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ABSTRACT

Correlation between occurrences of taxa is a fundamental concept in the analysis

of presence-absence data. Such correlations can result from ecologically relevant pro-

cesses, such as existence and evolution of species communities. Correlations are typ-

ically quantified by some sort of similarity index based on co-occurrence counts. We

argue that the individual values of a similarity index are not useful as such: rather, we

have to be able to estimate the statistical significance of the index value. Secondly, we

argue that before computing the correlations one has to carefully select what is the

underlying base set of locations for which the co-occurrence counts, similarity indices,

and their significance is computed. We demonstrate base set selection with synthetic

examples and conclude with an analysis of real data from a large database of fossil

land mammals.

Aleksi Kallio. CSC - IT Center for Science Ltd. P.O. Box 405, FI-02101 Espoo, Finland. aleksi.kallio@csc.fi

Kai Puolamäki. Aalto University, Department of Information and Computer Science and HIIT Helsinki 

Institute for Information Technology. P.O. Box 15400, FI-00076 Aalto, Finland. kai.puolamaki@tkk.fi

Mikael Fortelius. University of Helsinki, Department of Geosciences and Geography, P.O. Box 64, 00014 

University of Helsinki, Finland. mikael.fortelius@helsinki.fi

Heikki Mannila. Aalto University, Department of Information and Computer Science and HIIT Helsinki 

Institute for Information Technology. P.O. Box 15400, FI-00076 Aalto, Finland. heikki.mannila@aalto.fi

* These authors contributed equally to the work.

KEYWORDS: correlation; co-occurrence; base set; similarity index; statistical significance

INTRODUCTION 

Presence-absence data indicate for a collec-

tion of locations and taxa which taxa are present in

given locations. The locations can be, for example,

fossil sites, with a known age, or map grid cells

associated with observations of present-day mam-

mals. Fundamental concepts in the analysis of

presence-absence data are co-occurrence and

correlation of pairs of species. Are two taxa occur-

ring together more or less often than they should

on the basis of pure chance? 

A correlation between two species does not,

by itself, necessarily carry any ecological meaning

(for discussion, see Schluter (1984)). Correlation
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can be explained by trivial reasons, such as preva-

lence of species (Manel et al. 2001). However, a

statistically significant correlation can be due to

some ecologically relevant process such as the

existence and evolution of species communities.

Correlations can be used as an input or a starting

point for more complicated analysis, such as clus-

ter analysis (“find clusters of highly correlated spe-

cies”) or multidimensional scaling (“find a

projection of species to a plane such that the corre-

lated species are near to each other and uncorre-

lated species are far away”). In some studies the

complete presence-absence matrix is analysed,

but here we focus on co-occurrence and correla-

tion of pairs of species. There exists a good body

of work on the statistical questions related to the

analysis of binary presence-absence matrices, and

we refer the interested reader to Gilpin and Dia-

mond (1984), Connor and Simberloff (1984) and

Zaman and Simberloff (2002).

The first step in analysis is often to find out

whether there exists any correlation between two

species. The second step is to find a sound expla-

nation for the correlations, or to apply a more

advanced method. This paper focuses on this first

step in a general setting. The ecological interpreta-

tion or detailed analysis of the causes of the corre-

lation always depends on the context of the data

set.

Co-occurrences are traditionally quantified by

various similarity indices. There are many such

indices (Shi 1993; Hubálek 1982; Archer and

Maples 1987; Maples and Archer 1988). Most of

the similarity indices can be computed using a con-

tingency table (Table 1).

Typical similarity indices are those suggested

by Jaccard (Jaccard 1912), Dice (Dice 1945;

Sørensen 1948), Kulczynski (Kulczynski 1927) and

Ochiai (Ochiai 1957); these four indices were rec-

ommended by Hubálek (1982) who evaluated 43

similarity indices for presence-absence data.

Notice that the similarity indices are often used to

measure taxon similarity between locations (sam-

ples), while we use the indices here to measure

similarity between species based on their presence

or absence at various locations. These indices can

be computed using the counts in the contingency

table:

� Jaccard: a/(a+b+c)

� Dice: 2a/(2a+b+c)

� Kulczynski: (a/(a+b)+a/(a+c))/2

� Ochiai: a/sqrt((a+b)(a+c))

It is worth noting that none of these indices

depend on the number of locations with no occur-

rences d, or on the total count of locations n. All

indices range from 0 to 1, with the value 1 taking

place when the taxa always co-occur (b=c=0).

As we are analysing real data, the data will

always contain noise, i.e., the counts will have

errors. Species may sometimes be incorrectly

labeled present, but more often present species

are incorrectly labeled absent, due to them not

being detected or neglected for some other reason

(Rosen and Smith 1988, Upchurch and Hunn

2002). This pseudo-absence is one of the error

sources that have to be accepted in data analysis,

emphasising the need for rigorous statistical frame-

work capable of dealing with uncertainty.

We define two species to be uncorrelated if

they occur independently of each other. More for-

mally, the two species are uncorrelated if the con-

tingency table approximately obeys the product of

the marginal distributions of species, that is, a is

approximately equal to (a+b)(a+c)/n, b is approxi-

mately equal to (a+b)(b+d)/n, c is approximately

equal to (c+d)(a+c)/n, and d is approximately equal

to (c+d)(b+d)/n. A similarity index that directly mea-

sures this correlation can be formally defined using

the hypergeometric distribution function phy-

per(a,a+b,c+d,a+c).1 The application of hypergeo-

metric distribution in constructing a similarity index

that measures the faunal similarity between loca-

tions has been discussed in Raup and Crick

(1979). The hypergeometric distribution function

gives directly p-value of the one-tailed Fisher’s

Exact test. A p-value close to zero corresponds to

a strong negative correlation, while a value close to

unity corresponds to a strong positive correlation

(i.e., the species tend to co-occur), and a value

1. The hypergeometric distribution corresponds to a 

process where k balls are drawn in random from an urn with m 

white and n black balls. phyper(q,m,n,k) denotes the probability 

of drawing at most q white balls.

TABLE 1. Contingency table for two taxa A and B. Here a

is the count of locations where both species A and B

occur, b is the count of locations where A occurs but B

doesn’t, c is the count of locations where B occurs but A

doesn’t, and d is the count of locations where neither A

nor B occur. We denote by n the total number of loca-

tions, i.e., n=a+b+c+d. The occurrence of A and B is

denoted by A=1 and B=1, and non-occurrence by A=0

and B=0, respectively. 

B=1 B=0

A=1 a b

A=0 c d
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near ½ corresponds to lack of correlation (i.e., the

species occur independently of each other). An

essential property of Fisher’s Exact test, or the def-

inition of correlation in general, is that if we add

locations where neither of the species occur (i.e., d

grows large), we will obtain a strong positive corre-

lation (the p-value tends to 1 as d grows large).

The four similarity indices described earlier

are fundamentally different from the p-value of

Fisher’s Exact test. The value of Jaccard, Dice,

Kulczynski, or Ochiai index carries little information

about correlation (except when the indices are

exactly one), that is, whether the species occur

independently or not; see Table 2 for an example.

In the table high values of Jaccard and like indices

are simply due to the fact that both of the species A

and B are quite common (they both occur on 90%

of the find sites), and, therefore, the co-occurrence

count is high even though the species occur inde-

pendently of each other. These indices are useful,

for example, in comparing the relative co-occur-

rences of several pairs of species, but they do not

tell about correlation of two species.

To study the existence of correlation, as dis-

cussed above, it is essential to take into account

the number of locations where neither of the spe-

cies occur. This number is related to the choice of

the base set: if we study the correlation of, say, two

African species we will typically obtain very differ-

ent results if we take into account only the African

locations, or if we take into account all locations

across the globe. By base set we mean the set of

locations, which we include in our study, that is, the

locations which we use to compute the contin-

gency matrix of Table 1. As discussed later in more

detail, if we take into our study all locations across

the globe we will usually obtain a strong positive

correlation (p-value of Fisher’s Exact Test that is

close to one), due to the fact that there are many

locations where neither of the species occurs

because both species exist in Africa only.

The first main argument in this paper is that as

an initial step in any analysis involving co-occur-

rences of species it is often necessary to ascertain

whether there is a statistically significant negative

or positive correlation between two given species.

For this purpose, as discussed above, most of the

traditional association similarity indices are useless

as such. A certain value of an association similarity

index such as Jaccard does not imply existence of

negative or positive correlation. Our second main

argument is that before computing the correlations

it is essential to select the base set properly,

depending on the effect we want to study. As dis-

cussed above we can, for example, almost always

obtain a positive correlation by adding to our study

locations in which neither of the species occur. In

this work we give principled guidelines on how to

select the base set based on the effects we want to

study.

STATISTICAL SIGNIFICANCE

An observed positive or negative correlation

may arise from purely random effects. Statistical

significance testing methodology gives a way of

determining whether an observed correlation is just

because of random occurrences, or whether it is a

real phenomenon, i.e., statistically significant.

The ingredients of statistical significance test-

ing are given by the null hypothesis and the test

statistic. The null hypothesis describes the case

when there is no correlation. In our case an obvi-

ous choice for a statistical significance test is

Fisher’s Exact Test, mid-P variant (Berry and

Armitage 1995).

In Fisher’s Exact Test the null hypothesis is

that the contingency table has been sampled uni-

formly and randomly from a set of contingency

tables having fixed marginal species counts (a+b,

a+c, b+d, and c+d, respectively). The count a is

used as a test statistic. The p-value of the one-

tailed Fisher’s Exact Test is defined to be the prob-

ability that the value of the test statistic is at least

as extreme in the given direction under the null

hypothesis; the lower-tail p-value can be

expressed using the hypergeometric distribution

function as phyper(a,a+b,c+d,a+c), as discussed

earlier. The mid-P variant addresses the fact that

the one-tailed Fisher’s Exact Test is slightly too

conservative; the standard test is modified slightly

such that the sum of lower-tail and upper-tail p-val-

ues are guaranteed to add up to unity (see Berry

and Armitage (1995) for details and discussion). As

TABLE 2. Contingency table which obeys the marginal

distribution of species, i.e., the species A and B are

uncorrelated. As expected, Fisher’s Exact test and its

mid-P variant, described later, imply no or weak corre-

lation (the values of indices being 0.74 and 0.53,

respectively). Jaccard, Dice, Kulczynski, and Ochiai,

on the other hand, all output a high value of similarity

(0.82, 0.90, 0.90, and 0.90, respectively). 

B=1 B=0

A=1 81 9

A=0 9 1
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usual, we define a correlation to be significant if the

p-value is at most some predefined value, such as

p≤0.05. Otherwise we declare the correlation not

statistically significant. In the remainder of this

paper we use the significance limit of 0.05 and

therefore declare a correlation significant if and

only if the respective p-values satisfy p≤0.05, and

by Fisher’s Exact Test, mid-P variant, we mean the

lower-tail variant unless otherwise noted. In a

proper statistical significance testing method, such

as Fisher’s Exact Test, mid-P variant, the probabil-

ity of a false positive (an event where the null

hypothesis is rejected even if it holds) is at most

0.05.

Because of using the count a as a test statis-

tic, i.e., considering lower counts more significant,

the lower-tail p-value measures the significance of

negative correlation. The p-value is small when the

count a is exceptionally small compared to the

marginal sums, i.e., the null hypothesis. Positive

correlation can be measured with the upper-tail p-

value, which can be computed by 1-p, where p is

the p-value for negative correlation.

Hence we can test two hypotheses, one for

both positive and negative correlation. However

having two hypotheses per species pair must be

taken into account in a multiple hypothesis correc-

tion step, which is described later. If we are not

interested in the direction of the correlation, i.e., we

are only looking for extreme correlations, we

should use a two-tailed p-value. It can be easily

computed by 2 min(p, 1-p), where p is the one-

tailed p-value (see Dudoit et al. 2003). A less con-

servative two-tailed p-value can also by computed

by taking all contingency tables with given margin-

als sums, selecting those with probability equal to

or less than the observed table, and summing up

their probabilities; this approach does not, how-

ever, generalize in a straightforward way to a situa-

tion where we want to obtain one-tailed p-values.

This statistical test can be used with all asso-

ciation similarity indices if we want to test whether

there is a deviation from the independence of the

species assumption. Significance testing can

therefore be done independently of the selected

association similarity index.

Besides simplicity, the strength of Fisher’s

Exact Test is that it produces valid results regard-

less of the sample size. Pearson’s Chi-square Test

might be used instead of Fisher’s Exact Test, but it

assumes a sufficiently large sample size. In many

presence-absence data sets sample sizes are not

large enough to claim them sufficiently large with

confidence. Besides analytical tests, significance

of similarity indices can also be tested using the

Monte Carlo methods. Monte Carlo methods rely

on computational power to generate random sam-

ples and to calculate empirical p-values by com-

paring statistics in real data and in random

samples drawn from a null distribution. Monte

Carlo methods do not require cumbersome analyti-

cal treatment and they make it possible to derive

significance estimates when no analytical solution

is known. For the independence of the species null

hypothesis we know the analytical solution, so

Monte Carlo methods are not needed.

Statistical significance testing is further com-

plicated by the fact that typically there is not only

one pair of species, but several pairs of species of

whose correlations we want to study. Multiple tests

may result in false negatives. For example,

assume that there are seven species. Then there

are 21 pairs of species and an equal number of

positive correlations to test for significance. We

can test each of the 21 individual correlations for

significance using Fisher’s Exact Test, as

described above. We call the p-values produced by

these tests unadjusted p-values. It follows that

even if the null hypothesis is true (i.e., there are

really no correlations for any of the pair of species)

we would declare on average about one of the 21

correlations significant by random chance alone.

This effect is because we are rejecting null hypoth-

eses at level 0.05 = 1/20. Statistical test controls

the probability of falsely rejecting a single null

hypothesis, but when the test is repeated, the

probability of a mistake increases unless further

control procedures are used. Also if we are testing

both for positive and negative correlation, there are

two hypotheses for each species pair, effectively

doubling the number of simultaneous hypotheses.

There are several ways to construct a multiple

hypothesis testing method (see Dudoit et al. 2003

for a review and references) that corrects for this

effect. Multiple hypothesis testing methods take as

an input the unadjusted p-values, in our case those

produced by the mid-P variants of the one-tailed

Fisher’s Exact Tests. The multiple hypothesis test-

ing methods output adjusted p-values, one for

each of the correlations. A null hypothesis is then

rejected if the respective adjusted p-value is at

most the chosen level, in our case 0.05. The sim-

plest and the most well known of the methods is

the Bonferroni correction, where the adjusted p-

values are obtained by multiplying the respective

unadjusted p-values by the total number of hypoth-

esis (in this case, correlations) to be tested. The

Bonferroni correction, while proper, is however
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excessively conservative and therefore lacks

power.

We use false discovery rate (FDR) adjustment

and the Benjamini-Hochberg method (Benjamini

and Hochberg 1995) to obtain the adjusted p-val-

ues and use the adjusted p-values to find out sig-

nificant correlations. We declare a correlation

significant if the respective adjusted p-value is at

most 0.05. The derivation of the Benjamini-Hoch-

berg method is somewhat involved, but it can be

implemented only by few lines of program code to

compute the adjusted p-values out of the unad-

justed p-values. The Benjamini-Hochberg method

guarantees that the expected fraction of false posi-

tives among all correlations declared significant is

at most 0.05 (Benjamini and Hochberg 1995).

Summarizing, we compute an unadjusted p-

value for each of the correlations using the one-

tailed Fisher’s Exact Test, mid-P variant. We then

apply the Benjamini-Hochberg method to these

unadjusted p-values to obtain the adjusted p-val-

ues. We declare a correlation significant if the

respective adjusted p-value is at most 0.05. A

model software implementation of the method is

presented in the Appendix.

CORRELATIONS AND BASE SET

As explained in the introduction, the selection

of a proper base set is crucial in the analysis of cor-

relations. In selecting the base set it is important to

understand for what purpose the correlations are

used: we use the correlations as indicators of some

effects between pairs of species. The selection of

the base set can be used to choose the effects for

which we want to test.

The situation is analogous to the design of

controlled experiments. We would like to design an

experiment such that only the variables that we are

interested in affect the results. For example, if we

would like to rule out the effects of large scale

geography we would choose the locations so that

we can compare only nearby sites. In analyzing

ecological data we usually have the data given and

cannot choose how the experiment is designed (for

example, where and when the find sites are

located). Lacking the ability to design the experi-

ment we use base set selection to control the vari-

ables of whose effects we want to study. The price

we pay is the reduction of power: with a proper

selection of the base set we can (as explained

below) control to some degree the variables that

we want to study, but the more we restrict the base

set the less locations it will include and the statisti-

cal test will be correspondingly less powerful.

For example, consider global presence-

absence data where we have a set of present-day

locations. Assume that we study the correlation

between two species that occur only within Africa.

1. We can take all locations in the base set. We

are likely to obtain a significant positive corre-

lation, because in most of the locations (all

locations outside Africa) neither of the species

occur. The correlation is real, but the reason

for it is trivial: the species are clearly not inde-

pendently distributed, because both of them

occur only in Africa, and therefore they are

correlated. 

2. We can use all African locations as a base

set. If we choose some pre-defined set of

locations (such as Africa) as a base set we

can exclude the effect of this set of locations

to the correlation. In this case, if we use Africa

as a base set, and if we still observe a statisti-

cally significant correlation, we know that the

correlation must be due to some other reason

than both of the species occurring only in

Africa. In other words, we have controlled the

experiment so that the effect of Africa does

not affect the results. In many applications, a

more reasonable choice than a continent

could be, e.g., the area covered by a given

biome. As a result, if we would observe a cor-

relation, it would be due to some other reason

than the biome only. 

3. We can use the union of the areas of occur-

rence of the species as a base set. Often,

there may be no straightforward pre-defined

area (such as Africa or a given biome) that we

could use as a base set. If this is the case,

one can use the locations within the union of

the areas of occurrence of the two species as

a base set. This choice guarantees that any

observed correlation is due to some effect that

takes place within the area of occurrence of

the two species. Notice that this choice is

closest in spirit to the Jaccard and like indices,

which ignore the locations in which neither of

the species occur. As discussed before, Jac-

card and like indices are however not proper

indicators for correlation: they can give high

co-occurrence counts even when there is no

correlation, like in the example of Table 2.

4. We can use the intersection of the areas of

occurrence as a base set. If we want to rule

out the effect of the large-scale areas of

occurrences altogether, then we can use as a

base set the locations within the intersection
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of the areas of the occurrences of the two

species. If we observe a correlation it must be

due to a reason not related to the areas of

occurrences.

In this paper, we use the smallest rectangle

that can be used to enclose all occurrences of a

species as an area of occurrence. The union or

intersection of these areas is then used to define

the base set of locations. Rectangles are not rota-

tionally invariant, which means that their definition

is dependent on the direction of the coordinate

axes. For improved precision, smallest rectangles

can be replaced with more advanced structures,

such as convex hulls, i.e., minimal polygons con-

taining all the locations where the species occurs.

The fossil data consist of locations that have a

specific age in addition to the spatial location. We

can define the lifetime of the species as the time

interval between and including the earliest and the

latest occurrence of the species. If we take all loca-

tions from all times into account the results are

easily dominated by the trivial fact that the lifetimes

differ for most pairs of species. Typically, we want

to exclude the effect of time from the analysis.

Therefore, we can use as a base set the locations

within the intersection of the lifetimes of the respec-

tive species. It follows that if we observe any corre-

lation, it must be due to some reason that is not

related to the lifetimes of the species.

To demonstrate the effect of different base set

selection criteria, we present synthetic data for two

African species A and B. Using different geo-

graphic selection criterias, we calculate Fisher’s

Exact Test, mid-P, and as an example of a typical

association similarity index, the Jaccard index. For

statistical significance we use the level 0.05, with-

out multiple hypothesis testing correction.

In Figure 1 occurrences of both species are

presented in part of a world map. We first concen-

trate on the whole map and calculate occurrences

in Table 3. As can be seen from Table 3, most of

the locations do not contain either of the species,

and there is no statistically significant correlation.

In Table 4 we have restricted our base set to Africa.

The two tables are identical, except for the case of

A=0/B=0, i.e., neither of species are present. A typ-

ical similarity index such as the Jaccard index

gives identical values on both cases. However, the

FIGURE 1. Part of a world map with locations marked as dots, occurrences of species A marked as backward

slashes and occurrences of species B marked as forward slashes. The dashed rectangles show areas of occur-

rence for both species. We have enlarged the area covered by the rectangles slightly for visual clarity. The union or

the intersection of the areas can be used for selecting the base set of locations.
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statistical significance as calculated with Fisher’s

Exact Test, mid-P variant, is different: in Table 3

correlation was non-significant positive correlation,

but in Table 4 it is significant negative correlation.

We look into this negative correlation more

closely. Figure 1 shows areas of both species as

dashed rectangles. The base set can be selected

from these areas by either looking at them both,

i.e., the union of areas, or by looking only into the

intersection of the two areas, i.e., where we have

evidence for both of species occurring. Table 5

shows occurrence counts in the case of union of

areas. 

Looking at Table 5, we see significant nega-

tive correlation as can be read from the very low p-

value. It could be argued that the two species are

dissimilar, maybe suggesting an interaction that

would not allow the two species to co-exist. How-

ever, when looking at the base set of intersecting

areas, as reported in Table 6, we cannot see signif-

icant correlation.

Table 6 is most suited for analysing interac-

tions between species, and it does not support

hypothesis of dissimilarity, possibly due to lack of

data. Dissimilarity in Table 5 could be explained by

geography, as the two species have different areas

of occurrence. In the area where both species

occur there is no strong evidence of interaction as

seen from Table 6.

What we see in the example above is funda-

mentally related to spatial autocorrelation: the

probability of occurrence and co-occurrence of the

species depends on the geographic locations of

the occurrences. Fisher’s Exact Test does not

account for spatial autocorrelation directly. Instead,

our approach is to use base set selection to control

the spatial effects. By making this choice explicit

we do not hide uncertainties related to spatial auto-

correlation and make the analysis process easier

to understand and evaluate. In the example case,

we examined how accounting for spatial effects

changed the results significantly. 

Summarizing the above discussion, before we

can choose a base set, we have to decide which

effects we want to study. The answer (whether

there is a correlation or not) depends on which

types of effects we want to study. Naïve selection

of a base set leads to trivial results. For example, if

we select all locations as a base set then any

observed correlation may be simply due to different

areas of occurrences and differences in the life-

times of the species. Typically we are not inter-

ested in these variables because they are trivial to

notice and understand even without any correlation

analysis. Therefore, we need to bound the base

set such that the effect of known or uninteresting

variables is eliminated.

CORRELATIONS AND TAXONOMIC LEVEL

We can also constrain the base set by using

taxonomic information instead, or in addition to,

geographic and temporal restrictions. For example,

if we are studying the correlations between species

we can take into base set only the locations in

which there is at least one representative of the

order (or family) of each of the two species. This

way, if we observe a correlation, it is not because

the respective species exist in a given order (or

family). A purely practical reason for applying such

a constraint is that many data sets are compiled

from literature that is typically organised taxonomi-

cally, potentially creating a pseudo-absence effect.

Therefore, the dogs and horses might be known

from a site, but not the deer, even though they

were in fact present, but not relevant for the study

TABLE 3. Contingency table for all locations. Fisher’s

Exact Test, mid-P, gives the p-value of 0.622, implying

positive correlation, which is however not statistically

significant. Jaccard index is 0.143.

TABLE 4. Contingency table for African locations.

Fisher’s Exact Test, mid-P, gives the correlation of

0.044, implying statistically significant negative correla-

tion. Jaccard index is 0.143, the same as in Table 3.

TABLE 5. Contingency table for union of locations.

Fisher’s Exact Test, mid-P, gives the correlation of

0.005, implying statistically significant negative correla-

tion. Jaccard index is 0.143, still same as in Tables 3-4.

TABLE 6. Contingency table for intersection of loca-

tions. Fisher’s Exact Test, mid-P, gives statistically non-

significant negative correlation of 0.333. Jaccard index

is 0.500.

B=1 B=0

A=1 3 9

A=0 9 34

B=1 B=0

A=1 3 9

A=0 9 6

B=1 B=0

A=1 3 9

A=0 9 2

B=1 B=0

A=1 3 1

A=0 2 0
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that produced the data. By using taxonomic crite-

ria, we have evidence for each included location

that some representatives of the order or family of

each of the two species is present. Therefore, it is

more unlikely that there is pseudo-absence or irrel-

evant absence effects in that location.

In the example analysis below, where we ana-

lyze fossil find sites of large land mammals, we

have in fact already implicitly used a kind of taxo-

nomic restriction. Imagine that in our full data set

we had find sites having large and small land mam-

mals, respectively. Because we only want to study

the effects within large land mammals, we select

into the base set only find sites in which large land

mammals occur. This way we can rule out the pos-

sibility that any correlation we might observe would

be due to the differences of large and small land

mammals.

EXAMPLE ANALYSIS

This example analysis of correlations is based

on the 2007 version of Neogene of the Old World

Database of Fossil Mammals NOW (Fortelius

2007). The database contains information about

Eurasian Miocene to Pleistocene land mammal

taxa and localities. An extensive database col-

lected in international collaboration is a good

example of the importance of base set selection,

as it has been collected from various data sources

and from studies looking at completely different

research questions. In other words, the data have

not been collected to answer the questions we are

about to analyze, and therefore, it is essential to

carefully select the subset of the data that is rele-

vant and as unbiased as possible for answering

our question. 

NOW data were preprocessed by including

only large mammals that were present at 10 or

more sites. Sites were filtered by including only

sites with 10 or more genera. The preprocessing

resulted in a base set of 217 sites and 169 genera.

Without filtering the data set would have contained

more marginal species and locations, lowering the

number of statistically significant results. The justi-

fication for the filtering is that we select into our

base set only those species and locations that

have been studied more widely. This will prevent

biases such as having a set of findings from a very

exotic and tightly focused research programme dis-

tort the results of our general correlation studies.

We use the data to show the effect of the pre-

viously described filtering criteria. For presenting

the results, we use shorthand notation for the

restrictions. Keyword GeoUnion is used for data

that have been filtered using the geographic crite-

ria where all locations within the combined area

(union of areas) of the two species are included as

a base set. Keyword GeoIntersection is used

when only locations on the shared area (intersec-

tion of areas) of the two species are included.

When no georaphic restriction is used we use the

keyword NoGeo. 

For temporal restrictions keyword Time is

used when we apply restriction that selects only

sites with MN units in which both of the genera

existed and NoTime for data that have not been fil-

tered with this restriction. 

For taxonomic criteria, keyword Family is

used for data that have been filtered by similarity at

the family level, that is, for each pair of species, we

take into base set only the find sites in which there

is at least one representative from the families of

both of the two species. This way we can rule out

the distribution patterns of the families as explana-

tory factors. Keyword Order has been used for

data that have been filtered by similarity at the

order level, respectively, and keyword NoTaxo-

nomic for data that have not been filtered with this

restriction. 

For all pairs of taxa we calculated correlation

and p-value for the correlation using Fisher’s Exact

Test, mid-P variant. Both positive and negative cor-

relations were tested. Multiple testing correction

was conducted using the Benjamini-Hochberg

method, with false discovery rate controlled to

0.05. Total numbers of significant correlations for

the NOW data set are given in Table 7.

In Table 7 the most obvious difference

between counts of significant correlations is

observed when the temporal restriction is applied.

Without the restriction a vast amount of correla-

tions are seen as the database contains large num-

bers of species that have lived at different times.

As the counts for NoTime are about two orders of

magnitude larger than for Time, it is obvious that

the trivial temporal effect dwarfs other ecologically

more interesting effects and therefore should be

taken care of by using the temporal restriction. 

When considering geographic restrictions, we

see that the three cases GeoIntersection,

GeoUnion, and NoGeo all have a different level of

strictness. Typically there are no grounds for con-

sidering geographic locations that for some reason

have not been reachable by the other species,

suggesting that at least the GeoUnion restriction

should be applied and that the correlations from

NoGeo might stem from some obvious or uninter-

esting geographic effects. If we are interested in
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intraspecies dynamics, it is advisable to use the

stricter GeoIntersection restriction to include only

areas where we have evidence of both species

existing. 

Finally, the selection of taxonomic level yields

different counts of significant correlations. When

interested in interactions between orders, criteria

Order might offer the right level of inspection, as it

filters out effects stemming from possibly different

orders of the two species. Similarly, the criteria

Family can be used for studying interactions

between families. It can also be used for studying

interactions between orders, but is not optimal for

that, as it filters out more locations. NoTaxonomic

is a good choice if we know that data do not con-

tain taxonomic biases, because no filtering yields in

the largest number of locations and hence the best

statistical power. The right level of filtering should

be decided based on the question that is being

studied.

It is important to bear in mind that we only see

correlations between species and not their inter-

pretation. The existence of a correlation often

implies an ecologically relevant process, assuming

that the base set is selected appropriately. How-

ever, a correlation does not directly carry any eco-

logical meaning, but instead only states that the

occurrence of the two species in the base set can-

not be simply explained by random effects only.

Correlations are an invaluable way for generating

hypothesis and finding interesting aspects of the

data set for further examination. It is the task of the

next analysis step to validate correlations and to

find sound ecological explanations for them.

DISCUSSION

To complete our analysis we briefly discuss

some of the correlations produced with the meth-

ods described in this paper and their ecological

interpretation. We look at two sets of correlations

that both are produced using criteria Time and

NoTaxonomic, but with different geographic base

sets. In Figure 2 we show all significant positive

and negative correlations when looking only at the

union of the areas covered by the two species

(GeoUnion), and in Figure 3 all significant positive

and negative correlations between the species

without using a geographic filtering criteria

(NoGeo). In the figures, species are presented as

ellipses, positive correlations as bold lines, and

negative correlations as dashed lines. 

The correlation patterns observed are clearly

very sensitive to geographic restrictions. The geo-

graphically restricted set in Figure 2 shows mostly

correlations that can be plausibly explained by

ecology. Thus, Stephanorhinus and Cervus are two

of the main genera of interglacial (warm) assem-

blages of the Pleistocene Ice Age, while Mammu-

thus and Equus characterise the glacial (cold)

assemblages that alternate with the interglacial

ones. The biogeography of these assemblages

was dynamic (Koenigswald 2007), with alternating

expansion from refugia, so the correlations are not

TABLE 7. Number of significant correlations (positive correlations + negative correlations) in the NOW data set with 18

different restriction parameter combinations. False discovery rate is controlled to 0.05 using the Benjamini-Hochberg

method. 

Number of 

correlations
Time NoTime

GeoIntersection GeoUnion NoGeo GeoIntersection GeoUnion NoGeo

Family 7 15 19 481 690 797

Order 5 14 33 958 1268 1629

NoTaxonomic 9 14 49 986 1253 1645

FIGURE 2. Correlations between genera with geographic filtering (GeoUnion). Genera are presented as ellipses,

statistically significant positive correlations as bold lines, and negative correlations as dashed lines.
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likely to be driven by geography. Among the geo-

logically older genera the cluster around Gazella is

made up of other open-adapted taxa (Palaeotra-

gus, Tragoportax, Microstonyx), with negative cor-

relations to forest taxa (Euprox, and indirectly

Propotamochoerus and Amphicyon). The genera

negatively correlated to the open-adapted Cera-

totherium and Choerolophodon are also primarily

forest taxa (Dihoplus, Aceratherium, Tetralophodon

and, with some reservations, Deinotherium). The

carnivore cluster around Martes also represents a

forest setting.

As expected, the correlations in the geograph-

ically unrestricted case in Figure 3 appear in many

cases to be due primarily to distribution patterns.

The cluster around Tapirus as well as several pairs

of genera belong to this group, for example Pleasi-

aceratherium-Prosanthorhinus, Procervulus-Lago-

meryx, Helladotherium-Pachytragus, and

Pseudotragus-Criotherium. Among negatively cor-

related pairs, Euprox-Gazella and Euprox-Choerol-

ophodon belong to this category. The main reason

for these geographic associations is, however, not

so much random spatial patterns as a strong

underlying and ultimately climatological forcing: the

distribution of the genera reflects the distribution of

the ecological associations (“chronofaunas”) to

which they belong (Eronen et al. 2009), essentially

the forested western and central European faunas

versus the open woodlands of eastern Europe and

western Asia (Fortelius et al. 1996).

Some pairs in the geographically unrestricted

set appear to be related to other factors than geog-

raphy. The negative correlation of Anchitherium-

Miotragocerus is likely caused by nearly non-over-

lapping temporal distributions. Two pairs of widely

distributed carnivores are unlikely to be explained

by geographic distribution, unless by chance, but

appear instead to be related through foraging

behaviour to habitat: Vulpes (red fox) and Nyctere-

utes (raccoon dog) are both short-legged general-

ists strongly associated with vegetation cover,

while Acinonyx (cheetah) and Chasmaporthetes

(cheetah-like hyaena) represent extremely long-

legged pursuit predators in open habitats.

When looking at the data in Figure 2 and Fig-

ure 3, it is important to keep in mind that it reports

results that are statistically significant, but the

FIGURE 3. Correlations between genera without geographic filtering (NoGeo). Genera are presented as ellipses, sta-

tistically significant positive correlations as bold lines and negative correlations as dashed lines.
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absence of a correlation is not significant. Our sta-

tistical methodology allows us to report results that

are backed up by data, but in interpretation the

absence of a correlation should not be considered

as a significant result. Absence of a correlation

means that there is not enough evidence for the

correlation in the data, but it does not mean that

the two species must be non-related. Correlations

are also not transitive: significant correlations of A

and B, and of B and C, do not necessarily imply a

significant correlation of A and C.

CONCLUSIONS

Co-occurrence and correlation of pairs of spe-

cies is an important element in ecological data

analysis. When using the co-occurrence indices, it

is, however, important to understand that it matters

both how the correlation is computed and how the

base set is selected. If the base set is selected

improperly the observed correlation can be due to

some relatively trivial reason, such as both species

existing on the same continent. We show how to

apply spatial, temporal, and taxonomic criteria to

select a proper base set. Similarity indices such as

the Jaccard index sidestep this problem by ignor-

ing locations in which neither of the species exist,

but as a result, these indices are not suitable indi-

cators of existence or non-existence of correla-

tions.
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APPENDIX 

We show below a short program code, written

in R (R Development Core Team 2008), that takes

the presence-absence data as an input and out-

puts the statistically significant positive, negative,

and extreme correlations. In this example, for sim-

plicity, the base set is the same for all pairs of spe-

cies.

# Input:

# n     Number of locations.

# m     Number of species.

# X     nXm matrix such that X[i,j]=1 if species j occurs at locality i,

#       X[i,j]=0 otherwise.

# alpha Significance threshold; we use alpha=0.05.

#

# Output:

# Cneg  mXm Boolean matrix such that Cneg[i,j]=TRUE if there is a

#       significant negative correlation between species i and j,

#       Cneg[i,j]=FALSE otherwise.

# Cpos  mXm Boolean matrix such that Cpos[i,j]=TRUE if there is a

#       significant positive correlation between species i and j,

#       Cpos[i,j]=FALSE otherwise.

# We use the R function for hypergeometric distribution to obtain

# the p-values of the Fisher's Exact Test, mid-P-variant.

#

# Input:

# x Two-dimensional contingency matrix.

#

# Output:

# One-tailed p-value of the Fisher's Exact Test mid-P.

fisher.test.midp <- function(x) {

  ( dhyper(x[1,1],x[1,1]+x[1,2],x[2,1]+x[2,2],x[1,1]+x[2,1])/2

  +(if(x[1,1]>0) 

    phyper(x[1,1]-1,x[1,1]+x[1,2],x[2,1]+x[2,2],x[1,1]+x[2,1]) 

    else 0) )

}

# The p-values related to the correlations using the one-tailed Fisher's

# Exact Test mid-P

P <- matrix(0.5,nrow=m,ncol=m)

for(i in 1:(m-1)) {

  for(j in (i+1):m) {

    baseset <- 1:n # Here you can choose an appropriate base set for each

                   # pair of species i.e. only localities whose index is included

                   # in vector baseset are used to compute correlations

    P[i,j] <- P[j,i] <- fisher.test.midp(table(factor(X[baseset,i], levels=c(0,1)),

      factor(X[baseset,j], levels=c(0,1))))

  }

}

# One-tailed p-values for negative, positive and extreme correlations, respectively.

Pneg <- P

Ppos <- 1-P

Pext <- 2*pmin(P, 1-P)

# Adjust the p-values using the Benjamini-Hochberg method and pick the p-values

# that are at most alpha.
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Cneg <- as.matrix(p.adjust(as.dist(Pneg),method="BH")) <= alpha

Cpos <- as.matrix(p.adjust(as.dist(Ppos),method="BH")) <= alpha

Cext <- as.matrix(p.adjust(as.dist(Pext),method="BH")) <= alpha
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