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ABSTRACT
Recent study shows that the existing first order canonical
timing model is not sufficient to represent the dependency
of the gate delay on the variation sources when processing
and operational variations become more and more signifi-
cant. Due to the nonlinearity of the mapping from variation
sources to the gate/wire delay, the distribution of the de-
lay is no longer Gaussian even if the variation sources are
normally distributed.

A novel quadratic timing model is proposed to capture
the non-linearity of the dependency of gate/wire delays and
arrival times on the variation sources. Systematic method-
ology is also developed to evaluate the correlation and dis-
tribution of the quadratic timing model. Based on these, a
novel statistical timing analysis algorithm is propose which
retains the complete correlation information during timing
analysis and has the same computation complexity as the
algorithm based on the canonical timing model.

Tested on the ISCAS circuits, the proposed algorithm
shows 10× accuracy improvement over the existing first or-
der algorithm while no significant extra runtime is needed.

Categories and Subject Descriptors
B7.2 Hardware [INTEGRATED CIRCUITS]: Design Aids—
Verification

General Terms
Algorithms, Performance, Verification

1. INTRODUCTION
The timing performance of deep-submicron micro-architecture

will be dominated by several factors. IC manufacturing pro-
cess parameter variations will cause device and circuit pa-
rameters to deviate from their designed value. Low supply
voltage for low-power applications will reduce noise margin,
causing increased timing delay variations. Due to dense inte-
gration and non-ideal on-chip power dissipation, rising tem-
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perature of substrate may lead to hot spot, causing excessive
timing variations. Classical worst case timing analysis pro-
duces timing predictions that are often too pessimistic and
grossly conservative. On the other hand, statistical timing
analysis (STA) that characterizes timing delays as statistical
random variables offers a better approach for more accurate
and realistic timing prediction.

Existing STA methods can be categorized into two dis-
tinct approaches: path based STA [1–4] and block based
STA [5–11]. The path based approach seeks to estimate
timing statistically on selected critical paths. However, the
task of selecting a subset of paths whose time constraints are
statistically critical has a worst-case complexity that grows
exponentially with respect to the circuit size. Hence it is not
easily scalable to handle realistic circuits. The block based
approach, on the other hand, champions the notion of pro-
gressive computation. Specifically, each gate/wire is treated
as a timing block and the timing analysis is performed block
by block in the forward direction in the circuit timing graph
without looking back to the path history. As such, the com-
putation complexity would grow linearly with respect to the
circuit size.

However, to realize the full benefit of block based STA,
one must address a challenging issue that gate/wire delays
in a circuit could be correlated since two delays might be
affected by the same variation sources of global variations
such as voltage supply uncertainties, gate channel length
variations, wire geometry variations,...,etc. In [6, 7, 10] the
delay D is explicitly related with these global variations Gi

by the canonical timing model:

D = µ + αR +
�

i

βiGi (1)

where R, called local variation, accounts the cumulative ef-
fect of variation sources other than considered global varia-
tions.

The canonical timing model (1) provides an elegant way to
deal with the correlations( [10]). Unfortunately, the nonlin-
ear relationship between the gate/wire delay and the global
variation sources can not be accurately approximated by
the current linear canonical timing model. And even the
global variations are often modeled as Gaussian random
variables( [12,13]) , the gate/wire delays, in general, will not
be Gaussian distributed random variables. This yields un-
satisfactory results for deep-sub-micron IC circuit where rel-
ative magnitudes of global variations are often larger, while
more accurate STA is demanded.

To mitigate this deficiency, in this paper, we propose
a novel quadratic timing model that augments the linear



canonical timing model with second order terms:

D = m + αR +
�

i

βiGi +
�
i,j

ΓijGiGj (2)

where Γij are quadratic coefficients and m is a constant
term which may be different from the mean value of the
delay timing variable.

Preliminary work reported in [14] indicated that a quadratic
timing model delivered 4× accuracy improvement over a first
order canonical model. Nevertheless, [14] does not address
the important question of how to systematically develop a
quadratic timing model to perform accurate STA of large
scale circuits. The main objective of this paper is to de-
velop such a practical, efficient solution to this question. To
this aim, we have made a number of tangible contributions:

(1) A novel quadratic timing model is formulated for both
gate/wire delay and signal arrival time to represent the cor-
relation between them. Systematic methodology is also de-
veloped to evaluate the correlations and to compute distri-
butions for the quadratic timing model.

(2) A novel statistical timing algorithm is developed based
on the quadratic timing model which successfully retains the
complete correlation information among arrival times during
timing analysis while has the same computation complexity
as algorithms based on canonical timing model.

(3) A novel conditional linear MAX approximation method
is proposed to deal with cases when MAX operator is signif-
icantly non-linear. By assuming inputs to be Gaussian, we
are able to detect the linearity of the MAX operator by just
checking the skewness of the output. Linear approximation
of MAX is only used when MAX is decided to be linear. If
MAX is non-linear, the evaluation is delayed within a for-
mat of MAX tuple until it becomes linear in the later timing
steps.

The rest of the paper is organized as following: Section
2 presents the quadratic timing model for gate/wire delay
and the arrival time; Section 3 introduces the mathemat-
ics tools used for correlation and distribution evaluation for
quadratic timing model; Section 4 describes the statistical
timing algorithm based on the quadratic timing model; Sec-
tion 5 presents the C/C++ implementation and testing re-
sults; Section 6 gives the conclusions.

2. QUADRATICMODELOFTIMINGVARI-
ABLES

Since the time variables, either gate/wire delays or arrival
times, are modeled as non-Gaussian random variables, the
mean(µ) and std(σ), used for canonical delay cases, are not
sufficient to characterize the distributions of the time ran-
dom variables. For the interest of the timing analysis, we
define a third parameter to assist the distribution charac-
terization:

Definition 1. For a random time variable X, its equiv-
alent two sigma value, abbreviated as “e2σ”, is defined
as:

P (X < e2σ) = 97.7%

Except the special case of Gaussian random variable, e2σ �=
µ + 2σ in general. Knowing this, we hereafter pay more
attention to e2σ than the mean and std since it is e2σ that
really means performance of the considered circuit.

2.1 Quadratic Gate Delay Model
It is generally accepted that the gate delay Dg is a nonlin-

ear function of the global variation variables. We formulate
the quadratic gate delay model by taking the second order
Taylor expansion of Dg with respect to the global variation
variables (evaluated around the mean value of these global
variations):

Dg ≈ mg + αR +
∂Dg

∂L
L +

∂Dg

∂V
V + ...

+
1

2

∂2Dg

∂L2
L2 +

∂2Dg

∂L∂V
LV +

1

2

∂2Dg

∂V 2
V 2 + ... (3)

In this equation, mg is a constant and L, V... are global
variations. The coefficients in this Taylor expansion can
be analytically extracted from the Spice model of the gate
delay. Hence, in the following discussion, we will assume
these parameters are known in advance.

Assume that there are p global variation variables, one
may define a p × 1 Gaussian variation vector

δg = [G1, G2, ..., Gp]∗ ∼ N(0,Σg)

where “*” represents the transpose operation. 0 is a zero
vector. The correlation matrix (Σg = E{δgδ∗

g}) is a p ×
p matrix. Generally it is not a unit matrix I since these
global variation random variables may be correlated among
themselves.

Consolidate equations (2) and (3) into a compact quadratic
form:

Dg = mg + αR + β∗
gδg + δ∗

gΓgδg (4)

where the vector βg and matrix Γg are only vectorized rep-
resentation of the Taylor expansion coefficients in equation
(3):

βg(i) =
∂Dg

∂Gi
and Γg(i, j) =

1

2

∂2Dg

∂Gi∂Gj
(5)
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Figure 1: Distributions of Inverter Delay

To demonstrate the advantage of the quadratic gate de-
lay model over the first order canonical model, the probabil-
ity distribution of an inverter delay is estimated using the
Monte Carlo method where the timing delay of each trial is
evaluated using SPICE circuit simulator. Using the param-
eters analytically extracted from the SPICE model, the de-
lay distributions are also computed using both the quadratic
timing model and the linear canonical timing model. Shown
in figure 1(b), the “true” distribution from Monte Carlo sim-
ulation is significantly non-symmetric and non-Gaussian and
can not be approximated by any canonical timing model.



2.2 Quadratic Wire Delay Model
As shown in Figure 2, the distributive wire delay model

separates the long wire into N equal segments with length
of l. Each wire segment i has width of Wi, thickness of
Ti which are considered as global variations with identical
Gaussian distributions.
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Figure 2: Distributed Wire Delay Model

Elmore’s delay model states that the total wire delay will
be

Dw =

N�
i=1

N�
j=i

RiCj =

N�
i=1

N�
j=i

rsl
2(csWj + cfTj)

WiTi
(6)

where Ri and Cj are the resistance and capacitance of the
wire segment; rs is the resistivity of the wire; cs and cf are
the sheet and fringe unit capacity of the wire.

Applying the Taylor expansion to the Elmore’s delay and
truncating it until the second order, the quadratic wire delay
model can be formulated similarly as that in the case of gate
delay:

Dw ≈ mw + αR + β∗
wδw + δ∗

wΓwδw (7)

where δw is a 2N × 1 global variation vector:

δw = [W ′
1, W

′
2, ..., W

′
N , T ′

1, T
′
2, ..., T

′
N ] ∼ N(0,Σw)

with W ′
i = Wi − E{Wi} and T ′

i = Ti − E{Ti}.
It is important to notice that width and thickness random

variables are generally not statistically independent to each
other since the wire usually spans a long distance and these
random variables may be spatially correlated.
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Figure 3: Wire Delay Distribution Comparison from Three
Approaches

Due to the non-linearity of the wire delay with respecting
to the process variations of width and thickness shown in
equation (6), the delay distribution of the wire will not be
Gaussian even if the width and thickness are usually con-
sidered to be Gaussian.( [12,13]) This fact has been clearly
shown in Figure 3.

2.3 Quadratic Arrival Timing Model
During timing analysis for a given circuit, the signal ar-

rival timing at each net is the cumulative effect of all gate/wire

delays at the input cone of the net. If all gate delays are ex-
pressed as the quadratic form, then the arrival time will be:

Da ≈ ma +

q�
i=1

∂Da

∂Dg,i
(Dg,i − mg,i) (8)

It is important to comment here that the above form of lin-
ear combination is merely an approximation since there will
be non-linear operations of MAX/MIN involved to compute
the arrival time from the gate/wire delays in its input cone.

If there are q gate/wire delays in the input cone of the
arrival time Da, and there are p global variations involved in
the q gate/wire delays, then the arrival time approximated
as equation (8) will have the following quadratic form:

Da = ma + α∗
ara + β∗

aδa + δ∗
aΓaδa (9)

where random variation vectors ra = [R1, R2, ..., Rq]
∗ ∼

N(0, I) and δa = [G1, G2, ..., Gp]∗ ∼ N(0,Σa) are mutu-
ally independent.

3. CORRELATIONSANDDISTRIBUTIONS
Mathematically, the gate/wire delay quadratic equations

(4) and (7) are only special cases of the arrival timing quadratic
form (9), so it is safe to conclude that:

Theorem 1. If every arrival time in a circuit is approx-
imated as a linear combination of its input gate/wire delays,
and all gate/wire delays have the quadratic delay form as
equation (4) and (7), then all timing variables in the cir-
cuit, including gate/wire delays and arrival times, will have
the quadratic timing model:

D ∼ Q(m,α, β,Γ) = m + α∗r + β∗δ + δ∗Γδ (10)

where r ∼ N(0, I) and δ ∼ N(0,Σ) are mutually indepen-
dent local variations and global variations.

Both linear and quadratic dependencies are involved in
the quadratic timing model (10). In order to evaluate the
correlations between timing variables with quadratic forms,
three types of correlation are needed to be computed: (1)
correlation between linear terms; (2) correlations between
linear and quadratic terms; (3) correlations between quadratic
terms.

Applying theorem 4 proved in the Appendix A, it is then
easy to compute the correlations between quadratic timing
variables as:

Theorem 2. For quadratic timing variable D ∼ Q(m,α, β,Γ),
its mean µD and variance σ2

D are

µD = E{D} = m + tr{ΣΓ} (11)

σ2
D = α∗α + β∗Σβ + 2tr{Σ2Γ2} (12)

and for random variables D1 ∼ Q(m1, α1, β1,Γ1) and D2 ∼
Q(m2, α2, β2,Γ2), the correlation between them is:

cov(D1, D2) = α∗
1α2 + β∗

1Σβ2 + 2tr{Σ2Γ1Γ2} (13)

where tr{·} means “trace” and equals the sum of the diagonal
elements in the matrix.

To compute the distribution of the quadratic delay D de-
fined in equation (10), we use a statistics technique called
characteristic function:



Theorem 3. If the random variable X has a characteris-
tic function of CX(ξ), then the p.d.f. of the random variable
X will be:

fX(x) =
1

2π

� +∞

−∞
e−jξxCX(ξ)dξ (14)

The formal proof of this theorem can be found in textbooks
of probabilistic theory such as [15].

For the quadratic timing variable D ∼ Q(m, α, β, Γ) de-
fined in equation (10), its exact characteristic function can
be analytically derived as:

CD(ξ) = |Ω|− 1
2 exp{jξm − 1

2
ξ2(α∗α + β∗Σ

1
2 Ω−1Σ

1
2 β)} (15)

where |Ω| is the determinant of matrix Ω = I−2jξΣ
1
2 ΓΣ

1
2 .

So the p.d.f. of the quadratic time variable, fD(x), can then
be computed from theorem 3.

4. STAWITHQUADRATICTIMINGMODEL
In block based STA, the arrival time random variable

propagation involves two elemental operations:
(1)ADD: When an input arrival time X propagates through

a gate delay Y , the output arrival time will be Z = X + Y ;
(2)MAX: When two arrival times X and Y merge in a

gate, a new arrival time of Z = max(X,Y ) will be formu-
lated before the gate delay is added.

Before analysis, the quadratic parameters of individual
gate/wires are extracted from their Spice models and a gate/wire
library is then formed. This library, together with the circuit
being analyzed, serves as the input of the STA algorithm.
The overall data flow of the algorithm is summarized in fig-
ure 4.
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Figure 4: Block-Based STA Algorithm with Quadratic
Timing Model

The timing graph in the STA is represented by a file called
standard delay variance correlation format(sdvcf) where both
quadratic gate/wire delays and the gate/wire connections
are specified.

4.1 ADD Operation
If both X and Y are expressed in the quadratic form of

(10) X ∼ Q(mX , αX , βX ,ΓX) and Y ∼ Q(mY , αY , βY ,ΓY ),
then the output of the ADD operator is very straightforward
as:

Z = X + Y ∼ Z(mZ , αZ , βZ , ΓZ)

where the quadratic parameters are computed as:

mZ = mX + mY ; αZ = αX + αY

βZ = βX + βY ; ΓZ = ΓX + ΓY

4.2 Conditional Linear MAX Operation
MAX operator, however, is more complicated since it is

intrinsically a non-linear operator and error will happen if
we approximate it with a linear operator. So there is a need
to evaluate how linear the MAX operator is. To do this, we
accept the following fact:

If the inputs of the MAX operator are Gaussian,
then the output of the MAX operator will be Gaus-
sian if the MAX operator is linear.

So the linearity of the MAX operator can be well evalu-
ated by the Gaussianity of the MAX output assuming the
inputs are Gaussian. Skewness, which is a symmetry indica-
tor of the distribution, can then be applied for the purpose
of Gaussianity checking since Gaussian distribution will al-
ways be symmetric.

For our purpose to propagate the quadratic timing model
through the MAX operator, we firstly assuming the MAX
operation is done on two Gaussian inputs whose mean and
variance match what are computed from quadratic timing
model. Then we use the equation given in [16] to com-
pute the output skewness. If the skewness is smaller than
a threshold, then we know the MAX operator can be well
approximated by a linear operator. Otherwise, we put both
inputs into a MAX tuple(Mt) which is a collection of ran-
dom variables waiting to be MAXed. We can delay the MAX
operation since the ADD operation for a MAX tuple can be
simply done as:

Mt{X, Y } + D = Mt{X + D, Y + D}
and the MAX operation between two MAX tuples is just to
merge these two tuples together:

max(Mt{X,Y }, Mt{U, V }) = Mt{X, Y, U, V }
To maintain the size of the MAX tuple to be as small as

possible, we constantly check the linearity of the MAX op-
eration between any two members of the MAX tuple and
MAX them out as long as their MAX output skewness is
small enough. With such conditional linear MAX operation,
we will then be able to control the error of the linear approx-
imation for MAX operators within an acceptable range.

When two quadratic random variables X ∼ Q(mX , αX , βX , ΓX),
and
Y ∼ Q(mY , αY , βY ,ΓY ), are decided to be MAXed out
with linear approximation of Z = aX + bY + c, the approx-
imation parameters are computed assuming X and Y are
Gaussian and using equations in [16]:

a = Φ b = 1 − Φ c = ϕσX−Y (16)

where Φ and ϕ are c.d.f. and p.d.f. of standard Gaussian dis-
tribution evaluated at µX−Y /σX−Y . So the quadratic tim-
ing variable Z =∼ Q(mZ, αZ , βZ ,ΓZ) can be easily com-
puted as

αZ = aαX + bαY ; mZ = amX + bmY + c

βZ = aβX + bβY ; ΓZ = aΓX + bΓY

4.3 Extra Computation Complexity
When compared with the STA method based on first order

canonical timing model, the extra computation complexity
of the STA methods based on quadratic timing model will
come from updating the quadratic coefficient matrix Γ at ev-
ery arrival time propagation step. The number of quadratic



mean: µ (∆µ) std: σ (∆σ) equivalent two sigma delay: e2σ (∆e2σ)
Circuit M.C. CanoStat QuadStat M.C. CanoStat QuadStat M.C. CanoStat QuadStat
C432 1828 1653(9.5%) 1853(1.4%) 779 537 ( 31%) 734 (5.8%) 3490 2650( 24%) 3450(1.2%)
C880 1843 1671(9.4%) 1867(1.3%) 753 448 ( 40%) 689 (8.5%) 3440 2500( 27%) 3360(2.3%)
C1355 1811 1636(9.7%) 1828(0.9%) 746 485 (35%) 697 (6.6%) 3280 2530( 23%) 3360(2.4%)
C1908 2437 2190( 10%) 2432(0.2%) 914 695 ( 24%) 880 (3.8%) 4410 3490( 20%) 4370(0.9%)
C2670 2666 2404( 10%) 2738(2.7%) 1019 618 ( 39%) 860 ( 16%) 4840 3560( 26%) 4620(4.6%)
C3540 3468 3136( 10%) 3499(0.9%) 1344 936 ( 30%) 1309(2.6%) 6230 4870( 22%) 6370(2.3%)
C6288 8798 7950( 10%) 9393(6.8%) 3785 2661 ( 30%) 3535(6.6%) 16799 12919(23%) 16639(1.0%)
C7552 2440 2202( 10%) 2489(2.0%) 981 599 ( 39%) 828 ( 15%) 4510 3310( 27%) 4270(5.3%)

Average Error - 9.7% 2% - 34% 8.1% - 24% 2.3%
Improvement - 4.9× - 4.2× - 10×

Table 1: Distribution Parameters for ISCAS Circuits with three Approaches: (1)Monte Carlo(M.C.); (2)Canonical
Model(CanoStat); (3)Quadratic Model(QuadStat)

coefficients is limited by the number of considered global
variations and is usually a constant. Updating matrix Γ
will not increase the computation complexity since it only
involves moment computation of quadratic timing variables
whichis not dependent on the circuit size.

So briefly, the computation complexity of STA based on
quadratic timing model will be the same as its canonical
timing model correspondence.

4.4 Application in Path Based STA
Although we propose above a block based STA method

because path based STA will have potential difficulty to se-
lect statistically critical paths in complex circuits, nothing
prevents us applying the proposed quadratic timing model
in path based STA.

As long as the statistically critical paths are correctly se-
lected, the overall delay distribution of the circuit can be
computed very straightforwardly. For the ith critical path
cpi, its path delay will be Dcpi =

�
g∈cpi Dg. When all

gate/wire delays are quadratically represented, the path de-
lay will also have quadratic format as:

Dcpi ∼ Q(
�

g∈cpi

mg,
�

g∈cpi

αg,
�

g∈cpi

βg,
�

g∈cpi

Γg) (17)

So if there are n statistically critical paths, the overall delay
distribution will be:

Dall = max(Dcp1, Dcp2, ..., Dcpn) (18)

where the MAX operation is token in the statistical sense.

5. SIMULATIONS AND DISCUSSIONS
The proposed block based STA with quadratic timing

model has been implemented in C/C++ with the name of
QuadStat and tested on the ISCAS’85 benchmark circuits.
For comparison, we also implement the STA based on first
order canonical timing model, named CanoStat, is also im-
plemented and tested. Monte Carlo simulation with 10,000
repetitions is used as a comparison standard.

All ISACS circuits are re-mapped into a simple standard
gate library with gates of not, nand2, nand3, nor2, nor3,
xor/xnor. All these standard gates are implemented with
Cadence tools. Their quadratic timing model parameters
are extracted from their Spice model with the variations
specified by the technology file.

5.1 Accuracy Improvement

Timing results from both QuadStat and CanoStat are
shown in Table 1 and compared with that from Monte Carlo
simulation.

The estimation error is also shown in the table from which
it is clear that there is a significant accuracy improvement
just by switching the delay model from canonical to quadratic.
Measured by the performance critical parameter of equiva-
lent two sigma delay of the circuit, e2σ, average 10× accu-
racy improvement is achieved: the average error of CanoStat
is 24% while that of QuadStat is small as 2.3%.
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Figure 5: Distribution Comparison of ISCAS c3540 from
Three Approaches: (1)Monte Carlo; (2)Canonical Model;

(3)Quadratic Model

To graphically illustrate the accuracy improvement, the
delay distributions of ISCAS circuit c3540 are show in figure
5. It is clear that the accuracy improvement of the QuadStat
is mostly due to the high probability region of the distribu-
tion which is actually more critical for circuit performance.
CanoStat will clearly underestimate the delay in the high
probability region. This underestimation, in reality, will re-
sult in optimistic design and excessive chip failure. This ex-
ample clearly shows the necessary to use quadratic timing
model when variations become large in nowadays technol-
ogy.

5.2 Performance Comparison
The CPU time of the three approaches is shown in Table

2 where it is clear that tremendous time is save from Monte
Carlo simulation by using either QuadStat and CanoStat.
And also, it is clear that there is no significant running time
difference between QuadStat and CanoStat which demon-
strates the conclusion we made in section 4.3: NO extra
computation is needed to switch from canonical STA meth-
ods to quadratic STA methods.



Circuit C432 C880 C1335 C1908
Gate Counts 280 641 717 1188

M.C. 84s 3543s 4675s 11530s
QuadStat 0.09s 0.37s 0.561s 1.162s
CanoStat 0.08s 0.36s 0.55s 1.152s

Circuit C2670 C3540 C6288 C7552
Gate Counts 2004 2485 2704 5355

M.C. 29324s 45381s 54113s 242850s
QuadStat 2.985s 4.577s 5.739s 24.345s
CanoStat 2.954s 4.537s 5.438s 24.285s

Table 2: CPU Time of three Approaches in ISCAS Circuits
(1)Monte Carlo(M.C.); (2)Canonical Model(CanoStat);

(3)Quadratic Model(QuadStat)

6. CONCLUSIONS
A novel quadratic timing model is defined for time vari-

ables in statistical timing analysis and its advantages over
the existing canonical timing model is demonstrated for both
gate and wire delays.

Based on this quadratic timing model, the correlations
and distribution between those non-Gaussian time variables
can be elegantly evaluated. Furthermore, a novel block
based statistical timing analysis algorithm is formulated us-
ing the quadratic timing model. Testing results on the
benchmark circuits show that the new algorithm can signif-
icantly improve the timing accuracy without degrading per-
formances. Finally, the advantage of using quadratic timing
model in path based timing analysis is also demonstrated by
a simple example.
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APPENDIX

A. MOMENTS OF QUADRATIC FORM

Theorem 4. For random vector δ ∼ N(0,Σ), sensitivity vec-
tors α and β, and quadratic coefficient matrices Γ,Γ1, Γ2

E{δ∗Γδ} = tr{ΣΓ} (19)

cov(α∗δ, β∗δ) = α∗Σβ (20)

cov(δ∗Γδ, β∗δ) = 0 (21)

cov(δ∗Γ1δ, δ∗Γ2δ) = 2tr{Σ2Γ1Γ2} (22)

where “tr{·}” means “trace” and is the sum of the diagonal ele-
ments of the matrix.

Proof. Equation (19) and (20):

E{δ∗Γδ} = E{tr{Γδδ∗}} = tr{ΓE{δδ∗}} = tr{ΓΣ}

cov(α∗δ, β∗δ) = E{α∗δδ∗β} = α∗E{δδ∗}β = α∗Σβ

For equation (21), after the vector format is expanded,
E{δ∗Γδβ∗δ} =

�
i,j,k ci,j,kE{GiGjGk} = 0, since all summa-

tion terms will be moments with odd order and vanish given that
δ ∼ N(0,Σ). Since E{β∗δ} = 0, then

cov(δ∗Γδ, β∗δ) = E{δ∗Γδβ∗δ} − E{δ∗Γδ}E{β∗δ} = 0

For equation (22), with eigenvalue decomposition, δ∗Γδ =�
i λiX2

i , where Xi ∼ N(0, 1) are identical independent Gaus-
sian random variables. So the covariance cov(δ∗Γ1δ, δ∗Γ2δ) will
be:
�

i,j

λ1iλ2j

�
E{X2

i X2
j } − E{X2

i }E{X2
j }
�

= 2tr{Λ1Λ2} = 2tr{Σ2Γ1Γ2}

where E{X2
i X2

j } = E{X2
i }E{X2

j } when i �= j.
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