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ABSTRACT

Automatically annotating concepts for video is a key to
semantic-level video browsing, search and navigation. The
research on this topic evolved through two paradigms. The
first paradigm used binary classification to detect each in-
dividual concept in a concept set. It achieved only limited
success, as it did not model the inherent correlation between
concepts, e.g., urban and building. The second paradigm
added a second step on top of the individual-concept de-
tectors to fuse multiple concepts. However, its performance
varies because the errors incurred in the first detection step
can propagate to the second fusion step and therefore de-
grade the overall performance. To address the above issues,
we propose a third paradigm which simultaneously classi-
fies concepts and models correlations between them in a
single step by using a novel Correlative Multi-Label (CML)
framework. We compare the performance between our pro-
posed approach and the state-of-the-art approaches in the
first and second paradigms on the widely used TRECVID
data set. We report superior performance from the proposed
approach.

Categories and Subject Descriptors

H.3.1 [Information Storage and Retrieval]: Content
Analysis and Indexing-indexing methods; I.2.10 [Artificial
Intelligence]: Vision and Scene Understanding—video analy-
sis

General Terms
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1. INTRODUCTION
Automatically annotating video at the semantic concept

level has emerged as an important topic in the multimedia
research community [11][16]. The concepts of interest in-
clude a wide range of categories such as scenes (e.g., urban,
sky, mountain, etc.), objects (e.g., airplane, car, face, etc.),
events (e.g., explosion-fire, people-marching, etc.) and cer-
tain named entities (e.g. person, place, etc.) [16][12]. Before
we discuss the details of this topic, we would like to first de-
fine a few terminologies. The annotation problem of interest
to this paper, as well as to other research efforts [16][12], is
a multi-labeling process where a video clip can be annotated
with multiple labels. For example, a video clip can be clas-
sified as “urban”, “building” and “road” simultaneously. In
contrast, multi-class annotation process labels only one con-
cept to each video clip. Most of the real-world problems, e.g.,
the ones being addressed in TRECVID [17], are multi-label
annotation, not multi-class annotation. In addition, multi-
label is more complex and challenging than multi-class, as
it involves non-exclusive detection and classification. This
paper focuses on multi-label annotation.

Research on multi-label video annotation evolved through
two paradigms: individual concept detection and annota-
tion, and Context Based Conceptual Fusion (CBCF) [8] an-
notation. In this paper, we propose the third paradigm: in-
tegrated multi-label annotation. We next review these three
paradigms.

1.1 First Paradigm: Individual Concept
Annotation

In this paradigm, multiple video concepts are detected
individually and independently without considering correla-
tions between them. That is, the multi-label video annota-
tion is translated into a set of binary detectors with pres-
ence/absence of the label for each concept. A typical ap-
proach is to independently train a concept model using Sup-
port Vector Machine(SVM) [4] or Maximum Entropy Model
(MEM) [13] etc. The leftmost flowchart of Figure 1 illus-
trates the first paradigm – a set of individual SVMs for video
concept detection and annotations. A mathematical alter-
native is to stack this set of detectors into a single discrimi-
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Figure 1: The multi-label video annotation methods in three paradigms. From leftmost to the rightmost,
they are the individual SVM, CBCF and our proposed CML.

native classifier [14]. However, both the individual detectors
and the stacked classifier at their core are independent bi-
nary classification formulations.

The first-paradigm approaches only achieved limited suc-
cess. In real world, video concepts do not exist in isola-
tion. Instead, they appear correlatively and naturally in-
teract with each other at the semantic level. For example,
the presence of “crowd” often occurs together with the pres-
ence of “people” while “boat ship” and “truck” commonly do
not co-occur. Furthermore, while simple concepts can be
modeled directly from low level features, it is quite difficult
to individually learn the models of complex concepts, e.g.,
“people marching”, from the low-level features. Instead, the
complex concepts can be better inferred based on the corre-
lations with the other concepts. For instance, the presence
of “people marching” can be boosted if both “crowd” and
“walking running” occurs in a video clip.

1.2 Second Paradigm: Context Based
Conceptual Fusion Annotation

One of the most well-known approaches in this paradigm is
to refine the detection results of the individual detectors with
a Context Based Concept Fusion (CBCF) strategy. For in-
stance, Naphade et al. [10] proposed a probabilistic Bayesian
Multinet approach to explicitly model the relationship be-
tween the multiple concepts through a factor graph which
is built upon the underlying video ontology semantics. Wu
et al. [20] used an ontology-based multi-classification learn-
ing for video concept detection. Each concept is first in-
dependently modeled by a classifier, and then a predefined
ontology hierarchy is investigated to improve the detection
accuracy of the individual classifiers. Smith et al. [15] pre-
sented a two-step Discriminative Model Fusion (DMF) ap-

proach to mine the unknown or indirect relationship to spe-
cific concepts by constructing model vectors based on detec-
tion scores of individual classifiers. A SVM is then trained to
refine the detection results of the individual classifiers. The
center flowchart of Figure 1 shows such a second-paradigm
approach. Alternative fusion strategy can also be used, e.g.
Hauptmann et al. [6] proposed to use Logistic Regression
(LR) to fuse the individual detections. Jiang et al. [8] used
a CBCF-based active learning method. Users were involved
in their approach to annotate a few concepts for extra video
clips, and these manual annotations were then utilized to
help infer and improve detections of other concepts.

Although it is intuitively correct that contextual relation-
ship can help improve detection accuracy of individual de-
tectors, experiments of the above CBCF approaches have
shown that such improvement is not always stable, and the
overall performance can even be worse than individual de-
tectors alone. For example, in [6] at least 3 out of 8 concepts
do not gain better performance by using the conceptual fu-
sion with a LR classifier atop the uni-concept detectors. The
unstable performance gain is due to the following reasons:

1. CBCF methods are built on top of the independent bi-
nary detectors with a second step to fuse them. How-
ever, the output of the individual independent detec-
tors can be unreliable and therefore their detection er-
rors can propagate to the second fusion step. As a
result, the final annotations can be corrupted by these
incorrect predictions. From a philosophical point of
view, the CBCF approaches do not follow the princi-
ple of Least-Commitment espoused by D. Marr [9], be-
cause they are prematurely committed to irreversible
individual predictions in the first step which can or
cannot be corrected in the second fusion step.
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2. A secondary reason comes from the insufficient data
for the conceptual fusion. In CBCF methods, the sam-
ples needs to be split into two parts for each step and
the samples for the conceptual fusion step is usually
insufficient compared to the samples used in the first
training step. Unfortunately, the correlations between
the concepts are usually complex, and insufficient data
can lead to “over fitting” in the fusion step, thus the
obtained prediction lacks the generalization ability.

1.3 Third Paradigm: Integrated Multi-label
Annotation

To address the difficulties faced in the first and second
paradigms, in this paper, we will propose a third paradigm.
The key of this paradigm is to simultaneously model both
the individual concepts and their interactions in a single
formulation. The rightmost flowchart of Figure 1 illustrates
our proposed Correlative Multi-Label (CML) method. This
approach has the following advantages compared with the
second paradigm, e.g., CBCF methods:

1. The approach follows the Principle of Least-Commitment
[9]. Because the learning and optimization is done in a
single step for all the concepts simultaneously, it does
not have the error propagation problem as in CBCF.

2. The entire samples are efficiently used simultaneously
in modeling the individual concepts as well as their cor-
relations. The risk of overfitting due to the insufficient
samples used for modeling the conceptual correlations
is therefore significantly reduced.

To summarize, the first paradigm does not address concept
correlation. The second paradigm attempts to address it by
introducing a separate second correlation step. The third
paradigm, on the other hand, addresses the correlation issue
at the root in a single step. The rest of the paper is orga-
nized as follows. In Section 2, we give a detailed description
of the proposed Correlative Multi-Label (CML) approach,
including the classification model, and the learning strat-
egy. In Section 3, we will explore the connection between
the proposed approach and Gibbs Random Fields (GRFs)
[19], based on which we can show an intuitive interpreta-
tion on how the proposed approach captures the individual
concepts as well as the conceptual correlations. Section 4
details the implementation issues, including concept label
vector prediction and concept scoring. Finally, in Section
5, we will report experiments on the benchmark TRECVID
data and show that the proposed approach has superior per-
formance over state-of-the-art algorithms in both first and
second paradigms.

2. OUR APPROACH-CML
In this section, we will introduce our proposed correlative

multi-labeling (CML) model for video semantic annotation.
In Section 2.1, we will present the mathematical formula-
tion of the multi-labeling classification function, and show
that this function captures the correlations between the in-
dividual concepts and low-level features, as well as the cor-
relations between the different concepts. Then in Section
2.2, we will describe the learning procedure of the proposed
CML model.

2.1 A Multi-Label Classification Model
Let x = (x1, x2, · · · , xD)T ∈ X denote the input pattern

representing feature vectors extracted from video clips; Let

y ∈ Y = {+1,−1}K denote the K dimensional concept label
vector of an example, where each entry yi ∈ {+1,−1} of y

indicates the membership of this example in the ith concept.
X and Y represent the input feature space and label space
of the data set, respectively. The proposed algorithm aims
at learning a linear discriminative function

F (x, y;w) = 〈w, θ(x, y)〉 (1)

where θ(x, y) is a vector function mapping from X ×Y to a
new feature vector which encodes the models of individual
concepts as well as their correlations together (to be detailed
later); w is the linear combination weight vector. With such
a discriminative function, for an input pattern x, the label
vector y

∗ can be predicted by maximizing over the argument
y as

y
∗ = max

y∈Y
F (x, y;w) (2)

As to be presented in the next section, such a discrimina-
tive function can be intuitively interpreted in the Gibbs ran-
dom fields (GRFs) [19] framework when considering the de-
fined feature vector θ(x, y). The constructed feature θ(x, y)
is a high-dimensional feature vector, whose elements can be
partitioned into two types as follows. And as to be shown
later these two types of elements actually account for mod-
eling of individual concepts and their interactions, respec-
tively.

Type I The elements for individual concept modeling:

θl
d,p(x, y) = xd · δ [[yp = l]] ,

l ∈ {+1,−1}, 1 ≤ d ≤ D, 1 ≤ p ≤ K
(3)

where δ [[yp = l]] is an indicator function that takes on
value 1 if the predict is true and 0 otherwise; D and K

are the dimensions of low level feature vector space X
and the number of the concepts respectively. These en-
tries of θ(x, y) serve to model the connection between
the low level feature x and the labels yk(1 ≤ k ≤ K)
of the concepts. They have the similar functionality
as in the traditional SVM which models the relations
between the low-level features and high-level concepts.

However, as we have discussed, it is not enough for a
multi-labeling algorithm to only account for modeling
the connections between the labels and low-level fea-
tures without considering the semantic correlations of
different concepts. Therefore, another element type of
θ(x, y) is required to investigate the correlations be-
tween the different concepts.

Type II The elements for concept correlations:

θm,n
p,q (x, y) = δ [[yp = m]] · δ [[yq = n]]

m, n ∈ {+1,−1}, 1 ≤ p < q ≤ K
(4)

where the superscripts m and n are the binary labels
(positive and negative label), and subscripts p and q

are the concept indices. These elements serve to cap-
ture all the possible pairs of concepts and labels. Note
that, both positive and negative relations are captured
with these elements. For example, the concept “build-
ing” and “urban” is a positive concept pair that often
co-occurs while“explosion fire”and“waterscape water-
front” is negative concept pair that usually does not
occur at the same time.
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Note that we can model high-order correlations among
these concepts as well, but it will require more training
samples. As to be shown in Section 5, such an order-2
model successfully trades off between the model com-
plexity and concept correlation complexity, and achieves
significant improvement in the concept detection per-
formance.

We concatenate the above two types of elements to form
the feature vector θ(x, y). It is not difficult to see that the
dimension of vector θ(x, y) is 2KD+4C2

K = 2K(D+K−1).
When K and D are large, the dimension of θ(x, y) will be
extraordinary high. For example, if K = 39 and D = 200,
θ(x, y) will have 18, 564 dimensions. However, this vector is
sparse thanks to the indicator function δ [[·]] in Eqns. (3) and
(4). This is a key step in the mathematical formulation. As
a result, the kernel function (i.e. the dot product) between
the two vectors, θ(x, y) and θ(x̃, ỹ), can be represented in a
very compact form as

〈θ(x , y), θ(x̃ , ỹ)〉 = 〈x , x̃ 〉
�

1≤k≤K
δ [[yk = ỹk]]

+
�

1≤p<q≤K
δ [[yp = ỹp]] δ [[yq = ỹq]]

(5)

where 〈x, x̃〉 is the dot product over the low-level feature
vector x and x̃. Of course, a Mercer kernel function K(x, x̃)
(such as Gaussian Kernel, Polynomial Kernel) can be substi-
tuted for 〈x, x̃〉 as in the conventional SVMs, and nonlinear
discriminative functions can then be introduced with the use
of these kernels. In the next subsection, we will present the
learning procedure of this model. As to be described, the
above compact kernel representation will be used explicitly
in the learning procedure instead of the original feature vec-
tor θ(x, y).

2.2 Learning the Classifier
Using the feature vector we constructed above and its

kernel representation in (5), the learning procedure trains
a classification model as delineated in (1). The procedure
follows a similar derivation as in the conventional SVM (de-
tails about SVM can be found in [4]) and in particular one
of its variants for the structural output spaces [18]. Given
an example xi and its label vector yi from the training set
{xi, yi}

n
i=1, according to Eqn. (1) and (2), a misclassification

occurs when we have

∆Fi(y)
∆
= F (xi, yi) − F (xi, y)

= 〈w, ∆θi(y)〉 ≤ 0, ∀y �= yi, y ∈ Y
(6)

where ∆θi(y) = θ(xi, yi)−θ(xi, y). Therefore, the empirical
prediction risk on training set wrt the parameter w can be
expressed as

R̂({xi, yi}
n
i=1;w) =

1

n

�n

i=1

�
y�=yi,y∈Y

ℓ(xi, y;w) (7)

where ℓ(xi, y;w) is a loss function counting the errors as

ℓ(x i, y ;w) = {
1 if 〈w , ∆θi(y)〉 ≤ 0, ∀y �= y i, y ∈ Y;
0 if 〈w , ∆θi(y)〉 > 0, ∀y �= y i, y ∈ Y.

(8)

Our goal is to find a parameter w that minimizes the empir-
ical error R̂({xi, yi}

n
i=1;w). Considering the computational

efficiency, in practice, we use the following convex loss which
upper bounds ℓ(xi, y;w) to avoid directly minimize the step-
function loss:

ℓh(xi, y;w) = (1 − 〈w, ∆θi(y)〉)+ (9)

where (·)+ is a hinge loss in classification. Correspondingly,
we can now define the following empirical hinge risk which
upper bounds R̂({xi, yi}

n
i=1;w):

R̂h({xi, yi}
n
i=1;w) =

1

n

�n

i=1

�
y�=yi,y∈Y

ℓh(xi, y;w) (10)

Accordingly, we can formulate a regularized version of
R̂h({xi , yi}

n
i=1;w) that minimizes an appropriate combina-

tion of the empirical error and a regularization term Ω(||w||2)
to avoid overfitting of the learned model. That is

min
w

�
R̂h({xi, yi}

n
i=1;w) + λ · Ω

�
||w||2

��
(11)

where Ω is a strictly monotonically increasing function, and
λ is a parameter trading off between the empirical risk and
the regularizer. As indicated in [4], such a regularization
term can give some smoothness to the obtained function
so that the nearby mapped θ(x , y), θ(x̃ , ỹ) have the simi-
lar function value F (θ(x , y);w), F (θ(x̃ , ỹ);w). Such a local
smoothness assumption is intuitive and can relieve the neg-
ative influence of the noise training data.

In practice, the above optimization problem can be solved
by reducing it to a convex quadratic problem. Similar to
what is done in SVMs [4], by introducing a slack variable
ξi(y) for each pair (xi, y), the optimization formulation in
(11) can be rewritten as

minw
1
2
||w||2 + λ

n
·
�n

i=1

�
y�=yi,y∈Y ξi(y)

s.t.〈w, ∆θi(y)〉 ≥ 1 − ξi(y), ξi(y) ≥ 0y �= yi, y ∈ Y
(12)

On introducing Lagrange multipliers αi(y) into the above
inequalities and formulating the Lagrangian dual according
to Karush-Kuhn-Tucker (KKT) theorem [1], the above prob-
lem further reduces to the following convex quadratic prob-
lem (QP):

maxα

�
i,y�=yi

αi(y) − 1
2

�
i,y�=yi

�
j,ỹ�=yj

αi(y)αj(ỹ) 〈∆θi(y), ∆θj(ỹ)〉

s.t.0 ≤
�

y�=yi,y∈Y αi(y) ≤ λ
n

, y �= yi, y ∈ Y, 1 ≤ i ≤ n (13)

and the equality

w =
�

1≤i≤n,y∈Y
αi(y)∆θi(y) (14)

Different from those dual variables in the conventional SVMs
which only depend on the training data of observation and
the associated label pairs (xi, yi), 1 ≤ i ≤ n, the Lagrangian
duals in (13) depend on all assignment of labels y, which
are not limited to the true label of yi. We can iteratively
find the active constraints and the associated label vari-
able y

∗ which most violates the constraints in (9) as y
∗ =

arg maxy�=yi
F (xi, y;w) and ∆Fi(y

∗) < 1. An active set
is maintained for these corresponding active dual variables
αi(y

∗), and w is optimized over this set during each iteration
using commonly available QP solvers (e.g. SMO [4]).

3. CONNECTION WITH GIBBS RANDOM

FIELDS FOR MULTI-LABEL

REPRESENTATION
In this section we give an intuitive interpretation of our

multi-labeling model through Gibbs Random Fields (GRFs).
Detailed mathematical introduction about GRFs can be found
in [19]. We can rewrite Eqn. (1) as

F (x, y;w) = 〈w, θ(x, y)〉
=
�

p∈℘
Dp(yp; x) +

�
(p,q)∈N Vp,q(yp, yq; x)

(15)
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Figure 2: Gibbs Random Fields for a correlative
multi-label representation. The edges between con-
cepts indicate the correlation factors Pp,q(yp, yq|x) be-
tween concept pairs.

and

Dp(yp; x) =
�

1≤d≤D,l∈{+1,−1} w
l
d,pθl

d,p(x, y)

Vp,q(yp, yq; x) =
�

m,n∈{+1,−1} w
m,n
p,q θm,n

p,q (x, y)
(16)

where ℘ = {i|1 ≤ i ≤ K} is a finite index set of the con-
cepts with every p ∈ ℘ representing a video concept, and
N = {(p, q)|1 ≤ p < q ≤ K} is the set of interacting concept
pairs. From the GRFs point of view, ℘ is the set of sites of a
random field and N consists of adjacent sites of the concepts.
For example, in Figure 2, the corresponding GRF has 6 sites
representing “outdoor”, “face”, “person”, “people marching”,
“road” and “walking running”, and these sites are intercon-
nected by the concept interactions, such as (outdoor, people
marching), (face, person), (people marching, walking run-
ning) etc, which are included in the neighborhood set N
of GRF. In the CML framework, the corresponding N con-
sists of all pairs of the concepts, i.e., this GRF has a fully
connected structure.

Now we can define the energy function for GRF given an
example x as

H(y|x,w) = −F (x, y;w)

= −
��

p∈℘
Dp(yp; x) +

�
(p,q)∈N Vp,q(yp, yq; x)

�
(17)

and thus we have the probability measure for a particular
concept label vector y given x in the form

P (y|x, w) =
1

Z(x, w)
exp {−H(y|x, w)} (18)

where Z(x,w) =
�

y∈Y exp {−H(y|x,w)} is the partition

function. Such a probability function with an exponen-
tial form can express a wide range of probabilities that are
strictly positive over the set Y [19]. It can be easily seen
that when inferring the best label vector y, maximizing
P (y|x,w) according to the Maximum A Posteriori Proba-
bility (MAP) criterion is equal to minimizing the energy
function H(y|x,w) or equivalently maximizing F (x, y;w),
which accords with Eqn. (2). Therefore, our CML model is
essentially equivalent to the above defined GRF.

Based on this GRF representation for multi-labeling video
concepts, the CML model now has a natural probability
interpretation. Substitute Eqn. (17) into (18), we have

P (y|x,w) =
1

Z(x,w)

�
p∈℘

P (yp|x) ·
�

(p,q)∈N
Pp,q(yp, yq |x) (19)

where

P (yp|x) = exp{Dp(yp; x)}
Pp,q(yp, yq|x) = exp{Vp,q(yp, yq; x)}

Here P (y|x,w) has been factored into two types of multi-
pliers. The first type, i.e., P (yp|x), accounts for the proba-
bility of a label yp for the concept p given x. These factors
indeed model the relations between the concept label and
the low-level feature x. Note that P (yp|x) only consists of
the first type of our constructed features in Eqn. (3), and
thus it confirms our claim that the first type of the elements
in θ(x, y) serves to capture the connections between x and
the individual concept labels. The same discussion can be
applied to the second type of the multipliers Pp,q(yp, yq|x).
These factors serve to model the correlations between the
different concepts, and therefore our constructed features in
Eqn. (4) account for the correlations of the concept labels.

The above discussion justifies the proposed model and
the corresponding constructed feature vector θ(x, y) for the
multi-labeling problem on video semantic annotation. In
the next section, we will give further discussion based on
this GRF representation.

4. IMPLEMENTATION ISSUES
In this section, we will discuss implementation considera-

tions about CML.

4.1 Interacting concepts
In Section 3, we have revealed the connection between the

proposed algorithm and GRFs. As has been discussed, the
neighborhood set N is a collection of the interacting concept
pairs, and as for CML, this set contains all possible pairs.

However, in practice, some concept pairs may have rather
weak interactions, including both positive and negative ones.
For example, the concept pairs (airplane, walking running),
(people marching, corporate leader) indeed do not have too
many correlations, that is to say, the presence/absence of one
concept will not contribute to the presence/absence of an-
other concept (i.e., they occur nearly independently). Based
on this observation, we can only involve the strongly inter-
acted concept pairs into the set N , and accordingly the ker-
nel function (5) used in CML becomes

〈θ(x, y), θ(x̃, ỹ)〉 = 〈x, x̃〉
�

1≤k≤K
δ [[yk = ỹk]]

+
�

(p,q)∈N δ [[yp = ỹp]] δ [[yq = ỹq]]
. (20)

The selection of concept pairs can be manually determined
by experts or automatically selected by data-driven approaches.
In our algorithm, we adopt an automatic selection process
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Figure 3: The normalized mutual information be-
tween each pair of the 39 concepts in the LSCOM-
Lite annotations data set. These are computed
based on the annotations of the development data
set in the experiments (see Section 5).

in which the expensive expert labors are not required. First,
we use the normalized mutual information [21] to measure
the correlations of each concept pair (p, q) as

NormMI(p, q) =
MI(p, q)

min{H(p), H(q)}
(21)

where MI(p, q) is the mutual information of the concept p

and q, defined by

MI(p, q) =
�

yp,yq

P (yp, yq) log
P (yp, yq)

P (yp)P (yq)
(22)

and H(p) is the marginal entropy of concept p defined by

H(p) = −
�

yp∈{+1,−1}
P (yp) log P (yp) (23)

Here the label prior probabilities P (yp) and P (yq) can be es-
timated from the labeled ground-truth of the training dataset.
According to the information theory [21], the larger the
NormMI(p, q) is, the stronger the interaction between con-
cept pair p and q is. Such a normalized measure of concept
interrelation has the following advantages:

• It is normalized into the interval [0, 1]: 0 ≤ NormMI(p,

q) ≤ 1;

• NormMI(p, q) = 0 when the concept p and q are sta-
tistically independent;

• NormMI(p, p) = 1

The above properties are accordant with our intuition about
concept correlations, and can be easily proven based on the
above definitions. From the above properties, we can find
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Figure 4: The selected concept pairs according to
the computed normalized mutual information. The
white blocks indicate the selected concept pairs with
significant correlations.

that the normalized mutual information is scaled into the in-
terval [0, 1] by the minimum concept entropy. With such a
scale, the normalized mutual information only considers the
concept correlations, which is irrelevant to the distributions
of positive and negative examples of the individual concepts.
From the normalized mutual information, the concept pairs
whose correlations are larger than a threshold are selected.
Figure 3 illustrates the normalized mutual information be-
tween the 39 concepts in LSCOM-Lite annotation data set.
The brighter the grid is, the larger the corresponding nor-
malized mutual information is, and hence the correlation of
the concept pair. For example, (“boat ship”,“waterscape wa-
terfront”), (“weather”, “maps”) etc. have larger normalized
mutual information. The white dots in Figure 4 represent
the selected concept pairs.

4.2 Concept Label Vector Prediction
Once the classification function is obtained, the best pre-

dicted concept vector y
∗ can be obtained from Eqn. (2).

The most direct approach is to enumerate all possible label
vectors in Y to find the best one. However, the size of the
set Y will become exponentially large with the increment of
the concept number K, and thus the enumeration of all pos-
sible concept vectors is practically impossible. For example,
when K = 39, the size is 239

≈ 5.5 × 1011.
Fortunately, from the revealed connection between CML

and GRF in Section 4, the prediction of the best concept
vector y

∗can be performed on the corresponding GRF form.
Therefore, many popular approximate inference techniques
on GRF can be adopted to predict y

∗, such as Annealing
Simulation, Gibbs Sampling, etc. Specifically, these approx-
imation techniques will be based on the output optimal dual
variables αi(y) in (14). Following the discussion in Section
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3, we can give the dual form of the GRF energy function
accordingly. Such a dual energy function comes from Eqn.
(14). Substituting (14) into (1) and considering the kernel
representation (5), we can obtain the following equations:

F (x̄, ȳ;w) =
��

1≤i≤n,y∈Y αi(y)∆θi(y), θ(x̄, ȳ)
�

=
�

p∈℘
D̃p(yp; x) +

�
(p,q)∈N Ṽp,q(yp, yq; x̄)

(24)

where

D̃p(ȳp; x̄) =
�

1≤i≤n,y∈Y αi(y)k(xi, x̄){
δ [[yip = ȳp]]−
δ [[yp = ȳp]]

}

Ṽp,q(ȳp, ȳq ; x̄) =
�

1≤i≤n,y∈Y αi(y){
δ [[yi = ȳp]] δ [[yiq = ȳq ]]−
δ [[yp = ȳp]] δ [[yq = ȳq ]]

}

(25)

And hence the dual energy function is

H̃(ȳ|x̄,w) = −

	 �
p∈℘

D̃p(ȳp; x̄)+�
(p,q)∈N Ṽp,q(ȳp, ȳq; x̄)



(26)

and the corresponding probability form of GRF can be writ-
ten as

P (ȳ|x̄,w) =
1

Z̃(x̄,w)
exp

�
−H̃(ȳ|x̄,w)

�
(27)

where Z̃(x̄,w) =
�

y∈Y exp
�
−H̃(y|x̄,w)

�
is the partition

function of the dual energy function. With the above dual
probabilistic GRF formulation, we use Iterated Conditional
Modes (ICM) [19] for inference of y∗ considering its effective-
ness and easy implementation. Other efficient approxima-
tion inference techniques (e.g., Annealing Simulation, etc.)
can also be directly adopted given the above dual forms.

4.3 Concept Scoring
The output of our algorithm given a sample x is the pre-

dicted binary concept label vector. However, for the video
retrieval applications, we would like to give each concept
of each sample a ranking score for indexing. With these
scores, the retrieved video clips can be ranked according to
the presence possibility of detecting the concept. Here we
give a ranking scoring scheme based on the probability form
(Eqn. 27). Given the predicted concept vector y

∗, the con-
ditional expectation of yp for the concept p can be computed
as

E(yp|x, y
∗
℘\p) = P (yp = +1|x, y

∗
℘\p)

−P (yp = −1|x, y
∗
℘\p) (28)

where

P (yp|x, y∗
℘\p) =

exp{−H(yp◦y∗
℘\p

|x,w)}

Zp

=
exp{F (x,yp◦y∗

℘\p
;w)}

Zp

(29)

and

Zp(x, y
∗
℘\p) =

�
yp∈{+1,−1}

exp{−H(yp ◦ y
∗
℘\p|x,w)} (30)

is the partition function on the site p. Then we can use
this label expectation to rank the video clips for a certain
concept.
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in LSCOM-Lite Annotation data set.

5. EXPERIMENTS
In this section, we evaluate our algorithm on a widely

used benchmark video data set and compare it with other
state-of-the-art approaches.

5.1 Data Set Description
To evaluate the proposed video annotation algorithm, we

conduct the experiments on the benchmark TRECVID 2005
data set [17]. This is one of the most widely used data sets
by many groups in the area of multimedia concept mod-
eling[2][3][7]. This data set contains about 170 hours in-
ternational broadcast news in Arabic, English and Chinese.
These news videos are first automatically segmented into
61, 901 subshots. All subshots are then processed to extract
several kinds of low-level features, including

1 Block-wise Color Moment in Lab color space;

2 Co-occurrence Texture;

3 Wavelet Texture;

4 Edge Distribution Layout;

and some mid-level features

5 Face - consisting of the face number, face area ratio, the
position of the largest face.

For each subshot, 39 concepts are multi-labeled according
to LSCOM-Lite annotations [12]. These annotated concepts
consist of a wide range of genres, including program cate-
gory, setting/scene/site, people, object, activity, event, and
graphics. Figure 6 illustrates these concepts and their distri-
bution in the data set. Intuitively, many of these concepts
have significant semantic correlations between each other.
Moreover, these correlations are also proven statistically sig-
nificant by the normalized mutual information (See Figure
3).

Figure 5 illustrates the multi-labeling nature of the TRECVID
data set. As shown, many subshots (71.32%) have more than
one label, and some subshots are even labeled with 11 con-
cepts. Such rich multi-labeled subshots in the video data set
as well as the significant correlative information between the
concepts validate the necessity of exploiting the relationship
between the video concepts.
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Figure 6: Video Concepts and their distribution in LSCOM-Lite data set

5.2 Experiment Setup
For performance evaluation, we compare our algorithm

with two state-of-the-art approaches in first and second par-
adigms. The first approach, called IndSVM in this section,
is the combination of multiple binary encoded SVMs (see
the left part of Figure 1.) which are trained independently
on each concept; the other approach is developed by adding
a contextual fusion level on the detection output of the first
approach [5]. In our implementation, we use the SVM for
this fusion level. We denote this context-based concept fu-
sion approach as CBCF in this section.

The video data is divided into 3 parts with 65% (40,000
subshots) as training set, 16% (10,000 subshots) as valida-
tion set and the remaining 19% (11,901 subshots) as test set.
For CBCF, the training set is further split into two parts:
one part (32000 subshots) is used for training the individ-
ual SVMs in the first detection step, the other part (8000
subshots) is used for training the contextual classifier in the
second fusion step. For performance evaluation, we use the
official performance metric Average Precision (AP) in the
TRECVID tasks to evaluate and compare the algorithms
on each concept. The AP corresponds to the area under a
non-interpolated recall/precision curve and it favors highly
ranked relevant subshots. We average the AP over all the
39 concepts to create the mean average precision (MAP),
which is the overall evaluation result.

The parameters of the algorithms are determined through
a validation process according to their performances on the
validation set. For a fair comparison, the results of the
all 3 paradigm algorithms reported in this section are the
best ones from the chosen parameters. Specifically, two pa-
rameters need to be estimated in the proposed CML: the
trading-off parameter λ and the Gaussian kernel bandwidth
σ of the Gaussian kernel function 〈x, x̃〉 in Eqns. (5) and
(24). They are respectively selected from sets {0.5, 1.0, 10,

100} and {0.65, 1.0, 1.5, 2.0} via the validation process. Sim-
ilarly, the trading-off parameter λ and the Gaussian kernel
bandwidth σ in the IndSVM and CBCF are also respectively
selected from {0.5, 1.0, 10, 100} and {0.65, 1.0, 1.5, 2.0}, and
the best one on the validation set is chosen.

5.3 Experiment Results
In this section, we report experiment results on TRECVID

data set. Two different modeling strategies are adopted in
the experiments. In the first experiment, all concept pairs
are taken into consideration in the model and the kernel
function in Eqn. (5) is adopted. We denote this method by
CML(I) in our experiment. In the second one, we adopt the
strategy described in Section 4.1 and a subset of the con-
cept pairs is applied based on their interacting significance.
Accordingly, the kernel function in Eqn. (24) is used, and
this approach is denoted by CML(II).

5.3.1 Experiment I

Figure 7 illustrates the performance of CML(I) compared
to that of IndSVM (first paradigm) and CBCF (second par-
adigm). The following observations can be obtained:

• CML(I) obtains about 15.4% and 12.2% relative im-
provements on MAP compared to IndSVM and CBCF.
Compared to the improvement of CBCF (2%) relative
to the baseline IndSVM, Such an improvement is sig-
nificant.

• CML(I) performs the best on 28 of the all 39 concepts.
Some of the improvements are significant, such as “of-
fice”(477% better than InidSVM and 260% better than
CBCF), “people-marching” (68% better than IndSVM
and 160% better than CBCF),“walking running”(55%
better than IndSVM and 48% better than CBCF).

• CML(I) deteriorates on some concepts compared to
IndSVM and CBCF. For example, it has 12% and 14%
deterioration on “snow” respectively and 11% and 17%
deterioration on “bus” respectively. As discussed in
Section 4.1, the performance deterioration is due to
insignificant concept relations. Next subsection will
present CML(II), which solves this deterioration prob-
lem and obtains a more consistent and robust perfor-
mance improvement.
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Figure 7: The performance comparison of IndSVM, CBCF and CML(I).

5.3.2 Experiment II

Following the proposed approach in Section 4.1, the dete-
rioration problem can be solved by removing concept pairs
with insignificant correlations.

Figure 3 illustrates the normalized mutual entropy be-
tween all concepts. They are computed on the development
set which includes training set and validation set, but does
NOT include the test set. The average normalized mutual
information entropy is AvgEN = 0.02. An important aspect
of a good algorithm is if its parameters can be determined
automatically. Following such a principle, the threshold
ThEN is automatically determined to be ThEN = 2AvgEN

such that any concept pairs whose normalized mutual en-
tropy less than ThEN are removed. Figure 4 shows these se-
lected concept pairs. As we can see, these preserved concept
pairs either have intuitive semantic correlations e.g. “wa-
terscape waterfront” and “boat ship” or statistically tend
to co-occur in the news broadcast videos, e.g. “maps” and
“weather” in weather forecast video subshots.

Figure 8 illustrates the performance of CML(II) with these
selected concept pairs compared to IndSVM, CBCF and
CML(I). We can find

• CML(II) has the best overall performance compared to
the other algorithms. It outperforms IndSVM, CBCF
and CML(I) by 17%, 14% and 2%, respectively.

• Furthermore, CML(II) has a more consistent and ro-
bust performance improvement over all 39 concepts
compared to IndSVM and CBCF. For example, on
“bus”and“snow”, CML(I) gave worse performance than
IndSVM and CBCF. In the contrary, CML(II) gains
about 71% and 3% improvement compared to IndSVM
and 58% and 1% improvement compared to CBCF
with no deterioration.

In summary, CML(II) is the best approach because its
best overall MAP improvement as well as its consistent and
robust performance on the diverse 39 concepts.

Finally, we give an empirical comparison of computational
cost between the proposed CML and the other two state-of-
the-art algorithms (IndSVM and CBCF). In fact, under the

different parameter settings, the computational cost is dif-
ferent largely. But in general, as for IndSVM and CBCF,
the models of each concept are independent without coupled
with each other, so they can be trained in parallel. There-
fore the computing time needed is much less than CML in
which the modeling of the whole concept set is conducted
in a coupled manner and is unable to be operated in paral-
lel. In our experiment, the speed of CML is about 25 times
slower than IndSVM and CBCF. Thus how to accelerate the
computation speed of CML will be the focus of our future
work.

6. CONCLUSIONS AND FUTURE WORKS
In this paper, we proposed a correlative multi-labeling

(CML) approach to exploit how the concept correlations
help infer the video semantic concepts. Different from the
first and second paradigms, where they suffer from insuf-
ficient modeling of concept correlations, the proposed ap-
proach is able to simultaneously model both the individ-
ual concept and the conceptual correlations in an integrated
framework. In addition, CML is highly efficient in utiliz-
ing the data set. Experiments on the widely used bench-
mark TRECVID data set demonstrated that CML is supe-
rior to state-of-the-art approaches in the first and second
paradigms, in both overall performance and the consistency
of performance on diverse concepts.

We will continue our future works in two directions. First,
we will study how the performance changes with the incre-
ment of video concept number, and if the algorithm can get
more improvement gain by exploiting a large number of con-
cepts. Second, we will also apply the proposed algorithm
to other applications, such image annotation, text catego-
rization in which there exists a large number of correlative
concepts.
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