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A superposition of a matrix ensemble refers to the ensemble constructed from two indepen-

dent copies of the original, while a decimation refers to the formation of a new ensemble by

observing only every second eigenvalue. In the cases of the classical matrix ensembles with

orthogonal symmetry, it is known that forming superpositions and decimations gives rise

to classical matrix ensembles with unitary and symplectic symmetry. The basic identities

expressing these facts can be extended to include a parameter, which in turn provides us

with probability density functions which we take as the definition of special parameter de-

pendent matrix ensembles. The parameter dependent ensembles relating to superpositions

interpolate between superimposed orthogonal ensembles and a unitary ensemble, while the

parameter dependent ensembles relating to decimations interpolate between an orthogonal

ensemble with an even number of eigenvalues and a symplectic ensemble of half the number

of eigenvalues. By the construction of new families of biorthogonal and skew orthogonal

polynomials, we are able to compute the corresponding correlation functions, both in the

finite system and in various scaled limits. Specializing back to the cases of orthogonal and

symplectic symmetry, we find that our results imply different functional forms to those known

previously.

1 Introduction

Dyson [9] introduced three ensembles of random unitary matrices — the circular orthogonal ensemble

(COE), circular unitary ensemble (CUE) and circular symplectic ensemble (CSE). The corresponding

joint eigenvalue probability density functions (PDFs) were calculated to be

1

C

∏

1≤j<k≤n

|eiθj − eiθk |β (1.1)

where C is the normalization (throughout the symbol C will be used to denote some normalization) and

β = 1 for the COE, β = 2 for the CUE and β = 4 for the CSE. In the theory of the COE, a technique

known as integration over alternate variables has a special place. This technique draws one naturally

to study statistical properties of every second eigenvalue (parity respecting correlations) as well as the

statistical properties of the complete COE sequence (parity blind correlations). Thus for matrices from

the ensemble COE2n (2n × 2n members of the COE) Mehta and Dyson [32] considered the statistical

properties of every second eigenvalue (referred to as an alternating sequence) by integrating out the

complementary alternating sequence. With the resulting distribution denoted alt(COE2n) they showed

alt(COE2n) = CSEn, (1.2)

where on the RHS we mean the joint eigenvalue distribution of the ensemble CSEn (below we will state

similar equations with this convention without further comment).
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Prior to the work of Mehta and Dyson, Dyson [10] was led to conjecture that superimposing two

independent eigenvalue sequences from the COE and integrating out every second eigenvalue leaves an

eigenvalue sequence with the same joint distribution as the CUE, and thus

alt(COEn ∪ COEn) = CUEn. (1.3)

This was subsequently proved by Gunson [24]. The results (1.2) and (1.3) together imply that the

physically important gap probability, that is the probability that the interval [−s, s] is free of eigenvalues,

is inter-related for the three ensembles COE, CUE and CSE. As formulas for this quantity were known

for the COE and CUE in terms of the Fredholm determinant of the integral operator on [−s, s] with

kernel sinπ(x − y)/π(x − y), the inter-relationships imply a formula for the gap probability in the CSE

in terms of the same Fredholm determinant [32].

Some years after the pioneering work of Dyson and Mehta, Baik and Rains [4] were led to study

the distribution of every second row of random Young tableaux specified according to some specific

probability measures. In particular, a probability measure was identified for which the distribution of the

even numbered rows is independent of a parameter α occurring in the measure. In the continuum limit,

in which the integer valued row lengths go over to continuous valued variables, the PDF of the 2n row

lengths is specified by

1

C

2n
∏

j=1

e−xj/2
n

∏

j=1

eA(x2j−1−x2j)/2
∏

1≤j<k≤2n

(xj − xk) (1.4)

where

x1 > x2 > · · · > x2n ≥ 0, (1.5)

C is the normalization and A is the analogue of the parameter α. For (1.4) to be normalizable we must

have A < 1. In the case A = 0 this coincides with the joint distribution of the eigenvalues in the matrix

ensemble LOE — the Laguerre orthogonal ensemble with parameter a = 0 (for general parameter a the

Laguerre weight is xae−x/2). We recall the LOE distribution of 2n variables with parameter a = 0 is

realized by the eigenvalues of Wishart matricesXTX where the real matrix X has dimension (2n+1)×2n

and independent elements, identically distributed with the standard normal distribution N[0, 1]. Let us

denote the ensemble corresponding to (1.4) by LOEA
2n. With ME denoting a general matrix ensemble

and the operation even(ME) denoting the distribution of the even labelled coordinates with the ordering

(1.5), and thus the operation of integrating out the odd labelled coordinates, the result of Baik and Rains

gives

even(LOEA
2n) = LSEn (1.6)

where the PDF for the LSEn is the A→ −∞ limit of the PDF (1.4), and is thus given by

1

C

n
∏

j=1

e−xj

∏

1≤j<k≤n

(xj − xk)4, (1.7)

after re-labelling coordinates {x2j−1, x2j} 7→ xj (j = 1, . . . , n) (see (3.16)). As a matrix ensemble the

LSE refers to the Laguerre symplectic ensemble with parameter a = 0. It can be realized as a 2n × 2n

antisymmetric matrix, in which the elements are pure imaginary numbers with each 2 × 2 block having

a real quaternion structure. Such matrices are equivalent to block matrices of the form

[

0n×n Xn×n

X†
n×n 0n×n

]
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where X is an antisymmetric complex matrix. As is evident from the transition from (1.4) to (1.7), the

corresponding eigenvalue spectrum is doubly degenerate.

Implicit in [4] is the matrix ensemble corresponding to the eigenvalue PDF

1

C

2n
∏

j=1

e−xj/2
n

∏

j=1

eA(x2j−1−x2j)/2
∏

1≤j<k≤n

(x2j−1 − x2k−1)(x2k − x2j), (1.8)

where the ordering (1.5) is assumed, and as with (1.4) we must have A < 1 for the PDF to be normalizable.

When A = 0 the matrix ensemble with this eigenvalue PDF is the superimposed ensemble

LOEn ∪ LOEn

(two independent copies of the LOE). The A→ −∞ limit of (1.8) gives the LUE, parameter a = 0, joint

eigenvalue distribution

1

C

n
∏

j=1

e−xj

∏

1≤j<k≤n

(xk − xj)
2, (1.9)

where as in (1.7) we have re-labelled the coordinates {x2j−1, x2j} 7→ xj (j = 1, . . . , n). As a matrix

ensemble the LUE refers to the Laguerre unitary ensemble, which can be realized by matrices of the

form X†X where X is a n×n matrix with independent, identically distributed complex Gaussian entries.

Analogous to the derivation of (1.4), one can use arguments based on the underlying combinatorial model

to show that

even((LOEn ∪ LOEn)A) = LUEn (1.10)

independent of the parameter value A.

Inspired by the results (1.6) and (1.10), Forrester and Rains [18] considered general matrix ensembles

with orthogonal symmetry OEn(f) corresponding to the joint distribution

1

C

n
∏

j=1

f(xj)
∏

1≤j<k≤n

(xj − xk). (1.11)

They sought to classify all differentiable weight functions f in (1.11) such that

even(OEn(f) ∪ OEn(f)) = UEn(g) (1.12)

where UEn(g) is the matrix ensemble with unitary symmetry corresponding to the joint distribution

1

C

n
∏

j=1

g(xj)
∏

1≤j<k≤n

(xj − xk)2.

Up to linear fractional transformations only two pairs of weights (f, g) were found to possess this property:

(f, g) =

{

(e−x/2, e−x), x > 0

((1 − x)(a−1)/2, (1 − x)a), 0 < x < 1.
(1.13)

The first of these is the a = 0 Laguerre weight in (1.8), while the second is an example of the Jacobi

weight xb(1 − x)a with parameter b = 0. Furthermore, it was proved [18] that the statement (1.12) is

equivalent to the statement

even(OE2n(f)) = SEn((g/f)2) (1.14)

where SEn(h) denotes the matrix ensemble with symplectic symmetry corresponding to the joint distri-

bution
1

C

n
∏

j=1

h(xj)
∏

1≤j<k≤n

(xj − xk)4. (1.15)
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Our interests in this work are parameter dependent generalizations of the orthogonal ensembles, and

superimposed orthogonal ensembles, specified by the weights f in (1.13). For the weight f(x) = e−x/2,

(x > 0), these are precisely the ensembles with PDFs (1.4) and (1.8). For the weight f(x) = (1−x)(a−1)/2,

0 < x < 1, the parameter dependent ensembles are specified by the PDFs

1

C

2n
∏

j=1

(1 − xj)
(a−1)/2

n
∏

l=1

(1 − x2l−1

1 − x2l

)−A/2 ∏

1≤j<k≤2n

(xj − xk) (1.16)

and
1

C

2n
∏

j=1

(1 − xj)
(a−1)/2

n
∏

l=1

(1 − x2l−1

1 − x2l

)−A/2 ∏

1≤j<k≤n

(x2j−1 − x2k−1)(x2j − x2k) (1.17)

where, for convenience, we shift the origin and scale the variable x relative to that used in (1.13) so that

−1 < xj < 1 (j = 1, . . . , 2n).

For (1.16) and (1.17) to be normalizable we must have A < a + 1. We remark that after shifting the

origin back to that used in (1.13) by xj 7→ 1
2 (xj + 1), then scaling the variables and parameters

xj 7→ xj/L, a 7→ L, A 7→ LA

and taking the limit L→ ∞, (1.16) and (1.17) reduce to (1.4) and (1.7) respectively.

We note that with respect to each even labelled coordinate the parameter A in (1.16) and (1.17)

can be viewed as a change of parameter a 7→ a + A in the Jacobi weight. Let us make this change in

(1.13) and form the identities (1.12) and (1.14). If we then divide both sides of the resulting identities

by
∏2n

l=1(1 − xl)
A/2 so that in each case the RHS is independent of A, we deduce that

even
(

OEn(fo, fe) ∪ OEn(fo, fe)
)

= UEn(g), (1.18)

even
(

OE2n(fo, fe)
)

= SEn

(

(g/fe|A=0)
2
)

, (1.19)

with

(fo, fe, g) =
(

(1 − x)(a−A−1)/2, (1 − x)(a+A−1)/2, (1 − x)a
)

, −1 < x < 1. (1.20)

In (1.18), assuming the ordering x1 > x2 > · · · > x2n, OEn(fo, fe) ∪ OEn(fo, fe) refers to the ensemble

with PDF
n

∏

j=1

fo(x2j−1)fe(x2j)
∏

1≤j<k≤n

(x2j − x2k)(x2j−1 − x2k−1), (1.21)

while in (1.19) OE2n(fo, fe) refers to the ensemble with PDF

n
∏

j=1

fo(x2j−1)fe(x2j)
∏

1≤j<k≤2n

(xj − xk). (1.22)

An analogous argument starting with the Laguerre case of (1.13), modified so that x therein is replaced

by (1 +A)x, can be used to deduce (1.4) and (1.10).

The parameter dependent PDFs (1.4), (1.8), (1.16) and (1.17) each have at least two interpretations

in distinct applied settings. One, already made explicit [4, 2] in the case of (1.4), is as the continuum

limit of certain measures on partitions. These measures in turn are intimately related to increasing

subsequence problems [3, 8, 6], growth models [27, 28] and non-intersecting lattice paths [30, 25, 15, 26].

The other is as the eigenvalue PDF for certain computable ensembles of random matrices. Development
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of these settings will be undertaken in a separate publication [19]. Here we seek the evaluation of the

multi-point correlation functions, both parity aware and parity blind (recall the terminology from the

first paragraph) associated with the probability densities (1.4), (1.8), (1.16) and (1.17). Let us first revise

the definition of a multi-point correlation function. Consider a general PDF

p(x1, . . . , xn; y1, . . . , yn) (1.23)

which is symmetric in {xj}j=1,...,n and {yj}j=1,...,n with the support of p on some region I of the real

line for each coordinate. This can be thought of as the PDF for a two species system of particles free to

move on I. The (k1, k2)-point correlation function for k1 particles of species x and k2 particles of species

y is defined as

ρ(k1,k2)(x1, . . . , xk1 ; y1, . . . , yk2) = n(n− 1) · · · (n− k1 + 1)n(n− 1) · · · (n− k2 + 1)

×
n

∏

l=k1+1

n
∏

l′=k2+1

∫

I

dxl

∫

I

dyl′ p(x1, . . . , xn; y1, . . . , yn).

All the PDFs (1.4), (1.8), (1.16) and (1.17) can be written in the form (1.23) with x1, . . . , xn denoting

the odd labelled particles in the ordering (1.5), and y1, . . . , yn denoting the even labelled particles in the

ordering (1.5).

In the parity aware cases, it follows from general formulas due to Rains [36] that for the PDFs (1.8)

and (1.16) the (k1, k2)-point correlation functions have the determinant structure

ρ(k1,k2)(x1, . . . , xk1 ; y1, . . . , yk2)

= det





[Koo(xj , xl)]j,l=1,...,k1 [Koe(xj , yl)] j=1,...,k1
l=1,...,k2

[Keo(yj , xl)] j=1,...,k2
l=1,...,k1

[Kee(yj , yl)]j,l=1,...,k2



 (1.24)

for certain functions Koo, Koe, Keo and Kee. The latter are defined in terms of arbitrary polynomials

pj(y), Qj(x) of degree j, as well as the inverse of the matrix

[

∫ ∞

0

dy e−(1+A)y/2pj(y)

∫ ∞

y

dx e−(1−A)x/2Qk(x)
]

j,k=0,...,n−1
(1.25)

in the case of (1.4), and the inverse of the matrix

[

∫ 1

−1

dy (1 − y)(a−A−1)/2pj(y)

∫ 1

y

dx (1 − x)(a+A−1)/2Qk(x)
]

j,k=0,...,n−1
(1.26)

in the case of (1.16). Also, a general formula of [36] gives that for the PDFs (1.4) and (1.17) the (k1, k2)-

point correlation functions have the quaternion determinant (the definition of a quaternion determinant

is revised in Section 3) structure

ρ(k1,k2)(x1, . . . , xk1 ; y1, . . . , yk2)

= qdet





[foo(xj , xl)]j,l=1,...,k1 [foe(xj , yl)] j=1,...,k1
l=1,...,k2

[feo(yj , xl)] j=1,...,k2
l=1,...,k1

[fee(yj , yl)]j,l=1,...,k2



 (1.27)

where the fs1s2 are 2 × 2 matrices with elements defined in terms of arbitrary jth degree polynomials

Rj(x), together with quantities which differ in their specification depending on whether one is considering

(1.4) or (1.17). For (1.4) these quantities are

Φe
j(x) :=

∫ ∞

x

e−t/2eA(t−x)/2Rj(t) dt (1.28)
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and the inverse of the antisymmetric matrix

[

∫ ∞

0

e−x/2Rj(x)Φ
e
k(x) dx

]

j,k=0,...,2n−1
,

while for (1.17) they are

Φe
j(x) :=

∫ 1

x

(1 − t)(a−1)/2
( 1 − t

1 − x

)−A/2

Rj(t) dt (1.29)

and the inverse of the antisymmetric matrix

[

∫ 1

−1

(1 − x)(a−1)/2Rj(x)Φ
e
k(x) dx

]

j,k=0,...,2n−1
.

Regarding the parity blind correlations, ρk(x1, . . . , xk) (here the symbol xj is used in its original sense

of (1.4), (1.8), (1.16) and (1.17)) we note that because (1.8) and (1.17) do not vanish when x2j−1 = x2j ,

ρk does not vanish at coincident points and so cannot have a simple determinental form analogous to

(1.16). However (1.4) and (1.16) can both be written in a form involving a Pfaffian factor,

2n
∏

j=1

w(xj)
∏

1≤j<l≤2n

(xj − xl) Pf[ǫ(xj , xl]j,l=1,...,2n, (1.30)

for which the general structure of the k-point correlation is known [31] in terms of a quaternion determi-

nant

ρk(x1, . . . , xk) = qdet[f(xj , xl)]j,l=1,...,k (1.31)

where f is a 2 × 2 matrix defined in terms of the same quantities as those specifying (1.27).

We find that in the case of the parameter dependent Laguerre ensembles (1.4) and (1.8), the corre-

lations can be written in terms of

KL
n (x, y) := e−(x+y)/2

n−1
∑

l=0

1

hL
l

Ll(x)Ll(y), (1.32)

where Ll(x) denotes the Laguerre polynomial of degree l and parameter a = 0, with the orthogonality

property
∫ ∞

0

e−tLj(t)Lk(t) dt = hL
j δj,k, hL

j = 1. (1.33)

The function KL
n is familiar as determining the correlation function of the Laguerre unitary ensemble with

parameter a = 0. The latter has the eigenvalue PDF (1.9). Explicitly, the k-point correlation function is

given in terms of (1.32) by

ρk(x1, . . . , xk) = det
[

KL
n (xj , xl)

]

j,l=1,...,k
. (1.34)

Similarly, in the case of the parameter dependent Jacobi ensembles (1.16) and (1.17), the correlations

can be written in terms of

KJ
n (x, y) := (1 − x)(a−1)/2(1 − y)(a−1)/2

n−1
∑

l=0

1

hJ
l

P
(a,0)
l (x)P

(a,0)
l (y) (1.35)

where P
(a,0)
l (x) denotes the Jacobi polynomial of degree l and parameter b = 0, with the orthogonality

property
∫ 1

−1

(1 − t)aP
(a,0)
j (t)P

(a,0)
k (t) dt = hJ

j δj,k, hJ
j =

2a+1

2j + a+ 1
. (1.36)
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We remark that

ρk(x1, . . . , xk) = det
[

(1 − xl)K
J
n (xj , xl)

]

j,l=1,...,k
(1.37)

is the k-point correlation function for the eigenvalue PDF

1

C

n
∏

l=1

(1 − xl)
a

∏

1≤j<k≤n

(xk − xj)
2, |xl| < 1,

which corresponds to the Jacobi unitary ensemble with parameter b = 0.

Let us now turn to the plan of the paper. In Section 2 we take up the problem of the explicit

computation of the entries of (1.16), and in Section 3 we compute the explicit form of the entries in

(1.27) and (1.31). Various scaled limits of the correlations are computed in Section 4, while we finish in

Section 5 by relating the correlation functions found in this study to correlation and distribution functions

known from previous studies.

2 Correlations for superimposed orthogonal ensembles with a

parameter

Consider a PDF of the form

n
∏

j=1

wo(xj)we(yj)
∏

1≤j<k≤n

(xj − xk)(yj − yk) det[κ(xj , yk)]j,k=1,...,n, (2.1)

where xj , yj ∈ R (although the support of wo, we may be some subset of R). A general formula of [36]

gives that the (k1, k2)-point correlation function is given by (1.24) with

Koo(x, x
′) =

n−1
∑

j,k=0

wo(x)Qj(x)M
−t
jk

∫ ∞

−∞
κ(x′, u)we(u)pk(u) du

Koe(x, y) =
n−1
∑

j,k=0

wo(x)Qj(x)M
−t
jk we(y)pk(y)

Keo(y, x) = −κ(x, y) +
n−1
∑

j,k=0

(

∫ ∞

−∞
κ(u, y)we(u)Qj(u) du

)

M−t
jk

(

∫ ∞

−∞
κ(x, v)wo(v)pk(v)

)

dv

Kee(y, y
′) =

n−1
∑

j,k=0

(

∫ ∞

−∞
κ(v, y)wo(v)Qj(v) dv

)

M−t
jk we(y

′)pk(y′) (2.2)

where −t denotes the operation of taking the transpose of the inverse, pj(y) and Qj(x) are as in (1.25)

and [Mjk] is the matrix with entries

Mjk =

∫ ∞

−∞
dxwo(x)Qj(x)

∫ ∞

−∞
dy κ(x, y)we(y)pk(y). (2.3)

This result is relevant to (1.8) and (1.16) because both these PDFs can be written in the form (2.1) with

κ(x, y) =











eA(x−y)/2χx>y, Laguerre case
(1 − x

1 − y

)−A/2

χx>y, Jacobi case
(2.4)

where χT = 1 if T is true and 0 otherwise, a fact which can be seen by making note of the following

determinant identity.
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Lemma 1. For the orderings

x1 > · · · > xn, y1 > · · · > yn (2.5)

we have

det[χxj−yk>0]j,k=1,...,n = χx1>y1>···>xn>yn . (2.6)

Proof. For the ordering x1 > y1 > · · · > xn > yn the determinant is triangular with 1’s down the

diagonal, so (2.6) is correct in this case. All other orderings must have at least two x’s (or two y’s) in

succession. The corresponding rows (or columns) in the determinant will then be equal so the determinant

vanishes. �

Thus with κ(x, y) given by (2.4), we can substitute (2.6) times

n
∏

j=1

eA(xj−yj)/2 Laguerre case,

n
∏

j=1

(1 − xj

1 − yj

)−A/2

Jacobi case

for the determinant in (2.1), and

wo(x) = we(x) =

{

e−x/2 (x > 0), Laguerre case,

(1 − x)(a−1)/2 (−1 < x < 1), Jacobi case
(2.7)

provided the ordering (2.5) is assumed. On this latter point, (2.1) is a symmetric function of the x’s and

y’s (separately), so the ordering constraint (2.5) is in fact irrelevant.

For general PDFs (2.1) there is of course no explicit formula available for the inverse of [Mjk] which

is required in (2.2). However, for the particular PDFs (1.8) and (1.16), and thus κ(x, y) given by (2.4),

this problem can be overcome by choosing {pj(y)} and {Qk(x)} to have the biorthogonality property

∫ ∞

−∞
dy we(y)pj(y)

∫ ∞

y

dxwo(x)Q
L
k (x) = njδj,k. (2.8)

These polynomials are given simply in terms of the orthogonal polynomials {Lj(x)} in the Laguerre case

and {P (a,0)
j (x)} in the Jacobi case.

Proposition 2. The sets of polynomials {Lj(x)}j=0,1,... and {QL
j (x)}j=0,1,... where

QL
j (x) =

2

A− 1
e(1−A)x/2 d

dx

(

e−(1−A)x/2Lj(x)
)

(2.9)

have the biorthogonality property

∫ ∞

0

dt e−(1+A)t/2Lp(t)

∫ ∞

t

dx e−(1−A)x/2QJ
q (x) = NL

p δp,q, NL
p := − 2

A− 1
, (2.10)

while the sets of polynomials {P (a,0)
j (x)}j=0,1,... and {QJ

j (x)}j=0,1,... where

QJ
j (x) = − (1 − x)−(a−A−1)/2

j + (a−A+ 1)/2

d

dx

(

(1 − x)(a−A+1)/2P
(a,0)
j (x)

)

(2.11)

have the biorthogonality property

∫ 1

−1

dt (1 − t)(a+A−1)/2Pp(t)

∫ 1

t

dx (1 − x)(a−A−1)/2Qq(x) = N J
p δp,q

N J
p :=

2a+1

(a+ 1 + 2p)(p+ (a−A+ 1)/2)
. (2.12)

8



Proof. Substituting (2.9) in the LHS of (2.10) and making use of (1.33) gives the RHS of (2.10). Thus

it only remains to check that QL
j (x) is indeed a polynomial of degree j. This latter point follows by

inspection of (2.9). The verification of (2.12) is done analogously. �

The biorthogonality properties (2.10) and (2.12) allow M−t
jk in (2.2) to be replaced by N−1

j δj,k.

The double sums in (2.2) then collapse to single sums. Furthermore, taking note of the values of the

normalizations from (1.33) and (1.36) we see that (2.9) and (2.11) can be rewritten

QL
j (x)

NL
j

= − 1

hL
j

e(1−A)x/2 d

dx

(

e−(1−A)x/2Lj(x)
)

(2.13)

QJ
j (x)

N J
j

= − 1

hJ
j

(1 − x)−(a−A−1)/2 d

dx

(

(1 − x)(a−A+1)/2P
(a,0)
j (x)

)

. (2.14)

It thus follows that the quantities in (2.2) can then be expressed simply in terms of the functions KL
n

and KJ
n introduced in (1.32) and (1.35).

Proposition 3. The (k1, k2) point parity respecting correlation for the PDF (1.8) is given by (1.24) with

KL
oo(x, x

′) = −e−A(x−x′)/2 ∂

∂x

{

eAx/2

∫ x′

0

e−Au/2KL
n (x, u) du

}

KL
oe(x, y) = −e−Ax/2 ∂

∂x

{

eAx/2KL
n (x, y)

}

KL
eo(y, x) = −eA(x−y)/2χx>y + eAx/2

∫ x

0

e−Av/2KL
n (v, y) dv

KL
ee(y, y

′) = KL
n (y, y′) (2.15)

(we have appended the superscripts L on the LHS as notation for the Laguerre case (1.8)). Similarly,

the (k1, k2) point parity respecting correlation for the PDF (1.16) — the Jacobi case to be denoted by

appending a superscript J — is given by (1.24) with

KJ
oo(x, x

′) = −
( 1 − x

1 − x′

)A/2 ∂

∂x

{

(1 − x)1−A/2

∫ x′

−1

(1 − u)A/2KJ
n (x, u) du

}

KJ
oe(x, y) = −(1 − x)A/2 ∂

∂x

{

(1 − x)1−A/2KJ
n (x, y)

}

KJ
eo(y, x) = −

(1 − x

1 − y

)−A/2

χx>y + (1 − y)(1 − x)−A/2

∫ x

−1

(1 − v)A/2KJ
n (v, y) dv

KJ
ee(y, y

′) = (1 − y)KJ
n (y, y′). (2.16)

We see from (2.15) that KL
ee(x, y) coincides with KL

n (x, y) which we know from (1.34) determines

the k-point correlation for the LUE. This property of the even-even correlations is equivalent to the

statement (1.10). Similarly, the final formula in (2.16) implies that the k-point correlation for the even-

even correlations in the Jacobi case coincides with the k-point correlation for the JUE with parameter

value (a, b) 7→ (a, 0) (recall (1.37)). This result is equivalent to the statement (1.18).
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3 Correlations for decimated orthogonal ensembles with a pa-

rameter

3.1 Quaternion determinant formulas

To calculate the parity respecting correlations for (1.4) and (1.16), one notes that analogous to (2.1) they

have the general structure

n
∏

j=1

wo(x2j−1)we(x2j)
∏

1≤j<k≤2n

(xj − xk) det[κ(x2j−1, x2k]j,k=1,...,n. (3.1)

Explicitly, we choose κ(x, y) as in (2.4), wo(x) and we(x) as in (2.7), and make use of (2.6). The

significance of this is that for general PDFs of the form (3.1), a result of Rains [36] gives that the parity

respecting correlations have the form (1.27), and further specifies the elements of the matrix therein.

Before stating the latter, we remark that the qdet operation in (1.27) is well defined on matrices A with

the self dual property

A = Z−1
2n A

TZ2n, Z2n := 1n ⊗
[

0 −1

1 0

]

. (3.2)

This is equivalent to requiring that AZ2n be antisymmetric. On the latter class of matrices the Pfaffian

operation is well defined, and we have in fact that [11]

qdetA = Pf(AZ2n), (3.3)

which for our present purposes can be taken as the definition of qdet (in fact the results of [36] are written

in terms of Pfaffians).

Let us introduce arbitrary polynomials Rj(x) of degree j, and let us follow [36] and introduce the

notation

(κ · f)(x) =

∫ ∞

−∞
w(y)κ(x, y)f(y) dy (3.4)

where we have set

wo(x) = we(x) = w(x) (3.5)

(this can always be accomplished by changing the definition of κ(x, y)), as well as the 2n× 2n antisym-

metric matrix with elements

Mjk =

∫ ∞

−∞
dxw(x)

∫ ∞

−∞
dy w(y)

(

Rj(x)Rk(y) −Rk(x)Rj(y)
)

κ(x, y), (3.6)

where the Rj(x) are the arbitrary jth degree polynomials introduced below (1.27). Then according to

[36] the parity respecting correlations for the PDF (3.1) are given by (1.27) with the elements of the

matrices therein specified by

foo(x, x
′) =

[

∑2n−1
j,k=0 w(x)Rj(x)M

−t
jk (κ · Rk)(x′) −∑2n−1

j,k=0 w(x)Rj(x)M
−t
jk w(x′)Rk(x′)

∑2n−1
j,k=0(κ ·Rj)(x)M

−t
jk (κ ·Rk)(x′) −∑2n−1

j,k=0(κ · Rj)(x)M
−t
jk w(x′)Rk(x′)

]

foe(x, y) =

[

∑2n−1
j,k=0 w(x)Rj(x)M

−t
jk w(y)Rk(y) −∑2n−1

j,k=0 w(x)Rj(x)M
−t
jk (κt · Rk)(y)

∑2n−1
j,k=0(κ ·Rj)(x)M

−t
jk w(y)Rk(y) −κ(x, y) − ∑2n−1

j,k=0(κ · Rj)(x)M
−t
jk (κt ·Rk)(y)

]

feo(y, x) =

[

−κ(x, y) +
∑2n−1

j,k=0(κ
t ·Rj)(y)M

−t
jk (κ · Rk)(x) −∑2n−1

j,k=0(κ
t ·Rj(y))M

−t
jk w(x)Rk(x)

∑2n−1
j,k=0 w(y)Rj(y)M

−t
jk (κ ·Rk)(x) −∑2n−1

j,k=0 w(y)Rj(y)M
−t
jk w(x)Rk(x)

]

fee(y, y
′) =

[

∑2n−1
j,k=0(κ

t · Rj)(y)M
−t
jk w(y′)Rk(y′) −∑2n−1

j,k=0(κ
t · Rj)(y)M

−t
jk (κt · Rk)(y′)

∑2n−1
j,k=0 w(y)Rj(y)M

−t
jk w(y′)Rk(y′) −∑2n−1

j,k=0 w(y)Rj(y)M
−t
jk (κt · Rk)(y′)

]

(3.7)
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Let us now consider the parity blind correlations. For this purpose we write the PDFs (1.4) and

(1.16) in the form
2n
∏

j=1

w(xj)
∏

1≤j<k≤2n

(xj − xk) Pf [ǫ(xj , xk)]j,k=1,...,2n (3.8)

where w(x) is given by (3.5) with the substitution (2.7), and

ǫ(x, y) =











eA|x−y|/2sgn(x− y), Laguerre case
(1 − x

1 − y

)−A sgn(x−y)/2

sgn(x − y), Jacobi case
(3.9)

In (3.9) the notation sgn(x) denotes the sign of x and is thus equal to 1 for x > 0, to 0 for x = 0 and to

−1 for x < 0. The equality of (3.8) with (1.4) and (1.16) follows from the identity

Pf
[( f(xj)

f(xk)

)sgn(xj−xk)

sgn(xj − xk)
]

j,k=1,...,2n
=

n
∏

j=1

f(xQ(2j−1))

f(xQ(2j))
ε(Q), (3.10)

where

xQ(2j−1) > xQ(2j), Q(2j) > Q(2j − 1), (j = 1, . . . , n)

and ε(Q) denotes the signature of the permutation Q. The identity (3.10) can be seen to follow from the

definition

Pf A =
∑∗

P (2l)>P (2l−1)
ε(P )

n
∏

l=1

aP (2l),P (2l−1),

valid for any 2n × 2n antisymmetric matrix A, where the ∗ denotes that only permutations which give

rise to a unique product of the ajk’s are to be included. There are (2n− 1)!! such permutations, one of

which for the Pfaffian (3.10) contributes the term on the RHS of (3.10). All other permutations give a

contribution which cancels in pairs, so the Pfaffian (3.10) is in fact equal to this single term.

The quaternion determinant formula (1.31) for PDFs of the form (3.8) has been given by Frahm and

Pichard [22]. In [22] the matrix elements of the 2 × 2 matrix f are given in terms of skew orthogonal

polynomials. In keeping with (3.7), we prefer to follow [36] and state the form of the matrix elements

which involves arbitrary polynomials of degree k, Rk(x), as well as

(ǫ · Rk)(x) :=

∫ ∞

−∞
w(y)ǫ(x, y)Rk(y) dy (3.11)

(c.f. (3.4)) and the inverse of the antisymmetric matrix

[

∫ ∞

−∞
dxw(x)

∫ ∞

−∞
dy w(y)

(

Rj(x)Rk(y) −Rk(x)Rj(y)
)

ǫ(x, y)
]

. (3.12)

Comparing the definition (3.9) of ǫ(x, y) with the definition (2.4) of κ(x, y) we see that the integral in

(3.12) is unchanged if ǫ(x, y) is replaced by κ(x, y), and is thus equal to Mjk as defined by (3.6). With

this understood, reading off from [36] we have

f(x, y) =

[

∑2n−1
j,k=0 w(x)Rj(x)M

−t
jk (ǫ ·Rk)(y) −∑2n−1

j,k=0 w(x)Rj(x)M
−t
jk w(y)Rk(y)

−ǫ(x, y) +
∑2n−1

j,k=0(ǫ · Rj)(x)M
−t
jk (ǫ · Rk)(y) −∑2n−1

j,k=0(ǫ · Rj)(x)M
−t
jk w(y)Rk(y)

]

.

(3.13)
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3.2 Skew orthogonal polynomials

Our ability to obtain closed form expressions for (3.7) in the sense of (2.15) and (2.16) relies on the

construction of the polynomials {Rj(x)} so that they exhibit the skew orthogonality property

〈R2j , R2k〉A = 〈R2j+1, R2k+1〉A = 0, 〈R2j , R2k+1〉A = rjδj,k (3.14)

where 〈 , 〉A denotes the skew inner product

〈f, g〉A =







∫ ∞
0 dy e−y/2

∫ ∞
y dx e−x/2eA(x−y)/2(f(y)g(x) − g(y)f(x)), Laguerre

∫ 1

−1 dy (1 − y)(a−1)/2
∫ 1

y dx (1 − x)(a−1)/2
(

1 − x
1 − y

)−A/2

(f(y)g(x) − g(y)f(x)), Jacobi

(3.15)

In the case A = 0 the skew orthogonal polynomials in both the Laguerre and Jacobi cases are known in

terms of an explicit series of Laguerre and Jacobi orthogonal polynomials respectively [34], as well as a

more compact form involving derivatives and integrals of these bases [1]. Analogous explicit forms of the

skew orthogonal polynomials are available in the limit A → −∞, when the PDFs (1.2) and (1.16) tend

to certain PDFs of the form (1.15) corresponding to a symplectic symmetry. Regarding this latter point

note that integration by parts shows

lim
A→−∞

(A

2

)2n
∫

XL

dx1 · · · dx2n

n
∏

l=1

al(x2l)e
−(1+A)x2l−1/2e−(1−A)x2l/2

∏

1≤j<k≤2n

(xj − xk)

=

∫

X̃L

dx2dx4 · · · dx2n

n
∏

l=1

al(x2l)e
−x2l

∏

1≤j<k≤n

(x2j − x2k)4, (3.16)

where the al are arbitrary, XL is the integration region (1.5), and X̃L the integration region x2 > x4 >

· · · > x2n ≥ 0, and

lim
A→−∞

(A

2

)2n
∫

XJ

dx1 · · ·dx2n

n
∏

l=1

al(x2l)(1 − x2l−1)
(a−A−1)/2(1 − x2l)

(a+A−1)/2
∏

1≤j<k≤2n

(xj − xk)

=

∫

X̃J

dx2dx4 · · ·dx2n

n
∏

l=1

al(x2l)(1 − x2l)
a+1

∏

1≤j<k≤n

(x2j − x2k)4, (3.17)

where the al are arbitrary, and XJ , X̃J are the integration regions

1 > x1 > x2 > · · · > x2n > −1, 1 > x2 > x4 > · · · > x2n > −1

respectively. Thus in the limit A → −∞ (1.4) reduces to the LSE with parameter a = 0, while (1.16)

reduces to the JSE with parameters a 7→ a+ 1 and b = 0. We see from (3.15) that in this limit the skew

inner product takes the form

lim
A→−∞

(A

2

)2

〈f, g〉A =







∫ ∞
0
dy e−y/2

(

f(y) d
dy (e−y/2g(y)) − (f ↔ g)

)

, Laguerre
∫ 1

−1 dy (1 − y)(a+1)/2
(

f(y) d
dy ((1 − y)(a+1)/2g(y)) − (f ↔ g)

)

, Jacobi

In keeping with the known results in the case A = 0 and A → −∞, we find that the skew inner

product admits skew orthogonal polynomials with compact expressions in terms of classical Laguerre and

Jacobi polynomials. Their derivation relies on a special integration formula for the Laguerre polynomial

Lk(x) and Jacobi polynomial P
(a,0)
k (x), and the latter in turn rely on differentiation formulas for the

same polynomials.
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Lemma 4. We have

d

dt
Lp(t) = −

p−1
∑

l=0

Ll(t), (3.18)

(1 − t)
d

dt
P (a,0)

p (t) = −pP (a,0)
p (t) +

p−1
∑

l=0

(2l + 1 + a)(−1)p−1−lP
(a,0)
l (t). (3.19)

Proof. The formula (3.18) is an immediate consequence of the well known formula

d

dt

(

La
n(t) − La

n+1(t)
)

= La
n(t)

in the case a = 0. To derive (3.19), we make use of the general formula

d

dt
P (a,b)

p (t) =
1

2
(p+ a+ b+ 1)P

(a+1,b+1)
p−1 (t)

in the case b = 0, then the general formula

(n+
1

2
(a+ b) + 1)(1 − t)P (a+1,b)

n (t) = (n+ a+ 1)P (a,b)
n (t) − (n+ 1)P

(a,b)
n+1 (t)

again in the case b = 0, to deduce that

(1 − t)
d

dt
P (a,0)

p (t) =
p+ 1 + a

2p+ 1 + a

{

(p+ a)P
(a,1)
p−1 (t) − pP (a,1)

p (t)
}

.

The formula (3.19) now follows from repeated use of the general formula

P (a,b)
n (t) =

1

n+ a+ b

(

(2n+ a+ b)P (a,b−1)
n (t) − (n+ a)P

(a,b)
n−1 (t)

)

in the case b = 1. �

Proposition 5. We have

e(1−A)t/2

∫ ∞

t

e−(1−A)x/2Lk(x) dx =

k
∑

p=0

cLkpLp(t) (3.20)

where

cLkk =
2

1 −A
, cLkp = (−1)p−k 4

(1 −A)2

(1 −A

1 +A

)p+1−k

, (p = 0, . . . , k − 1), (3.21)

and

(1 − t)−(a−A+1)/2

∫ 1

t

(1 − x)(a−A−1)/2P
(a,0)
k (x) dx =

k
∑

p=0

cJkpP
(a,0)
p (t) (3.22)

where

cJkk =
1

k + (a−A+ 1)/2
, cJkp = (2p+ 1 + a)ApBk, (p = 0, . . . , k − 1), (3.23)

Ap :=
Γ(p+ (a−A+ 1)/2))

Γ(p+ (a+A+ 3)/2))
, Bk :=

Γ(k + (a+A+ 1)/2))

Γ(k + (a−A+ 3)/2))
. (3.24)

Proof. Consider first (3.20). Multiplying both sides by e−(1−A)t/2 and differentiating, making use of

(3.18), gives

−Lk(t) = − (1 −A)

2

k
∑

p=0

cLkpLk(t) −
k

∑

p=0

cLkp

p−1
∑

l=0

Ll(t).
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Equating coefficients of Lk(t) gives cLkk as stated in (3.21). Equating coefficients of Lp(t) (p < k) gives

0 = − (1 −A)

2
cLkp −

k
∑

j=p+1

cLkj (p < k). (3.25)

Replacing p by p− 1 and subtracting shows

δk,p = − (1 −A)

2
cLk p−1 −

(1 +A)

2
cLkp (p ≤ k) (3.26)

Solving this for cLkp, p = k − 1, k− 2, . . . , 0 in order, making use of the known value of cLpp, completes the

derivation of (3.21).

Consider now (3.22). Multiplying both sides by (1 − t)(a−A+1)/2 and differentiating, making use of

(3.19), gives

−P (a,0)
k (t) =

k
∑

p=0

−
(

p+
1

2
(a−A+ 1)

)

cJkpP
(a,0)
p (t)

+

k
∑

p=0

p−1
∑

j=0

cJkp(2j + 1 + a)(−1)p−1−jP
(a,0)
j (t).

Equating coefficients of P
(a,0)
p (t) gives

−δp,k = −
(

p+
1

2
(a−A+ 1)

)

cJkp +
k

∑

l=p+1

cJkl(2p+ 1 + a)(−1)l−1−p, (3.27)

and replacing p by p− 1, multiplying by (2p+ 1 + a)/(2p− 1 + a), then adding to the original we obtain

−δp,k =
(

p+
1

2
(a+A+ 1)

)

cJkp − (p+ (a−A− 1)/2)(2p+ 1 + a)

2p− 1 + a
cJk p−1. (3.28)

It follows from (3.27) with p = k that the value of cJkk is as stated in (3.23). From knowledge of cJkk we

can use (3.28) with p = k − 1, k − 2, . . . , 0 in order to deduce the formula for cJkp, p < k in (3.23). �

An immediate corollary of Proposition 5 combined with the orthogonalities (1.33) and (1.36) is the

following integration formulas, which have direct use in the determination of the sought skew orthogonal

polynomials.

Corollary 1. We have

∫ ∞

0

dt e−(1+A)t/2Lj(t)

∫ ∞

t

dx e−(1−A)x/2Lk(x) =

{

0, j > k

cLkj , j ≤ k
(3.29)

and
∫ 1

−1

dt (1 − t)(a−A−1)/2P
(a,0)
j (t)

∫ 1

t

dx (1 − x)(a+A−1)/2P
(a,0)
k (x)

=











0, j > k

2a+1

2j + a+ 1
cJkj , j ≤ k

(3.30)

The result of Corollary 1 implies that in both the Laguerre and Jacobi cases, we have identified a

family of polynomials {pj(x)} (pj(x) = Lj(x) in the Laguerre case, and pj(x) = P
(a,0)
j (x) in the Jacobi

case) such that

〈pj , pk〉A =











ajbk, j < k

0, j = k,

−ajbk, j > k

(3.31)
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for certain aj , bk. We can use this special structure to construct the corresponding skew orthogonal

polynomials as series in {pj(x)},

Rl(x) =

l
∑

j=0

αljpj(x), αll = 1. (3.32)

This is equivalent to finding a lower triangular matrix T = [αjk]j,k=0,1,...,2n−1 with 1’s down the diagonal

such that

T [αjk]T t =



























0 r0

−r0 0

0 r1

−r1 0
. . .

0 rn−1

−rn−1 0



























(3.33)

where on the RHS all elements not explicitly shown are zero. An explicit solution to this problem is given

by the following result.

Proposition 6. Let pj(x) (j = 0, 1, . . . , ) denote a polynomial of degree j, and suppose the value of the

skew product 〈pj , pk〉 factorizes as specified by (3.31). Then for l even, with

αl 2j+1 = −
∏l/2−1

µ=j+1 a2µ+1
∏l/2−1

µ=j+1 a2µ

∏l/2
µ=j+1 b2µ

∏l/2
µ=j+1 b2µ−1

, αl 2j =

∏l/2−1
µ=j a2µ+1

∏l/2−1
µ=j a2µ

∏l/2
µ=j+1 b2µ

∏l/2
µ=j+1 b2µ−1

, j ≤ l/2 − 1 (3.34)

and for l odd, with

αl l−1 = − bl
bl−1

, αlj = 0, j ≤ l − 2 (3.35)

the polynomials (3.32) exhibit the skew orthogonality property (3.14). The corresponding normalization

is given by

r(l−1)/2 = al−1bl. (3.36)

Proof. Suppose first that l is even, and consider

〈pj , Rl〉A, j ≤ l.

Since pj can be written in terms of {Rk}k=0,...,l, it follows from (3.14) that

〈pj , Rl〉A = 0. (3.37)

But on the other hand, it follows from (3.32) and (3.31) that

〈pj , Rl〉A = aj

l
∑

µ=j+1

αlµbµ − bj

j−1
∑

µ=0

αlµaµ. (3.38)

Equating (3.37) and (3.38), and calling the resulting equation Cj we see that forming

− 1

aj
Cj +

1

aj−1
Cj−1

gives the equation

αljbj −
bj−1

aj−1

j−2
∑

µ=0

αlµaµ +
bj
aj

j−1
∑

µ=0

αlµaµ = 0, (3.39)
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valid for j = 1, 2, . . . . Substituting j = 1, 2, . . . in order in (3.39), we deduce that

αl 2k+1 = − a2k

a2k+1
αl 2k

αl 2k+2 = −b2k+1

b2k+2
αl 2k+1 (3.40)

valid for k = 0, 1, . . . , l/2− 1. Recalling the normalization αll = 1 we see that the recurrences reproduce

(3.34).

Consider now the case l odd. Then

〈pl−1, Rl〉A = r(l−1)/2,

and it follows from this and (3.38) with j = l − 1 that

r(l−1)/2 =
(

al−1Bl −Bl−1

l−2
∑

µ=0

αlµaµ

)

. (3.41)

Making use of (3.39), which remains valid for j < l − 1, we thus have

−r(l−1)/2

al−1
= αl l−1bl−1 −

bl−2

al−2

l−3
∑

µ=0

αlµaµ +
bl−1

al−1

l−2
∑

µ=0

αlµaµ. (3.42)

The fact that (3.39) remains valid for j < l− 1 means that the equations (3.40) are again valid, this time

for 2k+ 1 ≤ l− 2 in the first equation and 2k+ 2 ≤ l− 3 in the second equation. In particular, since we

are assuming l is odd, it follows from the first equation in (3.40) that

m
∑

µ=0

αlµaµ = 0, m = 1, 3, . . . , l − 2

and thus (3.41) and (3.42) simplify to (3.36) and

−r(l−1)/2

al−1
= αl l−1bl−1 −

bl−2

al−2
αl l−3al−3 (3.43)

respectively. Substituting (3.36) in (3.43), we see that choosing αl l−3 = 0 implies the value of αl l−1 given

in (3.35). The final equation in (3.35), αlj = 0, j ≤ l− 2, follows from having chosen αl l−3 = 0 in (3.43)

and the recurrences (3.40). �

Examination of the above proof shows that for l odd the value of αl l−1 is in fact completely arbitrary.

This is because the skew orthogonal polynomials as specified by (3.14) are not unique. For a given family

of polynomials {Rj(x)}j=0,1,... satisfying (3.14), the family with

R2j+1(x) 7→ R2j+1(x) + γjR2j(x),

γj arbitrary, also satisfy (3.14). This non-uniqueness underlies the arbitrariness of αl l−1; the choice made

in (3.35) leads to the simplest result in that with this choice we then have αlj = 0 for all j ≤ l − 2.

Inserting the explicit value of ajbk in (3.31) from Corollary 1, we get from Proposition 6 the following

explicit formulas for the skew orthogonal polynomials in the Laguerre and Jacobi cases.

Corollary 2. The polynomials

R
(L)
2l−1(x) = L2l−1(x) −

A+ 1

A− 1
L2l−2(x)

R
(L)
2l (x) =

l
∑

j=0

L2j(x) −
A+ 1

A− 1

l−1
∑

j=0

L2j+1(x) (3.44)
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are skew orthogonal with respect to the skew inner product (3.15) in the Laguerre case, while the polyno-

mials

R
(J)
2l−1(x) = P

(a,0)
2l−1 (x) − 2l+ (a−A− 3)/2

2l+ (a−A− 1)/2
P

(a,0)
2l−2 (x)

R
(J)
2l (x) = P

(a,0)
2l (x) +

2l−1
∑

j=0

(−1)j j + (a− (−1)jA+ 1)/2

2l + (a−A+ 1)/2
P

(a,0)
j (x) (3.45)

are skew orthogonal with respect to the skew inner product (3.15) in the Jacobi case. The corresponding

normalizations are

r
(L)
l = − 4

(1 −A)2
, r

(J)
l =

2a+1

(2l + (a−A+ 3)/2)(2l+ (a−A+ 1)/2)
. (3.46)

Even though the matrix elements (3.7) for the correlations (1.27) explicitly depend on {Rj(x)}, we

will not directly make use of the formulas (3.44) and (3.45) in our subsequent simplification of (3.7).

Rather we will make use of these formulas to evaluate the indefinite integral

∫ ∞

y

w(x)κ(x, y)Rk(x) dx, (3.47)

which will then be used in (3.7). With Rk(x) replaced by pk(x), this integral is given by (3.20) in the

Laguerre case, and (3.22) in the Jacobi case. Using the notation of the RHS of (3.31), and introducing

the additional symbol ãk, these results can be combined into the single formula

1

w̃(y)

∫ ∞

y

w(x)κ(x, y)pk(x) dx =
ãk

hk
pk(y) +

k−1
∑

j=0

ajbk
hj

pj(y) (3.48)

where

w̃(x) =

{

w(x), Laguerre

(1 − x)w(x), Jacobi
hj :=

∫ ∞

−∞
w(x)w̃(x)(pj(x))

2 dx.

We can use (3.48) together with the result of Proposition 6 to evaluate (3.47).

Proposition 7. Let {Rj(x)} be given by (3.32), with the αlj therein specified by Proposition 6. Further-

more, assume the integral evaluation (3.48). Then

1

w̃(y)

∫ ∞

y

w(x)κ(x, y)Rk(x) dx =

k
∑

l=0

uklpl(y) (3.49)

where for k even

ukl =











αklãl

hl
+
alαk l+1bl+1

hl
, l odd

αklãl

hl
, l even

(3.50)

while for k odd

ukl =



















ãk

hk
, l = k

ãkαk k−1

hk
+
ak−1bk
hk

, l = k − 1

0, otherwise

(3.51)
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Proof. Substituting (3.32) in (3.47) and making use of (3.48) gives

1

w̃(y)

∫ ∞

y

w(x)κ(x, y)Rk(x) dx =

k
∑

j=0

αkj ãj

hj
pj(y) +

k
∑

j=0

αkj

j−1
∑

µ=0

aµbj
hµ

pµ(y).

The coefficient of pl(y) in the above expression is

αklãl

hl
+
al

hl

k
∑

j=l+1

αkjbj . (3.52)

But for k even, the second formula in (3.40) shows that we get cancellation in pairs in the above summa-

tion, and (3.50) results. For k odd, we see from (3.35) that the summation in (3.52) vanishes for l < k−1,

and that so too does the first term. The terms which remain give (3.51). �

We now substitute the particular values of the quantities ãl, bj , ak implied by (3.21) and (3.22),

together with the explicit formulas for αkl implied by (3.44) and (3.45), and the normalizations (1.33)

and (1.36), in (3.50) and (3.51). This shows that in both the Laguerre and Jacobi cases the coefficients

ukl, up to a sign, are independent of l. Furthermore, in the case k even we can identify the resulting

series as a linear combination of

1

w̃(y)

∫ ∞

y

w(x)pk(x) dx and pk(x),

or alternatively as a linear combination of

1

w̃(y)

∫ ∞

y

w(x)pk+1(x) dx and pk+1(x).

Corollary 3. The polynomials (3.44) have the properties that

ey/2

∫ ∞

y

e−t/2eA(t−y)/2R
(L)
2k+1(t) dt =

2

1 −A

(

− L2k+1(y) + L2k(y)
)

(3.53)

and

ey/2

∫ ∞

y

e−t/2eA(t−y)/2R
(L)
2k (t) dt =

2

1 −A

(

k
∑

j=0

L2j(y) −
k

∑

j=1

L2j−1(y)
)

=
1

1 −A
L2k(y) +

ey/2

2(1 −A)

∫ ∞

y

e−s/2L2k(s) ds

=
1

1 −A
L2k+1(y) −

ey/2

2(1 −A)

∫ ∞

y

e−s/2L2k+1(s) ds (3.54)

while the polynomials (3.45) have the properties that

(1 − y)−(a+1)/2

∫ 1

y

(1 − t)(a−1)/2
( 1 − t

1 − y

)−A/2

R
(J)
2k+1(t) dt =

1

2k + (a−A+ 3)/2

(

P
(a,0)
2k+1(y) + P

(a,0)
2k (y)

)

(3.55)

and

(1 − y)−(a+1)/2

∫ 1

y

(1 − t)(a−1)/2
( 1 − t

1 − y

)−A/2

R
(J)
2k (t) dt

=
1

2k + (a−A+ 1)/2

2k
∑

l=0

P
(a,0)
l (y)

=
1

2k + (a−A+ 1)/2

(1

2
P

(a,0)
2k (y) +

2k + (a+ 1)/2

2(1 − y)(a+1)/2

∫ 1

y

(1 − t)(a−1)/2P
(a,0)
2k (t) dt

)

=
1

2k + (a−A+ 1)/2

(

− 1

2
P

(a,0)
2k+1(y) +

2k + 1 + (a+ 1)/2

2(1 − y)(a+1)/2

∫ 1

y

(1 − t)(a−1)/2P
(a,0)
2k+1(t) dt

)

(3.56)
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Proof. The series expansions follow immediately upon making the stated substitutions. To obtain the

integral formulas, we substitute for the summations in (3.54) and (3.56) according to their value implied

by (3.20) and (3.22) respectively. �

We remark that the series of Laguerre and Jacobi polynomials in (3.53)–(3.56) can each, according

to the results (3.44) and (3.45), be identified with Rj(y)
∣

∣

∣

A→−∞
for j = 2k + 1 or j = 2k as appropriate.

3.3 Summation formulas — the even-even block

The skew orthogonality property (3.14) implies the matrix Mjk as specified by (3.6) is equal to −1 times

the RHS of (3.33). Thus

M−t
jk =











0, (j, k) 6= (2l, 2l+ 1) or (2l + 1, 2l)

−r−1
l , (j, k) = (2l, 2l+ 1) (l = 0, . . . , n− 1)

r−1
l , (j, k) = (2l + 1, 2l) (l = 0, . . . , n− 1)

(3.57)

and so the double summations in (3.7) all collapse to single summations. In particular, with the entry in

row s, column s′ of the matrix fab (a, b = e or o) denoted fss′

ab , we have that

f12
ee (y, y′) =

n−1
∑

j=0

1

rj

(

Φe
2j(y)Φ

e
2j+1(y

′) − Φe
2j(y

′)Φe
2j+1(y)

)

, (3.58)

where Φe
j is defined by (1.28) and (1.29) in the Laguerre and Jacobi cases respectively. The latter indefinite

integrals are precisely those occurring in Corollary 3. Using this result, f12
ee can be expressed in terms of

the functions KL
2n in the Laguerre case and KJ

2n in the Jacobi case.

Proposition 8. In the Laguerre case

f12
ee (y, y′) =

1

4

(

∫ ∞

y

KL
2n(y′, t) dt−

∫ ∞

y′

KL
2n(y, t) dt

)

(3.59)

while in the Jacobi case

f12
ee (y, y′) =

1

4

(

(1 − y′)

∫ 1

y

KJ
2n(y′, t) dt− (1 − y)

∫ 1

y′

KJ
2n(y, t) dt

)

. (3.60)

Proof. Consider the Jacobi case. Substituting for r
(J)
j using (3.46) and substituting for Φ2k+1(y

′) using

(3.55) we see that

f12
ee (y, y′) =

1

2a+1
(1 − y)(a+1)/2(1 − y′)(a+1)/2

×
n−1
∑

j=0

(2j + (a−A+ 1)/2)
(

P
(a,0)
2j+1 (y′)Φ2j(y) + P

(a,0)
2j (y′)Φ2j(y)

)

− (y ↔ y′).

In the product P
(a,0)
2j+1(y′)Φ2j(y) we substitute for (1 − y)(a+1)/2Φ2j(y) using the third equality in (3.56),

while in the product P
(a,0)
2j+1 (y′)Φ2j(y) we substitute for (1 − y)(a+1)/2Φ2j(y) using the second equality

in (3.56). Straightforward simplification and comparison with (1.35), taking note of (1.36), gives (3.60).

The Laguerre case is similar. �

The single sum form of the other matrix elements of fee are

f11
ee (y, y′) = f22

ee (y′, y) = −
n−1
∑

j=0

w(y′)

rj

(

Φe
2j(y)R2j+1(y

′) − Φe
2j+1(y)R2j(y

′)
)

,
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f21
ee (y, y′) = −

n−1
∑

j=0

w(y)w(y′)

rj

(

R2j(y)R2j+1(y
′) −R2j+1(y)R2j(y

′)
)

. (3.61)

Noting from (1.28) that in the Laguerre case

A

2
Φe

j(x) +
d

dx
Φe

j(x) = −e−x/2Rj(x)

and from (1.29) that in the Jacobi case

A

2(1 − x)
Φe

j(x) +
d

dx
Φe

j(x) = −(1 − x)(a−1)/2Rj(x),

we see that all the quantities f11
ee , f22

ee and f21
ee can be expressed in terms of f12

ee and thus KL
2n and KJ

2n.

Proposition 9. In the Laguerre case

f11
ee (y, y′) = f22

ee (y′, y) =
(A

2
+

∂

∂y′

)

f12
ee (y, y′), f21

ee (y, y′) = −
(A

2
+

∂

∂y

)(A

2
+

∂

∂y′

)

f12
ee (y, y′) (3.62)

while in the Jacobi case

f11
ee (y, y′) = f22

ee (y′, y) =
( A

2(1 − y′)
+

∂

∂y′

)

f12
ee (y, y′),

f21
ee (y, y′) = −

( A

2(1 − y)
+

∂

∂y

)( A

2(1 − y′)
+

∂

∂y′

)

f12
ee (y, y′). (3.63)

The (0, k)-point parity aware correlation, or equivalently the k-point correlation for the even labelled

coordinates, is according to (1.24) equal to qdet[fee(yj , yl)]j,l=1,...,k. By performing elementary row and

column operations, making sure to conserve the self dual structure (3.2), we see from Proposition 9 that

in both the Laguerre and Jacobi cases all terms dependent on the parameter A can be eliminated, leaving

as the final expression

ρ(0,k)(y1, . . . , yk) = qdet









∂

∂yl
f12
ee (yj , yl) f12

ee (yj , yl)

− ∂2

∂yj∂yl
f12
ee (yj , yl)

∂

∂yj
f12
ee (yl, yj)









j,l=1,...,k

. (3.64)

The independence on A is required by the identity (1.19), valid for the Laguerre and Jacobi weights

in (1.20). Moreover, this k-point correlation must agree with the k-point correlation for the LSE with

parameter a = 0 in the Laguerre case, and for the JSE with parameters a 7→ a+ 1, b = 0 in the Jacobi

case (see (3.106) and Section 5.2).

3.4 Summation formulas — the parity blind case

The matrix element (3.61) is fundamental with respect to all other matrix elements in (3.7) and (3.13)

in that each of the latter can be constructed from (3.61) by integration. The evaluation (3.59) in the

Laguerre case and (3.63) in the Jacobi case of (3.61) then allows us to express all matrix elements in (3.7)

and (3.13) in terms of KL
2n and KJ

2n. In this subsection we will undertake this program for the matrix

elements of (3.13). Formulas for the matrix elements of the blocks feo, foe and foo in (3.17), obtained

using knowledge of the evaluation of the matrix elements for the block fee given in subsection 3.3 and

the evaluation of the matrix elements of (3.13) to be given in this subsection, will be presented in the

next subsection.
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Recalling the definition of f21
ee (y, y′) from (3.7), and the definition (3.11) of (ǫ · Rk), we see that the

matrix elements of f(x, y) in (3.13) can be written in terms of f21
ee according to

f11(x, y) = f22(y, x) =

∫ ∞

−∞
ǫ(y, t)f21

ee (x, t) dt (3.65)

f12(x, y) = −f21
ee (x, y) (3.66)

f21(x, y) = −ǫ(x, y) +

∫ ∞

−∞
ds ǫ(x, s)

∫ ∞

−∞
dt ǫ(y, t)f21

ee (s, t) (3.67)

These formulas can be made more explicit. For this purpose use will be made of the following formulas.

Lemma 10. We have

−
∫ ∞

y

KL
2n(0, u) du =

∫ ∞

0

KL
2n(y, u) du (3.68)

and

−
∫ 1

y

KJ
2n(−1, u) du =

(1 − y)

2

∫ 1

−1

KJ
2n(y, u) du (3.69)

Proof. It follows from (3.20) with t = 0, A = 0, and the evaluation formula

Lp(0) = 1 (3.70)

that
∫ ∞

0

e−t/2Lp(t) dt = 2(−1)p.

Recalling the definition (1.32) of KL
n we thus have

∫ ∞

0

KL
2n(y, u) du = 2e−y/2

2n−1
∑

p=0

(−1)pLp(y). (3.71)

Also, from (3.20) with A = 0 we have

et/2

∫ ∞

t

e−x/2Lk(x) dx = 2Lk(t) + 4(−1)k
k−1
∑

p=0

(−1)pLp(t). (3.72)

It follows from this integration formula and (3.70) that the LHS of (3.68) reduces to the RHS of (3.71).

To establish (3.69), we note that it follows from (3.22) with t = 0, A = 0, and the evaluation formula

P
(a,0)
l (0) = (−1)l (3.73)

that
∫ 1

−1

(1 − x)(a−1)/2P
(a,0)
k (x) dx =

2(a+1)/2

k + (a+ 1)/2
. (3.74)

It follows from this and (1.35) that

∫ 1

−1

KJ
2n(t, y) dt = 2−(a−1)/2(1 − y)(a−1)/2

2n−1
∑

j=0

P
(a,0)
j (y). (3.75)

Regarding the LHS of (3.69), we note from (3.22) with A = 0 that

(1 − t)−(a+1)/2

∫ 1

t

(1 − x)(a−1)/2P
(a,0)
k (x) dx =

1

k + (a+ 1)/2

{

Pk(t) + 2

k−1
∑

l=0

Pl(t)
}

. (3.76)

This integration formula together with (3.73) shows that the LHS of (3.69) reduces to the RHS of (3.75).

�
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Proposition 11. In the Laguerre case

f22(x, y) =
1

2
KL

2n(x, y) − 1

2

∂

∂y

∫ x

0

eA(x−t)/2KL
2n(t, y) dt

−A
4

∫ x

0

dt eA(x−t)/2

∫ ∞

y

du
∂

∂t
KL

2n(u, t) +
A

4
eAx/2

∫ ∞

0

KL
2n(y, u) du (3.77)

f12(x, y) =
1

4

(A

2
+

∂

∂x

)(A

2
+

∂

∂y

){

∫ ∞

x

KL
2n(y, t) dt

−
∫ ∞

y

KL
2n(x, t) dt

}

(3.78)

f21(x, y) = −eA|x−y|/2sgn(x− y) −
{

∫ y

0

eA(y−t)/2KL
2n(x, t) dt

−
∫ x

0

eA(x−t)/2KL
2n(y, t) dt

}

(3.79)

while in the Jacobi case

f22(x, y) =
1

2
(1 − x)KJ

2n(x, y) − 1

2

{

(1 − y)
∂

∂y
− 1

}

∫ x

−1

( 1 − t

1 − x

)A/2

KJ
2n(t, y) dt

+
A

4(1 − y)

∫ x

−1

dt
( 1 − t

1 − x

)A/2
∫ 1

y

du
{

1 − (1 − t)
∂

∂t

}

KJ
2n(u, t)

+
A

4(1 − y)

( 2

1 − x

)A/2
∫ 1

−1

KJ
2n(y, u) du (3.80)

f12(x, y) =
1

4

( A

2(1 − x)
+

∂

∂x

)( A

2(1 − y)
+

∂

∂y

){

(1 − y)

∫ 1

x

KJ
2n(y, t) dt

−(1 − x)

∫ 1

y

KJ
2n(x, t) dt

}

(3.81)

f21(x, y) = −
(1 − x

1 − y

)−Asgn(x−y)/2

sgn(x − y) −
{

(1 − x)

∫ y

−1

( 1 − t

1 − y

)A/2

KJ
2n(x, t) dt

−(1 − y)

∫ x

−1

( 1 − t

1 − x

)A/2

KJ
2n(y, t) dt

}

(3.82)

Proof. Consider first the Laguerre case. The formula (3.78) follows immediately from (3.66), upon

substituting (3.59) in the second formula of (3.62). In preparation for deriving (3.77), we note that the

last substitution, after computation of the corresponding derivatives where possible, yields

f21
ee (y, y′) =

1

4

(A

2

)2
{

∫ ∞

y′

KL
2n(y, t) dt+

∫ ∞

y

KL
2n(y′, t) dt

}

+
A

8

{
∫ ∞

y′

∂

∂y
KL

2n(y, t) dt−
∫ ∞

y

∂

∂y′
KL

2n(y′, t) dt

}

+
1

4

{

∂

∂y
− ∂

∂y′

}

KL
2n(y, y′). (3.83)

Thus there are three distinct terms which must be substituted in (3.65).

Substituting the A independent term from (3.83) in (3.65) and integrating by parts gives the contri-

bution

1

4

{

− eAx/2KL
2n(0, y) + 2KL

2n(x, y) +
A

2

∫ ∞

0

eA|x−t|/2KL
2n(t, y) dt

−2
∂

∂y

∫ x

0

eA(x−t)/2KL
2n(t, y) dt+

∂

∂y

∫ ∞

0

eA|x−t|/2KL
2n(t, y) dt

}

. (3.84)
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The expression obtained by substituting the term proportional to A from (3.83) in (3.65) can be simplified

by integrating by parts immediately in one term, while in the other first making use of the identity

−A
2

sgn(x − t)eA|x−t|/2 =
d

dt
eA|x−t|/2 (3.85)

and then integrating by parts. Doing this allows the contribution to be written

1

4
eAx/2

∫ ∞

0

∂

∂y
KL

2n(t, y) dt− 1

4

∫ ∞

0

eA|x−t|/2 ∂

∂y
KL

2n(t, y) dt

−A
4

∫ x

0

dt eA|x−t|/2

∫ ∞

y

du
∂

∂t
KL

2n(u, t)

+
A

8

∫ ∞

0

dt eA|x−t|/2

∫ ∞

y

du
∂

∂t
KL

2n(u, t). (3.86)

Simplifying the contribution to (3.65) from the term proportional to A2 from (3.83) in the same way

gives for the final term

A

8

{

− eAx/2

∫ ∞

y

KL
2n(0, u) du−

∫ ∞

0

dt eA|x−t|/2

∫ ∞

y

du
∂

∂t
KL

2n(u, t)

+eAx/2

∫ ∞

0

KL
2n(y, u) du−

∫ ∞

0

eA|x−t|/2KL
2n(y, t) dt

}

(3.87)

Adding together (3.84)–(3.87) and simplifying using (3.68) and the formula

KL
2n(0, u) =

∫ ∞

0

∂

∂y
KL

2n(y, u) du, (3.88)

which follows from (3.68) by differentiation, we obtain (3.77). To derive (3.79), we first note from (3.65)

that (3.67) can be rewritten

f21(x, y) = ǫ(x, y) +

∫ ∞

−∞
ds ǫ(x, s)f11(s, y),

and then substitute (3.77) in this formula. Simplification along the same lines as that detailed above

gives (3.79).

Next we turn our attention to the Jacobi case. Substituting (3.60) in (3.63), then substituting the

result in (3.66) gives (3.81). The former substitution, with the derivatives computed where possible,

yields

f21
ee (y, y′) =

A2

16

{

1

1 − y′

∫ 1

y′

KJ
2n(y, t) dt− 1

1 − y

∫ 1

y

KJ
2n(y′, t) dt

}

+
A

8

{

1

1 − y′

∫ 1

y′

(

1 − (1 − y)
∂

∂y

)

KJ
2n(y, t) dt− 1

1 − y

∫ 1

y

(

1 − (1 − y′)
∂

∂y′

)

KJ
2n(y′, t) dt

}

−1

4

{

(

(1 − y)
∂

∂y
− 1

)

−
(

(1 − y′)
∂

∂y′
− 1

)

}

KJ
2n(y, y′). (3.89)

This has an analogous structure to (3.83), consisting of three distinct terms which must be substituted

in (3.65).

Substituting the A dependent term from (3.89) in (3.65) and integrating by parts gives the contribu-
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tion

1

2

( 2

1 − x

)A/2

KJ
2n(−1, y) +

1

2

∫ x

−1

(

(1 − t)
∂

∂t
− 1

)( 1 − t

1 − x

)A/2

KJ
2n(t, y) dt

+
A

8

∫ 1

−1

( 1 − t

1 − x

)Asgn(x−t)/2

KJ
2n(t, y) dt

−1

2

(

(1 − y)
∂

∂y
− 1

)

∫ x

−1

( 1 − t

1 − x

)A/2

KJ
2n(t, y) dt

+
1

4

(

(1 − y)
∂

∂y
− 1

)

∫ 1

−1

( 1 − t

1 − x

)Asgn(x−t)/2

KJ
2n(t, y) dt. (3.90)

For the term proportional to A in (3.89), as well as using direct integration by parts to simplify its

contribution to (3.65) in one of the terms, we make use of the identity

−A
2

sgn(x− t)
1

1 − t
(1 − t)Asgn(x−t)/2 =

d

dt
(1 − t)−Asgn(x−t)/2 (3.91)

(c.f. (3.85)) and then integrate by parts in the other. This contribution is then found to equal

−1

4

( 2

1 − x

)A/2
∫ x

−1

(

1 − (1 − y)
∂

∂y

)

KJ
2n(t, y) dt

+
1

4

∫ 1

−1

( 1 − t

1 − x

)Asgn(x−t)/2(

1 − (1 − y)
∂

∂y

)

KJ
2n(t, y) dt

+
A

4

1

1 − y

∫ x

−1

( 1 − t

1 − x

)A/2(
∫ 1

y

(

1 − (1 − t)
∂

∂t

)

KJ
2n(t, u) du

)

dt

−A
8

1

1 − y

∫ 1

−1

( 1 − t

1 − x

)Asgn(x−t)/2(
∫ 1

y

(

1 − (1 − t)
∂

∂t

)

KJ
2n(t, u) du

)

dt (3.92)

Use of (3.91) and integration by parts shows that the contribution to (3.65) from the term proportional

to A2 in (3.89) can be written

−A
4

1

1 − y

( 2

1 − x

)A/2
∫ 1

y

KJ
2n(−1, u) du

+
A

8

1

1 − y

∫ 1

−1

( 1 − t

1 − x

)Asgn(x−t)/2(
∫ 1

y

(

1 − (1 − t)
∂

∂t

)

KJ
2n(t, u) du

)

dt

+
A

8

( 2

1 − x

)A/2
∫ 1

−1

K(y, t) dt− A

8

∫ 1

−1

( 1 − t

1 − x

)Asgn(x−t)/2

KJ
2n(y, t) dt. (3.93)

Adding together (3.90), (3.92) and (3.93), and making use of (3.69) gives (3.80), but with the term

1

2
(1 − x)KJ

2n(x, y) (3.94)

replaced by

( 2

1 − x

)A/2

KJ
2n(−1, y) +

1

2

∫ x

−1

(

1 − (1 − t)
∂

∂t

)( 1 − t

1 − x

)A/2

KJ
2n(t, y) dt. (3.95)

In fact (3.94) and (3.95) are equal, as is deduced by integration by parts in the latter. �
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In the orthogonal symmetry limit, A = 0, the results of Proposition 11 can be written

f22(x, y) =















1

2
KL

2n(x, y) − 1

2

∂

∂y

∫ x

0

KL
2n(t, y) dt, Laguerre

1

2
(1 − x)KJ

2n(x, y) − 1

2

(

(1 − y)
∂

∂y
− 1

)

∫ x

−1

KJ
2n(t, y) dt, Jacobi

(3.96)

2f12(x, y) =
∂

∂x
f22(x, y) (3.97)

1

2
f21(x, y) = −1

2
sgn(x− y) −

∫ y

x

f22(x, t) dt. (3.98)

The form of f22(x, y) given here is different to the form known from earlier literature (see Section 5.1).

It is also of interest to specialize Proposition 11 in the symplectic symmetry limit, A → −∞. Inte-

gration by parts shows

f22(x, y) ∼















1

2
KL

2n(x, y) +
1

2

∂

∂x

∫ ∞

y

KL
2n(t, x) dt, Laguerre

1

2
(1 − x)KJ

2n(x, y) +
1

2

1 − x

1 − y

(

(1 − x)
∂

∂x
− 1

)

∫ 1

y

KJ
2n(t, x) dt, Jacobi

(3.99)

8

A2
f12(x, y) ∼















−
∫ x

y

f22(t, y) dt, Laguerre

− 1

1 − x

∫ x

y

f22(t, y)

(1 − t)
dt, Jacobi

(3.100)

A2

8
f21(x, y) ∼











∂

∂y
f22(x, y), Laguerre

(1 − y)
∂

∂y
(1 − y)f22(x, y), Jacobi

. (3.101)

Equivalently, these formulas can be written

A2

8
f21(x, y) ∼















1

2

(

∫ ∞

x

KL
2n(y, t) dt−

∫ ∞

y

KL
2n(x, t) dt

)

, Laguerre

1

2

( 1

1 − x

∫ 1

x

KJ
2n(y, t) dt− 1

1 − y

∫ 1

y

KJ
2n(x, t) dt

)

, Jacobi
(3.102)

f22(x, y) ∼











∂

∂x

A2

8
f21(y, x), Laguerre

(1 − x)
∂

∂x
(1 − x)

A2

8
f21(y, x), Jacobi

(3.103)

8

A2
f12(x, y) ∼















− ∂

∂y∂x

A2

8
f21(x, y), Laguerre

−(1 − x)(1 − y)
∂2

∂x∂y
(1 − x)(1 − y)

A2

8
f21(y, x), Jacobi

(3.104)

Defining

f̃21(x, y) =











lim
A→−∞

A2

8
f21(x, y), Laguerre

(1 − x)(1 − y) lim
A→−∞

A2

8
f21(x, y), Jacobi

(3.105)

it follows from (3.102)–(3.104), the first equality in (3.65) and the quaternion determinant formula (1.31),

that the k-point correlation is identical in structure to (3.64), but with f12 replaced by f̃21. Furthermore,

comparing (3.102) and (3.105) with (3.59), (3.60) we see that

f̃21(x, y) = 2f12
ee (x, y). (3.106)
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This is consistent with the fact that both the even-even correlation (3.64) and the A→ −∞ limit of the

parity blind correlations coincide with the correlations for the corresponding symplectic ensemble (the

factor of 2 in (3.106) is due to the double degeneracy inherent in the A→ −∞ limit).

3.5 Summation formulas — the odd-even and even-odd blocks

The blocks feo and foe in (3.7) are duals in the sense of (3.2), and thus

feo(y, x) =

[

f22
oe (x, y) −f12

oe (x, y)

−f21
oe (x, y) f11

oe (x, y)

]

.

Consequently, it suffices to consider one of these blocks, foe say. Now, analogous to the formulas (3.65)–

(3.67) expressing the elements of the matrix f(x, y) in terms of f21
ee , we can express the elements of

foe(x, y) in terms of f21
ee . Thus we see from (3.7) that

f11
oe (x, y) = f21

ee (x, y)

f12
oe (x, y) = −

∫ ∞

y

κ(t, y)f21
ee (x, t) dt = −f11

ee (y, x)

f21
oe (x, y) =

∫ x

−∞
κ(x, t)f21

ee (t, y) dt

f22
oe (x, y) = −κ(x, y) −

∫ x

−∞
dt κ(x, t)

∫ ∞

y

ds κ(s, y)f21
ee (t, s). (3.107)

The last two formulas can be rewritten to read

f21
oe (x, y) = −f22(x, y) + f11

ee (x, y)

f21
oe (x, y) = −κ(x, y) −

∫ ∞

y

κ(s, y)f22(x, s) ds+ f12
ee (x, y). (3.108)

The only quantity in these formulas which is not known explicitly from our study of the even-even blocks

and the parity blind case is the integral in (3.108). Its simplified form is readily computed.

Proposition 12. In the Laguerre case

∫ ∞

y

κ(s, y)f22(x, s) ds =
1

2

∫ x

0

eA(x−t)/2KL
2n(t, y) dt+

1

2

∫ x

0

dt eA(x−t)/2

∫ ∞

y

du
∂

∂t
KL

2n(u, t)

+
1

2
eAx/2

∫ ∞

y

KL
2n(0, t) dt (3.109)

while in the Jacobi case
∫ ∞

y

κ(s, y)f22(x, s) ds =
1

2
(1 − y)

∫ x

−1

( 1 − t

1 − x

)A/2

KJ
2n(t, y) dt

−1

2

∫ x

−1

dt
( 1 − t

1 − x

)A/2
∫ 1

y

du
(

1 − (1 − t)
∂

∂t

)

KJ
2n(t, u) +

( 2

1 − x

)A/2
∫ 1

y

KJ
2n(−1, t) dt(3.110)

Proof. In the Laguerre case f22(x, s) is given by (3.77), while in the Jacobi case it is given by (3.80).

Substituting these formulas as appropriate, and simplifying according to the strategy of the proof of

Proposition 11 gives the stated formulas. �
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3.6 Summation formulas — the odd-odd block

We read off from (3.7) that

f11
oo (x, x′) = f22

oo (x, x′) = −f21
oe (x′, x)

f12
oo (x, x′) = −f22

ee (x, x′)

f21
oo (x, x′) =

∫ x

−∞
dt κ(x, t)

∫ x′

−∞
ds κ(x′, s)f21

oe (t, s)

= f21(x, x′) + f12
ee (x, x′) − f22

oe (x′, x) − f22
oe (x, x′). (3.111)

The quantity f21
oe is specified by (3.108) (with f22 and f11

ee therein having the explicit forms (3.77), (3.80)

and (3.62), (3.63) respectively); f22
ee is given by the explicit forms (3.79), (3.82); f12

ee by (3.59), (3.60);

f22
oe by (3.108) (with f12

ee given as noted, and the integral by Proposition 12).

4 Scaled form of the correlations

4.1 Superimposed orthogonal ensembles with a parameter

Consider first the Laguerre case. To leading order, the support of the spectrum for the LOE is [0, 4n].

As has been identified in previous studies (see e.g. [14]), there are three distinct scaling regimes in which

different limiting forms of the correlations are obtained. These are the hard edge, specified by the change

of scale

xj 7→ Xj/4n, (4.1)

the bulk of the spectrum, specified by

xj 7→ c+ πXj/
√
n, 0 < c < 4n (fixed) (4.2)

and the soft edge, specified by

xj 7→ 4n+ 2(2n)1/3Xj . (4.3)

In general, under the linear change of scale

xj = a(n) + b(n)Xj ,

the correlation functions transform to correlation functions in the new variables {Xj} according to

ρk(X1, . . . , Xk) = (b(n))kρk(x1, . . . , xk). (4.4)

The significance of the particular scales (4.1)–(4.3) is that

ρscaled
k (X1, . . . , Xk) := lim

n→∞
(b(n))kρk

(

a(n) + b(n)X1, . . . , a(n) + b(n)Xk

)

(4.5)

is well defined.

For the parameter dependent extension of the LOE (1.4), and the parameter dependent extension of

the superimposed ensemble LOE∪LOE (1.8), we expect the hard edge, bulk and soft edge scaled limits

to again all be well defined provided the scale of the parameter A is suitably chosen. The correct choice

can be anticipated by the requirement that the quantity eA(x−y)/2 occurring in the formulas (2.15) and

(3.77)–(3.79) be of order unity in the scaled limit. This is achieved by

A 7→











4nα, hard edge√
nα/π, bulk

α/2(2n)1/3, soft edge,

(4.6)
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where α denotes the scaled parameter.

Let c, ω > 0 be otherwise arbitrary fixed real numbers. Using the asymptotic formulas [37]

e−x/2xa/2La
n(x) = n′−a/2 (n+ a)!

n!
Ja(2(n′x)1/2) +R1, (4.7)

n′ = n+ (a+ 1)/2, R1 =

{

x5/4O(na/2−3/4), cn−1 ≤ x ≤ ω

xa/2+2O(na), 0 < x ≤ cn−1

where Ja(z) denotes the Bessel function of order a,

e−x/2xa/2La
n(x) = na/2 1

π1/2(nx)1/4

(

cos(2(nx)1/2−aπ/2−π/4)+(nx)−1/2O(1)

)

, cn−1 ≤ x ≤ ω (4.8)

and [35]

e−x/2xa/2La
n(x) = na/2

(

(−1)n

2a(2n)1/3
Ai(t) + O(e−t)o(n−1/3)

)

(4.9)

where x = 4n+ 2 + 2(2n)1/3t, t ∈ [t0,∞), it is straightforward to derive the well known formulas

Khard(X,Y ) := lim
n→∞

1

4n
KL

(X

4n
,
Y

4n

)

= χX,Y >0
Ja(X1/2)Y 1/2J ′

a(Y 1/2) −X1/2J ′
a(X1/2)Ja(Y 1/2)

2(X − Y )

∣

∣

∣

a=0

= χX,Y >0
1

4

∫ 1

0

Ja(
√
Xt)Ja(

√
Y t) dt

∣

∣

∣

a=0
, (4.10)

Kbulk(X,Y ) := lim
n→∞

π√
n
KL

(

c+
πX√
n
, c+

πY√
n

)

=
sinπ(X − Y )

π(X − Y )
=

∫ 1

0

cosπ(X − Y )t dt (4.11)

Ksoft(X,Y ) := lim
n→∞

2(2n)1/3KL(4n+ 2(2n)1/3X, 4n+ 2(2n)1/3Y )

=
Ai(X)Ai ′(Y ) − Ai(Y )Ai ′(X)

X − Y
=

∫ ∞

0

Ai(X + t)Ai(Y + t) dt. (4.12)

We see from (2.15) that knowledge of (4.10)–(4.12) immediately gives the scaled form of KL
ee(y, y

′), since

we have

Kscaled
ee (Y, Y ′) := lim

n→∞
b(n)KL

n (y, y′) = Kscaled(Y, Y ′). (4.13)

The scaled form of the remaining quantities in (2.15) is also obtained by formally replacingKL
n by Kscaled.

We will see that the derivation is straightforward in the cases of the hard edge and bulk limits. For the

soft edge limit the integrations in the formulas for KL
eo and KL

oo are to leading order over the interval

[0, 4n] whereas (4.9) applies to the interval [4n,∞). To overcome this difficulty the following identity will

be used.

Lemma 13. We have

eAx/2

∫ x

0

e−Au/2KL
n (y, u) du =

(A− 1

A+ 1

)n−1

eA(x−y)/2

∫ ∞

y

e−(1−A)u/2
( d

du
Ln(u)

)

du

−eAx/2

∫ ∞

x

e−Au/2KL
n (y, u) du. (4.14)
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Proof. It follows from the integration formula [23]

∫ ∞

0

e−(1+A)t/2Lk(t) dt =
2

1 +A

(A− 1

A+ 1

)k

that
∫ ∞

0

e−Au/2KL
n (y, u) du =

2

1 +A
e−y/2

n−1
∑

l=0

(A− 1

A+ 1

)l

Ll(y). (4.15)

But the sum in (4.15) can, according to (3.20), be written as an integral involving a single Laguerre

polynomial, and (4.14) results. �

Proposition 14. Let the term “scaled” refer to any of the hard edge, bulk or soft edge limits as specified

by (4.1)–(4.6). Then in addition to (4.13) we have

Kscaled
eo (Y,X) := lim

n→∞
KL

eo(y, x) = −eα(X−Y )/2χx>y + eαX/2

∫ X

−∞
e−αv/2Kscaled(v, Y ) dv (4.16)

Kscaled
oe (X,Y ) := lim

n→∞
(b(n))2KL

oe(x, y) = −e−αX/2 ∂

∂X

{

eαX/2Kscaled(X,Y )
}

(4.17)

Kscaled
oo (X,X ′) := lim

n→∞
b(n)KL

oo(x, x
′) = −eα(X−X′)/2 ∂

∂X

{

eαX/2

∫ X′

−∞
e−αv/2Kscaled(X, v) dv

}

,

(4.18)

valid for α ≤ 0 in the hard edge and bulk cases, and for all α in the soft edge case.

Proof. Using the differentiation formula

d

dt
La

p(t) = −La+1
p−1(t)

one can check the well known fact that the asymptotic formulas (4.7)–(4.9) remain valid after differen-

tiation. This, together with (4.13), then implies (4.17). Consider next Khard
eo . The explicit form of the

remainder term in (4.7) implies it does not contribute to the scaled limit (4.1), rather the sole contribution

comes from (4.13), and this implies (4.16) in the hard edge case (note that the lower terminal in (4.16)

can be replaced by 0 in this case). For the bulk limit we note from (4.8) and (4.9) that we have

Kbulk
eo (Y,X) = −eα(X−Y )/2χx>y + eαX/2

∫ X

−∞
e−αv/2Kscaled(v, Y ) dv +R, (4.19)

where

R = lim
ǫ→0

lim
n→∞

eA
√

nc/πeαX/2 π√
n

∫ ǫ

0

e−A
√

nv/2KL
n (v, c) dv,

and in which we are free to choose ǫ < c. Now it follows from (4.7) that

|KL
n (v, c)| ≤ √

nf(v), 0 ≤ v ≤ ǫ

where f(v) is integrable. Thus with A ≤ 0 the remainder term R in (4.19) vanishes.

The remaining case is the soft edge limit. We make use of the formula (4.14) and the asymptotic

expansion (4.9), which together imply

lim
n→∞

soft edge

b(n)eαx/2

∫ x

0

e−αv/2KL
n (v, y) dy

= e−α3/24eα(X−Y )/2

∫ ∞

Y

eαu/2Ai(u) du− eαX/2

∫ ∞

X

e−αu/2Ksoft(u, Y ) du.
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The form (4.16) now follows after making use of the easily verified integration formula
∫ ∞

−∞
eǫtAi(t) dt = eǫ3/3 (4.20)

and the integral form of Ksoft in (4.12) to deduce that
∫ ∞

−∞
e−αu/2Ksoft(u, Y ) du = e−α3/24e−αY/2

∫ ∞

Y

Ai(t)eαt/2 dt.

Finally, the result (4.18) follows from the fact, already noted, that the key asymptotic formulas

(4.7)–(4.9) remain valid under differentiation, together with the method just used to derive (4.16). �

We now turn our attention to the Jacobi case. Here there is a hard edge scaling limit in the neigh-

bourhood of both x = −1 and x = 1, as well as a bulk limit. From previous studies (see e.g. [33]) we

know the appropriate scales are

x 7→ 1 − X

2n2
, x 7→ −1 +

X

2n2
(4.21)

for the hard edge at x = 1, x = −1 respectively, and

x 7→ cos θ0 −
X

n
sin θ0 ∼ cos(θ0 +

X

n
), 0 < θ0 < π (4.22)

in the bulk. For the scaling of the parameter A we choose

A 7→











4n2α, hard edge atx = 1

α, hard edge atx = −1

nα(1 − cos θ0)/ sin θ0, bulk

(4.23)

This is suggested by the criterion that the term ((1 − x)/(1 − y))−A/2 tend to a non-constant order one

quantity.

A rigorous analysis of the scaling limits for the JOE and JSE has recently been undertaken by Dueñez

[12]. Following the methodology therein, we make use of the asymptotic formulas

P (a,b)
n (cos θ) = (πn)−1/2

(

sin
θ

2

)−a−1/2(

cos
θ

2

)−b−1/2

cos(n′θ + γ) + E1,

n′ = n+ (a+ b + 1)/2, γ = −π
2
(a+ 1/2) (4.24)

for 0 < θ < π, where

E1 = θ−a−3/2O(n−3/2), uniformly for c/n ≤ θ ≤ π − ǫ (c, ǫ≪ 1)

and
(

sin
θ

2

)a(

cos
θ

2

)b

P (a,b)
n (cos θ) = n−a Γ(n+ a+ 1)

n!

√

θ

sin θ
Ja(n′θ) + E2 (4.25)

for 0 ≤ θ < π, where

E2 =

{

θ1/2O(n−3/2), c/n ≤ θ ≤ π − ǫ

θa+2O(na), 0 < θ ≤ c/n,

again uniformly in θ. The asymptotic form (4.24) is dominant in the bulk, while (4.25) is dominant for

the hard edge at x = 1. To study the hard edge at x = −1, we make use of the fact that

P (a,b)
n (− cos θ) = P (b,a)

n (cos θ),

and then use (4.25). The strategy of the proof of Proposition 14 then yields the following forms for the

matrix elements determining the scaled correlations.
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Proposition 15. The results of Proposition 14 hold for the scaled limit of the matrix elements (2.16) in

the bulk and for the hard edge at x = −1. For the hard edge at x = 1 we have

Khard
ee (Y, Y ′) =

( Y

Y ′

)1/2

Khard(Y, Y ′)

Khard
eo (Y,X) = −

(X

Y

)−α/2

χx>y +
Y 1/2

Xα/2

∫ ∞

X

v(α−1)/2Khard(v, Y ) dv

Khard
oe (X,Y ) =

Xα/2

Y 1/2

∂

∂X

{

X(1−α)/2Khard(X,Y )
}

Khard
oo (X,X ′) =

( X

X ′

)α/2 ∂

∂X

{

X(1−α)/2

∫ ∞

X′

v(α−1)/2Khard(X, v) dv
}

, (4.26)

valid for parameter values α < 3/2. Here Khard refers to (4.10), but without the restriction a = 0.

4.2 Decimated orthogonal ensembles with a parameter

The scaling limits introduced in the previous subsection in relation to the superimposed orthogonal

ensembles with a parameter all carry over to the decimated orthogonal ensembles with a parameter.

Furthermore, the strategies used to derive the scaled limits in Propositions 14 and 15 again suffice to

derive the scaled limits of the matrix elements determining the correlations for the decimated Laguerre

and Jacobi orthogonal ensembles with a parameter. In the interest of economy of space we will restrict

ourselves to presenting the explicit form of the scaling limit for the parity blind correlations only.

Proposition 16. Let the term “scaled” refer to any of the hard edge, bulk or soft edge limits for the

parameter dependent Laguerre ensembles as specified by (4.1)–(4.6). Then the scaled form of the matrix

elements (3.77)–(3.79) have the explicit form

f22
scaled(X,Y ) := lim

n→∞
b(n)f22(x, y)

∣

∣

∣

2n7→n
=

1

2
Kscaled(X,Y )

−1

2

∂

∂Y

∫ X

−∞
eα(X−t)/2Kscaled(t, Y ) dt− α

4

∫ X

−∞
dt eα(X−t)/2

∫ ∞

Y

du
∂

∂t
Kscaled(u, t) (4.27)

f12
scaled(X,Y ) := lim

n→∞
(b(n))2f12(x, y)

∣

∣

∣

2n7→n

=
1

4

(α

2
+

∂

∂X

)(α

2
+

∂

∂Y

){

∫ ∞

X

Kscaled(Y, t) dt−
∫ ∞

Y

Kscaled(X, t) dt
}

(4.28)

f21
scaled(X,Y ) = lim

n→∞
f21(x, y)

∣

∣

∣

2n7→n
= −eα|X−Y |/2sgn(X − Y )

−
{

∫ Y

−∞
eα(Y −t)/2Kscaled(X, t) dt−

∫ X

−∞
eα(X−t)/2Kscaled(Y, t) dt

}

(4.29)

Proof. The only new feature of the form of the expressions in (3.77)–(3.79) relative to those in (2.15)

is the need to analyze
∫ ∞

0

KL
2n(y, u) du.

This is done by noting from (3.71) and (3.72) that

∫ ∞

0

KL
2n(y, u) du =

1

2

∫ ∞

y

e−u/2L2n(u) du− e−y/2L2n(y)

= 1 − 1

2

∫ y

0

e−u/2L2n(u) du− e−y/2L2n(y). (4.30)

Apart from this, we follow the strategy used to deduce the scaled limits in Proposition 14. �
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In the Jacobi case the analogue of (4.30) is afforded by (3.74)–(3.76). Using the resulting identity,

and employing the strategies used to derive Propositions 14 and 15 gives the following result.

Proposition 17. The results of Proposition 16 hold for the scaled limit of the matrix elements (3.80)–

(3.82) in the bulk and for the hard edge at x = −1. For the hard edge at x = 1 we have

f22
hard(X,Y ) =

1

2

(X

Y

)1/2

Khard(X,Y ) +
1

2

∂

∂Y

Y 1/2

Xα/2

∫ ∞

X

t(α−1)/2Khard(t, Y ) dt

− α

4Y

∫ ∞

X

dt
( t

X

)α/2
∫ Y

0

du u−1/2 ∂

∂t
t1/2Khard(u, t) (4.31)

f12
hard(X,Y ) = −1

4

( α

2X
− ∂

∂X

)( α

2Y
− ∂

∂Y

)

×
{

Y 1/2

∫ X

0

t−1/2Khard(Y, t) dt−X1/2

∫ Y

0

t−1/2Khard(X, t) dt
}

(4.32)

f21
hard(X,Y ) = −

(X

Y

)−αsgn(X−Y )/2

sgn(X − Y )

+
{X1/2

Y α/2

∫ ∞

Y

t(α−1)/2Khard(X, t) dt− Y 1/2

Xα/2

∫ ∞

X

t(α−1)/2Khard(Y, t) dt
}

. (4.33)

valid for parameter values α < 3/2, and where Khard refers to (4.10), but without the restriction a = 0

(both (4.32) and (4.33) have been multiplied by −1 — an operation which leaves qdet[fhard] unchanged

— so as to formally conserve the relations (3.97) and (3.98)).

5 Discussion

5.1 The orthogonal symmetry limit

In the orthogonal symmetry limit A = 0 the matrix elements determining the parity blind correlations

are specified by (3.96)–(3.98). We have already remarked that the value of f11(x, y) implied by (3.96)

differs in structure to that known from previous literature [40, 17, 1]. To present the latter, which are

valid for general a > −1 in the LOE and general a, b > −1 in the JOE, we introduce generalizations of

(1.32), (1.36),

KL
n,a(x, y) := (xy)a/2e−(x+y)/2

n−1
∑

l=0

1

hL
l,a

La
l (x)La

l (y) (5.1)

KJ
n,a,b(x, y) :=

(

(1 − x)(1 − y)
)(a−1)/2(

(1 + x)(1 + y)
)b/2 n−1

∑

l=0

1

hJ
l,a,b

P
(a,b)
l (x)P

(a,b)
l (y). (5.2)

In (5.1), La
l denotes the Laguerre polynomial of degree l with orthogonality property

∫ ∞

0

tae−tLa
m(t)La

n(t) dt = hL
n,aδm,n, hL

n,a =
Γ(a+ n+ 1)

Γ(n+ 1)
,

while in (5.2), P
(a,b)
l denotes the Jacobi polynomial of degree l with orthogonality property

∫ 1

−1

(1 − t)a(1 + t)bP (a,b)
m (t)P (a,b)

n (t) dt = hJ
n,a,bδm,n,

hJ
n,a,b =

Γ(a+ 1 + n)Γ(b+ 1 + n)2a+b+1

Γ(n+ 1)Γ(a+ b+ 1 + n)(a+ b+ 1 + 2n)
. (5.3)
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The case a = 0 of (5.1) and b = 0 of (5.2) reduces to (1.32) and (1.36) respectively.

In terms of (5.1) and (5.2), the results of [1] give that the k-point distribution for matrix ensembles

OEn(xa/2e−x/2) (LOE) and OEn((1+x)b/2(1−x)(a−1)/2) (JOE), n even, as specified by (1.11) are given

by (1.31) with the 2 × 2 matrix f in (1.31) having as its top left entry

f11(x, y) =
(x

y

)1/2

KL
n−1,a+1(x, y)−

1

4hL
n−1,a

ya/2e−y/2La+1
n−1(y)

∫ ∞

0

sgn(x−u)La+1
n−2(u)u

a/2e−u/2 du (5.4)

in the Laguerre case, and

f11(x, y) = (1 − x)
(1 + x

1 + y

)1/2

KJ
n−1,a,b+1(x, y) +

1

4hJ
n−1,a,b

(a+ b+ n)(a− 1 + n)

(a+ b+ 2n− 1)
(1 − y)(a−1)/2

×(1 + y)b/2P
(a,b+1)
n−1 (y)

∫ 1

−1

sgn(x− u)P
(a,b+1)
n−2 (u)(1 − u)(a−1)/2(1 + u)b/2 du, (5.5)

in the Jacobi case. The other entries in the matrix f are related to f11 by

f22(x, y) = f11(y, x), f21(x, y) = −1

2
sgn(x− y) −

∫ y

x

f11(x, u) du, f12(x, y) =
∂

∂x
f11(x, y), (5.6)

which are identical to the structure of the formulas obtained in Section 3.4 provided we interchange f11

and f22 (recall the first equality in (3.65), (3.97), (3.98)).

We know from [40, 17, 1] that (5.4) can be rewritten to read

f11(x, y) = KL
n,a(x, y) + FL

1 (y)FL
2 (x) (5.7)

where

FL
1 (y) =

1

4hL
n−1,a

ya/2e−y/2La+1
n−1(y) (5.8)

FL
2 (x) =

(

− 4xa/2e−x/2La
n−1(x) −

∫ ∞

0

sgn(x− u)La+1
n−2(u)u

a/2e−u/2 du
)

= −n
∫ ∞

0

sgn(x− t)ta/2−1e−t/2(La
n(t) − La

n−1(t)) dt. (5.9)

The formula (5.5) in the Jacobi case can similarly be rewritten.

Lemma 18. The formula (5.5) has the alternative form

f11(x, y) = (1 − x)KJ
n,a,b(x, y) + F J

1 (y)F J
2 (x) (5.10)

where

F J
1 (y) =

1

4hJ
n−1,a,b

( a+ b+ n

a+ b− 1 + 2n

)

(1 − y)(a−1)/2(1 + y)b/2P
(a,b+1)
n−1 (y) (5.11)

F J
2 (x) =

(

− 4(1 − x)(a+1)/2(1 + x)b/2P
(a,b)
n−1 (x)

+(a− 1 + n)

∫ 1

−1

sgn(x− u)P
(a,b+1)
n−2 (u)(1 − u)(a−1)/2(1 + u)b/2 du

)

=
2n

2n+ a+ b

∫ 1

−1

sgn(x− u)
(

(n+ a+ b)P (a,b)
n (u) + (n+ a)P

(a,b)
n−1 (u)

)

(1 − u)(a−1)/2(1 + u)b/2−1du.

(5.12)
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Proof. It follows from (5.3) that

1

hJ
l,a,b+1

=
(a+ b+ 1 + l)(a+ b+ 2 + 2l)

2(b+ 1 + l)(a+ b+ 1 + 2l)

1

hJ
l,a,b

.

Using this, and the Jacobi polynomial identity

(l +
a+ b

2
+ 1)(1 + x)P

(a,b+1)
l (x) = (l + b+ 1)P

(a,b+1)
l (x) + (l + 1)P

(a,b)
l+1 (x),

we see that

(1 + x)

n−2
∑

l=0

1

hJ
l,a,b+1

P
(a,b+1)
l (x)P

(a,b+1)
l (y)

=

n−1
∑

l=0

1

hJ
l,a,b

( 1

a+ b+ 1 + 2l

)

P
(a,b)
l (x)

{

(a+ b+ 1 + l)P
(a,b+1)
l (y) + (a+ l)P

(a,b+1)
l−1 (y)

}

− 1

hJ
n−1,a,b

( a+ b+ n

a+ b− 1 + 2n

)

P
(a,b)
n−1 (x)P

(a,b+1)
n−1 (y).

Simplifying the term in the brackets { } using the Jacobi polynomial identity

(a+ b+ 1 + l)P
(a,b+1)
l (x) + (a+ l)P

(a,b)
l−1 (x) = (a+ b+ 1 + 2l)P

(a,b)
l (x),

recalling the definition (5.2), and substituting the result in (5.5) we deduce (5.10) with F J
2 (x) given by

the first equality in (5.12). The second equality in (5.12) can be deduced from the first by verifying that

both expressions agree at x = 1, and then verifying that the derivative of both expressions agrees. �

We now equate the RHSs of the final equation in (5.6), with the substitutions (5.7) and (5.10) (and

n 7→ 2n), and (3.97), with the substitution (3.96). In the Laguerre case this gives

1

2

( ∂

∂x
+

∂

∂y

)

KL
2n(x, y) = cL2n,0φ

L
2n,0(x)ψ

L
2n,0(y) (5.13)

where

cLn,a =
n

2hL
n−1,a

φL
n,a(x) = xa/2e−x/2La+1

n−1(x) = −xa/2−1e−x/2
(

nLa
n(x) − (n+ a)La

n−1(x)
)

ψL
n,a(y) = ya/2−1e−y/2

(

La
n(y) − La

n−1(y)
)

(5.14)

(the parameter a has been kept general in (5.14) for later convenience). Note from (5.14) that the RHS

of (5.13) is symmetric in x and y, as is the LHS. The substitutions in the Jacobi case give

1

2

(

(1 − x)
∂

∂x
+ (1 − y)

∂

∂y

)

(1 − x)(1 − y)KJ
2n(x, y) = cJ2n,a,0φ

J
2n,a,0(x)ψ

J
2n,a,0(y) (5.15)

where

cJn,a,b =
1

2hJ
n−1,a,b

( a+ b+ n

a+ b− 1 + 2n

)( 2n

2n+ a+ b

)

φJ
n,a,b(x) = (1 − x)(a+1)/2P

(a,b+1)
n−1 (x)

= (1 − x)(a+1)/2(1 + x)b/2−1 2

2n+ a+ b

(

(n+ b)P
(a,b)
n−1 (x) + nP (a,b)

n (x)
)

ψJ
n,a,b(y) = −(1 − y)(a+1)/2(1 + y)b/2−1

(

(n+ a+ b)P (a,b)
n (y) + (n+ a)P

(a,b)
n−1 (y)

)

. (5.16)
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As with (5.13), we see from (5.16) that the RHS of (5.15) is symmetric in x and y, as is the LHS.

The identity (5.13) is the special case a = 0 of the identity [40]

( ∂

∂x
+

∂

∂y

)

KL
n,a(x, y) = cLn,a

(

φL
n,a(x)ψL

n,a(y) + φL
n,a(y)ψL

n,a(x)
)

. (5.17)

A simple consequence of (5.17) is the integral representation [29]

KL
n,a(x, y) = cLn,a

∫ ∞

0

(

φL
n,a(x+ t)ψL

n,a(y + t) + φL
n,a(y + t)ψL

n,a(x + t)
)

dt. (5.18)

The result (5.15) suggests an analogue of (5.17), and (5.18), in the Jacobi case.

Proposition 19. With KJ
n,a,b specified by (5.2), and cJn,a, φ

J
n,a,b(x), ψ

J
n,a,b(y) by (5.16), we have

(

(1−x) ∂
∂x

+(1−y) ∂
∂y

)

(1−x)(1−y)KJ
n,a,b(x, y) = cJn,a,b

(

φJ
n,a,b(x)ψ

J
n,a,b(y)+ψ

J
n,a,b(x)φ

J
n,a,b(y)

)

, (5.19)

and consequently, for 0 < x, y < 1,

4xyKJ
n,a,b(1−2x, 1−2y) = cJn,a,b

∫ 1

0

(

φJ
n,a,b(1−xu)ψJ

n,a,b(1−yu)+φJ
n,a,b(1−yu)ψJ

n,a,b(1−xu)
)du

u
(5.20)

Proof. We generally follow the strategy used in [40] in the Laguerre case. But before doing so we note

the general identity

(

(1 − x)
∂

∂x
+ (1 − y)

∂

∂y

)((1 − x)1/2(1 − y)1/2

x− y
f
)

=
(1 − x)1/2(1 − y)1/2

x− y

(

(1 − x)
∂

∂x
+ (1 − y)

∂

∂y

)

f.

To make use of this identity we note from the Christoffel-Darboux formula (see e.g. [37]) that

KJ
n,a,b(x, y) = ((1 − x)(1 − y))(a−1)/2((1 + x)(1 + y))b/2ān

P
(a,b)
n (x)P

(a,b)
n−1 (y) − P

(a,b)
n (y)P

(a,b)
n−1 (x)

x− y

where

ān =
n!

2a+b

Γ(n+ a+ b+ 1)

Γ(n+ a)Γ(n+ b)(2n+ a+ b)
.

Thus
(

(1 − x)
∂

∂x
+ (1 − y)

∂

∂y

)

(1 − x)(1 − y)KJ
n,a,b(x, y)

=
(1 − x)1/2(1 − y)1/2

x− y
ān

(

(1 − x)
∂

∂x
+ (1 − y)

∂

∂y

)(

qn(x)qn−1(y) − qn(y)qn−1(x)
)

(5.21)

where

qn(x) := (1 − x)a/2(1 + x)b/2P (a,b)
n (x),

so the task is to compute the action of the operator on the RHS of (5.21).

For this purpose, we note from suitable Jacobi polynomial formulas that

(1 − x2)q′n(x) = (α0 + α1x)qn(x) + β0qn−1(x)

(1 − x2)q′n−1(x) = −γ0qn(x) − (α0 + α1x)qn−1(x)

with

α0 + α1x =
b2 − a2

2(2n+ a+ b)
− (2n+ a+ b)

2
x

β0 =
2(n+ a)(n+ b)

2n+ a+ b
, γ0 =

2n(n+ a+ b)

2n+ a+ b
. (5.22)
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Equivalently
[

(1 − x)q′n(x)

(1 − x)q′n−1(x)

]

=

[

A(x) B(x)

−C(x) −A(x)

][

qn(x)

qn−1(x)

]

(5.23)

where

A(x) =
α0 + α1x

1 + x
, B(x) =

β0

1 + x
, C(x) =

γ0

1 + x
.

Introducing the matrix formulation

qn(x)qn−1(y) − qn(y)qn−1(x) =
[ qn(x) qn−1(x) ]

[

0 1

−1 0

][

qn(y)

qn−1(y)

]

,

a straightforward calculation using (5.23) shows

1

x− y

(

(1 − x)
∂

∂x
+ (1 − y)

∂

∂y

)(

qn(x)qn−1(y) − qn(y)qn−1(x)
)

=
[ qn(x) qn−1(x) ]







C(x) − C(y)

x− y

A(x) −A(y)

x− y
A(x) −A(y)

x− y

B(x) −B(y)

x− y







[

qn(y)

qn−1(y)

]

= − 1

(1 + x)(1 + y)

[ qn(x) qn−1(x) ]
[

γ0 α0 − α1

α0 − α1 β0

][

qn(y)

qn−1(y)

]

= − 1

(1 + x)(1 + y)
(1 − x)a/2(1 + x)b/2(1 − y)a/2(1 + y)b/2 2

2n+ a+ b

×
[

n(n+ a+ b)P (a,b)
n (x)P (a,b)

n (y) + (n+ a)(n+ b)P
(a,b)
n−1 (x)P

(a,b)
n−1 (y)

+
1

4
(b2 − a2 + (2n+ a+ b)2)(P (a,b)

n (x)P
(a,b)
n−1 (y) + P (a,b)

n (y)P
(a,b)
n−1 (x))

]

(5.24)

Substituting (5.24) in (5.21) gives (5.19).

With (5.19) established, we make the changes of variables

x = 1 − 2e−s, y = 1 − 2e−t, 0 ≤ s, t <∞

which gives

( ∂

∂s
+
∂

∂t

)

4e−(s+t)KJ
n,a,b(1 − 2e−s, 1 − 2e−t)

= cJn,a,b

(

φJ
n,a,b(1 − 2e−s)ψJ

n,a,b(1 − 2e−t) + φJ
n,a,b(1 − 2e−t)ψJ

n,a,b(1 − 2e−s)
)

. (5.25)

A simple calculation using integration by parts verifies that

4e−(s+t)KJ
n,a,b(1 − 2e−s, 1 − 2e−t) = cJn,a,b

×
∫ ∞

0

(

φJ
n,a,b(1 − 2e−s−z)ψJ

n,a,b(1 − 2e−t−z) + φJ
n,a,b(1 − 2e−t−z)ψJ

n,a,b(1 − 2e−s−z)
)

dz.(5.26)

satisfies (5.25). The general solution of (5.25) is (5.26) plus an arbitrary function of s − t. But we see

from the definition of KJ
n,a,b, φ

J
n,a,b and ψJ

n,a,b that both sides of (5.26) vanish in the limits s, t → ∞,

s− t fixed, so this arbitrary function must be chosen to be the zero function. Putting e−s = x, e−t = y

in (5.26) and changing variables e−z = u gives (5.20). �

The orthogonal symmetry limit of the scaled matrix elements of Propositions 16 and 17 is obtained

by setting α = 0. We see from the results of Propositions 16 and 17 (with f11 and f22 interchanged for
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convenience) that the k-point distributions are then given by (1.31) with the 2× 2 matrix f having as its

top left entry

f11
scaled(X,Y ) =

1

2
Kscaled(X,Y ) − 1

2

∂

∂Y

∫ X

−∞
Kscaled(t, Y ) dt (5.27)

in the case of the soft edge and bulk (Kscaled as given by (4.12) and (4.11) respectively), and

f11
scaled(X,Y ) =

1

2

(X

Y

)1/2

Khard(X,Y ) +
1

2

∂

∂Y
Y 1/2

∫ ∞

X

t−1/2Khard(t, Y ) dt (5.28)

in the case of the hard edge with singularity x(a−1)/2 as x → 0 (Khard is given by (4.10), without the

restriction a = 0). The remaining entries in f are related to f11 as in (5.6).

The formula (5.28) has been read off from Proposition 17, deduced from the scaled limit of the Jacobi

case. The hard edge singularity x(a−1)/2|a=1 as x → 0 is also contained in the results of Proposition 16

for the scaled Laguerre case. In this case we read off from Proposition 16 the alternative formula

f11
scaled(X,Y ) =

1

2
Khard(X,Y )|a=0 −

1

2

∂

∂Y

∫ X

0

Khard(t, Y )|a=0dt, (5.29)

which differs in form to (5.28) with a = 1. Our first discussion point regarding the form of f11
scaled exhibited

by (5.27) and (5.28) is to reconcile the two seemingly different expressions in the case of the hard edge

singularity x(a−1)/2|a=1 as x→ 0. For this purpose we make use of the following recurrence.

Lemma 20. Let Khard(X,Y ) be given by (4.10), without the restriction to a = 0. We have

(X

Y

)1/2

Khard(X,Y )
∣

∣

∣

a→a+1
= Khard(X,Y ) − 1

2
Y −1/2Ja(X1/2)Ja+1(Y

1/2)

where it is understood that X,Y > 0.

Proof. We first make use of the Bessel function identity

uJ ′
a(u) = aJa(u) − uJa+1(u)

to rewrite the first equality in (4.10), without the restriction to a = 0, as

Khard(X,Y ) =
X1/2Ja+1(X

1/2)Ja(Y 1/2) − Y 1/2Ja+1(Y
1/2)Ja(X1/2)

2(X − Y )
.

The stated formula now follows by replacing a by a+ 1, using the Bessel function identity

uJa+2(u) = 2(a+ 1)Ja+1(u) − uJa(u),

and simple manipulation. �

Using Lemma 20 in (5.28) we obtain

f11
scaled(X,Y )

∣

∣

∣

a→a+1
=

1

2
Khard(X,Y ) − 1

4
Y −1/2Ja(X1/2)Ja+1(Y

1/2)

+
1

2

∂

∂Y

∫ ∞

X

Khard(t, Y ) dt− 1

4

∂

∂Y
Ja(Y 1/2)

∫ ∞

X

t−1/2Ja+1(t
1/2) dt.(5.30)

In the special case a = 0 the last integral can be evaluated, and this shows the final term cancels with

the second term. We thus have agreement with (5.29) provided we can show

∂

∂Y

∫ ∞

0

Khard(t, Y )
∣

∣

∣

a=0
dt = 0. (5.31)
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Now, using the integral representation from (4.10) shows

∫ ∞

0

Khard(t, Y )
∣

∣

∣

a=0
dt =

1

4

∫ ∞

0

dt

∫ 1

0

ds J0(
√
ts)J0(

√
Y s) =

1

4

∫ ∞

0

dtJ0(
√
t)

∫ 1

0

ds
1

s
J0(

√
Y s),

where the second equality follows by changing variables t 7→ t/s. But

∫ ∞

0

J0(
√
t) dt = 2

∫ ∞

0

sJ0(s) ds = 2

∫ ∞

0

d

ds
(sJ1(s)) ds = 0

so indeed (5.31) holds true.

Let us now return to the consideration of f11
scaled in general. Previous studies have given formulas of

a different form to (5.27) and (5.28). These read [17]

f11
bulk(X,Y ) = Kbulk(X,Y ) (5.32)

f11
soft(X,Y ) = Ksoft(X,Y ) +

1

2
Ai(Y )

∫ X

−∞
Ai(t) dt (5.33)

f11
hard(X,Y ) = Khard(X,Y ) +

Ja+1(
√
Y )

4
√
Y

∫ ∞

√
X

Ja−1(u) du (5.34)

where here f11
hard(X,Y ) is for the scaled hard edge with singularity xa/2 as x→ 0+. Agreement between

(5.27) and (5.32), (5.33) is immediate upon substituting the integral formulas from (4.11), (4.12) in (5.27)

and integrating by parts. It remains to show that the RHS of (5.34) agrees with the RHS of (5.28) with

the replacement a 7→ a+ 1. The verification is done by making use of Lemma 20 in (5.28) to obtain

f11
scaled(X,Y )

∣

∣

∣

a→a+1
=

1

2
Khard(X,Y ) − 1

4
√
Y
Ja(

√
X)Ja+1(

√
Y ) +

1

2

∂

∂Y

∫ ∞

X

Y

t
Khard(t, Y ) dt

−1

4

∂

∂Y

√
Y Ja+1(

√
Y )

∫ ∞

X

t−1Ja(
√
t) dt (5.35)

(c.f. (5.30)). Using the integral formula from (4.10) (without the restriction a = 0), a straightforward

calculation shows

∂

∂Y

∫ ∞

X

Y

t
Khard(t, Y ) dt = Khard(X,Y ) +

Ja(
√
Y )

4

∫ ∞

X

t−1Ja(
√
t) dt.

Substituting this in (5.35) gives agreement with (5.34) provided

− 1

4
√
Y
Ja(

√
X)Ja+1(

√
Y ) +

Ja(
√
Y )

8

∫ ∞

X

t−1Ja(
√
t) dt− 1

4

∂

∂Y

√
Y Ja+1(

√
Y )

∫ ∞

X

t−1Ja(
√
t) dt

=
Ja+1(

√
Y )

4
√
Y

∫ ∞

√
X

Ja−1(u) du.

Since both sides vanish as X → ∞, it suffices to check that the derivative with respect to X of both sides

agrees. This is easily verified using suitable Bessel function identities.

5.2 The symplectic symmetry limit

We know from (3.16) and (3.17) that in the limit A → −∞ the parameter dependent Laguerre and

Jacobi ensembles tend to the LSE with weight e−x and the JSE with weight (1 − x)a+1 respectively.

The results of the present study give that the corresponding k-point distribution is given by (1.31) with

matrix elements specified by (3.99)–(3.101). As with the orthogonal symmetry limit, previous studies
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[40, 17, 1] have obtained the k-point distribution for the LSE with general a > −1, and the JSE with

general a, b > −1. In particular, in terms of (5.1) and (5.2), the results of [1] give that the k-point

distribution for the matrix ensembles SEn(xae−x) (LSE) and SEn((1 + x)b(1− x)a+1) (JSE), as specified

by (1.15), are given by (1.31) with the 2 × 2 matrix f in (1.31) having as its top left entry

2f11(x, y) =
(x

y

)1/2

KL
2n,a−1(x, y) +

2(2n+ a− 1)

h2n,a−1
y(a−2)/2e−y/2La−1

2n (y)

∫ ∞

x

t(a−2)/2e−t/2La−1
2n−1(t) dt

(5.36)

in the Laguerre case, and

2f11(x, y) = (1 − x)
(1 + x

1 + y

)1/2

KJ
2n,a,b−1(x, y) −

2n(2n+ b− 2)

hJ
2n−1,a,b−1(2n+ 1

2 (a+ b− 2))
(1 − y)(a−1)/2

×(1 + y)(b−2)/2P
(a,b−1)
2n (y)

∫ 1

x

(1 − t)(a−1)/2(1 + t)(b−2)/2P
(a,b−1)
2n−1 (t) dt (5.37)

in the Jacobi case (we have taken the transpose of the qdet formula in [1], and thus have interchanged x

and y in f11 relative to the expression in [1]). The other entries in the matrix f are related to f11 by

f22(x, y) = f11(y, x), f12(x, y) = −
∫ x

y

f11(y, t) dt, f21(x, y) =
∂

∂y
f11(y, x). (5.38)

We see from the first equality in (3.65), (3.100) and (3.101) that the equations (5.38) are identical to

those obtained in Section 3.4 for the symplectic limit in the Laguerre case. Furthermore, in the Jacobi

case, defining

f22(x, y) =
1 − y

1 − x
f22(x, y) =

1

2
(1 − y)KJ

2n(x, y) +
1

2

(

(1 − x)
∂

∂x
− 1

)

∫ 1

y

KJ
2n(t, x) dt (5.39)

the first equality in (3.65) and (3.99)–(3.101) together with simple scaling invariances of the quaternion

determinant imply that the k-point correlation can be written as qdet[f̃ ] with the elements of the 2 × 2

matrix f̃ given as in (5.38) but with each fss′

replaced by f̃ss′

. Thus it remains to show agreement

between the first equality in (3.99), substituted in the first equation of (5.38), with (5.36) in the case

a = 0, and (5.39), substituted in the first equation of (5.38), with (5.38) in the case b = 0.

Consider first the Laguerre case. We know from [40, 17] that (5.36) can be rewritten to read

2f11(x, y) = KL
2n,a(x, y) +GL

1 (y)GL
2 (x) (5.40)

where

GL
1 (y) =

1

2hL
2n,a−1

ya/2−1e−y/2La−1
2n (y)

GL
1 (x) =

(

2xa/2e−x/2La
2n−1(x) + (2n+ a− 1)

∫ ∞

x

ta/2−1e−t/2La−1
2n−1(t) dt

)

=

∫ x

0

ta/2−1e−t/2
(

2nLa
2n(x) − (2n+ a)La

2n−1(x)
)

.

For the RHS of (3.99) to equal the RHS of (5.40) substituted in the first equality of (5.38) in the case

a = 0, by setting y = 0 in both expressions we see that a necessary condition is that

1

2
KL

2n(x, 0) +
1

2

∂

∂x

∫ ∞

0

KL
2n(t, x) dx = KL

2n,0(x, 0),

which is obtained by setting y = 0 in both expressions. This is just the previously established identity

(3.88). Knowing that both sides agree at y = 0, to show they are equal for all y it suffices to show
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that their partial derivatives with respect to y agree. In fact equating the partial derivatives gives the

previously established identity (5.13).

To show agreement in the Jacobi case, we require the analogue of (5.40).

Lemma 21. The formula (5.37) has the alternative form

2f11(x, y) = (1 − x)KJ
2n,a,b(x, y) +GJ

1 (y)GJ
2 (x) (5.41)

where

G1(y) =
4n

4n+ a+ b− 1

1

hJ
2n−1,a,b

(1 − y)(a−1)/2(1 + y)b/2−1P
(a,b−1)
2n (y)

G2(y) = −
{

P
(a,b)
2n−1(x)(1 − x)(a+1)/2(1 + x)b/2

+(b+ 2n− 1)

∫ 1

x

dt (1 − t)(a−1)/2(1 + t)(b−2)/2P
(a,b−1)
2n−1 (t)

}

=
a+ b+ 2n

4

∫ x

−1

(1 − t)(a−1)/2(1 + t)b/2P
(a,b+1)
2n−1 (t) dt.

Proof. This is derived in a similar fashion to the result of Lemma 18. �

With (5.41) substituted in the first equality of (5.38), agreement of the resulting expression with (5.39)

in the case b = 0 can be established by first checking that both expressions coincide at y = −1 (this

follows from (3.69)), and then showing both expressions have the same partial derivative with respect to

y (this follows from (5.15)).

Next we consider the form of the scaled matrix elements of Propositions 16 and 17 as α→ −∞, which

corresponds to the symplectic limit. Integration by parts shows

Y

X
f22
scaled(X,Y ) ∼ f̃22

scaled(X,Y ) =
1

2

√

Y

X
Kscaled(X,Y ) +

1

2

∫ Y

0

1√
u

∂

∂X
Kscaled(X, t) (5.42)

8

α2
f12
scaled(X,Y ) ∼

∫ ∞

X

f̃22
scaled(t, Y ) dt

α2

8
f21
scaled(X,Y ) ∼ ∂

∂Y
f̃22
scaled(X,Y )

in the case of the soft edge and the bulk, and

Y

X
f22
hard(X,Y ) ∼ f̃22

hard(X,Y ) =
1

2

√

Y

X
Khard(X,Y ) +

1

2

∫ Y

0

1√
u

∂

∂X

√
XKhard(X, t) dt

(5.43)

8

α2
XY f12

scaled(X,Y ) ∼ −
∫ X

0

f22
hard(t, Y ) dt

α2

8

1

XY
f21
hard(X,Y ) ∼ ∂

∂Y
f̃22

hard
α=−∞

(X,Y )

in the case of the hard edge with singularity xa+1 as x→ 0.

Previous studies have given formulas of a different form to (5.42) and (5.43), these being [17]

f22
bulk(X,Y ) = Kbulk(X,Y )

f22
soft(X,Y ) = Ksoft(X,Y ) − 1

2
Ai(X)

∫ ∞

Y

Ai(s) ds

f22
hard(X,Y ) = Khard(X,Y ) − 1

4
√
X
Ja−1(

√
X)

∫

√
Y

0

Ja+1(s) ds,
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where here f22
hard relates to the scaled hard edge with singularity xa as x → 0+. The verification that

these formulas are identical to (5.42) or (5.43) is done in the same way as reconciling (5.27)–(5.28) with

(5.32) and (5.34).

5.3 Bulk structure function for the decimated orthogonal ensemble with a

parameter

In general the 2-point correlation implied by (1.31) is given in terms of the corresponding 1-point corre-

lation (the density) and the matrix elements fss′

(s, s′ = 1, 2) of f according to

ρ2(x1, x2) = ρ1(x1)ρ1(x2) −
(

f11(x1, x2)f
22(x1, x2) − f12(x1, x2)f

21(x1, x2)
)

. (5.44)

Now the truncated quantity

ρT
2 (x1, x2) := ρ2(x1, x2) − ρ1(x1)ρ1(x2) (5.45)

decays for large |x1 − x2|. Furthermore, in the bulk it is a function only of the difference |x1 − x2|. Thus

in the bulk the Fourier transform of ρT
2 (x1 − x2, 0) is a well defined quantity. We seek its evaluation in

the case of the parameter dependent orthogonal ensemble with a parameter, when the matrix elements

are specified by (4.27)–(4.29). Explicitly, we will compute the quantity

S(k) = 1 +

∫ ∞

−∞
ρT
2 (x)eikx dx

= 1 −
∫ ∞

−∞
(f11(x)f22(−x) + f12(x)f21(−x))eikx dx (5.46)

where to obtain the second equality we have substituted (5.44) and made use of the facts, apparant from

(4.27)–(4.29), that f11(x), f22(x) are even functions of x, while f12, f21 are odd functions of x. Following

[16] we know that the most efficient way to compute such a Fourier transform is to make use of the

general formula
∫ ∞

−∞
f(x)f(−x)eikx dx =

1

2π

∫ ∞

−∞
f̂(l)f̂(l − k) dl, f̂(l) :=

∫ ∞

−∞
f(x)eilx dx. (5.47)

Thus we must first compute the Fourier transform of the individual matrix elements.

The calculation of the Fourier transform of the individual matrix elements is simplified by first noting,

making use of the fact that Kbulk(X,Y ) is a function of X−Y , that the expression (4.27) for f22
bulk(X,Y )

can be simplified to read

f22
bulk(X,Y ) = Kbulk(X,Y ),

independent of the parameter α. Recalling the first equality in (3.65), and the integral representation of

(4.11), we thus have

f̂22
bulk(l) = f̂11

bulk(l) = χ|l|<π.

Furthermore, substituting the integral representation of (4.11) in (4.28)–(4.29) allows us to compute

f̂12
bulk(l) =

(α/2)2 + l2

2il
χ|l|<π, f̂21

bulk(l) = − 2il

(α/2)2 + l2
χ|l|>π.

Thus
∫ ∞

−∞
f̂11
bulk(l)f̂

22
bulk(l − k) dl =

∫ π

−π

χ|l−k|<πdl =

{

2π − |k|, |k| < 2π

0, |k| ≥ 2π
(5.48)

∫ ∞

−∞
f̂12(l)f̂21(l − k) dl = −

∫ min(π−|k|,−π)

−π−|k|

(α/2)2 + (l + |k|)2
l + |k|

l

(α/2)2 + l2
dl. (5.49)
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The integral (5.49) can be evaluated in terms of elementary functions, with there being a different

functional form for |k| < 2π, |k| ≥ 2π. Substituting this and (5.48) in (5.46) (appropriately rewritten

using (5.47)), we find that for |k| < 2π

S(k) =
|k|
π

+
|k|

4π((α/2)2 + k2)

[

α|k|
(

arctan
2π

α
− arctan

2|k| + 2π

α

)

−(
α2

2
+ k2) log

( (α/2)2 + (|k| + π)2

(α/2)2 + π2

)

− α2

2
log |1 − |k|/π|

]

, (5.50)

while for |k| ≥ 2π

S(k) = 2 +
αk2 arctan(2(|k| − π)/α)

4π((α/2)2 + k2)
− αk2 arctan(2(|k| + π)/α)

4π((α/2)2 + k2)

− (2(α/2)2|k| + |k|3)
4π((α/2)2 + k2)

log
(α/2)2 + (|k| + π)2

(α/2)2 + (|k| − π)2
. (5.51)

Of particular interest is the small |k| expansion of (5.50). We find

S(k) =
|k|
π

+
1

2π2

(α/2)2 − π2

(α/2)2 + π2
k2 +

((α/2)2 − π2)2

4π3((α/2)2 + π2)2
|k|3 + O(k4). (5.52)

We see from (5.52) that the coefficient of the leading order term, proportional to |k|, in the small

|k| expansion of S(k) is independent of the parameter α, and has the value 1/π. This is to anticipated

from the interpretation of (1.4) as a one-component log-potential Coulomb system with coupling β = 1.

The coupling within pairs can be regarded as a short range potential which should not affect properties

determined by the long-ranged logarithmic potential. One such property is the behaviour

S(k) ∼
|k|→0

|k|
πβ

for a one-component log-potential system with coupling β (see e.g. [16]), thus implying the leading

behaviour seen in (5.52).

5.4 Distribution of odd labelled coordinates for a special parameter

In the Introduction, attention was drawn to the properties (1.6), (1.20) of the parameter dependent

ensembles (1.4), (1.16) relating to the distribution of the even labelled coordinates. Similarly, we noted

the properties (1.10), (1.19) of the even labelled coordinates in the superimposed parameter dependent

ensembles (1.8), (1.17). For the special value of the parameter for which the one body factor for the

even labelled coordinates reduces to a constant, it turns out that the odd labelled coordinates also have

a distribution which coincides with that of other matrix ensembles. This follows from the following

integration formulas.

Lemma 22. Let x1, x2, . . . , x2n be ordered as in (1.5), and label this ordering X. We have

∫

X

dx2dx4 · · · dx2n

∏

1≤j<k≤2n

(xj − xk) =
1

(2n)!

n
∏

j=1

x2
2j−1

∏

1≤j<k≤n

(x2j−1 − x2k−1)
4 (5.53)

and
∫

X

dx2dx4 · · · dx2n

∏

1≤j<k≤n

(x2j − x2k) =
1

n!

n
∏

j=1

x2j−1

∏

1≤j<k≤n

(x2j−1 − x2k−1). (5.54)
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Proof. To derive (5.53), we use the Vandermonde determinant formula to write

∏

1≤j<k≤2n

(xj − xk) = det[xk−1
2n+1−j ]j,k=1,...,2n.

The method of integration over alternative variables gives

∫

X

dx2dx4 · · ·dx2n

∏

1≤j<k≤2n

(xj − xk) = det

[

1
kx

k
2n+1−2j

xk−1
2n+1−2j

]

j=1,...,n
k=1,...,2n

=
1

(2n)!

n
∏

j=1

x2j−1 det

[

xk−1
2n+1−2j

kxk−1
2n+1−2j

]

j=1,...,n
k=1,...,2n

=
1

(2n)!

n
∏

j=1

x2
2j−1 det

[

xk−1
2n+1−2j

(k − 1)xk−2
2n+1−2j

]

j=1,...,n
k=1,...,2n

.

This final determinant is well known to be equal to the product of differences to the fourth power, and

thus (5.53) follows.

A similar, even simpler, computation gives (5.54). �

We remark that (5.53) and (5.54) are equivalent to the special case of (1.12) and (1.14) in which (f, g) is

given by the Jacobi weight in (1.13) with a = 1.

For the ensembles (1.4), (1.16), it follows immediately from (5.53) that

odd(OE2n(fo, fe)) = SEn(h) (5.55)

with

(fo, fe, h) =







(e−x/2eAx/2, e−x/2e−Ax/2, x2e−x)
∣

∣

∣

A=−1
(x > 0)

((1 − x)(a−A−1)/2, (1 − x)(a+A−1)/2, (1 + x)2(1 − x)a−1)
∣

∣

∣

A=1−a
(−1 < x < 1)

(5.56)

in the Laguerre and Jacobi cases respectively. Similarly, for the ensembles (1.8), (1.17), it follows imme-

diately from (5.54) that

odd(OEn(fo, fe) ∪ OEn(fo, fe)) = UEn(h̃) (5.57)

where fo, fe are as in (5.56), while

h̃ =

{

xe−x, Laguerre case

(1 + x)(1 − x)a−1, Jacobi case
(5.58)

A consequence of (5.55) and (5.57) is that the k-point odd-odd correlation for the ensemble on the

LHS must coincide with the k-point correlation for the ensemble on the RHS. This is simple to explicitly

verify for the relation (5.57). Then the k-point distribution on the RHS is given by

det[KL
n,1(xj , xl)]j,l=1,...,k, det[(1 − xj)K

J
n,a−1,1(xj , xl)]j,l=1,...,k (5.59)

in the Laguerre and Jacobi cases respectively. On the LHS the odd-odd k-point correlation is given by

det[KL
oo(xj , xl)

∣

∣

∣

A=−1
]j,l=1,...,k, det[(1 − xj)K

J
oo(xj , xl)]j,l=1,...,k, (5.60)

where KL
oo, K

J
oo are given by (2.15) and (2.16) respectively. Using appropriate Laguerre and Jacobi

polynomial formulas to evaluate

∫ x′

0

Ll(x) dx,
d

dx
e−xLl(x),

∫ x′

0

P
(a,0)
l (x) dx,

d

dx
(1 − x)aP

(a,0)
l (x)

it is readily seen that (5.60) can be reduced to (5.59).
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5.5 Gap probabilities and eigenvalue distributions

Observable quantities for eigenvalue sequences closely related to correlation functions are gap probabilities

and distribution functions of individual eigenvalues. The gap probability specifies the probability — to

be denoted E(p; I; ME) — that an interval I (the gap) in a given matrix ensemble ME contains precisely

p eigenvalues. With the eigenvalues ordered as in (1.5), we may choose to observe eigenvalues of a definite

parity, even or odd labelled. In this case we denote the gap probability as E(·)(p; I; ME), (·) = (e)ven,

(o)dd, where p now refers to eigenvalues of parity (·) only. For I = (s,∞) with s inside the support of

ME, it follows from the ordering (1.5) that

E(o)(p; (s,∞); ME) =
(

E(2p− 1; (s,∞); ME) +E(2p; (s,∞); ME)
)

E(e)(p; (s,∞); ME) =
(

E(2p; (s,∞); ME) +E(2p+ 1; (s,∞); ME)
)

(5.1)

whereE(−1; I; ME) := 0. Consequently we can expressE(p; (s,∞); ME) in terms of {E(·)(p; (s,∞); ME)},

E(2p; (s,∞); ME) =

p
∑

j=0

E(o)(j; (s,∞); ME) −
p−1
∑

j=0

E(e)(j; (s,∞); ME)

E(2p+ 1; (s,∞); ME) =

p
∑

j=0

E(e)(j; (s,∞); ME) −
p

∑

j=0

E(o)(j; (s,∞); ME). (5.2)

We will denote the PDF for the distribution function of the kth eigenvalue xk (with the ordering (1.5))

by p(k − 1; s; ME) (here k − 1 is the number of eigenvalues greater than xk). A standard formula (see

e.g. [13]) gives that

p(k − 1; s; ME) =
d

ds
E(k − 1; (s,∞); ME) + p(k − 2; s; ME), k ≥ 1 (5.3)

where p(−1; s; ME) := 0, so knowledge of {E(p; (s,∞); ME)}p=0,...,k−1 suffices to compute p(k−1; s; ME).

Let us consider first the gap probabilities and eigenvalue distributions for ME = (LOEn ∪ LOEn)A

and ME = (JOEn ∪JOEn)A (i.e. the PDFs (1.8) and (1.16)). The identities (1.12) and (1.18) tell us that

E(e)(p; (s,∞); (LOEn ∪ LOEn)A) = E(p; (s,∞); LUEn|a=0),

E(e)(p; (s, 1); (JOEn ∪ JOEn)A) = E(p; (s, 1); JUEn|b=0)

p(2k − 1; s; (LOEn ∪ LOEn)A) = p(k − 1; s; LUEn|a=0),

p(2k − 1; s; (JOEn ∪ JOEn)A) = p(k − 1; s; JUEn|b=0), (5.4)

which we can check are consistent with (5.3). Note in particular that each quantity in (5.4) is independent

of the parameter A, and we remark too that each has a known Painlevé transcendent evaluation [38, 20,

21]. To specify E(o) and thus p(2k; s; ME), E for these matrix ensembles we make use of the standard

formula relating the gap probability to the correlation functions,

E(o)(p; I; ME) =
(−1)p

p!

∂p

∂ξp

(

1 +

n
∑

k=1

(−ξ)k

k!

∫

I

dx1 · · ·
∫

I

dxk ρ
(o)
(k)(x1, . . . , xk)

)
∣

∣

∣

ξ=1
. (5.5)

We know from (1.24) that ρ
(o)
(k) is the k × k determinant det[Koo(xi, xj)]i,j=1,...,k. In this circumstance

the expression in brackets is just the expansion [39] of the Fredholm determinant of the integral operator

Koo with kernel Koo(x, y) supported on I,

E(o)(p; I; ME) =
(−1)p

p!

∂p

∂ξp
det(1− ξKoo)|ξ=1 (5.6)
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(here 1 denotes the identity operator). When p = 0 this reads

E(o)(0; I; ME) = E(0; I; ME) = det(1−Koo) (5.7)

where the first equality follows from the first equation of (5.1). Using the fact that with A = 0, (LOEn ∪
LOEn)A and (JOEn ∪ JOEn)A reduce to LOEn ∪ LOEn and JOEn ∪ JOEn respectively, it follows that

E(0; I; ME|A=0) = (E(0; I; OE))2 and thus we deduce from (5.7) that

(

E(0; (s,∞); LOE|a=0)
)2

= det(1−KL
oo|A=0),

(

E(0; (s,∞); JOE| a7→(a−1)/2
b=0

)
)2

= det(1−KJ
oo|A=0).

(5.8)

We remark that E(0; (s,∞); LOE|a=0) has recently been evaluated in terms of Painlevé transcendents

[2, 21].

Let us now consider the gap probabilities and eigenvalue distributions for ME = (LOE2n)A and

ME = (JOE2n)A (i.e. the PDFs (1.4) and (1.16)). The identities (1.14) and (1.19) tell us that

E(e)(p; (s,∞); (LOE2n)A) = E(p; (s,∞); LSEn|a=0)

E(e)(p; (s, 1); (JOE2n)A) = E(p; (s, 1); JSEn| a7→a+1
b=0

)

p(2k − 1; s; (LOE2n)A) = p(k − 1; s; LSEn|a=0),

p(2k − 1; s; (JOEn ∪ JOEn)A) = p(k − 1; s; JSEn| a7→a+1
b=0

), (5.9)

(c.f. (5.4)). Of these quantities E(0; (s,∞); LSEn|a=0) and p(0; s; LSEn|a=0) are known in terms of

Painlevé transcendents [2, 21]. To specify E(o) we again make use of (5.5), this time noting from (1.27)

that ρ
(o)
(k) is the k × k quaternion determinant qdet[foo(xi, xj)]i,j=1,...,k where foo is the 2 × 2 matrix

representation of a particular real quanternion, which in turn implies

E(o)(p : I; ME) =
(−1)p

p!

∂p

∂ξp
qdet(1 − ξfoo)|ξ=1

(with {λj} denoting the distinct eigenvalues of foo, qdet(1 − ξfoo) =
∏

j(1 − ξλj)). We remark that for

general A, E(o)(0; (s,∞), (LOE)A
2n) has recently been evaluated in terms of Painlevé transcendents [2].

All the above formulas have well defined scaled limits. In particular

lim
n→∞

E(o)(p; (4n+ 2(2n)1/3s,∞); (LOEn ∪ LOEn)A=α/2(2n)1/3

)

:= E(o) soft(p; (s,∞); (OE ∪ OE)α) =
(−1)p

p!

∂p

∂ξp
det(1− ξKsoft

oo )
∣

∣

∣

ξ=1

lim
n→∞

E(o)(p; (1 − s2

2n2
, 1); (JOEn ∪ JOEn)A=4n2α)

:= E(o) hard(p; (0, s); (OE ∪ OE)α,a) =
(−1)p

p!

∂p

∂ξp
det(1− ξKhard

oo )
∣

∣

∣

ξ=1

(for the justification of the limiting processes see [7]). An evaluation of E(o) soft(p; (s,∞); (OE ∪ OE)α)

in terms of a Riemann-Hilbert problem and Painlevé II transcendents has been given in [5].
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[2] J. Baik. Painlevé expressions for LOE, LSE and interpolating ensembles. Int. Math. Res. Notices,

33:1739–1789, 2002.

[3] J. Baik, P. Dieft, and K. Johansson. On the distribution of the length of the longest increasing

subsequence of random permutations. J. Amer. Math. Soc., 12:1119–1178, 1999.

[4] J. Baik and E.M. Rains. Algebraic aspects of increasing subsequences. Duke Math. J., 109:1–65,

2001.

[5] J. Baik and E.M. Rains. The asymptotics of monotone subsequences of involutions. Duke Math. J.,

109:205–281, 2001.

[6] J. Baik and E.M. Rains. Symmetrized random permutations. In P.M. Bleher and A.R. Its, editors,

Random matrix models and their applications, volume 40 of Mathematical Sciences Research Institute

Publications, pages 171–208. Cambridge University Press, United Kingdom, 2001.

[7] A. Borodin and P.J. Forrester. Increasing subsequences and the hard-to-soft edge transition in matrix

ensembles. arXive:math-ph/0205007, 2002.

[8] A. Borodin and G. Olshanski. z-measures on partitions, Robinson-Schensted-Knuth correspondence,

and β = 2 random matrix ensembles. In P.M. Bleher and A.R. Its, editors, Random matrix models

and their applications, volume 40 of Mathematical Sciences Research Institute Publications, pages

171–208. Cambridge University Press, United Kingdom, 2001.

[9] F.J. Dyson. Statistical theory of energy levels of complex systems I. J. Math. Phys., 3:140–156,

1962.

[10] F.J. Dyson. Statistical theory of energy levels of complex systems III. J. Math. Phys., 3:166–175,

1962.

[11] F.J. Dyson. Correlations between the eigenvalues of a random matrix. Commun. Math. Phys.,

19:235–250, 1970.
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matrices: PV, PIII, the LUE, JUE and CUE. Commun. Pure Appl. Math., 55:679–727, 2002.

[21] P.J. Forrester and N.S. Witte. Application of the τ -function theory of Painlevé equations to random
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