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center of the signal spectrum, where signal refers to the 
random input signal. The distortion component in this 
region is shown dashed in the figures. Figs. 12 and 13 are 
cross plots of the relative level of distortion as a function of 
the limiter drive a/a,. In this case the video limiter is seen 
to produce only slightly higher distortion spectral levels. 
The results are relatively insensitive to input bandwidth 

&If,. 
The results presented here indicate that a coherent two- 

channel signal processor, when designed to separate a 
small signal from a larger random signal, may perform 
better with an intentional IF limiter if there is significant 
A/D converter saturation. 
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Abstract-Modems for digital communication often adopt the so- 
called correlative level coding or the partial-response signaling, which 
attains a desired spectral shaping by introducing controlled intersymbol 
interference terms. In this paper, a correlative level encoder is treated 
as a linear finite-state machine and an application of the maximum- 
likelihood decoding (MLD) algorithm, which was originally proposed 
by Viterbi in decoding convolutional codes, is discussed. Asymptotic 
expressions for the probability of decoding error are obtained for a 
class of correlative level coding systems, and the results are confirmed 
by computer simulations. It is shown that a substantial performance 
gain is attainable by this probabilistic decoding method. 
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I. INTRODUCTION 

A 
TECHNIQUE in digital data communication de- 
veloped in recent years is the so-called correlative 

level coding (Lender [l]) or the partial-response channel 
signaling (Kretzmer [2]). This signaling method is different 
from the conventional pulse-amplitude modulation (PAM) 
system in that a controlled amount of intersymbol inter- 
ference is introduced to attain a certain beneficial spectral 
shaping. Such a system possesses in general the property of 
being relatively insensitive to channel imperfections and to 
variations in transmission rate [3], [4]. Recently it has been 
pointed out [5] that a digital magnetic recording channel 
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can be regarded also as a partial-response channel due to 
its inherent differentiation in the readback process. 

Although the correlative level coding permits the trans- 
mission of data at the Nyquist rate (i.e., 2 Bd per cycle of 
bandwidth) or even at a higher rate in a practically band- 
limited channel, the increase in the number of signal levels 
results in loss of noise margin compared with binary anti- 
podal signaling [l]-[3]. I n any correlative level coding 
system, however, the coded output contains redundancy 
that can be utilized as a measure of error control at the 
receiving end. Lender [I] and Gunn and Lombard [6] 
discuss error detection methods for some special cases. 
Smith [7] has introduced the null-zone detection method 
in the duobinary system, in which most of the unreliable 
bits in the null zones are replaceable using the inherent 
redundancy of the correlative level coded sequence. A 
unified method for algebraic error control has been de- 
veloped by Kobayashi and Tang [8], [9]. 

Recently an analogy between correlative level coding and 
convolutional coding has been pointed out by the present 
author [S], [lo] and by Forney [ll]. A correlative level 
encoder can be viewed as a simple type of linear finite-state 
machine defined over the real-number field as opposed to a 
Galois field over which a convolutional encoder is defined. 
The present paper will show that the maximum-likelihood 
decoding (MLD) algorithm devised by Viterbi [12], [13] 
in decoding convolutional codes is applicable to our prob- 
lem. Both analytical and experimental results of this prob- 
abilistic decoding scheme will be presented. The performance 
of the maximum-likelihood decoding is much superior to 
any other method reported thus far. Asymptotic expressions 
for the decoding error probability are derived. Several other 
important problems associated with the MLD method are 
discussed: the effect of preceding on the decoding error 
rate and error patterns, the number of quantization levels 
required, and the problem of decoder buffer overflows. 

II. MATHEMATICAL MODEL OF CORRELATIVE 

LEVEL CODING SYSTEMS [5] 

A sequence is represented by a power series in Huffman’s 
delay operator D. An information sequence {Q} is then 
represented by 

A(D) = 2 akDk. 
k=l 

A correlative level encoder or a partial-response channel is 
a linear system that is characterized by a transfer function 

G(D) = $ giD", 
i=O 

where gi are integers with a greatest common divisor equal 
to one. Given an input sequence A(D), the encoded output 
sequence X(D) = zp= 1 xkDk is determined by 

X(D) = G(X)*A(D). (3) 

Among (L + 1) coefficients of G(D) the leading coefficient 

go represents the signal value while other L coefficients 
correspond to controlled intersymbol interference terms. 
Let the size of the source alphabet be m. One can choose a 
set of integers (0,l; . *, m - 1) as the alphabet without 
loss of generality. Then the signal levels that the encoder 
output X(D) takes on range from (m - 1) Cf=, min (g,O> 
to (m - 1) CfZo max (gi,O}, that is, the size of the channel 
alphabet is M = (m - 1) Cf= 1 Jgil + 1. 

The encoder output X(D) is sent over a channel with an 
additive noise sequence Z(D) (Fig. l), the output of which 
is denoted by Y(D): 

Y(D) = X(D) + Z(D). (4) 

At the receiving end the sequence X(D) is first led to a 
quantizer whose output is denoted by Q(D). Let us con- 
sider the case in which a quantizer makes a hard decision, 
i.e., it assigns to each yk one of M possible integers. If no 
errors are introduced in the channel and quantizer, then 
Q(D) = X(D) and thus the information sequence A(D) 
can be recovered simply by passing Q(D) through the 
inverse filter l/G(D). An immediately apparent drawback 
of the inverse filtering is that if Q(D) contains an error the 
effect of this error tends to propagate in the decoded 
sequence. This is easily seen from the fact that l/G(D) can 
be expanded, in general, into an infinite power series in D. 
A scheme for avoiding this error propagation is the so-called 
“preceding” devised by Lender [l] originally for the 
duobinary system, i.e., G(D) = 1 + D and m = 2. 

The preceding operation can best be described in terms 
of a discrete filter with transfer function [l/G(D)],Odm, 
which is nonlinear in the ordinary sense but is linear over 
the residue class ring modulo m. In order that this filter 
exist, it is required that the inverge of g,, exists in the 
residue class ring modulo m. This is assured if go and m are 
relatively prime. With an m-level input sequence A(D), the 
preceded sequence B(D), which is also m level, is determined 

by 

B(D) = 4D)IG(D), mod m (54 

or equivalently 

WPU?) = A(D), mod m. (5b) 

The correlative level encoder transforms B(D) into X(D) 
according to the relation 

G(D)B(D) = X(D). 69 

It immediately follows from (5) and (6) that 

or 

X(D) = 4D), mod m (74 

xk = ak, mod m, for all k. (7b) 

To recover the information sequence A(D) given the hard 
decision output Q(D), one merely performs “mod m" 
operation on Q(D) the output of which is denoted by 
A(D) (Fig. 2). Propagation of errors in the output A^(D) is 
thus eliminated. 
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Fig. 1. A discrete system representation of a correlative level coding or partial-response signaling system. 
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Fig. 2. Correlative level coding system with a precoder and “mod m” detector (the conventional bit-by-bit detection method 
configuration). 

An algebraic method of error detection [5], [S] makes 
full use of the inherent redundancy of an M-level sequence 
X(D). This algebraic approach has been further extended 
to the case in which the receiver makes a soft decision, 
including ambiguity levels [S], [9]. 

The present paper describes a completely different 
approach to decoding correlative level coded sequences, 
namely, the MLD method based on a linear finite-state 
machine representation of a correlative level encoder. 

III. MAXIMUM-LIKELIHOOD DECODING ALGORITHM 

In 1967 Viterbi [12] devised a new nonsequential de- 
coding algorithm for convolutional codes. Forney [14] 
showed that this algorithm is in fact the MLD rule. Omura 
[15] discussed the algorithm in a state-space context and 
showed its equivalence to dynamic programming. 

A correlative level encoder defined in the previous section 
can be regarded as a linear finite-state machine like a 
convolutional encoder. In convolutional codes redundancy 
is introduced timewise, whereas in correlative level coding 
redundancy is induced amplitudewise. For a given correla- 
tive level encoder G(D) of (2), we define sk the “state” of the 
encoder by the latest L input digits, i.e., 

or 

sk = [bk-L+dk-L+a’ * .,hJ @b) 

depending on whether a precoder is included or not. Then 
the encoder output xk is a function of skml and ak.l In the 
following we limit ourselves to the correlative level coding 
system G(D) = 1 - D. This transfer function corresponds 
to a digital magnetic recording channel [5], [lo]. The 
so-called modified duobinary [l] or the partial-response 
channel [2] class IV corresponds to the transfer function 

i In the literature of finite-state machines [16] either the Moore 
machine model or the Mealy machine model is usually adopted. In 
the former model we define the state by s, = [o~-~Q-~+~ . . . a,], 
thus xk is a function of sk only. In the latter case we define s, = 
1%L.G-,,l . * . ak- J, thus X~ is a function of sk and ak, We find the 
definition of (8) most convement in our problem, 

G(D) = 1 - D2, which is merely an interleaved form of 
1 - D. The duobinary signaling [l] 1 + D holds a dual 
relationship with 1 - D as is shown in Appendix I. Thus 
the basic decoder structure and the performance are common 
to the class G(D) = 1 + DK, k = 1,2, * * * . 

Now the definition of the state s, is reduced to 

or 

s, = ak (without preceding) (94 

sk = bk = Sk-1 + a,, mod m (with preceding). (9b) 

Fig. 3 shows the transition of the encoder state as a function 
of time k. Starting from so = 0, the encoder follows a 
particular path according to the input sequence A(D). Note 
that the channel sequence X(D) is given by the slope of 
branches in the trellis picture [14] since 

X(D) = (1 - D)s(D), i.e., xk = Sk - skml. (10) 

Let us consider an input sequence of length N#(D) = 
C,“= 1 akDk. If each digit can take on O,l, * * . , m - 1 with 
equal probability and independently, there are mN different 
paths on the trellis picture of Fig. 3. An optimum decoder 
will be the one that chooses the most likely path based on 
the channel output sequence YN(D). Throughout the follow- 
ing discussion we assume that noise is independent from 
digit to digit. Then the log-likelihood function of a path 
,SN(D) = Cf= o skDk is given as the sum of the log-likelihood 
functions of N transitions 

UN(D) 1 SN(D>) = kfo I(Yk 1 sk-l,sk)a (11) 

The MLD algorithm proceeds as follows. Starting from 
the known initial state so, the decoder computes Z(y, 1 so,sl) 
for s1 = O,l;**, m - 1. We define the metric of the node 

Sl = iby 

PlG) = 4Yl I SOA i = O,l;**, m - 1. (12) 

In general, at time k (2 2), the decoder compares for each 
node sk = j the log-likelihood functions of m different 
paths leading to sk = j, i.e., ,&-l(i) + I(& 1 i,j), i = 
0,l; * *, m - 1. Let the path with the largest likelihood 
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k=O k= I k=2 k=3 k=4 

Fig. 3. Trellis picture representation of system G(D) = 1 - D with 
an m-level input: xk = sk - s, _ I where So = n, for a system without 
preceding, and sli = b, = ak + s~-~ (mod m) for a system with 
preceding. 
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Fig. 4. Illustration of an event in which all surviving paths at time k 
have the common node at st = i [see (14)]. 

function be called the survivor [12], since only this branch 
has the possibility of being a portion of the maximum- 
likelihood path and hence should be preserved. Other 
(m - I) paths ending at s, = j can be discarded. Thus the 
metric of the survivor at s, = j is 

~~(3 = max bk-di) + KY, I iJL (13) 

wherej = O,l;**, m - 1 and k 2 2. Each time an event 
occurs such that all surviving paths branch out from a 
common node, say s, = i, that is, the following relation 

holds at time k for all j = O,l, * * *, m - 1 (see Fig. 4), then 
the maximum-likelihood path up to time t is uniquely 
determined independently of the succeeding digits, where 
[i,s,j+ 1 1 * * si-,,j] is the surviving path ending at s, = j. 

Now we are in a position to discuss a practical imple- 
mentation of the maximum-likelihood decoder. Assume 
that the additive noise Z(D) of the channel is a stationary 
Gaussian random sequence with zero mean and variance 
oz. Let the signal level spacing in the channel be A instead 
of unity. Then the log-likelihood function is simplified to 

I(Yk 1 sk-l,sk) = In &%(Yk - &Sk - Sk-l)) 

= - $ { yk - A(sk - sk-l)}2 - $ In (2m2). 

(15) 

Notice that the terms -(1/20’)$ - 3 In (27~0~) are com- 
mon to the log-likelihood function of all the branches and 

sk=m-I 

. 

k=i ttl ++* . . . . . l+K-2 t+,R-I i+1 

Fig. 5. Correct paths A and B and their adversary paths AI, A2, and 
BI. Path A takes neither state 0 nor m - 1 in the interval t + 1 I: 
k 5 t + I - 1. Path B does not take state m - 1 in the same 
interval. 

hence can be deleted. Furthermore, by dividing the resultant 
terms by a constant A/202, we have a simplified version of 
the recursive formula for metrics 

pk(j) = my {hi(i) + (j - i)yk - +(j - lj2A}, 

j = 0,l; * .) m - 1 and k 2 1 (16) 

and 

iNi) = 
i 

0, j = so 

-00, j # so. 

The structure of the maximum-likelihood decoder for a 
binary input is discussed in detail in [lo]. 

IV. PERFORMANCE OF MAXIMUM-LIKELIHOOD DECODER 

In the present section we present analytical results on the 
performance2 of the MLD algorithm and then computer 
simulation results will be reported to confirm the analytical 
results. We see from the trellis picture of Fig. 3 that in the 
MLD method an error occurs when and only when the 
decoder path diverges from the correct path at some time, 
say k = t. They remerge at some time later at k = t + I, 
1 2 2. 

Assume a high signal-to-noise ratio (SNR) condition. 
Then consider, as possible adversary paths (paths competing 
against the correct path) only those that are “closest” to 
the correct path. Since the slope of the trellis corresponds 
to the signal level in the channel, adversaries are those that 
stay closest to, and parallel with, the correct path in the 
interval t + 1 I k I t + 1 - 1. 

There are at most two adversaries for a given correct 
path. Let the path A of Fig. 5 be the correct path. Note 
that this path does not take on extreme states 0 and m - 1 
between k = t + 1 and t + I - 1. Then there are exactly 
two adversary paths Al and A2 that diverge from the 
correct path A at k = t and remerge for the first time at 
k = t + 1. Let the metric of an adversary path [s,5,+ 1 * * * 
* 
St+z-1St+z ] minus that of the correct path [s,s,+ I * * * 
s r+l-l~t+l] be denoted by We, then w1 is a random variable 
given, from (15), by 

WI = Vl + vz, (18) 

2 The author has found through a private communication that the 
same results have been recently obtained by Forney [17]. 
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where 

Vl = et+1 - 

and 

fJ2 = (st+l-1 

St+1 Yt+1 > - W{(s”,.l - %I2 - (St+1 - St>“> 

(19) 

I 
- Sr+z-1 Yt+l > - 3A{(st+, - &+1-A2 

- (st+l - St+l-1)21. (20) 

If a correct path takes one of two outermost states 0 and 
m - 1 but never takes both between k = t + 1 and 
t + 1 - 1, then an adversary to be considered is only one. 
For example, if the path B is the correct one, then we need 
consider only BI. Decoding error rate due to such an event 
is given by 

P2 = 5 (I - 1) 2 
I=2 

( (=$)‘-’ - 2 (yy) P,(l) 

Equation (18) is obtained using the fact that x, for t + 2 I 
k I t + I - 1 are common to both the correct path and 
the adversary, hence these branches do not contribute to 
the quantity wl. Random variables v1 and v1 are Gaussian 
with 

and 

E(q) = E{v,} = -+A (21) 

var {vi} = var (vl} = c2. (22) 

Hence w1 is a Gaussian random variable with 

E{w,} = -A (23) 

and 

var {wI} = 20~. (24) 

The adversary path [s,s”,+ 1 . * * $+ I- 1s,+ J wins over the 
correct path if wI > 0, and such an event occurs with 
probability 

Pe(O = 
s 

m (l/&)$$(w~ + ~>/(‘20~>“~> dw, = Q(d), (25) 
0 

where 4( *) is the unit normal function and Q( *) is the 
function defined by 

Q(x) = jm 4(t) dt. (26) 
X 

The quantity d of (25) is the SNR parameter defined by 

d2 = A2/(202). (27) 

If no preceding is used, (I - 1) consecutive digits 

at+lai+z * * * a,, I-1 are erroneously decoded when either 
of two adversaries Al and A2 wins over the correct path A. 
A union bound for the average number of error digits due 
to such events is given by 

P,(Z) = $m(m - 2)Q(d) 

(28) 

in which [(m - 2)/m]‘-’ . is the probability that the correct 
path A does not take extreme values 0 and m - 1. If pre- 
coding is adopted in the system, a,, 1 and at+, are er- 
roneously decoded when either Al or A2 wins over A. 
Such a probability is bounded by 

P,(Z) = 2(m - 2)Q(d). (29) 

= 2m(m - l)Q(d) - P1 

when preceding is not used and 

(30) 

P; = zz 2 (2 (m+)l-l - 2 (m+)7 P,(Z) 

= 4(m - l)Q(d) - Pi (31) 

when preceding is adopted. The term {2[(m - l)/m]z-l - 
2[(m - 2)/m]z-1} in (30) and (31) represents the probability 
that the correct path B takes one of two outermost states 
0 and m - 1 at least once, but never takes the other 
extreme state, in the interval I + 1 I k I t + Z - 1. 

Adding (28) and (30), the symbol error rate is given by 

P MLD = 2m(m - l)Q(d) (32) 

for a system without preceding. Similarly from (29) and 
(3 1) the symbol error probability of a system with preceding 
is 

phLD = 4(m - l)Q(O (33) 

Except for m = 2 (i.e., binary inputs), Pb,, < PMLD. Thus 
preceding is beneficial not only in the conventional bit-by- 
bit detection method but also in the MLD method. 

In the bit-by-bit detection method the error rate is given 

bY PI 
P BIT = 2(1 - l/m2)Q(d/21j2). (34) 

The average SNR R in the channel is given by 

R = [(m” - 1)/3] d2. (35) 

Therefore from (33) to (35) expressions for decoding error 
rates in terms of the channel SNR are given by 

Ph,, = 4(m - l)Q([3R/(m2 - 1)]1’2) (36) 

and 

P BIT = 2(1 - l/m2)Q([3R/2(m2 - 1)]‘j2). (37) 

It will be interesting to compare these results with an 
m-level PAM system without correlative level coding. The 
expression for the error rate is [3] 

P, = 2(1 - l/m)Q([3R/(m2 - l)]““). (38) 

When m = 2, Ph,, is only four times of P,,,; thus the MLD 
method allows a PAM system to adopt a correlative level 
coding technique to attain some desired spectral shaping 
with a very little penalty in its performance. In other words, 
the loss in noise margin, which has been claimed to be the 
major disadvantage of a correlative level coding system, 
can be almost completely recovered by the MLD method. 
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Fig. 6. Probability of error versus SNR for the bit-by-bit detection 
method and the MLD method in a system G(D) = 1 k DK with 
an m-level input, where m = 2, 4, 8, and 16. 

Fig. 6 plots (36) and (37) for m = 2, 4, 8, and 16. As we 
see from this figure, the MLD improves the performance 
significantly compared with the bit-by-bit detection method. 
For a binary input, for example, PBrT = 1.1 x 10e3 at 
R = 13 dB, whereas Ph,, = 1.8 x 10m5, i.e., the per- 
formance improvement by a factor of 70. This factor 
becomes as high as 250 for R = 14 dB. 

Computer simulations were done for a binary input, and 
the results are plotted in Fig. 7. The simulation size was 
N = lo5 for R = 10 - 12 dB and N = lo6 for R greater 
than 12 dB. Although this sample size is not sufficient, we 
may conclude that the analysis and the experiment agree 
satisfactorily. In the above simulation the decoder buffer 
length was 25 to avoid a possible buffer overflow. The 
problem of buffer overflows will be discussed in the next 
section. 

V. SOME PRACTICAL CONSIDERATIONS 

In the present section we will consider two important 
questions that would invariably arise when one wants to 
implement the maximum-likelihood decoder. The first prob- 
lem is the number of quantization levels required. Thus 
far we have tacitly assumed that the receiver input yk is 
quantized into infinitely many levels. In an actual imple- 
mentation, which is presumably in a digital form, the 
channel output JQ must be quantized into a finite number 
of levels. If the quantizer output is denoted by qk (see 
Fig. l), then a discrete memoryless channel (DMC) can be 
defined with input xk and output qk. The MLD rule applied 
to the output of this DMC is given by [see (13)] 

pk(j) = my {pk-l(i) + In p[qk 1 xk = (j - i)]} (39) 

where p(- 1 a) is the channel transition probability of the 
DMC defined above. The decoding rule (39) is applicable 
regardless of the number of quantization levels, and 
whether or not the quantization level spacing is uniform. 
However, the metric computation may not be practical in 
this form, since it needs the table of In p( * I*) and these 
numbers require several significant figures to represent. 

A more practical scheme will be the one that uses the 

IO6 L 
IO II I2 I3 I4 I5 I6 

SNR(dB) 

Fig. 7. Experimental curves of the bit-by-bit detection method and 
the MLD method for a system G(D) = 1 - D with m = 2. x-no 
preceding, o-preceding. 

Fig. 8. Performance of the MLD decoder for a system with a finite 
number of quantization levels. Quantization level spacing is A/N 
where N = 4, 8, 16, and 32, and A is the signal level spacing. 

uniform quantization is performed, the metric computation 
of (16) can be done in the integer format. Fig. 8 shows the 
performance of the MLD for a system with G(D) = 1 + DK 
and m = 2, when the quantization spacing is A/N where 
N = 4, 8, 16, and 32. We may conclude that N = 16 
achieves almost the same performance (less than O.l-dB 
loss) as the infinite level quantization. 

The second problem that would arise in implementation 
will be the memory size required in the decoder. The de- 
coder can store only a finite history, say the past J digits, 
of m surviving paths. A buffer overflow occurs when and 

simple formula of (16) (yk is to be replaced by qk). If a only when events defined by (14) are separated by more 
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Fig. 9. Plot of (40) and experimental results for SNR = 10 dB 
and 13 dB. 

than J time units. Let t and t’ (t’ 2 t) be two consecutive 
times at which m survivors branch out of a common node. 
Then for a binary input system (i.e., m = 2) the distribu- 
tion of separation s = t’ - t is given by 

P(s) = 2-” [; - &] g 5 2-s. (40) 

The derivation of (40) is given in Appendix II. Fig. 9 shows 
simulation results for SNR R = 10 and 13 dB along with 
the analytical curve of (40). We see a satisfactory agreement 
here also. 

VI. CONCLUSIONS 

The MLD of correlative level codes was discussed based 
on a finite-state machine representation of the encoder. A 
simple decoder structure was derived under a Gaussian 
noise assumption. Expressions (32) and (33) for the de- 
coding error rate were obtained for a class of G(D) = 
I + D. It has been proven that a significant improvement 
in the performance is possible by the MLD method. Several 
important problems associated with the implementation of 
the decoder were also discussed; these include the effect of 
preceding, the number of quantization levels required, and 
the problem of decoder buffer overflows. 

APPENDIX I 
DUALITY OF SYSTEMS 1 + D AND 1 - D 

In actual systems the signal levels for X(D) should be 
symmetrical around zero (dc) level to gain the largest 
separation under a given signal power constraint. Consider 
the mapping 

ck = bk - $(m - l), (41) 

which yields a dc-free sequence (Q}. The performance of 
the system shown in Fig. 10(a) will be subject to no change 
when an alternating sequence (- 1)” is multiplied at both 

(b) 

* I-D . 

I I 

(4 
Fig. 10. (a) System G(D) = 1 - D with a dc-free input. (b) System 

(a) preceded and followed by the modulation of a known sequence 
(- 1)‘. (c) A system equivalent to (b). 

the input and output. It is clear then that the system of 
Fig. 10(a) is equivalent to the system of Fig. 10(b), which 
is then simplified to Fig. 10(c). Thus if the noise sequence 
(~2~) is uncorrelated, the system 1 + D will give the same 
performance with the system 1 - D: 

APPENDIX II 
DERIVATION OF (40) 

Consider the binary input case. Referring to (14) and 
Fig. 4, we see that the earliest possible time k is always 
equal to t i- 1, if a node i (either 0 or 1) at time t satisfies 
(14). This is because there are only two survivors for the 
binary case. Thus (14) is simplified to 

(42) 

where j = 0,l and i = s, is the common state from which 
two survivors of time t + 1 branch out [Fig. 11(a)]. Such 
an event occurs almost certainly when the correct path 
changes its state at t + 1, i.e., st+r = 1 - s,. Fig. 11(a) 
shows the case s, = 1 and s,+~ = 0. The reason for this 
is as follows. The correct path is almost always one of two 
survivors and the other survivor is very unlikely to grow 
from s, = 0, since the transition from 0 to 1 corresponds to 
the channel symbol +A, which is the other extreme of the 
correct signal level -A. A necessary condition that a 
branching from a common node takes place at time t’ + 1 
for the first time, is that the correct path maintains its 
state at least up to time t’, i.e., sk = st+l for t + 2 2 
k I t’. Such a path occurs with probability 2-(“-‘-r) = 
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t t+l ttz .*. km. t’-I t’ tit1 

Sk=1 
“8 O O 

Sk’0 

(4 

. 

. 

. 

Sk’2 

(b) 
Fig. 11. (a) A correct path in a system G(D) = 1 - D with a binary 

input. Branching of two survivors takes place at time t and t’. (b) 
Surviving paths in a system G(D) = 1 - D with an m-level input. 
Path in a thick line represents a correct path. 

2l-‘, where s = t’ - t. Furthermore, the following con- 
dition must hold in order that a branching does not occur 
at t + 2 I k < t’: 

(-Yt+ 1 - +A) + (yk - +A) < 0 

for k = t + 2; * * ,t’. 

(43) 

Now at time t’ + 1 the correct path moves to state 0 or 
state 1 with equal probability. Ifs,, + 1 = 1 (i.e., a transition 
occurs), then a branching occurs almost surely as explained 
above. If s,? + 1 = 0, then a branching occurs if and only if 

(-Yt+1 - Q-4) + (ytt+l - +A) > 0. (44) 

Thus 

Pr {the next branching occurs at t’ + 1 1 
a branching occurred at t} 

= 2l-“*2-lPr {y, - yt+l < A, k = t + 2;. .,t’} 

+ 2l-“*2-l Pr {yk - yt+l < A, k = t + 2; * *,t’ 

andw+, - Y~+~ > 4. (45) 

Random variables y t+l, yk(t + 2 I k < t’) and yrf+l are 
Gaussian with common variance a2 and mean -A, 0 and 
+ A, respectively. Thus 

Pr {yk - Y,+~ < A for all k = t + 2;**,t’) 

m = s ( -CC ,=(I, Pr iyk s yf+l + A)) c2n&,2 

(Y~+I + 4’ 
202 I 

dy,+ I 

= s m as- 'KY + A)/4 5 KY + A>/4 dy = 5, (46) -VI 
where 4( *) is the unit normal function and Q( .) is 

@D(x) = 
s 

’ t/5(t) dt. 
-* 

Similarly 

Pr{yk-y,+1<A,k=t+2,“.,t’andy,,+l-y,+l>A} 

= 
s 

m W-‘((y + A)/+(-(y + A)/4 1 
-CC 0 

x MY + 4/d dy = i - & - (47) 

Thus on substituting (46) and (47) into (45), the distribution 
ofs = t’ - tis 

and clearly 

P(s) = [2/s - l/(s + 1)12-s (48) 

Jl P(s) = 1. 

For a multilevel input, i.e., m > 2, the computation is 
rather complicated. An approximate computation of P(s), 
however, is obtained as follows. Suppose the correct path 
is located at state node 0 (or m - 1) at time t. Then under 
a high SNR condition by the time the correct path reaches 
the other extreme state m - 1 (or 0), all the survivors are 
the ones that branch out from the common node s, (see 
Fig. 1 l(b)). Therefore the branching node is almost always 
0 and m - 1 of the correct path. Hence the distribution 
of separation s is approximately 

P(s) = [(m - 1)/m]“-’ * l/m. (50) 
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Single- and Multiple-Burst-Correcting Properties 
of a Class of Cyclic Product Codes 

LALIT R. BAHL, MEMBER, IEEE, AND ROBERT T. CHIEN, MEMBER, IEEE 

Abstract-The direct product of p single parity-check codes of block 
lengths n1,n2, + + . ,n,isacycliccodeofblocklengthnr x nz x . .. x n, 

with (nl - 1) x (nz - 1) x + . . x (n, - 1) information symbols per 
block, if the integers n1,n2, + . . ,n, are relatively prime in pairs. A 
lower bound for the single-burst-correction (SBC) capability of these 
codes is obtained. Then, a detailed analysis is made for p = 3, and it is 
shown that the codes can correct one long burst or two short bursts of 
errors. A lower bound for the double-burst-correction (DBC) capability 
is derived, and a simple decoding algorithm is obtained. The generaliza- 
tion to correcting an arbitrary number of bursts is discussed. 

I. INTRODUCTION 

A SINGLE parity-check code has one check digit per, 
block. In the binary case, this check digit is the 

mod 2 sum of all the information digits. The code can also 
be considered as a cyclic code with generator g(x) = 
(x + 1). The codes investigated in this paper are cyclic 
product codes [1] whose constituent subcodes are single 
parity check codes. If n1 < nz < * * * nP are integers rela- 
tively prime in pairs, then the product of p single parity 
check codes of block lengths n1,n2, * * *,n, is a cyclic code of 
block length n = n1 x n2 x * * * x np with k = (nl - 1) x 
(nz - 1) x * . * X (np - 1) information symbols per block 
and having generator polynomial 

g,(x) = lcm (xml + 1, xm2 + 1; * -, xmp + l), (1) 

where m, = n/nie3. 
The geometric structure and random error-correcting 

properties of these codes have been studied by Kautz [4] 
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and Calabi and Haefeli [S], who showed that the codes 
have minimum distance 2*. Burton and Weldon [1] demon- 
strated the cyclic nature of the codes. For p = 2, the codes 
are known as Gilbert [6] codes and their single-burst 
error-correction (SBC) capability has been studied by 
Neumann [7] and Bahl and Chien [S]. For p > 2, Bahl 
and Chien [3] have also looked at the performance of these 
codes with threshold decoding. 

In this paper, a lower bound for the SBC capability is 
derived. The result is a generalization of the bound obtained 
for Gilbert codes by Bahl and Chien [S]. 

For p = 3, the double-burst-correction (DBC) capability 
is investigated, and it is shown that the codes can be used 
to correct one long burst or two short bursts of errors. The 
generalization to correcting an arbitrary number of bursts 
is discussed. 

II. PRELIMINARIES 

In cyclic codes, the first and last digit positions of a 
codeword are considered to be adjacent. Therefore, there 
are two ways to calculate the position difference between 
position i, and position iz in a codeword. The two position 
differences are Ii, - i,l and n - Ii, - &I, where n is the 
block length. The first difference is obtained by directly 
traversing from il to i,, the second by an end around 
traverse. The smaller of the two quantities, the shortest 
position difference, is given by ICI where c 3 (il - i2) mod n 
and E is taken from the set of absolutely least-magnitude 
residues, i.e., (0, It 1, f2, * - * , k(n - 1)/2} if n is odd and 
(0, +1, &2,-e. , f (n - 2)/2, n/2> if n is even. This residue 
set is different from the more frequently used set of least 
nonnegative residues (0, 1, 2, * * *, n - 1). In this paper, it 
is convenient to use both residue class representations and 
to differentiate between the two types of residues, an 
overbar will be placed over least-magnitude residues. 

A burst of length b is a sequence of b consecutive digits, 


