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ABSTRACT 

Sewer flooding due to extreme rainfall may result in considerable damage. Damage data to quantify 
costs of cleaning, drying, and replacing materials and goods are rare in literature. In this study, 
insurance claim data related to property damages were analysed for the municipality of Aarhus, 
Denmark. The aim of this paper was to study the extent to which rainfall data can be used to explain 
variations in insurance claim data. In particular, the paper addresses the issue of time-lag between 
claim date and time of the damaging rainfall event, which may, if not taken into account, lead to 
underestimations of correlations between rainfall and damage variables. Rainfall data from two rain 
gauges were used to extract rainfall characteristics. From cross correlations between time series of 
rainfall and claim data, it can be concluded that rainfall events induce claims mostly on the same day, 
but also on the three days after. A linear model that takes into account rainfall data from previous days 
slightly improves correlations between rainfall and damage variables compared to a simple linear 
model. Best correlation coefficients were found between maximum hourly rainfall intensity and daily 
number of claims (0.47-0.57) and daily total damage (0.43-0.53). 
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1. INTRODUCTION 

Flood damage assessment has gained increasing importance in recent years in support of decision-
making on climate change adaptation and mitigation planning (European Commission, 2012; Merz et 
al., 2010). As a result of technological improvements, a large variety of models are now available to 
assess the economic loss incurred by floods for cost-benefit estimations. The calibration and 
validation of those models, however, have always been challenging due to a lack of damage data and 
poor data quality (Freni et al., 2010).  

Insurance databases can be considered as important means to develop damage functions or to 
validate whether results obtained from damage assessment models are consistent with damage 
observations. Ideally, insurance damage databases should cover years of claimed costs with 
information on, for example damage cause, flood location, depth and extent.   

In the context of sewer flooding, it is of interest to understand the processes of how rainfall results in 
flood damage. A few studies have investigated relationships between rainfall characteristics and 
statistics of damage data related to sewer flooding by means of insurance data. For instance, 
Spekkers et al. (2013), Einfalt et al. (2012) and Zhou et al. (in press) looked into the feasibility of 
deriving damage functions related to property and content using insurance claim data and rainfall data 
from rain gauges and weather radars. Zhou et al. (in press) used insurance data to validate a flood 
damage model that includes an inundation model in combination with simple depth-damage functions. 
These studies concluded that there is a high potential to establish a relationship between rainfall and 
damage statistics; however, a significant amount of the variance in damage variables is still left 
unexplained. This may be due to the fact that resolutions of rainfall and damage data and/or selected 
statistical approaches are not sufficient to establish rainfall-damage relationships. 
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This study builds on earlier work by Zhou et al. (in press), who analysed an insurance damage 
database related to sewer flooding for the municipality of Aarhus, Denmark. The claim database 
contains 1044 geo-referenced records related to property and content damage for the period of 2005-
2011. This paper aims to investigate the extent to which rainfall data can be used to explain recorded 
damage claims. In particular, it addresses the issue of time-lag between claim date and time of the 
damaging rainfall event, which may, if not taken into account, lead to underestimations of correlations 
between rainfall and damage variables. 

2. METHODS 

2.1 Case study description 

The case study area, displayed in Figure 1, covers the entire municipality of Aarhus, which is the 
second largest city of Denmark. It is located on the east side of the Jutland peninsula with a population 
about 315000 inhabitants. The area is about 47000 hectares and equipped with separate and 
combined sewer systems in different regions. The mean annual precipitation varies between 600 to 
650 mm in the area and the elevation varies from 0 to 107 m above mean sea level. As a result of 
climate change (Madsen et al., 2009; Arnbjerg-Nielsen, 2006) and urban growth more pressure is put 
on the sewer systems in Aarhus nowadays. One of the most notable flood events in the last decade is 
that of 3-4 May 2005; Aarhus was hit by an extreme rainfall event with 50 mm of rainfall in 140 

 

Figure 1. Municipality of Aarhus, Denmark. The colour map on the background depicts building 

density (0-2500 buildings/km
2
). The two large red dots represent the location of rain gauges. The 

two red circles (labelled “Northern suburb” and “City centre”) have a radius of 6 km and were used 

to select claim data. The small black dots are locations of claims recorded in the period of 2005-

2009 which were selected for analysis (n=813). The blue dots are the ones that were excluded 

(n=180). 
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minutes and 43 insurance claims were reported afterwards. The area has experienced several rainfall 
extremes in the following years that resulted in considerable claim numbers, e.g. on 1-2 August 2006, 
25 June 2007 and 10 August 2009.  

2.2 Data 

Table 1 summarizes the rainfall and damage data used for this study. Rainfall data from two nearby 
tipping buckets were used, which were converted into time series with a 1-minute temporal resolution. 
The locations of the rain gauges are marked in Figure 1 with two large red dots. 

Damage claim data are available for the period of 2005-2011 provided by the Danish Association of 
Insurers and are related to sewer floods. Damage data in the period of 2005-2009 are based on data 
from five large companies; one of those five companies also provided data for the period of 2010-
2011. However, the years 2010-2011 are discarded because of the low data coverage. For the period 
of 2005-2009, the database consists of 993 daily records related to individual addresses. A record 
means that damage was compensated by the insurer. Each record includes the claimed expenses 
related to property and content and a date on which the claim was received by the insurer. It is 
assumed that insurance companies have a 24/7 service. This assumption is supported by the fact that 
the numbers of claims received on any day of the week are not significantly different from the 
expected value.  

Rain gauge data are generally assumed to be representative within a range of several kilometres. 
Therefore, only data within a 6-km range of one of the two rain gauges, displayed in Figure 1 with red 
circles, were selected. These two areas cover 813 records in total; 363 claims in the northern suburb, 
450 claims in the city centre. Claims were assigned to their nearest rain gauge and aggregated by 
day. Table 2 lists the variables that were considered. Days with no claim data were assigned zero 
values. 

2.3 Linear time-invariant system 

The complexity in finding correlations between rainfall and insurance data stems from the fact that 
there is a lagged response of a damage claim to the time of rainfall event that caused the damage. 
The claim date insurers record is not the date on which damage occurs, but the date on which insurers 
receive and file a claim, which may be from the day of the event up to a few days after. As a 
consequence, relationships between rainfall and claim series cannot adequately be characterized by 
correlating them aligned in time. 

A way to overcome this is by considering a linear relationship between input xt, i.e. the value of a 
rainfall-related variable at day t, and output yt, i.e. the value of a damage-related variable at day t, in 

Table 1. Summary of rainfall and insurance data. 

Data source Period Temporal resolution Spatial resolution Availability 

Rain gauge radar data 2005-2011 1 minute two rain gauges 100% 

Insurance database 2005-2009 daily records point data 993 records 

 

Table 2. Definitions of rainfall and damage variables. 

Variable abbr. Description Unit 

Damage-related   

   dcounts Number of claims = number of claims per day within a 6-km range of a rain 

gauge 

- 

   dtot Total damage = total amount of property and content damage per day within a 

6-km range of a rain gauge 

DKK/day 

Rainfall-related   

   rmax Maximum hourly rainfall intensity = maximum rainfall intensity on a day, based 

on an 1-hour moving time window 

mm/h 

   rvol Daily rainfall volume mm 
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the form of (Box et al., 1994, Ch. 10): 
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where vj is the impulse response function at lag j and εt the error term at day t. The impulse response 
function is proportional to the theoretical cross correlation function ρxy(j):  
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where σx and σy are the standard deviations of the series. Because the theoretical cross correlation 
function is unknown, estimates from data must be used to calculate the impulse response function: 
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where rxy(j) is the sample cross correlation function between the series and sx and sy the sample 
standard deviations. A square root transformation of the damage-related variables was applied to 
stabilize variance. The square root transformation was selected as it can handle zero values, which 
were present in the insurance claim series for most days of the year.  

To properly estimate cross correlations, any autocorrelation that may be present in the input series 
should be removed by prewhitening the input series first. In this study, the prewhitening procedure is 
followed as is explained by Chatfield (2004, p. 158) and Box et al. (1994, p. 417-418): a higher order 

 

Figure 2. The cross correlation function between maximum hourly rainfall intensity and number of 

claims is plotted after prewhitening the x series and filtering the y series (northern area). The cross 

correlation function is the correlation between the series shifted against one another as a function 

of number of lags (days). A positive lag is a correlation between the rainfall variable (x) at a time 

before day t and the damage variable (y) at day t. The blue dashed lines are the 1% significance 

levels. 
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autoregressive-moving-average (ARMA) model is fitted to the input series such that residuals are 
uncorrelated. The same ARMA model should than be used to filter output series before computing the 
cross correlations between the series. 

3. RESULTS AND DISCUSSION 

As an example, the cross correlation function between maximum hourly rainfall intensity and number 
of claims is plotted in Figure 2 after prewhitening the rainfall series with an AR(5) model and filtering 
the insurance claim series with the same model. Rainfall series were prewhitened because they show 
weak autocorrelation at lag 1-5 and mostly at lag 1 (figures with autocorrelation functions not shown in 
this paper). Because of the weak autocorrelation, the choice of the order of AR model did not affect 
the estimation of cross correlations much. An AR model was selected as a first attempt to remove 
autocorrelation from the time series; this study could be improved by selecting the most suitable 
ARMA model in the future. 

Significant cross correlations are found between lag j=-1 and j=3 (Figure 2). A few lags not close to lag 
0 also show significant cross correlations, but these do not have a clear pattern and are therefore 
ignored. Highest correlation is observed at lag j=0 and correlations taper to zero for lags j>0. Similar 
results are found for cross correlations between other combinations of rainfall-related and damage-
related variables. In the context of this study, significant cross correlation at lags with j<0 should not be 
possible. The spike at lag j=-1 may be explained by the fact that maximum rainfall intensity is based 

on 1-hour time window, which may fell between 23:00 and 24:00 the day before. 

To summarize, a rainfall event induces claims mostly on the same day, but also significantly on the 
three days after. Therefore, a linear model is considered that takes into account lags j=0 to j=3; Eq. 1 

reduces to: 

 0 1 1 2 2 3 3
ˆ ˆ ˆ ˆ

t t t t ty v x v x v x v x       (4) 

Figure 3 compares fitted and observed values for a simple linear model (left figure), 0 1
ˆ ˆ

t ty x   , 

and the linear time-invariant model (right figure) as formulated in Eq. 4, for the relationship between 
maximum hourly rainfall intensity and square root transformed number of claims. The correlation 

 

Figure 3. Fitted y is plotted versus observed y for a simple linear model (left) and a linear time-

invariant model (right), for the relationship between maximum hourly rainfall intensity and square 

root transformed number of claims (y). Plots are related to the data of the northern suburb. 
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slightly improves if rainfall data from previous days are taken into account. This is best visible for the 
data points near the horizontal axis in the left figure, which are shifted upwards in the right figure. 

Table 3 summarizes the Pearson correlation coefficients for various linear combinations of rainfall and 
square root transformed damage variables. In general, a linear time-invariant model performs slightly 
better than a simple linear model in terms of correlation coefficients. The maximum hourly rainfall 
intensity is a better predictor than rainfall volume, although the differences are small. Best correlations 
coefficients were found between maximum hourly rainfall intensity and number of claims per day 
(0.47-0.57) and daily total damage (0.43-0.53). The northern area shows overall better correlations, 
which may be explained by the smaller average distance between claim addresses and rain gauge: 
3.1 km for the northern suburb and 4.0 km for the city centre. 

4. CONCLUSIONS 

The aim of this study was to investigate the extent to which rainfall data can be used to explain 
statistics of insurance damage claims related to sewer flooding. Results are based on around 800 
insurance claims related to property and content flood damage for the case of Aarhus, Denmark, in 
the period of 2005-2009 and rainfall data from two nearby rain gauges.  

From cross correlations between daily time series of rainfall and insurance claim data, it can be 
concluded that rainfall events induce claims mostly on the same day, but also significantly on the three 
days after. A linear model that takes into account rainfall input from previous days slightly improves 
correlations compared to a simple linear model. Best correlation coefficients were found between 
maximum rainfall intensity and number of claims (0.47-0.57) and total damage (0.43-0.53).  

The results show that rainfall only explains a part of the variations in insurance claim data. This is, for 
example, relevant for the development of flood damage models, which should also take other 
damage-influencing factors than rainfall into account. Potential factors for sewer flood damage that will 
be studied in future research include local topography, building and household characteristics, urban 
drainage properties and spatial variability of extreme rainfall. 
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