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Abstract 

Monitoring the condition of suspension systems is significant to ensure the safe operation of 

modern railway vehicles. For this purpose, an online modal identification scheme, denoted as 

Correlation Subset based Stochastic Subspace Identification (CoS-SSI) is proposed in this paper 

to monitor the suspension conditions. Because the widespread of the dynamic contact status 

between wheel and track, especially under faulty suspension cases, the vibration responses 

measured online exhibit high nonstationarity and nonlinearity. To take into account these 

characteristics of signals, the input correlation signals for SSI are clustered into several successive 

subsets according to their magnitudes, on which SSI is implemented one by one. In this way it 

yields a magnitude adaptive SSI for more reliable and accurate identification. Experimental studies 

were conducted on a 1/5th scaled roller rig system to verify the effectiveness of the proposed 

method for suspension monitoring. The experimental results show that the CoS-SSI outperform 

the conventional SSI in that it produces more reliable and realistic identification for the nonlinear 

system. Furthermore, the effectiveness of the CoS-SSI was verified experimentally with two faulty 

suspension faults induced into the system. 
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1. Introduction 

Modern health monitoring systems for trains are highly desirable due to the significant increase of 

their operational speed. As a result, the vertical and lateral contact forces between the wheel and 

rail are also increased significantly, especially when the suspension system is not optimized. In 

order to meet the needs of safety, reliability and lower operating costs of the railway vehicle, 

numerous investigations have been carried out by different researchers to monitor the status of the 

vehicle suspension system and the rail conditions [1-10], and have been reviewed recently by 

Alemi et al[1], Li et al[4] and Bruni et al[2] from different aspects. Based on these reviews, the 

condition monitoring methods for railway vehicle suspension systems can be divided into three 

main groups: in-depot, track-side and on-board techniques. In-depot and track-side techniques can 

only monitor the vehicle at selected time or locations [1, 4], while on-board methods have the 

potential to continuously monitor the system to provide timely information. Therefore, the on-

board methods have become a main topic of research in this direction in recent years. 

Li et al [5] presented an approach to detect the wheel flat using vibration in association with an 

Adaptive Multi-scale Morphology Filter (AMMF). The vibration signals obtained from the axle 

box were analysed by AMMF and the results indicated that the AMMF could be an efficient 

method for detecting wheel flats. Similarly, Liang et al [6] employed three commonly used time-

frequency analysis techniques; Short-time Fourier Transform (STFT), Wigner-Ville Transform 

(WVT) and Wavelet Transform (WT), to detect wheel flat and rail surface defects by analysing 

axle box acceleration signals. It shows that WT has the ability to obtain good localisations both in 

time and frequency domains. Moreover, Mei and Ding developed a technique exploiting the 

dynamic interactions between different vehicle modes caused by suspension spring or damper 

failure[7]. In summary, all of the referred methods can be categorised as signal-based methods. 

However, although the signal-based methods are effective, they are difficult to apply as developing 

a pre-built database that includes all the possible fault conditions, e.g., various fault types and 

levels is very complex and difficult to implement online.  

In addition to signal analysis based methods aforementioned, model-based method is also another 

popular technique. Wei et al [10] presented a method for the detection of vertical spring and 

damper faults of railway vehicle suspension, using acceleration signals only, based on the Kalman 



3 
 

filter and a generalised likelihood ratio test. Moreover, Multiple Kalman filter was employed by 

Jesueesk et al [11] to detect and isolate the faults of the railway vehicle suspension system. 

Furthermore, Liu et al [12] adopted a recursive least square filter to monitor the condition of the 

suspension. However, an accurate dynamic model is needed for the application of model-based 

methods, which is often difficult to deploy for online applications.  

In recent decades, Operational Modal Analysis (OMA) techniques have advanced rapidly and have 

been a more popular and powerful method for Structure Health Monitoring (SHM). Especially, 

Stochastic Subspace Identification (SSI) is regarded as one of the most popular techniques and has 

been developed rapidly in recent decades for SHM of the architectural structures [13, 14]. SSI 

method estimates a state-space model from an observed output correlation sequence by means of 

linear algebraic techniques; then, the modal parameters (natural frequencies, damping ratios and 

mode shapes) are extracted through the eigenvalue decomposition of the estimated state space 

model [14] and used subsequently for fault detection and diagnosis. 

Compared with other OMA methods, such as Peak-Peaking (PP) and Frequency Domain 

Decomposition (FDD), the SSI method has the particular advantage of combining high 

computational robustness and efficiency when excitations (or inputs) are white noise [15]. 

However, its robustness will be weakened if the excitations have nonstationary contents. It is very 

common for the field tests to include nonstationary effect due to various reasons, such as the time-

varying non-Gaussian randomness of the contacts between the wheel and rail in the real-life 

operation of a vehicle. To overcome this deficiency of SSI, an average correlation signal based 

SSI (ACS-SSI) method was proposed by Chen, et al [16, 17] in order to identify the dynamic 

characteristics of the chassis frames in a heavy truck. Their results indicated that ACS-SSI 

performed satisfactorily to identify modal parameters of the chassis frame using the collected 

nonstationary response data. Because of the effectiveness of ACS-SSI, it was employed to identify 

the suspension related modal parameters of a 1/5th scaled bogie roller rig. However, it was found 

that ACS-SSI is unable to accurately identify the targeted modal parameters on account of very 

severe nonstationary and nonlinearity effects.  

Therefore, an improved ACS-SSI method was proposed in this paper, which takes into account the 

nonstationary effect to a greater extent so that it makes it more suitable for railway vehicle 
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suspension monitoring. The nonstationary response is regarded primarily due to the nonstationary 

excitations as any real systems can be nonlinear to certain degrees due to limited linearity of spring 

and damping. When the amplitudes of excitations are within a certain range, the system can be 

more linear, otherwise the system can behave more nonlinearly. For the nonlinear operation, the 

responses can exhibit higher responses than that of linear one. With this understanding, the 

responses can be organised into a number of subsets according to the response magnitudes. The 

SSI procedure can then be applied to each subset to attain modal parameters, which can lead to 

more consistent results as the system can be locally stable for each particular amplitude range. 

Consequently, this subset based identification approach allows for reliable and consistent results 

to be obtained. Moreover, the subset is determined based on correlation signals which have better 

SNR, rather than on the raw responses, this method is denoted as Correlation Signal Subset based 

SSI (CoS-SSI), which will be depicted and evaluated comprehensively based on the data from a 

1/5th scaled bogie frame on which the dynamics of the suspension system is investigated [6, 23].  

This paper is structured with four main sections. Following this introduction, the development of 

the CoS-SSI algorithm is presented in Section 2. The experimental study on a 1/5th scaled bogie 

roller rig is detailed in Section 3. In the last section the main conclusions are drawn from this study. 

2. CoS-SSI 

Most output only system identification methods were developed based on the assumption that the 

system responses are stationary. However, as referred earlier, field monitored data are usually very 

nonstationary, such as the responses of buildings under strong winds and bridges with time-varying 

traffic loading [18]. In addition, the responses of the vehicle as a result of road excitations are also 

highly nonstationary because of the time-varying excitations due to local impacts of humps on the 

road and the nonlinearity of suspension systems. The identification results from output only 

methods will be varying as a consequence of the nonstationary response data. For instance, in the 

SSI scheme, the data length N  is limited in practice and therefore, the covariance values in the 

Hankel matrix may vary when the measurements contain nonstationary contents, which could 

result in uncertainties in the identification results [16]. Besides, the nonstationary excitations may 

lead to time-varying frequency contents characterised by modal components participating at 
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different times [18]. It can be seen that the nonstationary problem is a challenging issue and 

therefore a lot of investigations have been conducted by different scholars [19]–[21]. 

Lin and Chiang et al [19, 20] addressed the nonstationary problem by adopting the correlation 

technique. A theoretical justification was given in reference [19] and stated that the nonstationary 

correlation functions evaluated at an arbitrary, fixed time instants of structural response have the 

same form as free decay of the structure with certain initial conditions. Their theory was developed 

based on the principle [21] that the cross-correlation functions of two stationary processes can be 

expressed as free impulse responses. In summary, the theory developed in [19] indicated that the 

nonstationary problem could be reduced to a stationary problem if the nonstationary correlation 

functions are evaluated at a fixed time instant. 

Based on this concept, a method based on the correlation signals combined with the framework of 

SSI, denoted as ACS-SSI, was proposed by Chen et al [16, 17]. The key steps to obtain average 

correlation signals are shown as follows [16, 17] and the framework of SSI can be found in [13, 

22]: 

1) Collect K  numbers of data segments from the measurements of l  channels; this can be 

achieved by using multiple records or by segregating a long record into small ones. 

2) Calculate the cross-correlation signals of each segment between l  channels:  
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Where N is the length of each segment; 1, 2 , .. .,i l  is the channel number; p .is the 

reference channel; n  is the time sequence and m  is the delayed time. In order to improve 

the calculation efficiency, the Fast Fourier Transform (FFT) algorithm is applied to obtain 

the correlation signals. 

3) Averaging the correlation signals from different segments to obtain the average correlation 

signals for the corresponding channels.  
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Where K  is the number of segments. 

The ACS-SSI suppresses the high noise and nonstationary signals by calculating the correlation 

signals and averaging them before applying in SSI method for modal identification. As referred 

previously, it has been proved in [16, 17] that ACS-SSI has excellent ability to identify the modal 

parameters of the truck frame effectively with only the output responses when the truck runs on 

the constructed road.  

However, because of the strong nonstationary characteristics in response signals, the amplitudes 

of correlation signal can spread within a very wide dynamic range. This means that the ensemble 

average in ACS-SSI will take less account of the correlation signals with very low amplitudes. 

Especially, low amplitude correlation signals often contain information associated with the 

vibration modes with higher damping coefficients and thus the vibration modes are less frequently 

excited. This means that averaging over a full set of data may lead to inadequate identification 

results in that modes with high damping and cannot be identified reliably. Moreover, because of 

the inevitable effects of system nonlinearity, different amplitudes of correlations signals may come 

from different regimes of a nonlinear system. In other words, the higher vibration amplitudes may 

indicate that the system operates with a set of modal parameters which can be slightly different 

from that of those with lower amplitudes. As a consequence, ACS-SSI can identify inconsistent 

and less repeatable results, which probably change with magnitudes of measured responses due to 

the nonlinear effect.  

Based on the above analysis, a CoS-SSI method can be proposed to overcome the deficiency and 

limitations in applying ACS-SSI to nonstationary and quasi-nonlinear scenarios. In the CoS-SSI 

method, the correlation signals are divided into several subsets according to their magnitudes and 

then averaging the segments of correlation signals with respect to each subset, rather than 

conducting the averaging step to the full segments of correlation signals. The averaged correlation 

signals obtained from these subsets are separately applied in SSI to identify the modal parameters.  

In this study, the signal magnitude is presented by its root mean square (RMS) value. Hence, the 

first step is to calculate RMS values of all correlation segments and to develop a RMS matrix. For 

example, as shown in Figure 1, if the raw signals have l  channels and the signals from each 

channel are divided into K  segments, the number of correlation signal segments obtained from 
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each segment is l l  and therefore can obtain 2K l  correlation signal segments in total. Each 

segment of the correlation signals can obtain a RMS value, consequently, a RMS value matrix in 

size of 2K l  can be developed. The second step is to select the minimum RMS value from each 

row, allowing for a vector mR  to be obtained which contains K  elements. The third step is to 

obtain the maximum and minimum values from vector mR . The fourth step is to calculate the 

intervals using the maximum values to subtract the minimum values which are obtained in the 

previous step and then divide the subsets number J  . The final step is to categorise the correlation 

segments into different subsets by locating the RMS values obtained in the first step at different 

intervals. The value of the subset number is always chosen 3 or 4 considering the calculation 

efficiency and the accuracy of the identification results. 

 
Figure 1 Schematic of raw signal segregation 

This unique scheme of implementing ACS-SSI to a series of subset correlation signals with 

sequentially changed (increases or decreases) magnitudes allows the system nonlinearity to be 

suppressed greatly. For clarity, the CoS-SSI method is further summarised within the flow chart 

as shown in Figure 2. It highlights the improved steps (in red box) made in this study to suppress 

the effect of nonlinearity and nonstationary.  
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Figure 2 Flow chart of CoS-SSI 

In addition, it is well known that the Stabilisation Diagram (SD) is a powerful tool to filter out the 

false modes in OMA [13,14]. The principle of SD is that the true modes of system are stable 

irrespective of the number of rows (order) in Hankel matrix, but the false modes are not. Therefore, 

a threshold is set up to confirm the consistency of the modal parameters identified from two 

conjunction Hankel orders. The threshold includes , ,f MAC   , given in equations(3), (4) and 

(5).The real modes have to simultaneously satisfy the three equations.  
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Where MAC is the acronym of Modal Assurance Criterion; , ,i i if    are the identified 

frequency, damping ratio and mode shape when the Hankel matrix order is i . The values of 

, ,f MAC    were set at 0.1, 0.2 and 0.5, respectively.  

In this paper, a second threshold   was set up by calculating the rate of the stable points over the 

maximum calculated order (row) of the Hankel matrix to filter out the false modes in a further step, 

shown in equation (6): 

100%x
y

                                                                         (6) 

Where x is the number of stable points identified for an exact frequency; y  is the maximum order 

of Hankel matrix in the identification process. 

3. Online modal identification of scaled bogie 

3.1 Theoretical modal parameters 

a) Test rig introduction 
Bogie is an essential part in the railway vehicle suspension system which is connected to the 

wheelsets through the primary suspension system and connected to the car body through the 

secondary suspension system. The 1/5th scaled bogie installed on the roller rig, which was 

employed frequently to study the dynamics of railway vehicles [6, 23], was used in this study to 

investigate the performance of the proposed method. 

As shown in Figure 3(a), the main parts of this roller rig include two wheelsets and a bogie frame. 

Eight mount bushings, a pair at each corner, are considered as the primary suspension to connect 

the bogie frame and the wheelsets. In addition, a control panel is equipped which can be used to 

adjust the running speed of the roller continuously. Furthermore, a frame and two joints are 



10 
 

employed to constrain the movement of the bogie in longitudinal direction. However, this roller 

rig was designed to investigate the railway vehicle lateral dynamics, therefore, the vertical 

dynamical characteristics were not fully considered. The bounce and pitch modes were extremely 

close, which was untrue for the real vehicle vertical dynamics. It is well known that the close 

modes are difficult to identify correctly, even the SSI method is much superior than most of the 

other methods in this aspect. Therefore, two weights (2kg/each) are attached on the centreline of 

the bogie frame to separate the bounce and pitch modes. 

For the purpose of generating a relative real rail excitation, the wheel profiles were machined as 

scale versions of BR P8 and the rollers were machined as scale of BS110 with a rail profile without 

the rail cant[23]. The rollers were driven by a motor through a belt. A schematic side view of the 

roller rig system is presented in Figure 3(b). 

 
Figure 3 1/5th scaled roller rig and side view schematic  

b) 7-DOF mathematical model 
A 7-DOF linear model of the experimental scaled roller rig was developed in this section for the 

purpose of obtaining the theoretical modal parameters. The 7-DOF model included bounce, pitch 

and rolling movements of the bogie frame and the bounce movement of the wheels. The schematic 

of the 7-DOF model is shown in Figure 4. 
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Figure 4 7-DOF model of the roller rig 

The kinematic equations can be developed according to the Newton’s second law, shown in 

equation (7)-(14): 

Bounce of the bogie frame: 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
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Pitch of the bogie frame: 

[ ( ) ( ) ( ) ( )]
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Roll of the bogie frame: 

[ ( ) ( ) ( ) ( )]
[ ( ) ( ) ( ) ( )]
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Bounce of the four wheels: 

( ) ( ) ( )wfl wfl pfl bfl wfl pfl bfl wfl cfl wfl rflm z k z z c z z k z z                                             (10) 
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( ) ( ) ( )wrl wrl prl brl wrl prl brl wrl crl wrl rrlm z k z z c z z k z z                                             (12) 

( ) ( ) ( )wrr wrr prr brr wrr prr brr wrr crr wrr rrrm z k z z c z z k z z                                         (13) 

Where biz is vertical displacement of the bogie frame;  : pitch angle of the bogie frame;  : roll 

angle of the bogie frame; w iz : vertical displacement of the wheel caused by track irregularity and 
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wheel faults. ( , , ,i fl fr rl rr  meaning position of front-left, front-right, rear-left and rear-right). 

The other symbols are detailed in Table 1. 

The relationships between the displacements at the four corners of the bogie frame and the centre 

gravity are given as follows: 

,
,

bfl b bfr b

brl b brr b

z z a b z z a b
z z a b z z a b

   

   

     

     
;                                                  (14) 

These equations can be reformulated into state space form and therefore the modal parameters can 

be extracted from the state matrix. The physical parameters of the roller rig were measured and 

given in Table 1. Particularly, pI and RI were obtained through developing a 3D model in the 

SOLIDWORKS. Moreover, the suspension stiffness of the bogie frame is hard to measure directly, 

therefore, it was approximated by the relationship of the installation angle ( ), shown in Figure 

5(b). Firstly, the stud mount was tested on an INSTRON 3369 universal testing system, which will 

be introduced in detail in Section 3.4. The tested result of the force-displacement curve was 

presented in Figure 5(a). Secondly, the vertical stiffness of the stud mount was calculated when 

the compressive extension was around 1mm considering the load ability of the employed stud 

mounts and the weight of the bogie frame. It can be seen that the force is around 113N when the 

compressive extension is 1mm; yet the stiffness is113 / 0.001 1.13 5 /e N m . The installation angle 

  of the stud mount is around 3 , therefore the suspension stiffness is around

2 1.13 5 cos( 3) 1.13 5 /e e N m   . In addition, the damping of the suspension and the contact stiffness 

between wheel and rail are chosen according to the reference [6].  
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Figure 5 Stud mount force-displacement and installation direction 

Table 1 Physical parameters of the roller rig  
Symbol Meaning Value 

bm  
Mass of the bogie frame 30.95 kg 

wm  
Half Mass of the wheelset 12.5/2 kg 

pI  Bogie frame pitch inertia 1.23kg•m2 

RI  Bogie frame roll inertia 0.67 kg•m2 

, , ,pfl pfr prl prrk k k k  Stiffness of the primary suspension 1.13×105 N/m 

, , ,pfl pfr prl prrc c c c  Damping of the primary suspension 133.5 Ns/m 

, , ,cfl cfr crl crrk k k k  Contact stiffness between wheel and track 8.93×106 N/m 

a  Half of the wheelbase 0.42/2 m 
b Half of the gauge 0.39/2 m 

c) Theoretical modal parameters 
The theoretical modal parameters were obtained by substituting the parameters (tabulated in Table 

1) into the developed model. In this paper, only the rigid modes of the bogie frame, related to the 

primary suspension, were considered. They are bounce, pitch and roll modes, shown in Figure 6. 

The resonance frequencies of the three modes are 19.15Hz, 20.18Hz and 25.40Hz, respectively; 

the corresponding damping ratios are 6.99%, 7.37% and 9.28%.  

 
Figure 6 Theoretical modal parameters of roller rig added with 4kg mass 

At the same time, in order to confirm whether the flexible modes of the bogie frame have effects 

on the rigid modes or not, a finite element model (FEM) of the bogie frame was constructed in 

ANSYS/Workbench software to investigate its flexible modes. The model was in full-scale and it 

was meshed into 9828 elements with 21124 nodes. The first four flexible modes obtained from the 

FEM were presented in Figure 7. It can be seen that the resonant frequency of the first flexible 

bending mode is around 86.43Hz, which is nearly three times higher than the rigid roll mode of 
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the bogie frame. Therefore, it can be recognised that the flexible modes have limited effects on the 

suspension related rigid modes of the bogie frame, which means the developed rigid model is 

reasonable to analyse the dynamic characteristics of the suspension system. 

 
Figure 7 Flexible modes of bogie frame 

3.2 Raw signal characteristics 
In the experiment, four accelerometers were mounted on the four corners of the bogie frame, 

shown in Figure 3(a), to collect the responses caused by the irregularities of the roller (rail) and 

the wheel. As shown in Figure 8, the accelerometer is CA-YD-185 from SINOCERA. This 

accelerometer is used widely due to its high sensitivity (50mV/m/s2) and wide frequency band 

(from 0.5Hz to 5000Hz) along with small mass. A YE6231 four channel data acquisition system 

with a laptop were used to collect the data. The system can acquire the vibration data at 96kHz at 

a data accuracy of 24bit, which ensures great accuracy in capturing both the high and low 

amplitude vibration in the low frequency range for suspension analysis.  
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Figure 8 Accelerometers and data acquisition system 

The sampling rate of YE6231 was set at 1500Hz for the experiments. It is apparent that the 

sampling frequency is much higher than the requirement of Nyquist sampling theory. This is to 

confirm the reliability of the CoS-SSI method since this is a primary study. However, the sampling 

rate can be lower in real application for the scope of improving calculation efficiency. Generally, 

5 times the maximum interested natural frequency would be enough. In order to confirm the 

reliability of the CoS-SSI further, the data was collected under varying speeds, which presented a 

more nonstationary scenario, but can better illustrate the real operations of railway vehicles with 

frequent acceleration and deceleration.  

The sampling length was 40s for each test and the test was repeated 10 times under the same 

condition. An example of the raw signals in the time domain is shown in Figure 9. It can be seen 

that the amplitudes of the responses are changing significantly with time, which indicate that the 

responses are very nonstationary. The power spectrum densities (PSD) corresponding to each 

channel are presented below the time-domain signals. The two spectral peaks can be observed at 

20Hz and 26Hz respectively. They are similar to the calculated frequencies of the pitch and rolling 

modes shown in Figure 6, showing that the spectrum allows the modal frequency to be estimated 

approximately. However, it is difficult to find other modal parameters based on the spectrum 

analysis. Particularly spectral amplitudes at the four corners are significantly different. Such 

differences have little similarities to the modal shapes in Figure 6, and therefore provide limited 

information for estimating the modal shapes. Instead, the spectral differences are caused by 

compound effects including modes coupling due to the closeness of 19.15Hz and 20.18Hz, and 
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various noises including system nonlinearity, asymmetric excitations between the corners and 

measurement deviations. This also means that OMA methods are needed to minimise these noises 

and achieve accurate system identification. 

 
Figure 9 Raw signals and PSD (FL: front left; FR: front-right; RL: rear-left; RR: rear-right) 

3.3 Modal identification results and discussion 
To evaluate the performance comprehensively, the modal parameters identified by COS-SSI are 

compared with that of Cov-SSI and ACS-SSI when they are all applied to the same data from the 

1/5th scaled bogie. As the sampling frequency was 1,500Hz, the data length has 60,000 points for 

40 seconds and they were divided into 14 segments, each having N =4096 points for each segment, 

which covers more than 50 periods of the lowest mode of interest and allows for significant noise 

reduction. Then, the correlation signals between four channels were calculated for each of the 

segments, yielding K=140 segments of correlation signals in total for the ensample average to 

reduce noise further.  

SD and the rate of stable point rate( ) were adopted to filter out the spurious modes. Firstly, the 

SD identified by Cov-SSI method are presented in Figure 10(a). It can be seen that two relative 

stable modes were presented in the SD, which are around 20Hz and 21Hz. Then, the rate of stable 

points in the SD are presented in Figure 10(b). The two relative stable modes were selected when 

the second threshold (  ) was set at 0.6. The selected modes are presented in Figure 11(a). 
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Moreover, the MAC referenced with theoretical mode shapes are presented in Figure 11(b). It can 

be found that the identified modes are bounce and pitch respectively. The relative errors of the 

identified bounce and pitch frequencies are 4.28% and 4.66%, compared with the theoretical one, 

which is in the acceptable range. However, the roll mode has not been identified at all, showing 

that Cov-SSI is not able to suppress the noise sufficiently to resolve the roll mode. 

 
Figure 10 (a)SD identified by Cov-SSI and (b) rate of stable points 

 
Figure 11 (a)Cov-SSI identified results and (b) MAC values compared with theoretical modes 

The results obtained by ACS-SSI are presented in Figure 12 and Figure 13, which are obtained by . 

the same thresholds as that of Cov-SSI. This method allows the pitch and roll modes to be 

identified but not the bounce mode. It is worthy to note that the bounce mode could be identified 

if the second threshold was set at 0.3 according to the results presented in Figure 12(b). However, 

this low threshold could result in two false modes around 10Hz and 36Hz. This means that the 
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threshold values should be sufficiently higher to exclude the false modes to achieve a more reliable 

result. 

 
Figure 12 (a)SD identified by ACS-SSI and (b) rate of stable rates 

 
Figure 13 (a) Modes identified by ACS-SSI, and (b) MAC values compared with theoretical modes 

As mentioned earlier, the ACS-SSI method averages the ensemble of correlation signals which 

means that correlation signals with small amplitudes contribute less to the final results. The small 

amplitude correlation signals are often related to modes with higher damping and lower excitations. 

Therefore, in the CoS-SSI, the 140 correlation signal segments were categorised into 3 subsets 

based on their amplitudes. The subset number was selected on account of identification accuracy 

and calculation efficiency.  

The SDs identified by CoS-SSI method respective to each subset are presented in Figure 14(a1), 

(b1) and (c1); the figures showing the rate of stable points are presented below them, as shown in 
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Figure 14(a2), (b2) and (c2). It can be observed that the SDs are much stable than the results 

identified by Cov-SSI and ACS-SSI. Consequently, the second threshold was set at a higher value, 

set at 0.8. This means that the results identified by the new method will be more reliable.  

The results identified from the three subsets by CoS-SSI are presented in Figure 15 (a1), (b1) and 

(c1), respectively, and the corresponding MAC values compared with theoretical mode shapes are 

presented below. It can be observed from Figure 15 (a1) and (a2) that the bounce, pitch and roll 

modes are identified from the first subset and were largely in agreement with the theoretical results. 

In addition, it can also be seen that bounce and pitch modes are identified in the second subset; 

pitch and roll modes are identified in the third subset. In summary, all suspension related bogie 

frame rigid modes have been identified by the CoS-SSI method. Although it is noticeable that the 

identified modes are not exactly identical to the theoretical modes, the errors are acceptable 

considering the limits of the model developing process. Furthermore, it is also evident that the 

frequencies of the same mode identified in each subset is different, but the differences are quite 

small.  It is reasonable to assume that the small difference is caused by the nonlinearity of the 

mount bushing.  
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Figure 14 SD by CoS-SSI and the corresponding rate of stable rates 
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Figure 15 CoS-SSI identified results and MAC compared with theoretical modes 

So far, all of the suspension related rigid modes of the bogie frame are identified by CoS-SSI. The 

identified modal parameters can be employed as the criterion to fulfil condition monitoring of the 

suspension systems since the rigid modes of the bogie frame are in rapport with the suspension 

system parameters. Moreover, the mode shapes could be employed as the main criterion because 

they are the inherent properties of dynamic systems. On the other hand, the frequencies could only 

be the secondary criterion since they may change with the system mass. The damping ratio can 

only be a reference because it cannot be identified accurately, which is a common issue in modal 

identification.  

In addition, it took 29.56 seconds to get the final results using CoS-SSI method through a desktop 

computer with four Intel(R) Cores(TM) of i5-2310 CPU and 8G RAM. It is much shorter than the 

time taken to capture a full set of data which is as long as 400 seconds. The computational 
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efficiency can be improved in a further step when the Matlab program is converted into a 

computationally efficient language such as C or C++. Moreover, a lower sampling rate can also 

enhance the computational efficiency. These means that CoS-SSI method has the potential to fulfil 

the online monitoring. 

3.4 Modal properties of suspension system with faults 
In order to evaluate the performance and effectiveness of CoS-SSI method for suspension 

condition monitoring, two cases of suspension with faults were investigated in this section. The 

fault of suspension was artificially introduced by replacing the stud mounts at one corner. The 

employed stud mounts were tested on a universal test system to approximate their working 

stiffness beforehand. 

a) Stud mount test 
The employed mount bushings are shown in Figure 16. Three different kinds of male to male stud 

mounts with different rubber materials are used in this study. The three kinds of mount bushings 

have different diameters ( D ), therefore, their stiffness and damping ratio will be different. 

However, their overall heights ( H ) are the same to ensure the installation, which is 30mm. They 

were tested on a INSTRON 3369 universal testing system to obtain the force versus displacement 

curves, shown in Figure 16(e). In this test, all tested specimens were given the same maximum 

compressive extension (3mm) under a load speed of 2mm/min, and the corresponding forces were 

measured. Each specimen was loaded for three cycles and the force versus displacement curves  

are presented in Figure 17.  

According to the force of mount bushing at 1mm, the stiffness of the harder stud mount is nearly 

double compared with the normal (reference) stud mount, and the stiffness of the softer stud mount 

is less than half of normal. According to the stiffness estimation method referred in Section 3.1, 

the stiffness of the faulty suspension can be estimated. Moreover, it can be seen from Figure 17 

that the hysteresis characteristic of the employed stud mounts is apparent, which is one of the main 

reasons for the nonlinearity of the suspension system.  
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Figure 16 Employed stud mount and the stiffness test machine 

 
Figure 17 Force-displacement curves of employed stud mounts 

b) Fault case 1 
The first suspension fault case was replacing one stud mount at front-left (FL) with a harder one, 

which is to simulate the aging of the rubber. According to the force-displacement test of the stud 

mount, the stiffness of FL suspension will increase around 50%. The other experimental conditions 

were the same as previously introduced in Section 3.2 and only the CoS-SSI was employed to 

identify the modal parameters.  

The modal parameters identified from each subset are presented in Figure 18, in which MAC 

values are also compared with the theoretical results. It can be seen from Figure 18(a1), (b1), and(c1) 

that all of the first modes identified from the three subsets have a smaller amplitude at the FL 

corner, which was caused from the stiffness change of FL suspension. Moreover, it can be seen 
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from Figure 18(a2), (b2) and (c2) that the first mode identified from each subset should be bounce. 

Secondly, it is evident that the resonance frequency of pitch and roll modes increased about 2Hz 

as the stiffness of FL suspension increased by 50%. Based on these two characteristics, it can 

diagnose that the suspension system has faults at FL corner. 

 
Figure 18 Identified modes along with MAC values for the softer suspension at FL corner 

c) Fault case 2 
The second fault case was replacing both two stud mounts at right left (RL) with two softer ones. 

As a consequence, the stiffness of RL suspension was reduced by 75% according to the force-

displacement curves. The purpose of this case was to simulate the fatigue of the suspension 

components. The other experimental conditions were same as previously introduced in Section 3.2. 

The results identified by the CoS-SSI are presented in Figure 19. 
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Firstly, it can be seen from Figure 19 that all of the identified modes have larger amplitudes at the 

RL corner which were as a result of the stiffness reduction of the RL suspension. This characteristic 

compared well with the results identified from the previous fault case where the harder suspension 

resulted in smaller amplitude. Furthermore, it is noticeable that only pitch mode has been identified 

in the results. According to the MAC values in Figure 19 (a2), (b2) and (c2), even the mode around 

25Hz, which should be roll mode, looks like pitch mode. This could be another good indication of 

a fault in the suspension system.  

 
Figure 19 Identified modes along with MAC values for harder suspension at  RL corner 

4. Conclusions 

The main aim of this paper is to try to develop a scheme to monitor the condition of railway vehicle 

suspension systems in real time. For this purpose, a novel OMA method, denoted as CoS-SSI, was 

proposed for vibration analysis by taking into account the inherent nonlinear and nonstationary of 

the suspension system. In order to evaluate the effectiveness of Cos-SSI, the experimental study 
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was conducted on a 1/5th scaled bogie operating on the roller rig to identify the modal parameters 

of bogie frame which are in relation to the suspension systems. Simultaneously, Cov-SSI and ACS-

SSI methods were employed to identify the modal parameters. Based on the identification results 

obtained from these three methods, the following conclusions can be drawn: CoS-SSI is much 

superior than Cov-SSI and ACS-SSI methods since it is the only method that has the ability to 

identify all rigid modes of bogie frame which are related to suspension systems. This indicated 

that CoS-SSI has the potential to achieve online monitoring of railway vehicle suspension systems 

by taking their nonlinearities into account. Moreover, two suspension faulty cases were 

investigated to evaluate CoS-SSI in a further step. The results indicated that CoS-SSI not only has 

the ability to identify the fault of suspension, but can also isolate the fault with high reliability.  
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