filter module drops prefetch requests directed to any
address that has been recently prefetched by the memory
processor. The module is a fixed-sized FIFO list that records
the addresses of all the prefetches recently-issued by the
memory processor. Before a prefetch request is issued to
queue 3, the hardware checks the Filter list. If it finds its
address, the request is dropped and the list is left
unmodified. Otherwise, the address is added to the tail of
the list. With this support, some unnecessary prefetch
requests are eliminated.

For completeness, the figure shows other queues. Replies
from memory to the main processor go through queue 4. In
addition, the ULMT needs to access the software correlation
table in main memory. Recall that the table is transparently
cached by the memory processor. Logical queues 5 and 6
provide the necessary paths for the memory processor to
access main memory. In practice, queues 5 and 6 are
merged with the others.

If the memory processor is in the DRAM chip (Fig. 3b),
the system works slightly differently. Miss requests from
the main processor are deposited first in queue 1 and then
in queue 2. The ULMT in the memory processor accesses
the correlation table from its cache and, on a miss, directly
from the DRAM. The addresses to prefetch are passed
through the Filter module and placed in queue 3. As in
Fig. 3a, entries in queues 2 and 3 are checked against each
other, and the common entries are dropped. The replies to
both prefetches and main-processor requests are returned
to the memory controller. As they reach the memory
controller, their addresses are compared to the processor

miss requests in queue 1. If a memory-prefetched line
matches a miss request from the main processor, the former
is considered to be the reply of the latter, and the latter is
not sent to the memory chip.

Finally, in machines that include a form of processor-side
prefetching, we envision our architecture to operate in two
modes: Verbose and NonVerbose. In Verbose mode, queue 2
in Figs. 3a and 3b receives both main-processor misses and
main-processor prefetch requests. In NonVerbose mode,
queue 2 only receives main-processor misses. This mode
assumes that main-processor prefetch requests are distin-
guishable from other requests, for example with a tag as in
the MIPS R10000 [26].

The NonVerbose mode is useful to reduce the total
occupancy of the ULMT. In this case, the processor-side
prefetcher can focus on the easy-to-predict sequential or
regular miss patterns, while the ULMT can focus on the
hard-to-predict irregular ones. The Verbose mode is also
useful: The ULMT can implement a prefetch algorithm that
enhances the effectiveness of the processor-side prefetcher.
We present an example of this case in Section 5.2.

3.3 Correlation Prefetching Algorithms

Simply taking the current pair-based correlation table and
algorithm, and implementing them in software is not good
enough. Indeed, as indicated in Section 2.2, the Base
algorithm has two limitations: it does not prefetch very
far ahead and, intuitively, it needs to observe one miss to
eliminate one other miss (its immediate successor). As a
result, it tends to have low coverage.

Note that modifying the Base algorithm so that each row
in the table stores, for example, only the second level
successor misses (successors of the immediate succesors)
would not help much. Indeed, while we would prefetch
farther ahead, the coverage would still be low because we
would still need one miss to eliminate one other miss.
Moreover, the accuracy of the prefetches would decrease.

To increase coverage, three things need to occur. First,
we need to eliminate the ”one-level of successors per miss”
limitation by storing in the table (and prefetching) several
levels of successor misses per miss: immediate successors,
successors of immediate successors, and so on, for several
levels. Second, these prefetches have to target the misses
accurately. Finally, the prefetcher has to make decisions
early enough so that the prefetched lines reach the main
processor before they are needed.

These conditions are easier to support and ensure when
the correlation algorithm is implemented as a ULMT. There
are two reasons for it. The first one is that storage is now
cheap and, therefore, the correlation table can be inexpen-
sively expanded to hold multiple levels of successor misses
per miss, even if that means replicating information. The
second reason is the Customizability provided by a software
implementation of the prefetching algorithm.

In the rest of this section, we describe how a ULMT
implementation of correlation prefetching can deliver high
coverage. We describe three approaches: using a conven-
tional table organization, using a table reorganized for
ULMT, and exploiting customizability.

3.3.1 Using a Conventional Table Organization

As a first step, we attempt to improve coverage without
specifically exploiting the low-cost storage or customizability

SOLIHIN ET AL.: CORRELATION PREFETCHING WITH A USER-LEVEL MEMORY THREAD 567

advantages of ULMT. We simply take the conventional table
organization of Section 2.2 and force the ULMT to prefetch
multiple levels of successors for every miss. The resulting
algorithm we call Chain. Chain takes the same parameters as
Base plus NumLevels, which is the number of levels of
successors prefetched. The algorithm is illustrated in
Figs. 4d, 4e, and 4f.

Chainupdates the table likeBase (4dand4e), but prefetches
differently (Fig. 4f). Specifically, after prefetching the row of
immediate successors, it takes the MRU successor and
accesses the correlation table again with its address. If the
entry is found, it prefetches all NumSucc successors there.
Then, it takes the MRU successor in that row and repeats the
process. This is done NumLevels-1 times. As an example,
suppose that a miss on a occurs (Fig. 4f). The ULMT first
prefetches d and b. Then, it takes the MRU entry d, looks-up
the table, and prefetches d’s successor, c.

Chain addresses the two limitations of Base, namely not
prefetching very far ahead, and needing one miss to
eliminate a second one. However, Chain may not deliver
high coverage for two reasons: the prefetches may not be
highly accurate and the ULMT may have a high response
time to issue all the prefetches.

The prefetches may be inaccurate because Chain does not
prefetch the true MRU successors in each level of
successors. Instead, it only prefetches successors found along
the MRU path. An example of the possible inaccuracy is
discussed in Section 3.3.4.

The high response time of Chain to a miss comes from
having to make NumLevels accesses to different rows in the
table. Each access involves an associative search because the
table is associative and, potentially, one or more misses in
the cache of the memory processor.

3.3.2 Using a Table Reorganized for ULMT

We now attempt to improve coverage by exploiting the low
cost of storage in ULMT solutions. Specifically, we expand
the table to allow replicated information. Each row of the
table stores the tag of the miss address, and NumLevels
levels of successors. Each level contains NumSucc addresses
that use LRU for replacement. Using this table, we propose
an algorithm called Replicated (Figs. 4g, 4h, and 4i).
Replicated takes the same parameters as Chain.

As shown in Fig. 4g, Replicated keeps NumLevels pointers
to the table. These pointers point to the entries for the
address of the last miss, second last, and so on, and are used
for efficient table access. When a miss occurs, these pointers
are used to access the entries of the last few misses, and
insert the new address as the MRU successor of the correct
level (Figs. 4g and 4h). In the figure, the NumSucc entries at
each level are MRU ordered. Finally, prefetching in
Replicated is simple: When a miss is seen, all the entries in
the corresponding row are prefetched (Fig. 4i).

Note that Replicated eliminates the two problems of
Chain. First, prefetches are accurate because they contain the
true MRU successors at each level. This is the result of
grouping together all the successors from a given level,
irrespective of the path taken. An example of the increased
accuracy is discussed in Section 3.3.4.

Second, the response time of Replicated is much smaller
than Chain. Indeed, Replicated prefetches several levels of
successors with a single row access, and maybe even with a
single miss in the cache of the memory processor. Replicated

effectively shifts some computation from the Prefetching
step to the Learning one: Prefetching needs a single table
access, while learning a miss needs multiple table updates.
This is a good trade off because the Prefetching step is the
critical one. Furthermore, these multiple learning updates
are inexpensive: The use of the pointers eliminates the need
to do any associative searches on the table, and the rows to
be updated are most likely still in the cache of the memory
processor (since they were updated most recently).

3.3.3 Exploiting the Customizability of ULMT

We can also improve coverage by exploiting the second
advantage of ULMT solutions: customizability. The pro-
grammer or system can choose to run a different algorithm
in the ULMT for each application. The chosen algorithm can
be highly customized to the application’s needs.

One approach to customization is to use the table
organizations and prefetching algorithms described above,
but to tune their parameters on an application basis. For
example, in applications where the miss sequences are
highly predictable, we can set the number of levels of
successors to prefetch (NumLevels) to a high value. As a
result, we will prefetch more levels of successors with high
accuracy. In applications with unpredictable sequences, we
can do the opposite. We can also tune the number of rows in
the table (NumRows). In applications that have large
footprints, we can set NumRows to a high value to hold
more information in the table. In small applications, we can
do the opposite to save space.

A second approach to customization is to use a different
prefetching algorithm. For example, we can add support for
sequential prefetching to all the algorithms described
above. The resulting algorithms will have low response
time for sequential miss patterns.

Another approach is to adaptively decide the algorithm
on-the-fly, as the application executes. In fact, this approach
can also be used to execute different algorithms in different
parts of one application. Such intraapplication customiz-
ability may be useful in complex applications.

Finally, the ULMT can also be used for profiling
purposes. It can monitor the misses of an application and
infer higher-level information such as cache performance,
application access patterns, or page conflicts.

3.3.4 Comparing the Algorithms

We claimed in Sections 3.3.2 and 3.3.1 that, thanks to
prefetching the true MRU successors at each level, Replicated
is more accurate than Chain. Recall that the latter only
prefetches successors found along the MRU path. We now
show the higher accuracy of Replicated with an example: a
repeating miss sequence that is interrupted by a one-time
miss sequence that shares one of the misses with the
repeating sequence.

Consider the miss sequence a; b; c; d, which repeats, but
is interrupted by a one-time miss sequence b; e; f before
resuming again: a; b; c; d, . . . , a; b; c; d, . . . ; a; b; c; d, . . . ,
b; e; f; . . . ; a. Since a; b; c; d and b; e; f are distinct patterns,
we do not want them to confuse the prefetcher. Thus,
when the a miss after b; e; f is encountered, we want to
prefetch b; c; d. However, Chain and Replicated behave
differently in this case.

To see why, Figs. 5a, 5b, and 5c show the behavior of the
Chain algorithm, and Figs. 5d, 5e, and 5f show the behavior

568 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO. 6, JUNE 2003

of the Replicated one. The tables correspond to NumSucc = 2
and NumLevels = 3. For each algorithm, Figs. 5a and 5d
show the state of the tables immediately before we
encounter the last a miss in our example.

When the last amiss is encountered in Chain (Fig. 5b), we
prefetch its immediate successors (b), and then access the
entry for b to prefetch e and c. Then, we follow the
MRU successor of b, which is e, to prefetch f . The locations
that areprefetchedbyChainare then b; e; c; f . Fig. 5c shows the
tree of misses following a and how Chain prefetches in three
steps. We can see that the b; e; f sequence sidetracks the
prefetching for the repeating a; b; c; d sequence. Indeed,while
e; f are not successors of a, they are still prefetched. This is
because Chain does not remember the ”successors of miss a”
as a unit; it simply follows the successors found along the
MRU path. With Replicated, when the last a miss is
encountered (Fig. 5e), we prefetch the successors of miss a

as a unit. We use MRU at each single successor level if
necessary, although this isnot an issue in theexamplebecause
there is a single miss per level. The locations prefetched are
b; c; d, which are the ones that we want. Fig. 5f shows the tree
of misses again, and how Replicated remembers and pre-
fetches the true successors of a as a unit. This example
illustrates that Replicated is more resistant to interfering miss
sequences, and thus can prefetch far ahead more accurately
than Chain.

Overall, Table 1 compares the Base, Chain, and Replicated
algorithms executing on a ULMT. Replicated has the highest
potential for high coverage: it supports far-ahead prefetching
by prefetching several levels of successors, its prefetches are
more accurate because theyprefetch the trueMRUsuccessors
at each level, and it has a low response time, in part, because it

only needs to access a single table row in the Prefetching step.
Accessing a single row minimizes the associative searches
and the cachemisses.Theonly shortcomingofReplicated is the
larger space that it requires for the correlation table.However,
this is a minor issue since the table is a software structure
allocated inmainmemory. Note that all these algorithms can
also be implemented in hardware. However, Replicated is
more suitable for an ULMT implementation because provid-
ing the larger space required in hardware is expensive.

3.4 Operating System Issues

There are some operating system issues that are related to
ULMT operation. We outline them here.

Protection. The ULMT has its own separate address
space with its instructions, the correlation table, and a few
other data structures. The ULMT shares neither instructions
nor data with any application. The ULMT can observe the
physical addresses of the application misses. It can also
issue prefetches for these addresses on behalf of the main
processor. However, it can neither read from nor write to
these addresses. Therefore, protection is guaranteed.

Multiprogrammed Environment. It is suboptimal to
have all the applications share a single table: the table is
likely to suffer interference. A better approach is to
associate a different ULMT, with its own table, to each
application. This eliminates interference in the tables. In
addition, it enables the customization of each ULMT to its
corresponding application.

It could be argued that the resulting tables may take so
much memory space that they cause additional memory
paging and, therefore, negate some of the expected
performance gains. In practice, in our experiments, we find

SOLIHIN ET AL.: CORRELATION PREFETCHING WITH A USER-LEVEL MEMORY THREAD 569

Fig. 5. ((a), (b), and (c)) Comparing the prefetching of several levels of successors in Chain and ((d), (e), and (f)) Replicated.

TABLE 1
Comparing Different Pair-Based Correlation Prefetching Algorithms Running on a ULMT

that the average table size is less than 4 Mbytes. Conse-

quently, eight applications require 32 Mbytes, which is a

modest fraction of today’s typical main memory. If this

requirement is excessive, we can save space by dynamically

sizing the tables. In this case, if an application does not use

the space, its table shrinks. Finally, if the resulting space

taken by the tables is still too high, we can swap out the

tables of all nonexecuting applications. The resulting space

requirements would then be only 4 Mbytes, which is

certainly a tolerable overhead. In this case, as a new

application is scheduled to run, its table can be regenerated.
Scheduling. The scheduler knows the ULMT associated

with each application. Consequently, the scheduler sche-

dules and preempts both application and ULMT as a group.

Furthermore, the operating system provides an interface for

the application to control its ULMT.
Page Remapping. Sometimes, a page gets remapped.

Since ULMTs operate on physical addresses, such events

can cause some table entries to become stale. We can choose

to take no action and let the table update itself automatically

through learning. Alternatively, the operating system can

inform the corresponding ULMT when a remapping occurs,

passing the old and new physical page numbers. Then, the

ULMT indexes its table for each line of the old page. If the

entry is found, the ULMT relocates it and updates both the

tag and any applicable successors in the row. Given current

page sizes, we estimate the table update to take a few

microseconds. Such overhead may be overlapped with the

execution of the operating system page mapping handler in

the main processor. Note that some other entries in the table

may still keep stale successor information. Such information

may cause a few useless prefetches, but the table will

quickly update itself automatically.

4 EVALUATION ENVIRONMENT

4.1 Applications

To evaluate the ULMT approach, we use nine mostly-

irregular, memory-intensive applications. Irregular applica-

tions are hard to speed up with compiler-based prefetching.

Consequently, they are the obvious target for ULMT

correlation prefetching. The exception is CG, which is a

regular application. Table 2 describes the applications. The

last four columns of the table will be explained later.

4.2 Simulation Environment

The evaluation is done using an execution-driven simula-

tion environment that supports a dynamic superscalar

processor model [20]. We model a PC architecture with a

simple memory processor that is integrated in either the

North Bridge chip or in a DRAM chip, following the

microarchitecture of Fig. 3. Table 3 shows the parameters

used for each component of the architecture. All cycles are

1.6 GHz cycles. The architecture is modeled cycle by cycle.
We model only a uniprogrammed environment with a

single application and a single ULMT that execute con-

currently. We model all the contention in the system,

including the contention of the application thread and the

ULMT on shared resources such as the memory controller,

DRAM channels, and DRAM banks.

570 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO. 6, JUNE 2003

TABLE 2
Applications Used

TABLE 3
Parameters of the Simulated Architecture

Latencies correspond to contention-free conditions. RT stands for
round-trip from the processor. All cycles are 1.6 GHz cycles.

4.3 Processor-Side Prefetching

The main processor optionally includes a hardware
prefetcher that can prefetch multiple streams of stride 1 or
-1 into the L1 cache. The prefetcher monitors L1 cache
misses and can identify and prefetch up to NumSeq
sequential streams concurrently. It works as follows. When
the third miss in a sequence is observed, the prefetcher
recognizes a stream. Then, it prefetches the next NumPref
lines in the stream into the L1 cache. Furthermore, it stores
the stride and the next address expected in the stream in a
special register. If the processor later misses on the address
in the register, the prefetcher prefetches the next NumPref
lines in the stream and updates the register. The prefetcher
contains NumSeq such registers. As we can see, while this
scheme works somewhat like stream buffers [16], the
prefetched lines go to L1. We choose this approach to
minimize hardware complexity. A shortcoming is that the
L1 cache may get polluted. For completeness, we resimu-
lated the system with the prefetches going into separate
buffers rather than into L1. We found that the performance
changes very little, in part, because checking the buffers on
L1 misses introduces delay.

4.4 Algorithm Parameters

Table 4 lists the prefetching algorithms that we evaluate and
the default parameters that we use. The sequential
prefetching supported in hardware by the main processor
is called Conven4 for conventional. It can also be imple-
mented in software by a ULMT. We evaluate two such
software implementations (Seq1 and Seq4). In this case, the
prefetcher in memory observes L2 misses rather than L1.

Unless otherwise indicated, the processor-side prefetcher
is off and, if it is on, the ULMT algorithms operate in
NonVerbose mode (Section 3.2). For the Base algorithm, we
choose the parameter values used by Joseph and Grunwald
[15] so that we can compare the work. The last four columns
of Table 2 give the size of the correlation table that we use
for each application. The table is two-way set-associative.
We have sized the number of rows in the table (NumRows)
as explained in Section 5.1.2. To map miss addresses into
the table, we use a trivial hashing function that simply takes
the lower bits of the line address. A more sophisticated hash
function can reduce NumRows significantly without in-
creasing conflicts much. In any case, knowing that each row
in Base, Chain, and Repl takes 20, 12, and 28 bytes,
respectively, in a 32-bit machine, we can compute the total
table size. Overall, while some applications need more
space than others, the average value is tolerable: 2.7, 1.6,
and 3.8 Mbytes for Base, Chain, and Repl, respectively.

4.5 ULMT Implementation

We wrote all ULMTs in C and hand-optimized them for
minimal response and occupancy time. One major perfor-
mance bottleneck of the implementation is frequent
branches. We remove branches by unrolling loops and
hardwiring all algorithm parameters. We also perform
optimizations to increase the spatial locality and to reduce
the instruction count. None of the algorithms uses floating-
point operations.

5 EVALUATION

5.1 Characterizing Application Behavior

5.1.1 Predictability of the Miss Sequences

We start by characterizing how well our ULMT algorithms
can predict the miss sequences of the applications. For that,
we run each ULMT algorithm simply observing all L2 cache
miss addresses without performing prefetching. We record
the fraction of L2 cache misses that are correctly predicted.
For a sequential prefetcher, this means that the upcoming
miss address matches the next address predicted by one of
the streams identified; for a pair-based prefetcher, the
upcoming address matches one of the successors predicted
for that level.

Fig. 6 shows the results of prediction for up to three
levels of successors. Given a miss, the Level 1 chart shows
the predictability of the immediate successor, while Level 2
shows the predictability of the next successor, and Level 3
the successor after that one. The experiments for the pair-
based schemes use large tables to ensure that practically no
prediction is missed due to conflicts in the table: NumRows
is 256 K, Assoc is four, and NumSucc is four. Under these
conditions, for level 1, Chain and Repl are equivalent to Base.
For levels 2 and 3, Base is not applicable. The figure also
shows the effect of combining algorithms.

Fig. 6 shows that our ULMT algorithms can effectively
predict the miss streams of the applications. For example, at
level 1, Seq4 and Base correctly predict on average 49 percent
and 82 percent of the misses, respectively. Moreover, the
best algorithms keep predicting correctly across several
levels of successors. For example, Repl correctly predicts on
average 77 percent and 73 percent of the misses for levels 2
and 3, respectively. Therefore, these algorithms have good
potential.

The figure also shows that different applications have
different miss behavior. For instance, applications such as
Mcf and Tree do not have sequential patterns and, there-
fore, only pair-based algorithms can predict misses. In other
applications such as CG, instead, sequential patterns
dominate. As a result, sequential prefetching can predict

SOLIHIN ET AL.: CORRELATION PREFETCHING WITH A USER-LEVEL MEMORY THREAD 571

TABLE 4
Parameter Values Used for the Different Algorithms

practically all L2 misses. Most applications have a mix of
both patterns.

Among pair-based algorithms, Repl almost always out-
performs Chain by a wide margin. This is because Chain
does not maintain the true MRU successors at each level.
However, while Repl is effective under all patterns, it is
better when combined with multistream sequential pre-
fetching (Seq4+Repl).

5.1.2 Sensitivity to the Table Size

To decide how many entries (NumRows) to use in the
correlation table, we can use different approaches. One
approach is to base the decision on the predictability of level
3 successor misses as defined in Section 5.1.1. We focus on
level 3 successor misses because predicting such misses
enables these algorithms to prefetch far ahead.

Fig. 7 shows the predictability of level 3 successor misses
for Seq4 + Repl for different values of NumRows. The figure
is organized as Fig. 6, except that we vary NumRows. From
the figure, we see that the prediction accuracy increases as
NumRows increases. However, the accuracy stops increas-
ing at a certain value that is application-dependent. We call
this point the Accuracy Threshold. The accuracy threshold for
each application is listed in the second column of Table 5.
For example, while Equake, MST, and Sparse have an
accuracy threshold of 128 K entries, CG and Parser have a
threshold of only 8 K entries. The reason for the small
threshold in CG is that, since CG is a fairly regular

application, there are relatively few irregular cache miss
addresses that need to be stored in the table for Seq4 + Repl.
Overall, since each application has a different value for the
accuracy threshold, we could save memory by setting the
NumRows for each application to its accuracy threshold.

One problem of finding the accuracy threshold for each
application is that it requires expensive profiling. Such
profiling can be done offline or online. For example, an
offline approach would involve performing multiple profil-
ing runs per application, namely one run for each NumRows
value that we want to evaluate, and then identifying the
knee of the curve.

An alternative approach is to select the NumRows that
result in a good utilization of the correlation table. This
approach is different in that it neglects to consider any effects
of conflicts in the table. To see how it is used, Fig. 8 shows the
percentage of NumRows that are actually used during
program execution (or Occupancy of the table), for different
values of NumRows. We can see that the table occupancy for
most of our applications is 100 percent at 8KNumRows. Then,
at a certainNumRowsvalue, the occupancydecreases quickly.

Under this approach, the profiling needed to identify a
good value for NumRows is less expensive. We perform a
single profiling run per application using a large correlation
table. In our case, we use 256 K NumRows, which is the
largest requirement in the application suite. We then
observe what fraction of the table is used in the profiling
run, as shown in the last column of each application in

572 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO. 6, JUNE 2003

Fig. 6. Fraction of L2 cache misses that are correctly predicted by different algorithms for different levels of successors.

Fig. 7. Effect of the number of entries in the table (NumRows) on the accuracy of level 3 successor prediction for Seq4 + Repl.

Fig. 8. We multiply such a fraction by 256 K and round up
the result to the nearest power of two in order to facilitate
the simple hashing mechanism used in the table
(Section 4.4). With a more advanced hashing function, we
could avoid rounding up, and would save space for the
table. We call this approach to select the table size as
Occupancy-Based. The third column of Table 5 shows the
resulting size of the table chosen with this approach for
each application.

The table shows that NumRows in the occupancy-based
approach is typically as high or higher than using the
accuracy threshold. The difference between the two values
is primarily due to infrequent misses, such as initialization
misses. They contribute to the occupancy of the table, but
they can be displaced from the table without significantly
decreasing the accuracy of the miss address prediction. For
Parser, these misses make the occupancy-based NumRows
much higher than the accuracy threshold NumRows.

One exception is Tree, where the NumRows in the
occupancy-based approach is lower than using the accuracy
threshold. The reason is that the miss addresses in Tree
suffer many conflicts, thereby keeping the address predic-
tion accuracy low. To reach the desired accuracy threshold,
we need a larger table. Such a table eliminates these
conflicts, but ends up being sparsely populated.

Overall, while NumRows in the occupancy-based ap-
proach tends to be higher than using the accuracy thresh-
old, we use the former approach. The reason is that it needs
a single profiling run per application. Even with this
approach, the average table size per application is a
tolerable 140 K rows. In the rest of the paper, we use the
occupancy-based NumRows for each application.

5.1.3 Time between L2 Misses

Another important issue is the time between L2 misses. We
classify L2 misses according to the number of cycles
between two consecutive misses arriving at the memory.
The misses are grouped in bins corresponding to [0, 40)
cycles, [40, 80) cycles, etc. We then cluster adjacent bins that
have a similar weight. After that, the resulting bins are: [0,
80), [80, 200), [200, 280), and [280, Infinity), as shown in
Fig. 9. In our analysis, the unit is 1.6 GHz processor cycles.

The most significant bin is [200, 280), which contributes
with 60 percent of allmiss distances on average. Thesemisses
are critical beyond their numbers because their latencies are
hard to hide with out-of-order execution. Indeed, since the
round-trip latency to memory is 208-243 cycles, dependent
misses are likely to fall in this bin. They contribute more to
processor stall than the figure suggests because dependent
misses cannot be overlapped with each other. Consequently,
we want the ULMT to prefetch them. To make sure that the
ULMT is fast enough to learn these misses, its occupancy
should be less than 200 cycles.

The misses in the other bins are fewer and less critical.
Those in [280, Infinity) are too far apart to put pressure on
the ULMT’s timing. Those in [0, 80) may not give enough
time to the ULMT to respond. Fortunately, these misses are
more likely to be overlapped with each other and with
computation.

5.2 Comparing the Different Algorithms

5.2.1 Execution Time Comparison

Fig. 10 compares the execution time of the applications
under different cases: no prefetching (NoPref), processor-
side prefetching as listed in Table 4 (Conven4), different
ULMT schemes listed in Table 4 (Base, Chain, and Repl), the
combination of Conven4 and Repl(Conven4 + Repl), and some
customized algorithms (Custom). The results are for the case
where the memory processor is integrated in the DRAM
(Fig. 10a) or in the memory controller chip (Fig. 10b). For the
case in the memory controller chip, we use theMC suffix for
the names of our memory-side prefetching algorithms. For
each application and the average, the bars are normalized to
NoPref. The bars show the memory-induced processor stall
time that is caused by requests between the processor and
the L2 cache (UptoL2), and by requests beyond the L2 cache
(BeyondL2). The remaining time (Busy) includes processor
computation plus other pipeline stalls. A system with a
perfect L2 cache would only have the Busy and UptoL2
times.

We first consider the NoPref and Conven4 bars, which are
the same in both Figs. 10a and 10b. On average, BeyondL2 is
the most significant component of the execution time in
NoPref. It accounts for 44 percent of the time. Thus,

SOLIHIN ET AL.: CORRELATION PREFETCHING WITH A USER-LEVEL MEMORY THREAD 573

TABLE 5
Determing the Size of the Correlation Table

Fig. 8. Occupancy of the correlation table for different values of NumRows.

although our ULMT schemes only target L2 cache misses,
they target the main contributor to the execution time.

Conven4 is an effective prefetching technique. On
average, it reduces the execution time by 17 percent.
However, its impact varies noticeably across applications.
For example, Conven4 performs very well on CG because
sequential patterns dominate. However, it is ineffective in
applications such as Mcf and Tree that have purely
irregular patterns.

We now consider the pair-based schemes in Fig. 10a.
From the figure, we see that they show mixed performance.
Base shows limited speedups, mostly because it does not
prefetch far enough. On average, it reduces NoPref’s
execution time by 6 percent. Chain performs a little better,
but it is limited by inaccuracy (Fig. 6) and high response
time (Section 3.3.1). On average, it reduces NoPref’s
execution time by 12 percent.

Repl is able to reduce the execution time significantly. It
performs well in almost all applications. It outperforms
both Base and Chain in all cases. Its impact comes from the
nice properties of the Replicated algorithm, as discussed in
Section 3.3.4. The average of the application speedups of
Repl over NoPref is 1.32.

Conven4 + Repl performs the best. On average, it removes
over half of the BeyondL2 stall time, and delivers an average
application speedup of 1.46 over NoPref. If we compare the
impact of processor-side prefetching only (Conven4) and
memory-side prefetching only (Repl), we see that they have
a constructive effect in Conven4 + Repl. The reason is that the
two schemes help each other. Specifically, the processor-
side prefetcher prefetches and eliminates the sequential
misses. The memory-side prefetcher works in NonVerbose
mode (Section 3.2) and, therefore, does not see the prefetch
requests. Therefore, it can fully focus on the irregular miss
patterns. With the resulting reduced load, the ULMT is
more effective.

Finally, we consider the pair-based schemes in Fig. 10b,
which correspond to integrating the memory processor in
the memory controller chip. Recall that, with the processor
in the North Bridge chip, we have twice the memory access
latency (100 cycles versus 56 cycles), eight times lower
memory bandwidth (3.2 GB/sec versus 25.6 GB/sec), and
an additional 25-cycle delay seen by the prefetch requests
before they reach the DRAM.1

From the figure, we see that BaseMC is significantly
slower than Base. The main reason for this is that, since the

prefetching algorithm used does not prefetch beyond the
immediate successors, it is important that the prefetched
data be sent to the main processor as soon as possible. The
extra latencies observed when the memory processor is in
the memory controller greatly reduce the timeliness of the
prefetched data.

ChainMC is also slower than Chain. In this case, the
prefetching algorithm used has a high response time. The
response time increases further when the memory proces-
sor is in the memory controller chip. This problem could be
tolerable if the prefetching algorithm prefetched far ahead
accurately. Unfortunately, we have seen that this prefetch-
ing algorithm is relatively inaccurate for successors beyond
immediate ones.

Finally, if we compare Repl to ReplMC and Conven4 + Repl
to Conven4 + ReplMC, we see that the differences are very
small. The reason is that the memory-side prefetching
algorithm used has the ability to prefetch far ahead
accurately. As a result, by putting the memory processor in
thememory controller chip,wemayhurt the timeliness of the
immediate successor prefetches. However, the prefetching of
further levels of successors is still timely. Overall, therefore,
putting the processor in the DRAM or in the memory
controller chip makes little difference. Specifically, going
from Conven4 + Repl to Conven4 + ReplMC, reduces the
average speedups relative to NoPref from 1.46 to 1.41.

Overall, given these results and the hardware cost of the
two designs, we conclude that putting thememory processor
in the North Bridge chip is the most cost-effective design of
the two, as long as the best algorithm (Conven4 + ReplMC) is
used.

5.2.2 Algorithm Customization

In this first paper on ULMT prefetching, we have tried only
very simple ad hoc customizations for a few applications;
we do not attempt any systematic analysis of possible
customizations. Table 6 shows the customizations per-
formed.

For CG, we observe that, while it only has sequential
miss patterns (Fig. 6), its multiple streams may overwhelm
the conventional prefetcher. Indeed, although processor-
side prefetches are very accurate (99.8 percent of the
prefetched lines are used), they are often not timely (only
64 percemt arrive to L2 before being needed). In our
customization, we try to exploit positive interaction
between processor and memory-side prefetching. To do
so, we turn on the Verbose mode so that processor-side
prefetch requests are seen by the ULMT. Furthermore, the

574 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO. 6, JUNE 2003

Fig. 9. Characterizing the time between L2 misses.

1. All these cycle counts are in main-processor cycles.

ULMT is extended with a single-stream sequential prefetch

algorithm (Seq1) before executing Repl. In this environment,

the positive interaction between the two prefetchers

increases. Specifically, while the application references the

different streams in an interleaved manner, the processor-

side prefetcher ”unscrambles” the miss sequence into

chunks of same-stream prefetch requests. The Seq1 pre-

fetcher in the ULMT then easily identifies each stream and,

very efficiently, prefetches ahead. As a result, more

processor-side prefetches arrive in a timely manner.
The result of this customization is shown in Fig. 10 as the

Custom bar in CG. The speedup of CG improves from 2.19
(with Conven4 + Repl) to 2.59. It can be shown that up to

81 percent of the processor-side prefetches arrive in a timely

manner. This case demonstrates that even regular applica-
tions that are amenable to sequential processor-side pre-

fetching can benefit from ULMT prefetching.

SOLIHIN ET AL.: CORRELATION PREFETCHING WITH A USER-LEVEL MEMORY THREAD 575

Fig. 10. Execution time of the applications with different prefetching algorithms. In (a), the memory processor is placed in the DRAM chip, while in (b), it

is placed in the memory controller.

We have also taken some applications for which Repl
ideally predicts well even the third level of successor misses
(Level 3 in Fig. 6) and examined prefetching a fourth level of
successor misses. We choose the MST and Mcf applications.
Our customization involves increasing NumLevels to 4 in
Repl. As shown in the Custom bars in Fig. 10, this approach
is successful for MST, but produces marginal gains in Mcf.

We have also examined other customization techniques,
which provide only negligible gains. A systematic analysis
of customization is left for future work. However, this initial
attempt at customization shows promising results. After
applying customization on three applications, the average
execution speedup of the nine applications relative to
NoPref improves from 1.46 (with Conven4 + Repl) to 1.53.

5.2.3 Prefetching Effectiveness

To gain further insight into these prefetching schemes, we
measure the misses and prefetch hits in the L2 cache
(Fig. 11a), and the lines prefetched into the L2 cache by the
ULMT (Fig. 11b). The latter are called prefetches. Both figures
are shown in the same scale, namely normalized to the
number of L2 misses in the NoPref environment. The figures
show data for Sparse, Tree, and the average of the
remaining seven applications. We show the data for Sparse
and Tree separately because these applications are the
hardest to prefetch successfully.

Fig. 11a combines several types of L2 misses and hits:
original L2 misses that still remain after prefetching
(Remaining), original L2 misses that are eliminated by the
ULMT prefetches, either completely (Hits) or partially
because the prefetches arrive a bit late (DelayedHits), and
new L2 misses induced by the prefetches that displace
useful L2 lines (New). By definition, the sum of Remaining,

Hits, and DelayedHits is one. The sum of Hits and
DelayedHits is the coverage of the ULMT prefetching
algorithm. Due to the way we measure the data, Remaining
also includes the original L2 misses that are successfully
eliminated by the processor-side conventional prefetcher (in
Conven4 + Repl and Conven4 + ReplMC).

Fig. 11b classifies the prefetches that arrive to L2: those
that completely or partially eliminate a miss (Useful), and
those that are useless, either because they are not referenced
between the time they arrive to L2 and the time they are
replaced (Replaced), or because they are dropped on arrival
to L2 because the same line is already in the cache
(Redundant). Note that Useful is equal to Hits plus
DelayedHits in Fig. 11a. Moreover, Useful divided by all
the sum of Useful, Replaced, and Redundant, is the accuracy
of the prefetching algorithm.

We consider the average of the seven applications first.
Fig. 11a shows why Base and Chain deliver only moderate
performance gains in Fig. 10: their coverage is modest and
the prefetches generate New misses. Base’s coverage is hurt
by its inability to prefetch far ahead, while Chain’s is
hampered by its high response time and limited accuracy.
The limited accuracy of Chain is seen in Fig. 11b.

Fig. 11a shows that Repl has a high coverage (0.74).
However, this high coverage comes at the cost of also some
New misses and limited accuracy. Fig. 11a shows that New
misses are equivalent to 20 percent of the original misses.
Moreover, Fig. 11b shows that the resulting accuracy is
about 60 percent.

Conven4 + Repl delivers the best speedups in Fig. 10,
thanks to a combination of three factors: few induced
misses (New in Fig. 11a), a modest number of useless
prefetches (Fig. 11b), and very good coverage. The total
coverage is not shown in Fig. 11a. The figure only shows the
coverage of ULMT prefetches. It does not show the
additional coverage provided by the prefetch requests
issued by Conven4. These prefetch requests target the
regular miss patterns and eliminate some of the misses
that Fig. 11a still shows as Remaining in the Conven4 + Repl
bar. The ULMT prefetcher does not see these prefetch
requests in NonVerbose mode, and it only focuses on the
irregular miss patterns. The resulting, total coverage of
Conven4 + Repl could be shown to be even higher than Repl.

576 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO. 6, JUNE 2003

TABLE 6
Customizations Performed

In all cases, Conven4 is also on.

Fig. 11. (a) Analysis of the misses and prefetch hits in the L2 cache and (b) the lines prefetched into the L2 cache by the ULMT. Both figures are

shown in the same scale, normalized to the number of L2 misses in NoPref.

Conven4 + ReplMC has a behavior similar to Conven4 +
Repl.

Finally, the figures also show why Sparse and Tree had
limited speedups in Fig. 10. These applications suffer many
conflicts in the cache, which results in many New misses
(Sparse) or a combination of many New and Remaining
misses (Tree). Moreover, the prefetches are not very
accurate, which results in large Replaced and Redundant
categories.

5.2.4 Cache Performance of the ULMT

To understand the behavior of the ULMT algorithms better,
Fig. 12 shows the hit rate of the data cache of the memory
processor when the ULMT executes. We consider the case
when the memory processor is in the DRAM, and examine
the Base, Chain, Repl, and Conven4 + Repl algorithms. We do
not show the case when the memory processor is in the
memory controller chip because the results are very similar.

The figure shows that the hit rate in Repl is higher than in
Chain. This is because Repl has better cache line reuse than
Chain (Section 3.3.2), despite the fact that Repl handles larger
tables than Chain.

Note that the hit rate of Repl is higher when conventional
hardware prefetching is also used in the main processor
(Conven4 + Repl bars). This is due to the filtering effect of the
processor-side conventional prefetching. It reduces the
number of cache misses seen by the ULMT, effectively
reducing the working set of the ULMT and improving the
hit rate.

5.2.5 Work Load of the ULMT

Further understanding of the behavior of the ULMT
algorithms can be obtained from Fig. 13. The figure shows
the average response time and occupancy time (Section 3.1)
for each of the ULMT algorithms, averaged over all

applications. The times are measured in 1.6 GHz cycles.
Each bar is broken down into computation time (Busy) and
memory stall time (Mem). The numbers on top of each bar
show the average IPC of the ULMT. The IPC is calculated as
the number of instructions divided by the number of
memory processor cycles.

The figure shows that, in all the algorithms, the
occupancy time is less than 200 cycles. Consequently, the
ULMT is fast enough to process most of the L2 misses
(Fig. 9). Memory stall time is roughly half of the ULMT
execution time when the processor is in the DRAM, and
more when the processor is in the North Bridge chip
(ReplMC). Chain and Repl have the lowest occupancy time.
Note that Repl’s occupancy is not much higher than Chain’s,
despite the higher number of table updates performed by
Repl. The reasons are the fewer associative searches and the
better cache line reuse in Repl.

The response time is most important for prefetching
effectiveness. The figure shows that Repl has the lowest
response time, at around 30 cycles. The response time of
ReplMC is about twice as much. Fortunately, the Replicated
algorithm is able to prefetch far ahead accurately and,
therefore, the effectiveness of prefetching is not very
sensitive to a modest increase in the response time.

5.2.6 Main Memory Bus Utilization

Finally, Fig. 14 shows the utilization of the main memory
bus for various algorithms, averaged over all applications.
As usual, we consider both placing the memory processor
in the DRAM and placing it in the memory controller chip.
The increase in bus utilization induced by the prefetching
algorithms is divided into two parts: increase caused
naturally by the reduced execution time, and additional
increase caused by the prefetching traffic. Overall, the
figure shows that the increase in bus utilization is tolerable.
The utilization increases from the original 20 percent to only
36 percent in the worst case (Conven4 + Repl). Moreover,
most of the increase comes from the faster execution; only a
6 percent utilization is directly attributable to the prefetches.
In general, the fact that memory-side prefetching only adds
one-way traffic to the main memory bus, limits its
bandwidth needs. As expected, bus utilization is slightly
lower when the memory processor is in the memory
controller chip. The reason is that the application takes a
bit longer to completed execution. This effect can be seen for
BaseMC and ChainMC.

SOLIHIN ET AL.: CORRELATION PREFETCHING WITH A USER-LEVEL MEMORY THREAD 577

Fig. 12. Hit rate of the data cache of the memory processor. The data corresponds to when the memory processor is in the DRAM.

Fig. 13. Average response and occupancy time of different ULMT

algorithms in main-processor cycles.

6 RELATED WORK

6.1 Memory-Side Prefetching

Some memory-side prefetchers are simple hardware con-
trollers. For example, the NVIDIA chipset includes the
DASP controller in the North Bridge chip [27]. It seems that
it is mostly targeted to stride recognition and buffers data
locally. The i860 chipset from Intel is reported to have a
prefetch cache, which may indicate the presence of a similar
engine. Cooksey et al. [9] propose the Content-Based
prefetcher, which is a hardware controller that monitors
the data coming from memory. If an item appears to be an
address, the engine prefetches it. Alexander and Kedem [1]
propose a hardware controller that monitors requests at the
main memory. If it observes repeatable patterns, it
prefetches rows of data from the DRAM to an SRAM
buffer inside the memory chip. Overall, our scheme is
different in that we use a general-purpose processor
running a prefetching algorithm as a user-level thread.

Other studies propose specialized programmable en-
gines. For example, Hughes [14] and Yang and Lebeck [35]
propose adding a specialized engine to prefetch linked data
structures. While Hughes focuses on a multiprocessor
processing-in-memory system, Yang and Lebeck focus on
a uniprocessor and put the engine at every level of the cache
hierarchy. The main processor downloads information on
these engines about the linked structures and what
prefetches to perform. Our scheme is different in that it
has general applicability.

Another related system is Impulse, an intelligent
memory controller capable of remapping physical ad-
dresses to improve the performance of irregular applica-
tions [4]. Impulse could prefetch data, but only implements
next-line prefetching. Furthermore, it buffers data in the
memory controller, rather than sending it to the processor.

6.2 Correlation Prefetching

Early work on correlation prefetching can be found in [2],
[29]. More recently, several authors have made further
contributions. Charney and Reeves study correlation pre-
fetching and suggest combining a stride prefetcher with a
general correlation prefetcher [6]. Joseph and Grunwald
propose the basic correlation table organization and
algorithm that we evaluate [15]. Alexander and Kedem
use correlation prefetching slightly differently [1], as we

indicate above. Sherwood et al. use it to help stream buffers
prefetch irregular patterns [32]. Lai et al. [21] and Hu et al.
[12] design a slightly different correlation prefetcher.
Specifically, a prefetch is not triggered by a miss; instead,
it is triggered by a dead-line predictor indicating that a line
in the cache will not be used again and, therefore, a new line
should be prefetched in. This scheme improves prefetching
timeliness at the expense of tighter integration of the
prefetcher with the processor, since the prefetcher needs to
observe not only miss addresses, but also reference
addresses and program counters. Finally, Hu et al. [13]
propose correlating cache tags instead of addresses.

Wediffer frommostof the recentworks in importantways.
First, they propose hardware-only engines, which often
require expensive hardware tables; we use a flexible user-
level thread on a general-purpose core that stores the table as
a software structure inmemory. Second, except forAlexander
and Kedem [1] and Hu et al. [13], they place their engines
between the L1 and L2 caches, or between the processor and
the L1; we place the prefetcher in memory and focus on
L2misses. Time intervals betweenL2misses are large enough
for a ULMT to be viable and effective. Finally, we propose a
new table organization and prefetching algorithm that, by
exploiting inexpensive memory space, increases far-ahead
prefetching and prefetch coverage.

6.3 Prefetching Regular Structures

Several schemes have been proposed to prefetch sequential
or strided patterns. They include the Reference Prediction
table of Chen and Baer [7] and the Stream buffers of Jouppi
[16], Palacharla and Kessler [28], and Sherwood et al. [32].
We base our processor-side prefetcher on these schemes.

6.4 Processor-Side Prefetching

There are many more proposals for processor-side pre-
fetching, often for irregular applications. A tiny, nonex-
haustive list includes Choi et al. [8], Karlsson et al. [17],
Lipasti et al. [23], Luk and Mowry [24], Mehrotra [25], Roth
et al. [30], and Zhang and Torrellas [36]. Many of these
schemes specifically target linked data structures. Many of
them rely on program information that is available to the
processor, like the addresses and sizes of data structures.
Often, they need compiler support. Our scheme needs
neither program information nor compiler support.

578 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO. 6, JUNE 2003

Fig. 14. Main memory bus utilization.

6.5 Other Related Work

There are other proposals for using an additional thread to
perform some specific functions. We give two examples to
illustrate.

One area of work is what is called “helper threads.”
Dubois and Song [11] propose fine-grain threads (nanoth-
reads) that run on the same processor as the main program,
and perform sequential and stride prefetching in software
for the main program. Chappell et al. [5] use a subordinate
thread in a multithreaded processor to improve branch
prediction. They suggest using such a thread for prefetch-
ing and cache management. Preexecution and precomputa-
tion by Roth and Sohi [31] and many others use a thread
that prefetches for the main program. In contrast, our
ULMT is not tightly integrated with the main program and
is not derived from the main program code. Moverover, it is
customizable and runs in the main memory system, where
it does not suffer the same memory access latency as the
main processor.

Lee et al. [22] use a ULMT in a similar platform as in this
paper to coexecute code sections that are memory intensive.
A set of compiler and runtime algorithms partition the code
into sections that have uniform computation and memory
behavior called modules, schedule the modules to the most
appropriate processor, and try to overlap execution of main
and memory processor. Compared to that work, ULMT for
correlation prefetching needs simpler support: applications
do not need recompilation, the memory processor does not
need to support floating point, and there is no need to
support cache coherence between main and memory
processor because the application thread and the ULMT
share neither data nor instructions. However, coexecution
can gain speedups from parallel execution of main and
memory processor.

7 CONCLUSIONS

This paper introduced memory-side correlation prefetching
using a User-Level Memory Thread (ULMT) running on a
simple general-purpose processor in main memory. This
scheme solves many of the problems in conventional
correlation prefetching and provides several important
additional features. Specifically, the scheme needs minimal
hardware modifications beyond the memory processor,
uses main memory to store the correlation table inexpen-
sively, can exploit a new table organization to increase far-
ahead prefetching and coverage, can effectively prefetch for
applications with largely any miss pattern as long as it
repeats, and supports customization of the prefetching
algorithm by the programmer for individual applications.
Our results showed that the scheme delivers an average
speedup of 1.32 for nine mostly-irregular applications.
Furthermore, our scheme works well in combination with a
conventional processor-side sequential prefetcher, in which
case the average speedup increases to 1.46. Finally, by
exploiting the customization of the prefetching algorithm,
we increased the average speedup to 1.53.

ACKNOWLEDGMENTS

An early version of this paper appeared in [33]. Much of
this work was done while Yan Solihin was at the
Department of Computer Science, University of Illinois at

Urbana-Champaign, and while Jaejin Lee was at the

Department of Computer Science and Engineering, Michi-

gan State University. This work was supported in part by

the US National Science Foundation under grants CCR-

9970488, EIA-0081307, EIA-0072102, and CHE-0121357, by

DARPA under grant F30602-01-C-0078, by Michigan State

University, and by gifts from IBM, Intel, and Hewlett-

Packard. This work was also supported by North Carolina

State University, and in part by the Korean Ministry of

Education under the BK21 program and by the Korean

Ministry of Science and Technology under the National

Research Laboratory Program.

REFERENCES

[1] T. Alexander and G. Kedem, “Distributed Predictive Cache
Design for High Performance Memory Systems,” Proc. Second
Int’l Symp. High-Performance Computer Architecture, pp. 254-263,
Feb. 1996.

[2] J.L. Baer, “Dynamic Improvements of Locality in Virtual Memory
Systems,” IEEE Trans. Software Eng., vol. 2, pp. 54-62, Mar. 1976.

[3] J.E. Barnes, “Treecode,” Inst. for Astronomy, Univ. of Hawaii,
ftp://hubble.ifa.hawaii.edu/pub/barnes/treecode, 1994.

[4] J.B. Carter, et al. “Impulse: Building a Smarter Memory
Controller,” Proc. Fifth Int’l Symp. High-Performance Computer
Architecture, pp. 70-79, Jan. 1999.

[5] R.S. Chappell, J. Stark, S. Kim, S.K. Reinhardt, and Y.N. Patt,
“Simultaneous Subordinate Microthreading (SSMT),” Proc. 26th
Int’l Symp. Computer Architecture, pp. 186-195, May 1999.

[6] M.J. Charney and A.P. Reeves, “Generalized Correlation Based
Hardware Prefetching,” Technical Report EE-CEG-95-1, Cornell
Univ., Feb. 1995.

[7] T.F. Chen and J.L. Baer, “Reducing Memory Latency via Non-
Blocking and Prefetching Cache,” Proc. Fifth Int’l Conf. Architectur-
al Support for Programming Languages and Operating Systems, pp. 51-
61, Oct. 1992.

[8] S. Choi, D. Kim, and D. Yeung, “Multi-Chain Prefetching:
Effective Exploitation of Inter-Chain Memory Parallelism for
Pointer-Chasing Codes,” Proc. Int’l Conf. Parallel Architectures and
Compilation Techniques, pp. 51-61, Sept. 2001.

[9] R. Cooksey, D. Colarelli, and D. Grunwald, “Content-Based
Prefetching: Initial Results,” Proc. Second Workshop Intelligent
Memory Systems, pp. 33-55, Nov. 2000.

[10] J. Dongarra, V. Eijkhout, and H. van der Vorst, “SparseBench:
A Sparse Iterative Benchmark,” http://www.netlib.org/bench
mark/sparsebench, 2003.

[11] M. Dubois and Y.H. Song, “Assisted Execution,” CENG Technical
Report 98-25, Dept. of Electrical Eng.-Systems, Univ. of Southern
California, Oct. 1998.

[12] Z. Hu, S. Kaxiras, and M. Martonosi, “Timekeeping in the
Memory System: Predicting and Optimizing Memory Behavior,”
Proc. 29th Int’l Symp. Computer Architecture, May 2002.

[13] Z. Hu, M. Martonosi, and S. Kaxiras, “Tag Correlating Prefetch-
ers,” Proc. Ninth Int’l Symp. High-Performance Computer Architec-
ture, Feb. 2003.

[14] C.J. Hughes, “Prefetching Linked Data Structures in Systems with
Merged DRAM-Logic,” Master’s thesis, Univ. of Illinois at
Urbana-Champaign, Technical Report UIUCDCS-R-2001-2221,
May 2000.

[15] D. Joseph and D. Grunwald, “Prefetching Using Markov
Predictors,” Proc. 24th Int’l Symp. Computer Architecture, pp. 252-
263, June 1997.

[16] N. Jouppi, “Improving Direct-Mapped Cache Performance by the
Addition of a Small Fully-Associative Cache and Prefetch
Buffers,” Proc. 17th Int’l Symp. Computer Architecture, pp. 364-373,
May 1990.

[17] M. Karlsson, F. Dahlgren, and P. Stenstrom, “A Prefetching
Technique for Irregular Accesses to Linked Data Structures,” Proc.
Sixth Int’l Symp. High-Performance Computer Architecture, pp. 206-
217, Jan. 2000.

[18] D. Koufaty and J. Torrellas, “Comparing Data Forwarding and
Prefetching for Communication-Induced Misses in Shared-Mem-
ory MPs,“ Proc. Int’l Conf. Supercomputing, pp. 53-60, July 1998.

SOLIHIN ET AL.: CORRELATION PREFETCHING WITH A USER-LEVEL MEMORY THREAD 579

[19] C. Kozyrakis, et al. “Scalable Processors in the Billion-Transistor
Era: IRAM,” IEEE Computer, pp. 75-78, Sept. 1997.

[20] V. Krishnan and J. Torrellas, “A Direct-Execution Framework for
Fast and Accurate Simulation of Superscalar Processors,” Proc.
Int’l Conf. Parallel Architectures and Compilation Techniques, pp. 286-
293, Oct. 1998.

[21] A. Lai, C. Fide, and B. Falsafi, “Dead-Block Prediction and Dead-
Block Correlating Prefetchers,” Proc. 28th Int’l Symp. Computer
Architecture, pp. 144-154, June 2001.

[22] J. Lee, Y. Solihin, and J. Torrellas, “Automatically Mapping Code
on an Intelligent Memory Architecture,” Proc. Seventh Int’l Symp.
High Performance Computer Architecture, Jan. 2001.

[23] M.H. Lipasti, W.J. Schmidt, S.R. Kunkel, and R.R. Roediger,
“Spaid: Software Prefetching in Pointer and Call Intensive
Environments,” Proc. 28th Int’l Symp. Microarchitecture, pp. 231-
236, Nov. 1995.

[24] C. Luk and T.C. Mowry, “Compiler-Based Prefetching for
Recursive Data Structures,” Proc. Seventh Int’l Conf. Architectural
Support for Programming Languages and Operating Systems, pp. 222-
233, Oct. 1996.

[25] S. Mehrotra, “Data Prefetch Mechanisms for Accelerating Sym-
bolic and Numeric Computation,” PhD thesis, Dept. of Computer
Science, Univ. of Illinois at Urbana-Champaign, 1996.

[26] MIPS, MIPS R10000 Microprocessor User’s Manual, Version 2.0,
Jan. 1997.

[27] NVIDIA, technical brief: NVIDIA nForce Integrated Graphics
Processor (IGP) and Dynamic Adaptive Speculative Pre-Processor
(DASP), http://www.nvidia.com/, 2002.

[28] S. Palacharla and R. Kessler, “Evaluating Stream Buffers as a
Secondary Cache Replacement,” Proc. 21st Int’l Symp. Computer
Architecture, pp. 24-33, Apr. 1994.

[29] J. Pomerene, T. Puzak, R. Rechtschaffen, and F. Sparacio,
“Prefetching System for a Cache Having a Second Directory for
Sequentially Accessed Blocks,” US Patent 4,807,110, Feb. 1989.

[30] A. Roth, A. Moshovos, and G. Sohi, “Dependence Based
Prefetching for Linked Data Structures,” Proc. Eighth Int’l Conf.
Architectural Support for Programming Languages and Operating
Systems, pp. 115-126, Oct. 1998.

[31] A. Roth and G. Sohi, “Speculative Data Driven Multithreading,”
Proc. Seventh Intl. Symp. High-Performance Computer Architecture,
Jan. 2001.

[32] T. Sherwood, S. Sair, and B. Calder, “Predictor-Directed Stream
Buffers,” Proc. 33rd Int’l Symp. Microarchitecture, pp. 42-53, Dec.
2000.

[33] Y. Solihin, J. Lee, and J. Torrellas, “Using a User-Level Memory
Thread for Correlation Prefetching,” Proc. 29th Int’l Symp.
Computer Architecture, May 2002.

[34] Sony Computer Entertainment Inc., http://www.sony.com, 2003.
[35] C.-L. Yang and A.R. Lebeck, “Push versus Pull: Data Movement

for Linked Data Structures,” Proc. Int’l Conf. Supercomputing,
pp. 176-186, May 2000.

[36] Z. Zhang and J. Torrellas, “Speeding up Irregular Applications in
Shared-Memory Multiprocessors: Memory Binding and Group
Prefetching,” Proc. 22nd Int’l Symp. Computer Architecture, pp. 188-
199, June 1995.

Yan Solihin received the BS degree in compu-
ter science from Institut Teknologi Bandung,
Indonesia, in 1995, the MASc degree in compu-
ter engineering from Nanyang Technological
University, Singapore, in 1997, and the MS
and PhD degrees in computer science from the
University of Illinois at Urbana-Champaign in
1999 and 2002. He is currently an assistant
professor at the Department of Electrical and
Computer Engineering at the North Carolina
State University. From 1999 to 2000, he was on

an internship with the Parallel Architecture and Performance team at Los
Alamos National Laboratory. His research interests include high-
performance computer architectures, emerging memory systems, and
performance modeling. He has authored/coauthored several papers in
each area and released several software packages, including Scaltool
1.0, a predictive-diagnostic tool for parallel program scalability bottle-
neck, at the National Center for Supercomputing Applications (NCSA) in
1999. He was a recipient of the AT&T Leadership Award in 1997. More
information can be found at http://www.cesr.ncsu.edu/solihin. He is a
member of the IEEE.

Jaejin Lee received the BS degree in physics
from Seoul National University in 1991, the
MS degree in computer science from Stanford
University in 1995, and the PhD degree in
computer science from the University of Illinois
at Urbana-Champaign in 1999. He is an assistant
professor in the School of Computer Science and
Engineering at Seoul National University, Korea,
where he has been a faculty member since
September 2002. Before joining Seoul National

University, he was an assistant professor in the Computer Science and
Engineering Department at Michigan State University. He was a recipient
of an IBM Cooperative Fellowship and a fellowship from the Korea
Foundation for Advanced Studies during his PhD study. His research
interests include compilers, computer architectures, embedded computer
systems, and systems in high-performance computing. He is a member
of the IEEE and ACM. More information can be found at http://
aces.snu.ac.kr/~jlee.

Josep Torrellas received the PhD in electrical
engineering from Stanford University in 1992.
He is a professor and Willett Faculty Scholar in
the Computer Science Department of the
University of Illinois at Urbana-Champaign. He
is also vice-chairman of the IEEE Technical
Committee on Computer Architecture (TCCA).
In 1998, he was on sabbatical at the IBM
TJ Watson Research Center. He has published
more than 100 papers in computer architecture,

which cover scalable and chip multiprocessor architectures, proces-
sing-in-memory architectures, and speculative multithreading. He
received a 1994 US National Science Foundation Young Investigator
Award and a 1997 IBM Partnership Award. He has been on the
organizing committee of many international conferences and work-
shops. He is a senior member of IEEE. More information can be found
at http://iacoma.cs.uiuc.edu/~torrellas.

. For more information on this or any other computing topic,
please visit our Digital Library at http://computer.org/publications/dlib.

580 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO. 6, JUNE 2003

