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Abstract

Discretization is a crucial preprocessing primitive for a
variety of data warehousing and mining tasks. In this arti-
cle we present a novel PCA-based unsupervised algorithm
for the discretization of continuous attributes in multivari-
ate datasets. The algorithm leverages the underlying cor-
relation structure in the dataset to obtain the discrete in-
tervals, and ensures that the inherent correlations are pre-
served. The approach also extends easily to datasets con-
taining missing values. We demonstrate the efficacy of the
approach on real datasets and as a preprocessing step for
both classification and frequent itemset mining tasks. We
also show that the intervals are meaningful and can uncover
hidden patterns in data.
Keywords: Unsupervised Discretization, Missing Data

1 Introduction

Discretization is a widely used data preprocessing prim-
itive. It has been frequently used for classification in the
decision tree context, as well as for summarization in situa-
tions where one needs to transform a continuous attribute
into a discrete one with minimum “loss of information”.
Dougherty er al [3] present an excellent classification of
current methods in discretization. A majority of the dis-
cretization methods in the literature [2, 4, 6, 10, 13, 14]
are supervised in nature and are geared towards minimiz-
ing error in classification algorithms. Such methods are not
general-purpose and cannot, for instance, be used as a pre-
processing step for frequent itemset algorithms.

In this article we propose a general-purpose unsuper-
vised algorithm for discretization based on the correlation
structure inherent in the dataset. Closely related to our work
is the recent work by Bay[1] and Ludl and Widmer[9]. Bay
proposed an approach for discretization that also considers
the interactions among all attributes. The main limitation
of this approach is that it can be computationally expen-
sive, and impractically so for high dimensional and large
datasets. Ludl and Widmer [9] propose a similar approach
however the interactions amongst attributes considered in
their work is only pair-wise and piecemeal.

In this work we present a PCA-based algorithm for dis-
cretization of continuous attributes in multivariate datasets.
Our algorithm uses the distribution of both categorical and
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Figure 1. (a) K-NN (b)Direct Projection

continuous attributes and the underlying correlation struc-
ture in the dataset to obtain the discrete intervals. This
approach also ensures that all attributes are used simulta-
neously for deciding the cut-points, rather than pairwise or
one attribute at a time. An additional advantage is that the
approach extends naturally to datasets with missing data.
We demonstrate the efficacy of the above algorithms as a
preprocessing step for classical data mining algorithms such
as frequent itemset mining and classification. Extensive
experimental results on real and synthetic datasets demon-
strate the discovery of meaningful intervals for continuous
attributes and accuracy in prediction of missing values.

2 Algorithm
Our algorithm is composed of the following steps:

1. Normalization and Mean Centralization: The first
step involves normalizing all the continuous attributes and
mean centralizing the data.

Rationale: This is a standard preprocessing step [12].

2. Eigenvector Computation: We next compute the cor-
relation matrix M from the data. We then compute the
eigenvectors €7, ..., ¢eq from M. To find these eigenvec-
tors, we rely on the popular Householder reduction to tri-
diagonal form and then apply the QL transform [5]. Once
these eigenvectors have been determined, we retain only
those that preserve 90% of the variance in the data.

Rationale: Retaining only those eigen vectors that are
acounted for most of variance enables us to keep most of
the correlations present among the continuous attributes in
the dataset. Dimensionality reduction facilitates scalability.
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3. Data Projection onto Eigen Space: Next, we project
each data point in the original dataset D onto the eigen
space formed by the vectors retained from the previous step.
Rationale: To take advantage of dimensionality reduction.

4. Discretization in Eigen Space: We discretize each
of the dimensions in the eigen space. Our approach to
discretization depends on whether we have categorical at-
tributes or not. If there are no categorical attributes, we
apply a simple distance-based clustering along each dimen-
sion to derive a set of cut-points. If the dataset contains cate-
gorical attributes, our approach is as follows. First, we com-
pute the frequent itemsets generated from all categorical
attributes in the original dataset D (for a user-determined
support value). Let us refer to this as set A. We then split
the eigen dimension €; into equal-frequency intervals and
compute the frequent itemsets in each interval that are con-
strained to being a subset of A. Next, we compute the sim-
ilarity between contiguous intervals B and C' as follows:

For an element € B (respectively in C), let supgy, ()
(respectively supy, (x)) be the frequency of x in d; (respec-
tively in d2). Our metric is defined as:

ZmeBﬂC max{0, 1 — a| supy, (z) — supgy, (z)[}

S’Lm(d1,d2) ||BUC||
where « is a scaling parameter. If the similarity exceeds a
user defined threshold the contiguous intervals are merged.
Again, we are left with a set of cut-points along each eigen
dimension.

Rationale and Key Intuitions: First, there is no need to
consider the influence of the other components in the eigen
space since the second order correlations are zero after the
PCA reduction, Second, the use of frequent itemsets (as a
constraint measure) ensures that correlations w.r.t. the cate-
gorical attributes are captured effectively.

5. Correlating Original Dimensions with Eigenvectors:
The next step is to determine which original dimensions
correlate most with which eigenvectors. This can be com-
puted by finding the contribution of dimension j on each of
the eigenvectors (&7, .. ., &), scaled by the corresponding
eigenvalue and picking the maximum [7].

Rationale: This step is analogous to computing factor load-
ings in factor analysis. This step ensures that the set of orig-
inal dimensions associated with a single eigenvector have
corresponding discrete intervals, which ensures that these
original dimensions remain correlated with one another.

6. Reprojecting Eigen cutpoints to Original Dimensions:
We consider two strategies which are explained below.

a. K-NN method: To project the cut-point céi onto the
original dimension j, we first find the k nearest neighbor
intercepts of céi on the eigenvector €;. The original points
p1,-- -, Pk, representing each of the k nearest neighbors, as
well as céi, are obtained (as shown in Figure 1a). We then
compute the mean (or median) value of of these points. This
mean (or median) value represents the corresponding cut-
point along the original dimension j.

b. Direct projection: In this approach, to project the cut
points céi, ..., Cg, onto the original dimension j, we need
to find the angle #;; between eigenvector €; and dimension
3. The process is shown in Figure 1b. Now the cut-points

céi ...c can be projected to the original dimension j by

€4
multiplying it with cos(6;;).

The re-projection will give us the intervals on the orig-
inal dimensions. However, it is possible that we get some
intervals that involves an insignificant number of real data
points. In this case, we merge them with its adjacent inter-
vals according to a user-defined threshold.

Key Intuition: If eigenvector €; is associated with more
than one original dimension (especially common in high di-
mensional datasets), the cut-points along that eigenvector
€ are projected back onto all associated original dimen-
sions, which enables the discretization method to preserve
the inherent correlation in the data.

Handling Missing Data: Incomplete datasets seemingly
pose the following problems for our discretization method.
First, if values for continuous attributes are missing, steps
1 through 3, of our algorithm will be affected. Fortunately,
our PCA-based discretization approach enables us to han-
dle missing values for continuous attributes effectively by
adopting recent work by Parthasarathy and Aggarwal [12].
Second, if categorical attributes are missing they can affect
step 4 of our algorithm. However, our premise is that, when
entries are missing at random, the structure of the rest of the
data, within a given interval, will enable us to identify the
relevant frequent patterns; thus ensuring that the similarity
metric computation is mostly unaffected. More details on
the algorithms can be found in our technical report[11].

3 Experimental Results and Analysis

In Table 1 we describe the datasets! on which we eval-
uate the proposed algorithms. In terms of algorithmic set-
tings, for our K-NN approach the value of K we select for
all experiments is 4. Our default similarity metric threshold
(for merging intervals) is 0.8 (o = 0).

Dataset Records | #Attributes | #Continuous
Adult 48844 14 6
Shuttle 43500 9 9
Musk (1) 476 164 164
Musk (2) 6598 164 164
Cancer 683 8 8

Bupa 345 6 6
Credit 690 14 6
Credit2 1000 20 7

Table 1. Datasets Used in Evaluation

Qualitative Results Based on Association Rules: In this
section we focus on the discretization of the Adult dataset
(containing both categorical and continuous attributes) as a
preprocessing step for obtaining association rules and com-
pare it with published work on multivariate discretization.

T All the datasets are obtained from UCI Data Repository
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Specifically, we compare with ME-MDL (supervised) using
salary as the class attribute and MVD (unsupervised), lim-
iting ourselves only to those attributes discussed by Bay[1].

First, upon glancing at the results in Table 2 it is clear
that KNN, MVD and Projection all outperform ME-MDL
in terms of identifying meaningful intervals (also reported
by Bay[1]). Moreover, ME-MDL seems to favor more num-
ber of cut-points many of which have little or no latent in-
formation. For the rest of the discussion we limit ourselves
to comparing the first three methods.

Variable Method Cut-points

age Projection | 19, 23, 25, 29, 34, 37, 40, 63, 85
KNN 19, 23, 24, 29, 33, 41, 44, 62
MVD 19, 23, 25, 29, 33, 41, 62
ME-MDL | 215,235,245, 27.5, 29.5, 30.5,

35.5,61.5,67.5,71.5

capital gain || Projection | 12745
KNN 7298, 9998
MVD 5178
ME-MDL | 5119, 5316.5, 6389, 6667.5,

7055.5, 7436.5, 8296, 10041,
10585.5, 21045.5, 26532, 70654.5

capital loss || Projection | 165

KNN 450
MVD 155
ME-MDL | 1820.5, 1859, 1881.5, 1894.5,

1927.5, 1975.5, 1978.5, 2168.5,
2203, 2218.5, 2310.5, 2364.5,
2384.5, 2450.5, 2581

hours/week Projection | 23, 28, 38, 40, 41, 48, 52
KNN 19, 20, 25, 32, 40, 41, 50, 54
MVD 30, 40, 41, 50
ME-MDL | 34.5,41.5,49.5,61.5,90.5

Table 2. Cut-points from different methods on Adult

For the age attribute, at a coarse-grained level, we would
like to note that the cut-points obtained between the dif-
ferent methods are quite similar and quite intuitive. Simi-
larly for the capital loss attribute, all methods return a single
cutpoint, and the cutpoint returned by both Projection and
MVD are almost identical. For the capital gain attribute,
there is some difference in terms of the cutpoint values re-
turned by all three methods. Using KNN we were able to
get even better cut-points than the other two methods. It di-
vides the entire range into three intervals, i.e., ($0, $7298)
low gain, which has 1981 people, ($7299,$9998) moder-
ate gain, having 920 people and (39999, MAX) high gain,
having 1134 people. For the above three attributes we get
many of the same association rules that Bay reports in his
paper. Details are provided in our technical report[11].

The hours/week attribute is one where we get signifi-
cantly different cut-points from MVD. For example MVD’s
first cut-point is at 30 hours/week which implies any-
one working less than 30 hours is similar. This includes
people in the age group (5 to 27), which is a group of

very different people with respect to working habits, ed-
ucation level etc. Yet all of these are grouped together
in MVD. Using KNN we obtained the first cut-point at
19 hours/week. We are thus able to extract the rule
Hours/week < 19 = age < 20, which makes sense as
children and young adults typically work less than 20 hours
a week while others (> 20 years) typically work longer
hours. As another example, we obtain a rule that states
that ”people who work more than 54 hours a week typically
earn less than 50K”. Most likely this refers to blue-collar
workers. More differences among the different methods is
detailed in our technical report[11].

In terms of quantitative experiments, we could not really
compare with the MVD method as the source/executable
code was not available to us. We will point out that for the
large datasets (both in terms of dimensionality and number
of records), our approaches take on the order of a few sec-
onds in running time. Our benefits over MVD in terms of
execution time stem from the fact that we use PCA to re-
duce the dimensionality of the problem and the fact that we
compute one set of cut-points on each principal component
and project the resulting cut-points onto the original dimen-
sion(s) simultaneously.

Qualitative Results Using Classification: For both the
direct projection and KNN algorithm, we bootstrap the re-
sults with the C4.5 decision tree classifier. We compare our
approach against various classifiers supported by the Weka
data mining toolkit>. We note that most of these classi-
fiers use a supervised discretization algorithm whereas our
approach is unsupervised. For evaluating our approaches,
once the discretization has been performed, we append the
class labels back to the discretized datasets and run C4.5.
All results use 10-fold cross-validation.

Table 3 shows the mis-classification rates of our ap-
proaches (last two columns) as compared to seven other
different classifiers (first seven columns). First, on viewing
the results it is clear that our methods coupled with C4.5 of-
ten outperform the other approaches (including C4.5 itself)
and especially so on high dimensional datasets (Musk(1)
and Musk(2)). The Bupa dataset is the only one on which
our methods perform marginally worse, and this may be
attributed to the fact that the correlation structure of this
dataset is weak[12].

Experiments with Missing Data: Our first experiment
compares the impact of missing data on the classification
results on three of the datasets. We randomly eliminated a
certain percentage of the data and then adopted the approach
described in Section 2. Table 4 documents these results.
One can observe that the classification error is not affected
much by the missing data, even if there is 30% of the data
missing. This indicates that our discretization approach can
tolerate missing data quite well.

In the second experiment, we randomly eliminated a per-
centage of the categorical components from the dataset and

Zhttp://www.cs.waikato.ac.nz/ ml/
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Dataset C4.5 | IBK | PART | Bayes | ONER | Kernel-based | SMO | Projection | KNN
Adult 15.7 | 20.35 15.8 16.8 19.54 17 15.7 15.7
Shuttle 0 0 0 5.1 0 0 0 0 0
Musk (1) || 17.3 | 17.2 18.9 25.7 394 17.3 15.6 14.1 14.6
Musk (2) || 4.7 4.7 4.1 16.2 9.2 5.1 N/A 4.1 4.1
Cancer 5.4 43 4.8 4.1 8.2 5.1 4.3 4.1 4.1
Bupa 32 40 35 45 45 36 43 33 34
Credit 15 14.9 17 23.3. 15.5 17.4 15 14.8 14.9
Table 3. Classification Results (error comparison - best results in bold)
Dataset | Original | 10% 20% 30% Datasets | Original | Byte Compressed | Compression
Missing | Missing | Missing and Discretized Factor
Adult 15.7% 16% 17% 19% Bupa 3795 1035 3.67
Creditl | 15% 17% 18.8% 18.9% Adult 537350 195400 2.75
Credit2 | 25% 28% 30% 32% Musk1 85680 29693 2.89
L . Cancer 6830 3415 2.00
Table 4. Classification Error on Missing Data Muska 319800 137336 313
then predicted the missing values using the discretized in- Cred¥tl 28735 3450 833
tervals. For each interval, we identify frequent association Credit2 79793 16000 4.99
rules. We next use these rules to predict the missing values Shuttle 1153518 478500 24

[8, 15]. We compared this strategy, referred as PCA-based,
against three strawman methods: (1)Dominant Value: Un-
der this scheme, the missing value is predicted by the most
dominant value for each attribute in an interval. (2)Dis-
cretization w/o PCA: Under this scheme we perform equi-
width discretization, which is unsupervised and does not
count the correlation as against our approach. (3)Random:
Missing values are predicted by randomly picking a possi-
ble value of a specific attribute.

Adult Creditl Credit2
Missing(%) | 10 | 20 | 30 | 10 | 20 | 30 | 10 | 20 | 30
PCA-based | 75 | 63 | 62 | 58 | 53 | 55 | 65 | 60 | 60
Dominant 47 | 46 | 48 | 40 | 30 | 35 | 37 | 36 | 33
W/O PCA 22 (15129 (1511010 | 20 | 18 | 11
Random 37140 |34 |40 | 33 {3539 |36 |33

Table 5. Missing Value Prediction Accuracy (%)

Table 5 shows the accuracy of all four schemes on differ-
ent datasets, in which all results are averaged over 10 dif-
ferent runs. It is clear that the PCA-based scheme has the
highest accuracy among all four. Wherease the w/o PCA
scheme has the lowest accuracy, which might be caused by
not considering the inter-attribute correlation. Such a differ-
ence also validates the importance of preserving correlation
when discretizing data of high dimensionality.
Compression of Datasets: In this section we evaluate the
compressibility that can be achieved by discretization. Con-
tinuous attributes are usually floating numbers and thus re-
quire the minimum four bytes to represent. However, by
discretizing them we can easily reduce the storage require-
ments for such attributes. Table 6 shows the results of com-
pression on various datasets. As we can see from the results,
on most datasets we achieve a compression factor around 3,
and in some cases the results are even better.

Table 6. Compression Results
4 Conclusions and Future Work

In this article we propose correlation preserving dis-
cretization, an efficient method that can effectively dis-
cretize continuous attributes even in high dimensional
datasets. The approach ensures that all attributes are used
simultaneously for deciding the cut-points rather than one
attribute at a time. We demonstrate the effectiveness of
the approach on real datasets, including high dimensional
datasets, as a preprocessing step for classification as well as
for frequent association mining. We show that the result-
ing datasets can be easily used to store data in a compressed
fashion ready to use for different data mining tasks. We also
propose an extension to the algorithm so that it can deal with
missing values effectively and validate this aspect as well.
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