
Behavior Research Methods& Instrumentation

1983, Vol. 15(2),228-241

SESSION VII
AN INTRODUCTION TO THE THEORY

AND APPLICATIONS OF FAST
FOURIER TRANSFORMS

Correlations, contrasts, and components:
Fourier analysis in a more

familiar terminology

HOWARD L. KAPLAN
Addiction Research Foundation, Toronto, OntarioM5S2S1, Canada

The Fourier transform partitions the energy in a waveform into the sum of the energies
of simpler components. This process is the same as the partitioning of variance into linear
contrasts and is a way of measuring the correlation between the waveform and each member
of a family of prototype model waveforms. Such a partitioning will often, but not always,
result in a meaningfuldecompositionof the original waveform.

The mathematics of the fast Fourier transform (FFT)

are often considered arcane or mysterious. While the

formulas and computer programs used to implement

FFTs are often complex, taking obscure shortcuts in

order to reduce computation time, the fundamental

principles are already familiar from elementary statistics,

but they are sometimes not recognized in a different

context: They are the same principles used in calculating

correlation coefficients, best-fitting curves, and analysis

of-variance contrasts.

CORRELAnONS AND CONTRASTS

To begin, we will need a few definitions. A vector is

an ordered list of numbers. For example, in an experi

ment with 12 treatment conditions, the treatment

means vector is simply the ordered list of treatment

means. We will be concerned with three types of vector.

Data vectors consist of raw or averaged data, such as

the treatment means vector. Prototype vectors consist

of arrangements of numbers to which we wish to com

pare data vectors. A prototype vector represents a

hypothesis or model of the shape of a data vector. For

example, we might want to compare our treatment

means vector to a prototype consisting of 12 increasing,

equally spaced numbers, in order to evaluate the model

that our data consist of a steady increase or decrease.

That is the same as comparing our data to a graph that

is a straight line. Alternatively, we might wish to com

pare our data to a hypothetical model that says that the

first six elements are all equal to some constant and the

last six are equal to a different constant. Because these

two constants must be equally far from the grand mean

in different directions, this hypothesis says that the data

vector has the same shape as a vector consisting of six

-1 s followed by six +1s.

Component vectors are multiples of prototype vec

tors, and they represent that multiple of a prototype

that provides the best fit to the data. To the extent that

the hypothesis is true, we can add some multiple of that

prototype vector to a constant and get 12 numbers

that are close to the 12 terms of our actual data vector.

When we compute the slope and intercept of the best

fitting line from a correlation and apply that slope

and intercept to each value of our predictor variable,

the resulting set of numbers is a component vector.

Figures 1-4 show, in graphic form, a data vector, the

prototype vectors corresponding to the two hypotheses

above, and the fit of the second hypothesis to the data,

resulting in a component vector.

Let us look at an example of a data vector with 12

elements:

10 13 12 14 16 19 25 24 27 32 29 35

and compare it to this typical straight-line increase:

2 3 4 5 6 7 8 9 10 11 12

A straightforward, naive approach would be to ask how
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Figure l. A data vector is an ordered set of responses or
response means. One purpose of analysis of variance is to repre
sent such a vector as a sum of multiples of prototype vectors.

A STRAIGHT-LINE HYPOTHESIS
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type vector and the cell sizes, and the result is squared

and used as a test statistic. Again, we could derive that

multiple of the contrast prototype vector that, added

to the grand mean, gives the best approximation to the

data vector. A contrast, in other words, is a prototype

vector, or a hypothesis about the shape of the data.

There are important differences between these two

approaches, primarily concerning the interpretation of

the error term. However, there are also fundamental

similarities in the two approaches. If we take the second

prototype vector (-11 to +11), add 13 to each term,

and multiply the result by .5, we get the first prototype

vector (1 to 12). However, the addition and multiplica

tion by constants (which are nothing more than a change

of measuring scale) are operations that do not change

the correlation coefficient, and thus the two approaches

are computing the same information. The primary

difference is that the linear contrast approach also uses

some additional information, the within-group variance,

in assessing the statistical significance of that extracted

information. If we forget about the hypothesis-testing

part of analysis of variance and concentrate only on its

role in describing a data vector in terms of prototypes

A TWO-GROUPS HYPOTHESIS

TREATMENTS

Figure 2. A common model used in representing data vectors
is that of a linear increase or decrease, as shown here.

well the data correlate with the prototype vector. As

part of the calculation, we would build up a sum of

cross-products:

(/)

z:
o....
I
U....
Cl
UJ
Ct:
0..

• • • • • •

• • • • • •

THE TWO-GROUPS COMPONENT
FITTED TO THE DATA

TREATMENTS

Figure 3. Another common model used in representing data
vectors is that of a constant response within each of several
treatment groups. In the model, the magnitude of the group
difference is arbitrary, as the model is multiplied by the best
possible constant when fitting it to the data.

(1*10) + (2*13) + (3*12) + ... + (12*35).

After adjusting for the fact that neither vector has a

mean of 0 or a standard deviation of 1, the size of this
sum of cross-products would become the correlation

coefficient. A large coefficient means a strong resem

blance between the data and a straight-line increase.

Beyond simply calculating the correlation, we can

actually produce the equation for the best-fitting predic

tion line. The 12 dependent values predicted by that

equation then form a component vector, the best

fitting estimate of the part of the variance (or informa

tion) in the data that can be represented as a straight

line increase. If the correlation is high, then that line

provides a good approximation to the actual data graph.
Someone more comfortable with analysis of variance

might go to a table of linear contrasts and fmd these

coefficients:

• e
o

•
o •

o

o

• •

•
o

• •o
o

o

• •

o

•

-11 -9 -7 -5 -3 -1 1 3 5 7 9 11

As before, each data point is to be multiplied by the
corresponding coefficient, the result is summed, adjust
ments are made for the standard deviation of the proto-

TREATMENTS

Figure 4. The two-groups hypothesis, shown as dark circles,
provides a reasonable representation of the data, shown as open
circles. The average discrepancy, or residual, between the data
and the model is considerably smaller than the average discrep
ancy between the data and the grand mean.
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TREATMENTS

. Figure S. A third model commonly used in representing data
vectors is a quadratic trend, or a part of a parabola. Higher

order polynomial trends are also often used.

or components, then we have two ways of performing

the same step in such an analysis. Emerson (1983)

provides further information about formal tests of

significance of these hypotheses. At this stage, we are

more concerned about measuring the degree of resem

blance between the data and various hypotheses than

about conducting formal significance tests.

Let us suppose that we want to consider the hypoth

esis that the data have a parabolic shape, a symmetric

bowl with a minimum at the center of the vector (Fig

ure 5). Once again, we could perform a naive correlation

with any parabolic curve or we could look up the

quadratic contrast coefficients for a 12-observation

series. The latter coefficients are simply a typical

parabola chosen to make certain computational adjust

ments convenient, but again, the contrast is really only

asking how well the data correlate with a parabolic

prototype. All polynomial contrasts are the same, noth

ing more than correlations with curves generated by

polynomial terms.

Anyone contrast provides a measure of the resem

blance between the data vector and one prototype and

yields a component vector with the best least squares

fit to the actual data vector. It is quite rare when a con

trast can exactly fit the data vector. There are almost

invariably differences between the component, or

model, and the data. If the original data vector is

replaced with the differences, or residuals, between

itself and the prediction, we have a new data vector

consisting of information that could not be represented

by the terms of the model, or prototype vectors, intro

duced so far. In many cases, it is necessary to account

for those differences with more components, which

represent resemblances between the data and additional
prototypes or models. In order to avoid continually
readjusting for the effects of the grand mean, contrasts

are generally rescaled to have a mean of 0 and are

applied to the data vector after it has had its own

grand mean subtracted from each element, resulting in

a new grand mean of O. In other words, we generally

begin by fitting the data to a vector of all +1s, a model

that says that the data all equal the grand mean. Once

A QUADRATIC HYPOTHESIS

•

this is done, only a multiplicative adjustment needs to be

made to rescale each new contrast as it is fit to the

residuals.

Whenever two or more contrasts are applied to the

same data, traditional analysis of variance requires them

to be orthogonal. That is, if any of the contrasts is

applied to another contrast's coefficients (instead of to

the data vector), the resulting sum of cross-products

(or correlation) must be O. This is the definition of

orthogonality.

What are the implications of orthogonality when

analyzing a data vector? In informal terms, it ensures

that any two contrasts are extracting uncorrelated, or

nonoverlapping, information from the original data.

That is, it guarantees that the order in which the con

trasts are applied is immaterial: Each contrast will

yield the same result, the same component vector,

whether applied to the original raw data or to the

residuals left over after applying any or all of the other

orthogonal contrasts in the set being used. More for

mally, orthogonality guarantees the additivity of sums of

squares. If we have two orthogonal contrasts, then we

can add their associated components together, term by

term, to get a better prediction of the data than either

component alone could give. Furthermore, the sum of

squares associated with that combined component is

equal to the sum of the two separate sums of squares

associated with the original contrasts or components.

The converse is also true: The sums of squares for two

prototypes will add to the sum of squares for the sum of

the prototypes only if the two are orthogonal. If a

complete set of n - I orthogonal contrasts is applied

to a data vector, then the sums of squares from the

various contrasts will add to the sum of squares for
differences among treatment means, that is, be a com

plete partition of the information about such differ

ences. (For those familiar with the terminology, any

n - I orthogonal contrasts form an orthogonal basis

for the n - l-dimensional space of n-element vectors all

of whose grand means are 0.)
Given any vector of more than two data points, there

are literally an infinite number of families of contrasts

that can be used to extract information about differ

ences among the elements. Although each such family

contains all of the information, not all extract it with

equal usefulness for a particular experimental design.

In a one-way treatment group design, the usual contrasts

emphasize a hierarchy of differences among groups:

placebo vs. drug, low dose vs. high dose, and so on.

Even when the groups differ on a qualitative dimension,

such as drug administration route (oral vs. injected vs.

inhaled), it is still possible to label the groups, say,

I to 4, and extract linear, quadratic, and cubic trends.

The information so obtained is generally meaningless

to us, but none has been lost, and the components

could be used to reconstruct the four group means. Use

of polynomial contrasts would more typically be useful
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Figure 6. A continuous process is often sampled at discrete
points in time, generally equally spaced. A spatial dimension
may also be the abscissa. Typical ordinates for physical wave
forms are voltage, pressure, and displacement, although any
variable that can be measured on an interval scale may be used as

the ordinate.

A SAMPLED WAVEFORM

..

data, but over many cycles it is increasingly difficult to

provide a meaningful account of the data with poly

nomial contrasts. Instead, what is needed is a com

parison of the data vector with a fundamentally periodic

prototype vector, such as a sequence of points sampled

from a sinusoid at points spaced equally in time. Fig

ure 7 shows a linear, a cubic, and a sinusoidal prototype

for 36-point vectors. Note particularly that while the

cubic prototype provides a reasonable fit to a response

that waxes and wanes near the center of the range of

times sampled, it becomes unbounded rather than cyclic

beyond the range shown. The sinusoid, on the other

hand, continues to copy its central shape indefmitely

in both directions along the abscissa.

What. exactly, is a sinusoid? It is a continuous func

tion, such as the ones shown in Figure 8 and sampled in

Figure 7. Formally, there are numerous possible defini-
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SOME TYPICAL SINUSOIDS

LINEAR, CUBIC, AND
PERIODIC HYPOTHESES
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Figure 7. In a local region, polynomial hypotheses such as

linear (open squares), quadratic (not shown), and cubic (filled

diamonds) may provide good approximations to a fundamentally
periodic process. Over several cycles, however, only periodic
prototypes, such as sinusoids (open circles), can provide an
adequate account of the data.

THE FAST FOURIER TRANSFORM AS A

FAMILY OF CONTRASTS

in psychophysical work, in which the response is often

a polynomial function of a physically measurable

stimulus property. Even when there is no theoretical

reason for a response curve to be a polynomial function

of the stimulus, the concepts of linear and quadratic

trend are often concise descriptions of the shape of

the response curve and can be usefully employed.

Although an analysis of variance may reveal that devia

tions from linearity are Significant, a linear approxima

tion to the data often provides a good rule of thumb

for predicting the response.

While experimental treatments in an analysis-of

variance framework are generally discrete values of some

independent variables, we must often deal with a con

tinuous independent variable, such as time. In such a

case, the dependent variable cannot be measured for all

values of the independent variable, but instead we must

sample the response at specific points in time. Figure 6

shows a continuous process being sampled in such a way.

Although there are techniques for dealing with irregular

sampling intervals, in this paper we will be concerned

only with sampling at fixed intervals, such as 256 times/

sec or 1 time/year. It is data like these, a continuous

process sampled at regular intervals, that are often

explained best by a family of contrasts other than the

familiar polynomial contrasts.

Some sets of observations are believed to be samples

of fundamentally periodic processes. For example. if

the behavior of a marine animal is sampled every 30 min,

cycles with a period of 24 h may occur, indicating

diurnal variation, or cycles with a period of 12 h 25.5 min

may occur, suggesting variation with the tides. Over a

short time, less than one cycle, a linear or quadratic

contrast may account for most of the variance in the

Figure 8. Sinusoids are a familiar shape in science and engi
neering. In the lower two waveforms in this figure, and in some of
the smaller waveforms in subsequent figures, the grain with
which the plotting hardware is able to represent sinusoids makes
them appear to be composed of many straight-line segments,
rather than appearing as smooth curves. This is an example of
the kind of distortion that can be introduced by sampling a
continuous process. The process by which we interpret these
figures as sinusoids is analogous to filtering out the higher
frequency, distortion components.
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RESULTANT SUM OF TWO SINUSOIDS
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Figure 10. The sum of two sinusoids at the same frequency is
a resultant sinusoid at the same frequency, with amplitude and
phase determined by the length and angle of the third side of a
triangle representing the vector sum of the component sinusoids.
When the two are 90 deg apart, as in sine and cosine waveforms,
the relevant triangle is a right triangle and the resultant is repre
sented by the hypotenuse. In all cases, the triangle can be

rotated so that the angles of the three sides correspond to the
axes onto which a revolving point is projected. In other words,
there is a very natural mapping between the family of sinusoids
at a given frequency and a two-dimensional real vector space.

cycles of the sinusoid per unit time, and the time

required to complete one cycle is its period.

In addition to the two standard sine and cosine

perspectives on the point, we can also consider other

ones, such as the one that sees the point moving down

from -.3 at Time O. Because a circle is a two-dimensional

figure, any other such perspective can be represented as

a linear combination, or weighted sum, of two funda

mentally different perspectives, such as the sine and

cosine perspectives shown. Because the sine and cosine

perspectives are geometrically orthogonal, we can

compute the weights for such a sum by drawing right

triangles (Figure 10). The triangle side lengths and the

weighting coefficients are both proportional to the

amplitudes of the waveforms. The sine and cosine

perspectives are the two orthogonal legs; any other

perspective is the hypotenuse, and the angle of the axis

onto which the rotating point must be projected is the

angle of the hypotenuse. This process converts rectan

gular coordinates, sine and cosine projections or com

ponents, into polar coordinates, radius and angle. If

we know the amplitudes of sine and cosine components,

then the Pythagorean theorem allows us to compute the

amplitude of the resultant sum.

The difference in time between various perspectives

is measured in terms of fractions of a cycle of the

underlying revolution and called "phase." We can

speak of the cosine perspective as being 90 deg, or

.25 cycle, ahead of the sine perspective, as each ordinate

point on the sine occurs that much earlier on the abscissa

of the cosine. We can also describe the cosine as being

270 deg behind the sine in phase, as each sine ordinate

point will occur .75 cycles later for the cosine. Any two

sinusoids 180 deg out of phase are negative multiples of
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PERSPECTIVES

tions, some algebraic and some geometric. The best

one for our purposes is that a sinusoid is a perspective

view, or a projection, of a point moving around a circle

at a fixed rate (Figure 9). It is conventional to let the

motion be counterclockwise, and to let the point be at

the extreme right (3 o'clock) at Time 0, the starting

time. If that is done, the point's projection onto the

ordinate (the sine perspective) is going through 0 toward

+1 at Time 0 and is moving upward at its maximum

velocity. Such an event is called a positive-going zero

crossing. At the same time, the point has just reached its

rightward peak position on the other (cosine) perspec

tive shown here and is about to begin moving down
ward from its maximum. Since a circle projects the

same image in all directions of the plane, both perspec

tives will see the exact same cyclic process as the point

revolves. However, the timing of the processes will

differ for the two views. Everything seen by the cosine

perspective will be seen by the sine perspective .25 cycles

later.

A number of interrelated terms can be used to

measure sinusoids. The diameter of the generating circle

becomes the peak-to-peak amplitude, or difference

between the largest and smallest values attained by the

function. The amplitude (without the "peak-to-peak"

prefix) is equivalent to the radius of the generating

circle and is the most commonly used measure of the

magnitude of a sinusoid. When a standard sinusoid is

needed, for example, as a periodic prototype, an ampli

tude of I is generally chosen. It is also reasonable to
speak of sinusoids whose amplitudes are negative; these

are simply sinusoids whose ordinates are below 0 when

ever the standard sinusoid is above O. The frequency of

any sinusoid is the number of revolutions of the generat

ing point about its circle per unit time, or number of

-1 0 1
COSINE PERSPECTIVE

Figure 9. As the point proceeds counterclockwise around

the circle at a fixed rate in time, its projection onto any axis
is a sinusoid as a function of time. The amplitude is equal to the
radius of the circle, and the frequency is equal to the number of
revolutions the point makes per unit time. The inverse of the

frequency can also be used to characterize the waveform. If the
abscissa is time, then the inverse is the period; if the abscissa
is a spatial dimension, then the inverse is the wavelength.
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each other along the ordinate, and any two sinusoids

360 deg (or any multiple of 360) out of phase are posi

tive multiples of each other. We can speak of a sinusoid

as being in sine phase, being in cosine phase, being

180 deg out of phase with sine, being 10 deg ahead of

cosine, and so on. If no reference phase is stated, then a

waveform's phase angle is with respect to sine phase. In

summary, we can specify a sinusoid of any frequency by

either of two pairs of other statistics: by the amplitude

of the unique sine and cosine components whose sum is

the waveform, or by its amplitude and its phase with

respect to sine.

Given a periodic process that is not a simple sinusoid,

we might wish to decompose the process into the sum

of sinusoidal components (Figure 11). This, for example,

is what a listener does when he hears the simultaneous

playing of several tuning forks not only as a chord but

also as separate notes. Why do we use sinusoids as our

basis for describing complex periodic waves, rather

than decomposing them into sums of square waves,

triangular waves, or other apparently simple periodic

processes? There are several answers to this. One answer

is that many physical systems are approximately linear,

meaning that the response to the sum of two inputs is

the sum of the responses. It can be shown that whenever

a sine wave is used as input to a linear system, the out

put is a sine wave of the same frequency. The same is

not necessarily true if the input waveform has any

other shape. Therefore, the response of such systems can

be characterized more simply by detailing their response

to sine-wave inputs than to any other family of inputs,

and that is a major reason why the sine wave is so

fundamental to the analysis of periodic processes.

Another reason for using sinusoids is that they make it

easy to decompose a waveform, regardless of the phases

of its components. In the representation of a sinusoid

as a projection of a revolving point, all views are the

same except for phase. If we represent any other peri-

A MIXTURE OF THREE SINUSOIDS
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Figure II. The three sinusoids shown here in smaller scale,
at frequencies of 21, 24, and 9 cycles, sum to form the sinusoid
shown in larger scale. As the greatest common divisor of the
three frequencies is 3, the resultant sum has a fundamental
frequency of 3; that is, it repeats three times for each 21 repeti
tions of the first component, and so on.

odic waveform as projections of a point moving along

the boundary of any other shape, we can no longer

make that claim. For example, if a point moves along

the perimeter of a square, then there are four views

directly at one side, four views directly at one diagonal,

and so on. The shape of the waveform, not only its

starting point, depends on the viewing direction, and

thus we cannot describe an arbitrary linear combination

of two waveforms at the same shape and frequency as

being the same waveform, except for its starting phase:

It is a different waveform. That is another reason why

sinusoids are typical components for decomposition

of a periodic process.

The most important reason for using sinusoids as

prototypes in analyzing periodic events is that sets of

orthogonal sinusoids are very straightforward to gen

erate. Although periodic events theoretically continue

indefmitely, they are generally measured over a fmite

sampling duration, such as 1 sec, 6 min, or 200 years.

Some periods exactly divide such a sampling duration,

and others do not. For example, if the sampling duration

is 1 day, then events with periods of 12 h, 6 h, and

30 min all occur an integral number of times during the

day, whereas events whose periods are tidal (12 h

25.5 min), 5 h, or 17 min do not occur an integral

number of times each day. Over any sampling duration,

two sinusoids with different frequencies, both of which

exactly divide the sampling duration, are always ortho

gonal. For example, over 1 day, sinusoids with periods

of 3 and 4 h are orthogonal. This orthogonality holds

for any regular sampling frequency that also divides the

day. For instance, if the two sinusoids are sampled

once per hour, a 24-point vector is obtained for each;

and if they are sampled every 12 min, a l20-point

vector is obtained for each. In both cases, the vectors

are orthogonal. As some sophistication in mathematics

is required for a formal proof of the assertion that two

sinusoids whose different periods both exactly divide the

sampling duration are always orthogonal, no such proof

will be provided here.

Given a sinusoid at any frequency, there is essentially

only one other sinusoid at that same frequency that is

orthogonal to it. These two sinusoids have the relation

ship of sine and cosine or are .25 cycle out of phase

with each other. This fact makes it very easy to con

struct a complete set of orthogonal, periodic contrasts

for use in decomposing any set of points sampled at

equal intervals in time: Use the sine and cosine com

ponents corresponding to periods that divide the sam

pling frame. The lowest frequency is equal to the total

sampling duration, and the highest frequency has a

period equal to two sampling intervals. The total number

of such components so generated is the number of

degrees of freedom among the points of the vector, or

one less than its length. (Sine and cosine collapse into a
single component for the highest frequency, whose
period is two sampling intervals long.) For 20 points

sampled over 1 sec, we can measure all of the periodic

components up to 10 Hz (cycles per second) using
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the 19 prototypes of sine and cosine components at

1, 2, ... ,9Hz, and the one component at 10 Hz, all

orthogonal to each other. (For those who understand

such terminology, it can be stated that the complete

set of sinusoids so generated forms an orthonormal

basis for the space of data vectors' residuals around

their grand means.)

In dealing with a set of points that represent a wave

form sampled at equally spaced points in time, what

statisticians call variance, or sum of squares, is what

engineers call energy. Except for some scale factors

that depend on the physical system being considered,

the energy in a waveform is measured by the sum of

squares of its deviations from its mean value. If we

divide a waveform into components, we may be able

to understand its structure better. If we divide it into

orthogonal components, then the energies of the com

ponents sum to form the energy of the original wave

form. This makes the fraction of a wave's energy at a

given frequency analogous to the proportion of variance

accounted for by a pair of contrasts. One frequency is

analogous to a pair of contrasts, instead of just one,

because the energy at any frequency may be associated

with two components. in sine and cosine phase. In turn,

the energy of those two components is additive because

they are orthogonal. The same additivity rules hold for

power (energy per unit time), another common term

from engineering.

Thinking either in terms of energy or in terms of sum

of squares, we can partition the information about

variance in any sampled waveform by using orthogonal

sine and cosine components. Just as any two orthogonal

contrasts exhaust the information in a three-group

analysis of variance, so do the two orthogonal com

ponents, sine and cosine, exhaust the information at one

frequency. To extract the information at other frequen

cies, we can compare the data to sine and cosine proto

type vectors at those other frequencies. If there are

2n data points, then a complete set of orthogonal

contrasts consists of sine and cosine waves with periods

of 2n, 2n/2, 2n/3, ... ,2 data points.

Components whose frequencies are integral multiples

of some base frequency (or whose periods are integral

divisors of some base period) are called harmonics, and

the base frequency is called the fundamental. Therefore,

the components of a complete partitioning of energy

are the fundamental frequency (one period for the

entire data vector) and all of its harmonics up to the

harmonic for which each cycle is only two data points

long. This way of partitioning the information in a set of

data points, analyzing it by contrasts that are harmonics

of a fundamental sinusoid, is called a discrete Fourier

transform. That is, the Fourier transform of a set of data

points is nothing more than the analysis of those data by

a set of contrasts, or correlations, with sinusoidal proto

types, and their subsequent representation as a sum of

components that are proportional to those prototypes.

A convenient and standard way of graphing such an

analysis of energy is in the form of a spectrum. A spec

trum is a graph whose abscissa is frequency and whose

ordinate is energy at that frequency. Newton's prism

is just an optical device for forcing the component

energies in light to bend by different amounts, therefore

spreading themselves along a physical abscissa. The

spectrum of a pure sine wave consists of a graph that is

zero everywhere except at the frequency of the wave,

just as the spectrum of light produced by a laser consists

of a single thin bar. In many applications, the phase

information in a spectrum is uninteresting, and only the

energies of the various components are shown. In this

paper, the vertical bars that represent the energy at

various frequencies will be shown divided by a hori

zontal line along the abscissa. The total height of the bar

is the total energy at the frequency, and the portions

above and below the horizontal line represent the

proportions of that energy in the sine and cosine phases.

Figure 12 shows a waveform and its spectrum, and Fig

ure 11 shows the three component frequencies (in a

smaller scale), along with their sum, which exactly repro

duces the waveform. Clearly, if a waveform must be

decomposed into a large number of components, the

spectrum is a more efficient form of display.

It is easier to believe that some waveforms are sums

of sinusoids than to believe that of other waveforms.

Figure 11, for instance, shows a waveform that clearly

looks like the sum of sinusoids, and its spectrum shows

that it is the sum of three sinusoids. One period of a

sawtooth waveform, however, does not look much like

a sum of sinusoids, which are smooth, whereas the

sawtooth has angles. Figure 13 shows such a waveform

and its spectrum, which actually contains an infinite

number of components. As we include more and more

of the components from this infmite family, the result

bears an increasingly greater resemblance to the original

waveform. Figure 14 shows the sum of the six largest

components of the waveform. The approximation is

still visibly different from the original, but it is also

A MIXTURE OF THREE SINUSOIOS
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Figure 12. The sum of three sinusoids has a spectrum consist
ing of energy only at the frequencies of its three components.
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The FFT characterizes any periodic waveform as a

sum of sinusoidal components. Of what use is such
an analysis? The primary use of such an analysis is in

characterizing the properties that perfect communica

tions channels must have in order to transmit certain

WHAT CAN WE LEARN FROM A

FAST FOURIER TRANSFORM?

most calculus problems are solved by using analytic

transforms rather than by actually dividing up a graph

into many narrow rectangles, so Fourier transforms

were, for many years, performed by similar analytic

tools that bypassed the need for actual computation of

sums of cross-products. However, with the advent of

fast computers for both collecting data vectors and

analyzing them, it has become both practical and impor

tant to devise efficient ways of performing the calcula

tions on actual data, rather than just on theoretical

waveforms.

A fast Fourier transform (FFT) implements the

calculation of a discrete Fourier transform by using

some of the redundancy inherent in the calculation of

the sine and cosine prototype vectors. For example,

in calculating the vectors for frequency k, all of the

numbers sine(kt) and cosine(kt) will be calculated for

t =0, I, ... and will be multiplied by their correspond

ing data points. Later on in the calculations, for twice

that frequency, we will need sine(2kt) and cosine(2kt)

for the same sampled data points. However, if we

use trigonometric identities, we can see that sine(2kt) =

2*sine(kt)*cosine(kt) and that cosine(2kt) =cosinetkt)»

cosine(kt) - sinefktjesinefkt). In other words, most

of the work of calculating the prototype for the higher

frequency, and of multiplying it by the data vector, has

already been done at the lower frequency. By using

trigonometric identities such as these, much of the work

of calculating the cross-product sums with the higher

frequencies can reuse calculations from lower fre

quencies. There are many FFT algorithms, but all are

variations on this theme of reusing the calculations for

some frequencies in order to save work at other fre

quencies. It happens to be the case that many of the

algorithms work most efficiently when the number of

data points is a power of 2, and that is why one often

reads about 4,096-point transforms rather than 4,000

point transforms, and so on. As an example of the speed

at which modern computers can calculate an FFT,

the 5-year-old laboratory minicomputer that I generally

use can calculate a 1,024-point transform in 600 msec.

A modern number-crunching computer, such as those in

most university computer centers, would be orders of

magnitude faster. It is interesting also to note that the

speed of integrated circuit multipliers is increasing so

rapidly that multiplications no longer monopolize the

time of a frequency analysis, and some recent hardware

is saving time and money on deciding which multiplica

tions to do next and simply doing the redundant,

complete set of correlations with raw sinusoids.
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SPECTRUM OF A SAWTOOTH WAVEFORM

Figure 14. The sum of the first six components of the saw
tooth wave shown in Figure 13 provides a reasonable approxima
tion to the shape of the waveform. The corners are noticeably
rounder in the sum than in the original; this is because corners
are basically areas where the effects of higher frequency com

ponents are most evident.

clearly getting quite close. If we are dealing with a

sampled waveform, having only 2n points in the sample

vector, then we can always sum the grand mean and

2n - 1 periodic components, as above, to reproduce the

original waveform at all of the 2n points that were

sampled. That is, the restriction of the sampling to 2n

points makes it impossible to detect any components

whose period is shorter than two sampling intervals.

This relationship between the sampling interval and the

maximum detectable component frequency (or mini

mum component period) is known as Nyquist's theorem.

The discrete Fourier transform of 2n data points

can, in theory, be calculated by performing 2n - I cor

relations with prototype vectors. In practice, very few

Fourier transforms are so calculated. Prior to the com

puter age, Fourier transforms were rarely calculated on

actual data; instead, the results were derived analytically

for certain waveforms of interest in engineering. For

example. a square wave can be shown to consist of only

odd harmonics of its fundamental frequency. Just as

Figure 13. A sawtooth waveform that completes one cycle
in the space shown here has components of decreasing amplitude
at the successively higher harmonics of the fundamental fre

quency.
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classes of signals, and in characterizing the kinds of

information that imperfect channels remove from their

signals or add to their signals. The human auditory

system, for example, is a communications channel

transmitting information about sound waveforms. Let

us imagine that we want to answer the apparently simple

question, "Can a person hear everything that is happen

ing onstage at a symphony concert?" One interpreta

tion of this question is, "Is the auditory system sensitive

to all of the frequencies generated by the instruments

of the standard orchestra?" One part of answering this

question is a determination of what frequency com

ponents are contained in those instruments, and a

second part is a determination of whether the observer

is sensitive to all of those frequencies. Some tool for

measuring frequency content is certainly part of the

orchestra measurement, and many contemporary elec

tronic spectrum analyzers do in fact use FFT circuitry

to report what frequencies are present in their input.

The FFT mayor may not be useful in characterizing the

observer, depending on what kind of response is being

measured. If the response is not an attempt to match

the periodic sound input with a similar periodic output,

then the FFT is of no use. For instance, if an observer

is asked to press a button when he hears a tone in his

earphones, then only a frequency synthesizer is needed

to measure the observer, not a frequency analyzer.

However, if the response being measured is a neural

frequency coding, in which signals pass through the

nervous system with a frequency matching that of

sound input to the ears, then a frequency analysis may

be useful in detecting whether the input frequency is

present in more than usual proportion among the sig

nals passing through the nerves.

Many electronic communications systems remove
some of the frequencies present in their input when

producing their output. For example, the telephone does

not transmit all of the frequencies present in the voice,

but it restricts the ones transmitted in order to fit more

voices into the capacity of the communications net

works. If we use a signal including components from the

upper part of our hearing range as input to a telephone

and perform an FFT on the signal actually transmitted,

we fmd that the higher frequencies are not present in

the output. The voice quality perceived by the listener is

somewhat reduced, indicating that the listener is sensi

tive to frequencies that the telephone system rejects.

The process of removing some frequencies present in

the input signal, or of reducing their amplitudes, is

known as filtering. Figure 14, which shows the sum of

the first six components of the sawtooth waveform, can

also be seen as showing what happens to the sawtooth
if it is passed through a filter that removes all fre

quencies higher than that of the sixth component.

Consider a visual pursuit experiment in which an

observer simply tracks a point moving back and forth

horizontally across the screen of an oscilloscope, and we

measure eye position. The point moves back and forth

sinusoidally, at a rate of 1 cycle/sec (1 Hz), and subtends

a visual angle of 10 deg. We can measure both the input

and the output, the stimulus and the response, on a

common scale: degrees from center. If the response is

an exact copy of the stimulus, then there is no need to

measure the ways in which they differ. Whenever track

ing is not perfect, we can ask how one might measure

the difference between the two waveforms. One method

is to obtain a single global measure of the amount of

discrepancy. At every sampling instant, the difference

in degrees between the target and the direction of sight

can be measured, and the mean discrepancy can then be

calculated. Because this mean may tend toward 0

when positive and negative differences are averaged, it

is more usual to square the differences before adding

them and to take the square root of the average. This

gives a statistic called the root mean square difference

between the input and the output. (This is, in other

words, the variance in the output not accounted for by

a nonrescaled copy of the input as a component.) One

of the major limitations of this statistic is that it does

not distinguish among various causes of such a differ

ence. For example, both an attenuation of the output,

in which eye position is a perfect sinusoid whose width

is not the full 10 deg expected, and a phase shift of

the output, in which the eye is always looking where

the stimulus was 70 msec earlier, can produce the same

root mean square tracking error. One of the advantages

of a frequency analysis approach is that it can dis

tinguish among various sources of tracking error.

Figure 15 shows a sample sinusoidal stimulus in

which the waveform has sine phase; that is, at the point

at which we begin our measurements, the input is at its

positive-going zero crossing, or the point at which it is

moving rightward at its maximum velocity. Time is the

abscissa, and the ordinate represents visual angle left or

ORIGINAL, ATTENUATED, AND
PHASE-SHIFTED SINUSOIDS
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Figure 15. In an experiment in which a subject is expected

to copy a stimulus sinusoid with a motor response (such as visual
or manual tracking), it is possible to produce a perfect sinusoid
that is still an imperfect copy of the original. An attenuated
copy (shown in the center) has less amplitude, and a phase
shifted copy reproduces the original with a consistent lead or
lag in time.



FOURIER TRANSFORMS AS CORRELAnONS AND CONTRASTS 237

Figure 16. A clipped sinusoid is one in which all points
beyond a constant limit are replaced with that constant. Such a
sinusoid can be produced by reproducing the sinusoid through
an electronic or biological amplifier that does not have sufficient
dynamic range. The spectrum of a clipped sinusoid shows small
amounts of energy at the odd harmonics of the fundamental;
in this figure, only the energy at 18 cycles can be seen as signifi
cant, although other components also exist at smaller ampli
tudes. When it is important to display the relatively small ener
gies of some components in a spectrum, a logarithmic ordinate
can be used.

mental. For example, any component with a period

1.5 times that of the fundamental might reach its

own peak at the peak of one cycle of fundamental and

a trough at the peak of the subsequent cycle of funda

mental. By a parallel argument, any added components

at multiples of the fundamental will add the exact

same distortion to every cycle. Thus, any consistent

distortion (such as clipping) must arise from the pres

ence of multiples, or harmonics, of the fundamental.

By the other side of the argument above, any deviation

from a pure wave that is inconsistent from cycle to cycle

must be the result of frequency components other than

multiples of the fundamental. We can use the term

"distortion" to describe systematic deviations from the
target, or energy at harmonics of the fundamental, and

we can use the term "noise" to describe energy at any

other components. Figures 17 and 18 show an example

of noise, a component not a multiple of the funda
mental, added to a sinusoid.

The sine and cosine components at the target fre

quency can be rescaled as energy and phase of a single

sinusoid. The energy of the harmonics of the funda

mental gives another measure, and the remaining energy

gives a third energy measure. These four measures are

all orthogonal, and therefore, the energy at the target

frequency, the noise, and the distortion sum to the total

energy of the response. We thus have a mathematical

method of partitioning the response energy into three

independent components, plus an additional statistic

representing phase shift. The Human Responses labora

tory at the Addiction Research Foundation once

planned such a visual pursuit experiment, intending to
use these measures to characterize the tracking response

and to see whether any or all changed under ethanol.

right. If tracking is perfect, then the response waveform

will match the stimulus one, and each will have an FFT

consisting of a single component at the stimulus fre

quency in sine phase. In addition, the mean of the

response waveform will be 0 deg, that is, properly

centered. One possible way for the subject to fail his

task is to produce a perfect sinusoid matching in time,

but with less amplitude than in the original. If the

stimulus travels 10 deg to either side of center, the

subject may look only 8 deg to either side of center.

This effect is called attenuation; it is the opposite of

amplification. Such attenuation is shown in the center

graph of Figure 15. Another possibility is that the wave

form has the proper amplitude but is centered at some

point other than 0 deg. This can be called bias, but

another name from engineering is that the response

has a dc component. The term "dc" is an electrical

concept, direct current, as opposed to sinusoidal devia

tions from that center, or alternating current. Both

apparent attenuation and bias can be the result of

improper calibration of the response-measuring appa

ratus. Even when changes in the response voltage that

indicates eye position are proportional to changes in

visual angle, meaning that the system has no nonlinear

distortions, failure to properly estimate the slope and

intercept of the voltage-position relationship may lead

to the appearance of bias or attenuation.

Even in an improperly calibrated but linear system,

we can detect the other three components of failure to

track properly: phase shift, distortion, and noise. Phase

shift implies that the eye is sweeping back and forth at

the appropriate stimulus frequency, but not at the

proper time. For instance, it may always be looking

where the point was located 20 msec earlier. At I Hz,

20 msec is .02 of a complete cycle of 360 deg, or a

7.2-deg phase lag. For a faster stimulus, the same num

ber of milliseconds of phase lag would represent a

greater proportion of a cycle, and hence a larger angle of

lag, such as 15 deg. The bottom graph of Figure 15

shows a phase lag of less than 90 deg. Phase lag is indi

cated in the FFT by the presence of a nonzero cosine

component at the stimulus frequency; the sum of the

sine and cosine components is a sinusoid whose phase is

different from both.

The subject's response may be a waveform that is not
a pure sinusoid of any phase or amplitude but includes

additional components. For example, if the subject

always stopped moving his eye when it was 7 deg from

center and waited for the target to return to the 7-deg

range before following it again (Figure 16), the response

graph would look like a flattened, or clipped, sine wave.

Such clipping would show up in the FFT as frequency

components that are multiples of the fundamental. The

added components are not at the fundamental, because

if they were, the result would be another sinusoid.

If the added components were not multiples of the

fundamental, they would not have an identical effect on

every cycle, as they would get out of step with the funda-
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SPECTRUM OF A CLIPPED SINUSOID
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SPECTRUM OF THE PROPOSED TRACKING STIMULUSSince our basic sampling interval was 10 msec, we

planned to use a 1,280-msec, or 128-point, period for

our sinusoidal stimulus. Unfortunately, in pilot studies,

some subjects appeared to track that frequency per

fectly even when under the influence of ethanol, and

others could not track it smoothly when entirely sober.

That suggested that fixed-frequency tracking should be

abandoned altogether and that a stimulus should be used

whose frequency changed from .33 Hz to 1 Hz or

higher over the course of about 20 sec. Doing this left

us with a driving stimulus that was locally almost a pure

sinusoid, but which globally covered a wide range of

frequencies. Figure 19 shows a graph of such a stimulus

and its spectrum. The FFT of such a stimulus is a mess,
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SPECTRUM OF AN INHARMONIC COMPONENT AS NOISE
Figure 19. This is a representation of a stimulus once used in

an experiment, a sinusoid whose frequency accelerates in time.
In any local segment, the waveform is approximately sinusoidal,

but considered as a whole, its spectrum shows a large number of
significant components. The phases of the components are
quite critical; it is possible, for example, to make the waveform

run backward in time by reversing the phases (negating the
amplitudes) of all of the sine components and leaving the cosine
components unchanged. Replacing the phase angles of all com
ponents with random angles would result in a sum that does not
even resemble a single sinusoid changing frequency, but rather
a burst of noise. Clearly, the spectral representation of this
waveform contradicts its apparently simple structure. This
happens because a single spectrum tries to represent each com
ponent of the wave as persisting unchanged infinitely into the

past and the future, while to our minds the simplest explanation
is that we have a single component whose frequency does
change.
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Figure 17. We can consider this waveform to be three exact
repetitions of its first third or to be six inexact repetitions of its
first sixth. The latter would be the more reasonable representa
tion if we knew that this waveform represented output from a
six-cycle sinusoidal input. In that case, we would call the repre
sentation "noisy" rather than "distorted." When a copy of a
sinusoid differs from the original, any difference that is con
sistent from cycle to cycle (as in Figure 16) can be called "dis
tortion," whereas any difference that changes from cycle to
cycle can be called "noise." The former can be represented as
the addition of harmonics to the fundamental; the latter can be
represented as the addition of nonharmonic components. As
21 cycles is not a harmonic of 6, this figure shows noise.

SPECTRUM OF AN INHARMONIC COMPONENT AS NOISE

suggesting that the transform of the response would be

at best such a mess and at worse an absolutely unin

terpretable mess. The problem is that it becomes impos

sible to determine whether any particular component

of the response is an accurate copy of one part of the

stimulus or an inaccurate copy of another part. It would

not be at all easy to perform the analysis of attenuation,

phase shift, and distortion at individual frequencies, as

described above. To see what happened to our plans to

use the FFT, it is necessary to consider some of its

more subtle limitations when applied to certain wave

forms.
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Figure 18. The two components shown here in a smaller
scale will sum to form the waveform shown at the top of the
figure. Because 21 is a half-integral multiple of 6, the same
points at alternate cycles of the 6 are added to peaks and troughs
of the 21. This alternation can be seen at the top of the figure,
where three peaks have accentuated points and the other three
have small dips in them.

SOME SUBTLE LIMITAnONS OF THE
FAST FOURIER TRANSFORM

Over a finite sampling time, any set of data points

can be considered as at least one complete repetition of

a periodic process. Even if there is no apparent period

icity or sinusoidal component in the data, the FFT can

produce a set of sinusoids whose sum is equal to the

given waveform. If the sinusoids are extended beyond

the measurement duration, they will repeat copies of

the arbitrary waveform into the infinite past and future.

Sometimes it is sensible to consider such infinite repe

tition. For example, consider a sawtooth wave con

sisting of a straight-line increase from -1 to +lover the

course of 10 msec (Figure 13). If an FFT is performed
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on this nonperiodic sample of data, it reports the exist

ence of frequency components at 100 Hz, 200 Hz,

300 Hz. and so on. In fact, if we convert the data to a

voltage and repeatedly play the result through ear

phones, an observer will hear a sawtooth wave with a

fundamental frequency of 100 Hz and overtones at

200 Hz, 300 Hz, and so on. In other words, any set of

data points can be repeated many times in order to

create a periodic process, and the FFT then tells us the

frequency spectrum of that process.

An FFT will treat any data vector as if it were one or

more exact repetitions of a periodic process and will

represent that vector as the sum of underlying, sinu

soidal periodic processes. Whenever the data vector does

not fit those assumptions, the resulting set of com

ponents has only limited utility in describing the data.

In particular, when the data vector represents a locally

near-periodic process that is changing some important

characteristic (such as frequency or amplitude) during

the sampling time, such a change is represented as the

interference among periodic processes at other fre

quencies, and the phase relationships among the inter

fering components are very critical in reconstructing a

sum with appropriate characteristics.

Figure 20 shows a classic example of change in a

periodic process being represented as the interference of

two other periodic processes. The bottom waveform is

a sinusoid whose amplitude decreases and increases, and

the top two waveforms are its only components. This

effect is known as beats in sound, as moire patterns in

silk, or as the vernier scale on a machinist's caliper.

Let us consider two sine waves being played simul

taneously through earphones, with equal amplitude, at

frequencies of 100 and 101 Hz. (For convenience,

Figure 20 displays frequencies of 10 and II cycles.) At

the beginning of the playing, the two waves are both in

phase and are not very different from a 100.5-Hz sinu-

TWO FREQUENCIES BEATING TOGETHER

Figure 20. A classic example of the difference between global

and local representations of waveforms occurs in the phenom

enon of beats. When two sinusoids of almost identical frequency

are added, some local portions reinforce and other cancel,
resulting in a waveform that appears to have intermediate fre
quency and a variable amplitude: The envelope, or local ampli

tude, varies in time.

soid. The 100·Hz wave is like a 100.5-Hz wave but is

slowly getting farther behind, and the 101·Hz wave is

slowly getting farther ahead. After .5 sec, the 100·Hz

wave is .25 cycle behind where 100.5 Hz would be,

and the 100·Hz wave is .25 cycle ahead of where

100.5-Hz would be. The result is that the two sinusoids

are .5 cycle out of phase with each other and, there

fore, cancel each other: One is at its peak while the

other is at its trough. As the second progresses, the

100-Hz wave eventually gets .5 cycle behind the

100.5-Hz wave, the other gets .5 cycle ahead, and the

two waves are a full cycle out of step and, therefore,

reinforce each other. What the ear hears is not the two

separate waves, but rather, a single 100.5-Hz wave

changing in amplitude. If we change the phase of either

component by .5 cycle, we get the opposite amplitude

envelope: diminished at the ends and increased in the

center.

When two frequencies beat together, we do not

resolve the frequency difference between the com

ponents, but we interpret the input as a single frequency

changing in amplitude. This is typical of what happens

when non-steady-state processes are subjected to an

FFT: The FFT synthesizes the appearance and dis

appearance of waves by the reinforcement and cancella

tion of sinusoids of similar frequency. Each of the

components has a constant amplitude over time, but our

interpretation of their sum may be as a different wave

with a changing amplitude. The notion of a component

that changes its amplitude during the sampling frame is

not part of the logic of the FFT.

This phenomenon can be considered a conflict of

time scales. The FFT always looks at the correlations

between the data vector and sinusoids that persist for

the entire sampling duration. Even though it may

sound as if a sinusoid of a given frequency is occurring

only during part of the duration, the FFT will repre

sent it as occurring during the whole duration, along

with other sinusoids. The other sinusoids may cancel

what we hear during part of the duration and may

reinforce it during other parts of the duration. Our local

time scale may perceive sinusoids that start, change

amplitude, and stop, but the FFT can interpret data

only as mixtures of continuous sinusoidal components.

Its view is global, whereas our view, or the view of some

system we are studying, may be much more local. In

any small fraction of the second in which we consider

two beating sine waves, the resultant has an almost

constant amplitude, but globally, its change in ampli

tude cannot be represented as anyone component but

must be synthesized by the interference among com

ponents.

Waveforms that suddenly change their composition

as a sum of sinusoids are common in our lives. Many of

the waveforms that are important in our lives are not

continuous, like the tides, but are discontinuous, such as

speech. Over the course of a fraction of a second,

much of speech (the vowels) is essentially a periodic
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SPECTRUM OF A WAVE SAMPLED 14.5 TIMES

Figure 21. When a sinusoid is sampled a nonintegral number
of times, its spectrum consists of a number of components
clustered around the true, nonintegral frequency. As the number
of repetitions of the waveform increases, the energy of these
additional components approaches 0 as a fraction of the energy
representing the fundamental. For this reason, spectral measure
ments of an unknown frequency should include a large number
of repetitions of the fundamental.

monic of some other frequency, then such approxima

tions and spreading are quite tolerable. There is also

a technique known as windowing that can reduce the

maximum amount of frequency spreading induced by

a bad sampling duration, but at the cost of creating

some spread even around components that are exact

divisors of the duration.

Signals that are only approximately periodic are

usually useful candidates for FFT analysis. For example,

the alpha-rhythm component of the spontaneous EEG is

an irregular electrical signal with a frequency near

10 Hz. If the overall dominant, or average, frequency

shifts up or down, that may be of experimental or

clinical significance, and so a reasonably accurate esti

mate of that frequency is important. With the use of a

window and a long sampling frame, uncertainty about

that frequency can be reduced to a small fraction of

1 Hz, which is rather smaller than any clinically signifi

cant difference in the dominant frequency. Also, the

FFT is a good tool for estimating the total power in

the alpha rhythm, that energy around 10 Hz, even

though it may not be able to give an exact measure of

the dominant frequency.

In summary, the FFT is most useful in these situa

tions: (1) When the event being measured has an inher

ently variable spectral composition, such as EEG activity

or hand tremor-The underlying waveform is a mixture

of closely related frequencies, and if the FFT returns

a result describing such a mixture, that is appropriate.

(2) When only the frequency range of the waveforms

is needed, in order to design a system capable of coping

with that frequency-The frequencies and order of

sounds produced by an orchestra are very exact, but

only the range of frequencies and intensities may be

necessary information in choosing an appropriate

5 10 15 20 25 30 35 40 45 50 55 60

UJ
z:
.....
(J)

o
o

pressure wave, well described by a frequency analysis

into its components. However, over the course of sec

onds, the important events in speech are discontinuities,

such as consonants, and order information, such as

which word precedes which other word. While an FFT

does, in theory, capture such discontinuous and order

information, it is not a straightforward matter to inter

pret an FFT in such a way as to recover that informa

tion. If our interest is simply in knowing the predomi

nant frequencies, for purposes such as knowing what

kind of frequency range we must perceive in order to

understand speech, then the FFT provides a useful

view of the information. However, while a computer

could reconstruct the speech from its FFT, the com

putational effort in doing so is considerable. A human

being cannot look at the spectrum of a sentence and

state what was spoken: For a complex waveform such as

a sentence, the FFT simply does not reduce the data

to an easily understood form. There are steady-state

sounds, such as the sound produced by a woodwind

instrument after the first few milliseconds of onset

transition. For such a waveform, the FFT produces an

analysis that is close to our experience: a fundamental

with overtones. It is simply not meaningful, although

it may be formally correct, to think of an entire sen

tence as being the continuing presence of a very large

family of overtones, which cancel each other out most

of the time so that only a few frequencies are heard at

any instant. Clark, Dooling, and Bunnell (1983) describe

one technique for using a family of overlapping FFTs

to represent such non-steady-state waveforms.

Not all of the limitations of the FFT are related to

obvious discontinuities in the waveform. Problems can

also occur when the process being measured has a

fundamental period that is not an exact fraction of the

sampling duration. For example, let us return to the

marine animal whose behavior depends on the 12-h

25.5-min tidal period. If we sample the behavior for

7 days, we wind up with about 14.5 cycles of activity.

Figure 21 shows sinusoidal behavior over such a time

period. Ifwe started sampling at a positive peak, then we

end sampling at a negative peak. Because the FFT

considers its input as one repetition of an infinite

process into the past and the future, it treats the data as

if the last half-cycle were followed immediately by the

start of a full cycle. In other words, sampling the data

for anything other than an exact number of periods

introduces a discontinuity into the periodic process,

and that discontinuity results in an analysis that does

not fully reveal the underlying periodicities. The FFT

of 14.5 cycles of sine wave contains a mixture of fre

quency components, clustered around the true fre
quency but with some degree of spreading that depends

on how many repetitions of the cycle occurred before

the discontinuity. If our only interest is in the approxi

mate frequencies contained in the spectrum and if we

do not need to know whether energy is exactly a har-
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microphone. (3) When a large number of repetitions of

an exact, periodic waveform is included in the sampling

duration-If one samples several hundred repetitions of

some wave, the frequency spread around the funda

mental, as a fraction of the fundamental frequency, is

small compared to the components representing the

fundamental frequency. (4) When there is an external

driving force, such as the tides or a pendular visual

stimulus, whose frequency is known exactly, so that the

FFT's assumption of a fragment of an infmite periodic

process of exactly known period is not unreasonable

This is especially useful when the sampling period

consists of an exact number of repetitions of the under-

lying, driving waveform, so that no problems of fre

quency spread occur. (5) When the waveform to be

analyzed can be decomposed into a number of shorter

segments, each one of which satisfies the same one of

the assumptions above.

REFERENCES

CLARK, C., DOOLING, R. J., & BUNNELL, T. Analysis and syn
thesis of bird vocalizations: An FFT-based software system.
Behavior Research Methods & Instrumentation, 1983, 15, 2SI
2S3.

EMERSON, P. L. Analysis of variance with Fourier analysis of
coherent data. Behavior Research Methods & Instrumentation.
1983,15,242-2S0.


