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Automatic video annotation is an important ingredient for semantic-level video browsing, search and navigation. Much attention
has been paid to this topic in recent years. These researches have evolved through two paradigms. In the first paradigm, each
concept is individually annotated by a pre-trained binary classifier. However, this method ignores the rich information between
the video concepts and only achieves limited success. Evolved from the first paradigm, the methods in the second paradigm add an
extra step on the top of the first individual classifiers to fuse the multiple detections of the concepts. However, the performance of
these methods can be degraded by the error propagation incurred in the first step to the second fusion one. In this article, another
paradigm of the video annotation method is proposed to address these problems. It simultaneously annotates the concepts as
well as model correlations between them in one step by the proposed Correlative Multilabel (CML) method, which benefits from
the compensation of complementary information between different labels. Furthermore, since the video clips are composed by
temporally ordered frame sequences, we extend the proposed method to exploit the rich temporal information in the videos.
Specifically, a temporal-kernel is incorporated into the CML method based on the discriminative information between Hidden
Markov Models (HMMs) that are learned from the videos. We compare the performance between the proposed approach and the
state-of-the-art approaches in the first and second paradigms on the widely used TRECVID data set. As to be shown, superior
performance of the proposed method is gained.
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1. INTRODUCTION

With the explosive emergence of considerable videos on the Internet (e.g., Youtube, VideoEgg, Yahoo!
Video, and many videos on personal home pages and blogs), effective indexing and searching these
video corpus becomes more and more attractive to users. As a basic technique in video index and
search, semantic-level video annotation (i.e., the semantic video concept detection) has been an impor-
tant research topic in the multimedia research community [Naphade 2002; Snoek et al. 2006]. It aims
at annotating videos with a set of concepts of interest, including scenes (e.g., urban, sky, mountain), ob-
jects (e.g., airplane, car, face), events (e.g., explosion-fire, people-marching) and certain named entities
(e.g., person, place) [Naphade et al. 2005; Snoek et al. 2006]. Many efforts have been made on devel-
oping concept detection methods that can bridge the well known semantic “gap” between the low-level
features and high-level semantic concepts [Hauptmann et al. 2007]. Among these efforts, some have
paid their attentions on detecting specific concepts, such as object detection based on the bag-of-feature
model [Jiang et al. 2007]. Recently, more efforts have been made on annotating video concepts in a
generic fasion. For example, Naphade et al. [2006] build a large-scale concept ontology for generic video
annotation and Snoek et al. [2006] construct an ontology of 101 concepts from News video as well.
In order to annotate these generic video concepts, Yanagawa et al. [2007] build a set of baseline detec-
tors for 374 LSCOM concepts Naphade et al. [2006] by using Support Vector Machine (SVM) and Wang
et al. [2007] attempt to leverage diverse features to detect different video concepts. On the other hand,
Snoek et al. [2006] propose a novel pathfinder to utilize the authoring information to help index the
generic multimedia data.

In contrast to the above generic video annotation algorithms, in this paper we are concerned on a
multilabel video annotation process where a video can be annotated by multiple labels at the same
time. We attempt to explore the correlations between different labels to leverage them for improving
the annotation performance on generic video concepts. These multilabeled videos commonly exist in
many real-world video corpus, for example, most of the videos in the widely-used TRECVID dataset
[Smeaton et al. 2006] are annotated by more than one label from a set of 39 different concepts. Figure 1
illustrates some keyframes of the videos associated with their multiple labels. For example, a video
can be classified as “person,” “walking running,” and “road” simultaneously. In contrast to the multil-
abel problem, multiclass annotation only assigns one concept to each video. In most real-world video
annotations, such as TRECVID annotations and the users’ tags on many video-sharing website, the
videos are often multilabeled by a set of the concepts rather than only a single one. Since it involves
nonexclusive classification of multiple concepts, multilabel annotation is much more complex than mul-
ticlass annotation. We will focus on multilabel video annotation in this paper. It is worth noting that the
proposed algorithm is different from the knowledge based algorithm such as Koskela et al. [2007]. This
knowledge based algorithm incorporates the prior knowledge of concept similarities to help the generic
video annotation. In contrast we adopt a data-driven method in this article to explore the correlations
between different labels. The details of the proposed algorithm will be presented later in this paper.

1.1 Video Annotation with Multiple Labels

Multilabel video annotation has evolved through two paradigms: individual concept detection and an-
notation, and Context Based Conceptual Fusion (CBCF) [Jiang et al. 2006] annotation. In this article, we
propose the third paradigm: the unifying multilabel annotation. We next review these three paradigms.

1.1.1 Paradigm I: Individual Concept Annotation. The annotation methods in the first paradigm
are individual concept detectors; that is, they annotate the video concepts individually and indepen-
dently. They neglect the rich correlations between the video concepts. In more detail, these meth-
ods translate the multilabel annotations into some independent concept detectors that individually
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Outdoor T T T T T T T
Face T T T T T T T
Person T T T T T T T
People-Marching F F F T T F F
Road T T T T T T T
Walking_running T T T T T T T

Fig. 1. Some multilabeled examples from TRECVID dataset. “T” and “F” mean the positive and negative labels for corresponding
concepts respectively.

First Paradigm: Individual Dfectors Second Parstgm ; CBCF Third Paradigm: integratad Milt-Labal '
Apprassh

Fig. 2. The multilabel video annotation methods in three paradigms. From leftmost to the rightmost, they are the individual
SVM, CBCF, and our proposed CML.

assign presence/absence labels into each sample. Most classical detectors can be categorized into this
paradigm. For example, SVM [Cristianini and Shawe-Taylor 2000] with one-against-the-other strategy
attempts to learn a set of detectors, each of which independently models the presence/absence of a
certain concept. Other examples of this paradigm include Maximum Entropy Models (MEM) [Nigam
et al. 1999], Manifold Ranking (MR) [Tang et al. 2007] etc. In Figure 2, we give an illustration of this
paradigm in the leftmost flowchart. As depicted, a set of individual SVMs is learned for video concept
annotation independently. In brief, the core of this paradigm is to formulate the video annotation as a
collection of independent binary classifiers.

However in many real-world problems, video concepts do often exist correlatively with each other,
rather than appearing in isolation. So the individual annotation only achieves limited success. For
example, the presence of “Crowd” often occurs together with the presence of “People,” while “Boat_Ship”
and “Truck” commonly do not co-occur. On the other hand, compared to simple concepts which can be
directly modeled from low-level features, some complex concepts, for example, “People-Marching,” are
really difficult to be individually modeled due to the semantic gap between these concepts and low-level
features. Instead, these complex concepts can be better inferred based on the label correlations with
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the other concepts. For instance, the presence of “People-Marching” can be boosted if both “Crowd” and
“Walking Running” occur in a video. Therefore, it will be very helpful to exploit the label correlations
when annotating the multiple concepts together.

1.1.2 Paradigm II: Context-Based Conceptual Fusion Annotation. As a step towards more advanced
video annotation, the second paradigm is built atop the individual concept detectors. It attempts to
refine the detection results of the binary concept detectors with a Context Based Concept Fusion strat-
egy. Many algorithms can be categorized into this paradigm. For example, Wu et al. [2004] use an
ontology-based multiclassification learning for video concept detection. Each concept is first indepen-
dently modeled by a classifier, and then a predefined ontology hierarchy is investigated to improve the
detection accuracy of the individual classifiers. Smith and Naphade [2003] present a two-step Discrim-
inative Model Fusion approach to mine the unknown or indirect relationship between specific concepts
by constructing model vectors based on detection scores of individual classifiers. A SVM is then trained
to refine the detection results of the individual classifiers. The center flowchart of Figure 2 shows such
a second-paradigm approach. Alternative fusion strategy can also be used; for example, Hauptmann
et al. [2004] propose to use Logistic Regression to fuse the individual detections. Jiang et al. [2006] use
a Context Based Concept Fusion-based learning method. Users are involved in their approach to anno-
tate a few concepts for extra videos, and these manual annotations were then utilized to help infer and
improve detections of other concepts. Naphade et al. [2002] propose a probabilistic Bayesian Multinet
approach to explicitly model the relationship between the multiple concepts through a factor graph
which is built upon the underlying video ontology semantics. Yan et al. [2006] mine the relationship
between the detection results of different concepts by a set of various probabilistic graphical models.
Zha et al. [2007] propose to leverage the pairwise concurrent relations between different labels to refine
the video detection output by individual classifiers of the concepts.

Intuitively it is reasonable to leverage the context-based conceptual information to improve the ac-
curacy of the concept detectors. However there also exist some experiments to show that the Context
Based Concept Fusion methods do not have a consistent improvement over the individual detectors. Its
overall performance can even be worse than the binary-based detectors. For example, in Hauptmann
et al. [2004] at least 3 out of 8 concepts do not gain better performance by using the conceptual fusion
with a linear regression classifier atop the uni-concept detectors. The unstable performance gain is due
to the following reasons:

(1) Context Based Concept Fusion methods are built atop the independent binary detectors with a
second step to fuse them. However, the output of the individual independent detectors can be
unreliable and therefore their detection errors can propagate to the second fusion step. As a result,
the final annotations can be corrupted by these incorrect prediction. From a philosophical point of
view, the Context Based Concept Fusion methods do not follow the principle of Least-Commitment
espoused by D. Marr [Marr 1982], because they are prematurely committed to irreversible individual
predictions in the first step which can or cannot be corrected in the second fusion step.

(2) A secondary reason comes from the insufficient data for the conceptual fusion. In Context Based
Concept Fusion methods, the samples need to be split into two parts for each step and the samples for
the conceptual fusion step are usually insufficient compared to the samples used in the first training
step. Unfortunately, the correlations between the concepts are usually complex, and insufficient data
can lead to “over fitting” in the fusion step, thus the obtained prediction lacks the generalization
ability.

1.1.3 Paradigm III: Unifying Multilabel Annotation. In this paper, we will propose the third
paradigm of video annotation to address the problem faced in the first and second paradigms. This
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new paradigm will simultaneously model both the individual concepts and their correlations in a uni-
fying formulation, and the Principle of Least Commitment will be obeyed. The rightmost flowchart of
Figure 2 illustrates the proposed Correlative Multilabel (CML) method. As we can see, this method has
the following advantages compared to the second Context Based Concept Fusion paradigm:

(1) The approach follows the Principle of Least Commitment [Marr 1982]. Because the learning and
optimization is done in a single step for all the concepts simultaneously, it does not have the error
propagation problem as in Context Based Concept Fusion.

(2) The entire samples are efficiently used simultaneously in modeling the individual concepts as well
as their correlations. The risk of overfitting due to the insufficient samples used for modeling the
conceptual correlations is therefore significantly reduced.

To summarize, the first paradigm does not address concept correlation. The second paradigm attempts
to address it by introducing a separate second correlation step. In contrast, the third paradigm addresses
the correlation issue at the root in a single optimization step. We will see that such a joint optimization
model can be formulated as a convex optimization problem and thus a global optimum can be found.

1.2 Video Annotation with Temporal-Ordered Sequences

Besides the given multilabel problem, it is also an important issue to leverage the rich temporal infor-
mation in the videos to boost the video annotation, especially for annotating the event-related concepts,
such as “airplane-flying,” “riot,” “people-marching,” etc.

There already exist some research works that attempt to utilize temporal information for video anno-
tation. These researches have evolved through two research categories. In the first category, statistical
models of feature dynamics are used to represent and detect video semantics. For example, Xie and
Chang [2002] proposed to detect and segment the “play” and “break” events in soccer videos by learning
the dynamics of the color and motion features with Hidden Markov Model (HMM). This method is only
based on low-level feature dynamics to construct a generative model and ignores the other intuitive
semantic components, such as visual concept interactions [Ebadollahi et al. 2006]. For example, while
detecting “airplane-flying,” it is helpful to detect whether “sky,” “airplane” occurs.

The second research category detects the video events by exploiting the concept interactions. For
example, Ebadollahi et al. [2006] propose to leverage stochastic temporal processes in the concept
space to model the video events. This method aims at learning the dynamics of concurrent concepts
from examplars of an event in a pure data-driven fashion. However, these concurrent concepts are
obtained from the output of some prelearned concept detectors, which are often not robust enough
to give reliable concept predictions. Therefore, the errors in the first step of concept predictions can
propagate to the second step where we learn the concept dynamics of the video events. It also violates
the principle of least commitment [Marr 1982] so that the errors incurred in the individual concept
detector cannot be corrected in the second step of learning concept dynamics. The same problem incurs
in [Wang et al. 2006] as well. It first pretrains a set of mid-level keyword detectors, based on which a
Conditional Random Fields (CRF) [Lafferty et al. 2001] [Kumar and Hebert 2003] are used to capture
the interactions between the noisy predictions of these keyword detectors.

To address the above problem, we will introduce a temporal kernel under the proposed correlative
multilabel formulation. It can leverage the concept interactions as well as low-level feature dynamics
to boost the video event detections. Specifically, it constructs a temporal kernel by revealing the dis-
criminative information between the statistical models that are learned from the videos. As will be seen
later, it avoids the two-step method in which the noisy outputs of the individual concept detector are
propagated into the second conceptual dynamics. Instead, the concept interactions and low-level fea-
ture dynamics are captured in a unifying framework; thus the principle of least commitment is obeyed.
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Furthermore, the proposed temporal kernel can be naturally incorporated to the proposed multilabel
kernel without increasing the complexity of the algorithm.

The rest of the article is organized as follows. In Section 2, we give a detailed description of the
proposed Correlative Multilabel (CML) method, including the classification model, the learning strategy.
Furthermore we will explore the connection between the proposed approach and Gibbs Random Fields
(GRFs) [Winkler 1995], based on which we can show an intuitive interpretation on how the proposed
approach captures the individual concepts as well as their correlations. Section 3 details the temporal
kernel for video annotation. This kernel can be naturally incorporated into CML kernel to form a
Correlative Multilabel Temporal (CMLT) Kernel, which captures the high-level concept interactions
and low-level feature dynamics in a unifying kernel machine. In Section 4, we will report experiments
on the benchmark TRECVID data and show that the proposed approach has superior performance
over the state-of-the-art algorithms in both first and second paradigms. Finally, we will conclude in
Section 5.

2. CORRELATIVE MULTILABEL VIDEO ANNOTATION

In this section, we will introduce the proposed correlative multilabeling (CML) model for video semantic
annotation. In Section 2.1, we will present the mathematical formulation of the multilabeling classi-
fication function, and show that how this function captures the correlations between the individual
concepts and low-level features, as well as the correlations between the different concepts. Then in
Section 2.2, we will give a probabilistic interpretation of the CML model based on Gibbs random fields.
Based on this statistical model, we give an efficient inference approach to derive the label predictions
of CML model.

2.1 Multilabel Classification Function

Before we move further, we first define some notations. Let x = (x1, x9, ... ,xp)T € X denote the input
pattern representing feature vectors extracted from video clips; Let y € Y = {+1, —1}X denote the
K dimensional concept label vector of an example, where each entry y; € {+1, —1} of ¥ indicates the
membership of this example in the ith concept. X and ) represent the input feature space and label
space of the dataset, respectively. The proposed algorithm aims at learning a linear discriminative
function

Fx,y;w) = (w,0(x,y)), (D)

where 0(x, y) is a vector function mapping from X x ) to a new feature vector that encodes the models
of individual concepts as well as their correlations together (to be detailed later); w is the linear com-
bination weight vector. With such a discriminative function, for an input pattern x, the label vector y*
can be predicted by maximizing over the argument y as

y* =argmax F(x, y;,w). (2)

yey
As to be presented in the next section, such a discriminative function can be intuitively interpreted in
the Gibbs random fields (GRFs) [Winkler 1995] framework with the defined feature vector 6(x, y). 0(x, y)
is a high-dimensional feature vector, whose elements can be partitioned into two types as follows. And

as to be shown later these two types of elements actually account for modeling of individual concepts
and their interactions, respectively.

Type I. The elements for individual concept modeling:

05 p@,3) =24 8Ly, =11, € {(+1,-1},1<d <D,1 < p <K, (3)
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where §[[y, = (] is an indicator function that takes on value 1 if the prediction is true and 0 otherwise;
D and K are the dimensions of low level feature vector space X and the number of the concepts
respectively. These entries of 0(x, y) serve to model the connection between the low level feature x and
the labels y;(1 < £ < K) of the concepts. They have the similar functionality as the traditional SVM
which models the relations between the low-level features and high-level concepts.

However, as we have discussed, it is not enough for a multilabeling algorithm to only account for
modeling the connections between the labels and low-level features without considering the semantic
correlations of different concepts. Therefore, another element type of 6(x, y) is required to investigate
the correlations between the different concepts.

Type II. The elements for concept correlations:
omrx,y) =8y, =ml - 8ly, =nlm,n € {(+1,-1},1<p <q <K, (4)

where the superscripts m and n are the binary labels (positive and negative label), and subscripts p
and ¢ are the concept indices. These elements serve to capture all the possible pairs of the label corre-
lations. Note that, both positive and negative relations are captured by these elements. For example,
the concept “building” and “urban” is a positive concept pair that often co-occurs while “explosion fire”
and “waterscape waterfront” is negative concept pair that usually does not occur at the same time.

Note that we can model high-order correlations among these concepts as well, but it will require more
training samples. As to be shown in the experiments of Section 4, such an order-2 model successfully
trades off between the model complexity and concept correlation complexity, and achieves significant
improvement in the concept detection performance.

By concatenating these two types of elements together, we can obtain the feature vector 6(x, y). It is
not difficult to see that the dimension of vector 0(x,y) is 2KD + 4 (5 ) =2K(D + K — 1). When K and
D are large, the dimension of 6(x, y) will be extraordinarily high. For example, if K = 39 and D = 200,
0(x,y) will have 18, 564 dimensions. Fortunately, this vector is sparse thanks to the indicator function
S [-] in Equations (3) and (4). This is a key factor in the mathematical formulation. As a result, the
kernel function (i.e., the dot product) between the two vectors, 8(x, y) and 9(x, ¥), can be represented in
a very compact form as

0,9, 0@,9) = @,%) ), Slye =3+ 6y, = 5,080y, = 3, (5)

where (x, %) is the dot product over the low-level feature vector x and . We call this kernel the Correl-
ative Multilabel (CML) Kernel and the corresponding video annotation method Correlative Multilabel
Video Annotation in this article. It is worth noting that, any other kernel function K(x, %) (such as
Gaussian Kernel, Polynomial Kernel) can be substituted for (x, %) as in the conventional SVMs, and
nonlinear discriminative functions can then be introduced with the use of these kernels. In Appendix A,
we will present the learning procedure of this model. As to be described, the above compact kernel
representation will be used explicitly in the learning procedure instead of the original feature vector
0(x,y).

Before we move further, we illustrate an example in Figure 3 to help the readers to understand how the
kernel in Equation (5) is constructed and the individual concepts and their correlations are modeled by
Equations (3) and (4). Suppose we use a six-dimensional feature vector x = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6]”
to represent an image, and we consider five concepts, that is, person, road, beach, car, and tree. Then
for the image in this figure, the label vector is y = [1,1, —1, —1, 1]7. We first construct a new feature
vector O(x, y) which can be divided to two types of elements as in Equations (3) and (4). In this example,
we can find the first entry of Type I elements, that is, 911’1 is equal to the first dimension of the original

feature, that is, 0.1, because the label of the first concept is true. On the other hand, the first entry 91121
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Fig. 3. An illustration of the correlative multilabel kernel. In this figure, we illustrate two types of feature elements for this
correlative multilabel kernel. The type I features (top left capture the correlation between the low-level features and the high-level
concepts, while the type II features capture the correlations between the different labels.

of Type II elements equals to 1 because the first two labels of this sample are all true. All the entries of
0(x, y) can be computed by following the same rule. We illustrate all the entries of the obtained 0(x, y) in
the left part of this figure. After that, a new correlative multi-label kernel can be computed between two
feature vectors 6(x, y) and 6(x, y) as in Equation (5), and a kernel machine can be trained accordingly
as introduced in Appendix A.

2.2 A Justification—Gibbs Random Fields for Multi-Label Representation

In this section we give an intuitive interpretation of our multi-labeling model through Gibbs Random
Fields (GRFs). Detailed mathematical introduction of GRFs can be found in [Winkler 1995]. We can
rewrite Equation (1) as

Fx,y;w) = (w,0(x,y)) = Zpep Dy(yp;x) + Z(p’q)a\/ V(Y ps ¥g5%) (6)
and

. _ l l
Dp(yp;®) = Zlgng,leH—l,—l} wd’pgd’p(x’y)

m,ngm,n

(7
Vpa(Yp: Y5 %) = Zm,ne{Jrl,fl} Wy Opq %),

where p = {i|]1 <i < K} is a finite index set of the concepts with every p € ¢ representing a video
concept, and N = {(p,q)|1 < p < g < K} is the set of interacting concept pairs. From the perspective
of GRF's, p is the set of sites of a random field and N consists of adjacent sites of the concepts. For
example, in Figure 4, the corresponding GRF has 6 sites representing “Outdoor,” “Face,” “Person,”
“People-Marching,” “Road,” and “Walking running,” and these sites are interconnected by the concept
interactions, such as (Outdoor, People-Marching), (Face, Person), (People-Marching, Walking running),
etc., which are included in the neighborhood set N of GRF. In the CML framework, the corresponding
N consists of all pairs of the concepts, that is, this GRF has a fully connected structure.
Now we can define the energy function for GRF given an example x as

H(ylx,w) = —F(x,y;w) = — {Zpep D,(yp;x) + Z(pmeN Voa3ps yq;x)} , (8
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The correlation
faclors between
concept pairs

deounn

Q=T

Person

Fig. 4. Gibbs Random Fields for a correlative multi-label representation. The edges between concepts indicate the correlation
factors Py, 4(yp, ¥41x) between concept pairs.

and thus we have the probability measure for a particular concept label vector y given x in the form

1
Plylx,w) = m exp{—H (y|x, w)}, 9
where Z (x, w) = Zyey exp {—H (y|x, w)} is the partition function. Such a probability function with an
exponential form can express a wide range of probabilities that are strictly positive over the set )
[Winkler 1995]. It can be easily seen that when inferring the best label vector y, maximizing P(y|x, w)
according to the Maximum A Posteriori (MAP) criterion is equal to minimizing the energy function
H(y|x, w) or equivalently maximizing F'(x, y; w), which is consistent with Equation (2). Therefore, the
CML model can be connected to the above defined GRF.
Based on this GRF representation for multilabeling video concepts, the CML model now has a natural
probability interpretation. Substitute Equation (8) into (9), we have

1
Plyl, w) = m npep P(yplw) - l_[(p,q)ej\/ Pyq(¥ps ¥q1%), (10)

where
P(yplx) = exp{D,(yp;x)}
PP,q(yp, Yq |x) = exp{Vp,q(yp’ yq;x)}~

Here P(y|x, w) has been factored into two types of multipliers. The first type, that is, P(y,|x), accounts
for the probability of a label y, for the concept p given x. These factors indeed model the relations
between the concept label and the low-level feature x. Note that P(y,|x) only consists of the first type
of our constructed features in Equation (3), and thus it confirms our claim that the first type of the
elements in 6(x, y) serves to capture the connections between x and the individual concept labels. The
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same discussion can be applied to the second type of the multipliers P, ,(y,, y¥41%). These factors serve
to model the correlations between the different concepts, and therefore our constructed features in
Equation (4) account for the correlations of the concept labels.

The above discussion justifies the proposed model and the corresponding constructed feature vector
0(x, y) for the multilabeling problem on video semantic annotation. In the following, we will give some
further discussions based on this GRF representation.

2.2.1 Concept Label Vector Prediction. Once the classification function is obtained, the best pre-
dicted concept vector y* can be obtained from Equation (2). The most direct approach is to enumerate
all possible label vectors in ) to find the best one. However, the size of the set ) will become expo-
nentially large with the increment of the concept number K, and thus the enumeration of all possible
concept vectors is practically impossible. For example, when K = 39, the size is 2% = 5.5 x 1011

Fortunately, from the revealed connection between CML and GRF in Section 2.2, the prediction of
the best concept vector y*can be performed on the corresponding GRF form. Therefore, many popular
approximate inference techniques on GRF can be adopted to predict y*, such as Annealing Simulation,
Gibbs Sampling, ete. Specifically, these approximation techniques will be based on the output optimal
dual variables o;(y) in (40) of Appendix A. Following the above discussion about GRF representation,
we can give the dual form of the GRF energy function accordingly. Such a dual energy function comes
from Equation (40). Substituting (40) into (1) and considering the kernel representation (5), we can
obtain the following equations:

F@gw =Y a@)Asy), 06 5)

) & 5 _ (11)
- ZPGAO Dp(3p;%) + Z(p,q)ej\/ Voa(Fps ¥q5%),
where
D~p(5’p,j') = Zlfign,yey (Xl(y)k(xl,.i‘){S[[[ylp = 5’17]] — SII[yp — yp]]}
Voo, 3o =30, oy @@Ly = 7p180Lyig = 3ol = 8llyp = 7,150Lyg = Fal)-
(12)

And hence the dual energy function is
AGEw) =~ {3, Do3u®+ 3 VioaTp: 3oi8) | (13)

and the corresponding probability form of GRF can be written as

Pyx,w) = = _1 exp{—H©y|%, w), } (14)
Z(x,w)
where Z (%, w) = Zyey exp{—H (y|&, w)} is the partition function of the dual energy function. With the
above dual probabilistic GRF formulation, we use Iterated Conditional Modes (ICM) [Winkler 1995] for
inference of y* considering its effectiveness and easy implementation. Other efficient approximation
inference techniques (e.g., Annealing Simulation, etc.) can also be directly adopted given the above dual
forms.

2.2.2 Concept Scoring. The output of our algorithm given a sample x is the predicted binary concept
label vector. However, for the video retrieval applications, we would like to give each concept of each
sample a ranking score for indexing. With these scores, the retrieved video clips can be ranked according
to the presence possibility of detecting the concept. Here we give a ranking scoring scheme based on
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Fig. 5. The Correlative multilabel temporal kernel machine: It first adapts a universal reference model (URM) to a HMM for
an individual video sequences. The model similarities can then be computed between these HMMs as temporal kernel based
on their discrimination distances. By incorporating the temporal kernel into CML kernel machine, the CML temporal (CMLT)
kernel machine can be obtained. Detailed algorithm is described in Section 3.

the probability form Equation (14). Given the predicted concept vector y*, the conditional expectation
of y, for the concept p can be computed as

E(yplx,95\,) = P(yp = +1l0, 57, ,) — P(yp = — 112,57, )

where
. exp{—H(yp oyp ,lx, w)}  exp{F(x, ypoyp, s w}
P(yplx’yga\p) = pr ©\P — pr ©\p (15)
and
Zp(x,9%,) = Zy,,em,fn exp{ —H(y, oy}, ,lx, w)} (16)

is the partition function on the site p. The circle operator o denotes the concatenation of two parts of
labels into one. Then we can use this label expectation to rank the video clips for a certain concept.

3. CORRELATIVE MULTILABEL TEMPORAL KERNEL MACHINE FOR VIDEO ANNOTATION

In this section, we will introduce a temporal kernel machine under the above correlative multilabel video
annotation framework. As mentioned in Section 1.2, the temporal information of videos is an important
source to characterize the inherent video dynamics when annotating video concepts, especially for event
concepts. To leverage this temporal information for video annotation, we will introduce a temporal
kernel to represent the feature dynamics in this section.

3.1 A Temporal Kernel for Video Sequence

In CML Kernel ( see Equation (5)), we have indicated that the dot product (x,&) over the low-level
feature vector x and & can be replaced by any other kernel function. Therefore, we design a temporal-
based kernel that characterizes the dynamics of video sequences. To design such a temporal kernel,
a distance measure d(x, %) between two videos x, X can be first designed, and then a kernel can be
computed through exponentiation as

(17)

K (x, %) = exp {—d(:;’a}
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where o is the kernel radius. As is well known, the Kullback-Leibler Divergence (KLD) is a well-defined
distance measure in information theory [Cover and Thomas 1991]. It can be used to compute the
distribution distance between two statistical models. Therefore, if dynamic models are constructed
to capture the temporal dynamics of video sequences, KLLD can be computed between them. In this
paper, we select Hidden Markov Models (HMMs) as such dynamic models. Specifically, for a video
sequence, we denote its observations as O = {o;,¢ = 1,...,7} where each o; as the feature vectors
for frame ¢ in the video. Let there be @ states {1,..., @} and the state of each frame ¢ is denoted
by s;. The transition probability a; ; denotes the state transition between the state i and j and = =
[y 7o -+ g 17 denotes the initial state distribution. For each state s;, the observation o, is generated
according to an distribution P(o;|s;). In this paper, we use Gaussian Mixture Model (GMM) as this
observation distribution:

bio) = Plolsy =i) =y MN(o,luj, =), (18)

where A/, uf, £/ is the mixing coefficient, the mean vector and covariance matrix of /th Gaussian
component respectively, given the current state is i. For simplicity, the covariance matrix is assumed
to be diagonal.

Given two video sequences and their respective HMMs ®, ® where ©® and ® denote the underlying
parameter spaces of two respective HMMs, We can compute the KLLD [Cover and Thomas 1991] between
them as

P(0|0)

P(O®) (19)

Dx1 (0116) =/P(O|®)log

However, there exists no closed form expression for the KLLD between these two HMMs. The most
straightforward approach to computing this KLD is to use the Monte Carlo simulation [Berg 2004],
which requires high computational cost. In this section, we will introduce an alternative approximation
approach that can be computationally more efficient than the Monte Carlo approach [Liu et al. 2007].
It aims at computing an upper bounded approximation of KLLD between two HMMs as follows

_ B Q _
Dgr(09]|0) < Z vilDkr(bil16;) + Dgr(a; ||a; )}, (20)

i=1

where y is the stationary distribution for the model ®, that is, yTA=yT, tlifglo 7TA" =yT, where A =

(a;,;) is the transition matrix of HMM ©. b; and b; are observation distribution defined in Equation (18)
while @;. and @; . are the transition probability given the current state is i for the two HMMs © and .
The detailed proof of the above upper bounds can be found in Appendix B.

Similarly, the upper bound of the reverse KLD rate is

o Q )
Dkr(®118) < > 7i{Dr(bilb) + Drr(@ i, )}, (21)
=1

where 7 is the stationary distribution of the model ©.
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Thus with the above upper bounds of the KLLD between HMMs, the symmetric KLD rate is

D(©||6) = %{Dm@n@) + D1 (6]10)}

1 . i

<3 ; yi{ Dicr(Billb) + D1 (s, |1a;, )} 99)
1 .

+5 > 7l Dxr®lib) + Drr@lla;,).

Il
-

1

Substituting the above upper bound of the symmetric KLLD rate into Equation (17), we can obtain the
temporal kernel between two video sequences as

Q ~ Q ~
> v D Gillb)+Drcn @i, 116+ 7| Dicw Billb+Drce @i llai,) |
=1
2

K(©®,0)=exp{—= ' (23)

02
Note that we use an upper bound to approximate the true KL distance between the two HMMs,
thus their corresponding kernel according to the above equation may not be positive-definite. How-
ever, there are many solutions to address this problem. For example, Zhang et al. [2006] suggest
computing the smallest eigenvalue of the kernel matrix, and if it is negative, its absolute value can
be added to the diagonal of the kernel matrix. This method can be justified as follows. The kernel matrix
can be explained intuitively as similarities between images. Adding a positive value to the diagonal only
enhances “self-similarities” and it does not affect the similarities among images. Moreover, in practise,
we have found the approximate upper bounded KLD distance gives a tight enough approximation to
the true KLLD so that the computed kernel usually satisfies the positive-definite condition. Thus the
above technique is scarcely used.

With the above temporal kernel, we can define the Correlative Multilabel Temporal Kernel (CMLTK)
by incorporating Equation (23) into Equation (5) as

§: Vi {DKL(biHb:)JrDKL(ai,Hdz,-)}JrZQ: Vi [DKL(I;IIbL‘)JrDKL(di,-Hai,.)]
K((@(x, y): 9(&’ 5’)>) = exp —= 2021:1 (24)

Do MMy =3l + Y 8l = 180y = 3l

Such a multilabel temporal kernel considers not only the concept interactions between each other but
also the temporal evolution of video sequences. In this article, we call Equation (24) the Correlative
Multilabel Temporal (CMLT) Kernel.

Finally, the KLD between the two GMMs distributions b;, b; in these equations can be approximated
through unscented transform [Goldberger and Aronowitz 2005]; that is,

~ 1 n ; 2d N(xli,ku‘bfa le)
Dgr(billb) = o+ DM ;mg N(xj 11}, )’

where d is the dimension of the observed feature vectors, and x; ;, is the “sigma” points defined as

X, =u;’+(\/d2;'> , k=1,....,d

k (26)

X gn =M — (\/dxll‘) . k=1,...,d.

k

(25)
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These sample points completely capture the true mean and variance of the Gaussian distribution
N(x|uy, X)), that is, the /[-th component distribution given its corresponding state is i.

3.2 A Universal Reference Model

As we have stated, we use an upper bound to approximate the intractable exact KLLD between two
HMDMs. These two models have the same state number @ . However, since they are trained independently
on their own video sequences, the correspondence between their respective underlying states may not be
in the same order from 1 to @. Such an inconsistency between the states in the two models can lead to an
upper bound that is not tight enough. To obtain a tighter bound, we can first train a Universal Reference
Model (URM) from referential sequences, for example, some video sequences from the training set. Then,
given a new video, its HMM can be adapted from this URM. Since the models are all adapted from this
URM, the states will have a reasonable correspondence between the models. Thus, the obtained upper
bound will be much tighter than that computed from the independently trained models.

In this article, the standard Maximum A Posteriori (MAP) technique [Gauvain and Lee 1994] is used
to adapt the HMM. Formally, given the parameters @UEM of the URM and an observation O of the new
video sequence, we estimate the new HMM ©. We use OUEM a5 the initial parameter. As suggested
in Gauvain and Lee [1994], the standard Expectation-Maximization (EM) algorithm is then applied to
update © repeatedly until convergence except for the mean vector of GMMs; that is,

ZtT:lOt'P(St ziami =10, 0)

L . 27)
>i—1 Plsy =i,m; =110, 0)

up o+ (1—a)

where m! indicates the mixture component given the state is i at time slice ¢ and « is the weighting
factor giving the bias between the previous estimate and the current one. Following the suggestion in
Gauvain and Lee [1994], we will set « to be 0.7 in the experiment. The update rules for all the other
parameters follow the EM algorithm.

4. EXPERIMENTS

In this section, we conduct the proposed algorithms on the widely used benchmark TRECVID dataset.
We will show the experimental results on two proposed kernel machines. (1) the multilabel kernel
machine described in Section 2. It exploits the individual concepts and their correlations in a single CML
kernel. (2) the multilabel temporal kernel machine described in Section 3. It incorporates the temporal
information into CML kernel and models the concept interactions and low-level feature dynamics in
CMLT kernel together. We will compare them with other state-of-the-art methods in the first and second
paradigms.

4.1 TRECVID Set Description and Experiment Setup

To evaluate the proposed video annotation algorithm, we conduct the experiments on the benchmark
TRECVID 2005 data set (http:/www-nlpir.nist.gov/projects/trecvid/). This is one of the most widely used
data sets by many groups in the area of multimedia concept modeling [Campbell et al. 2006; Chang
et al. 2006; Hauptmann et al. 2006]. This data set contains about 170 hours international broadcast
news in Arabic, English and Chinese. These news videos are first automatically segmented into 61, 901
subshots [Petersohn 2004]. We select the TRECVID dataset to evaluate our algorithm since it provides
us a common platform to compare the performances of different algorithms.

For each subshot, 39 concepts are multilabeled according to LSCOM-Lite annotations [Naphade
et al. 2005]. These annotated concepts consist of a wide range of genres, including program category,
setting/scene/site, people, object, activity, event, and graphics. Figure 6 illustrates these concepts and
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the distribution of their numbers in the data set. Intuitively, many of these concepts have significant se-
mantic correlations between each other. Moreover, in the Section 4.2, we also prove that the correlations
between different concepts are statistically significant in terms of the normalized mutual information.

Figure 7 illustrates the multilabeling nature of the TRECVID data set. As shown, many subshots
(71.32%) have more than one label, and some subshots are even labeled with 11 concepts. Such rich
multilabeled subshots in the video data set as well as the significant correlative information between
the concepts validate the necessity of exploiting the relationship between the video concepts.

The video data is sequentially divided into 3 parts with 65% (40,000 subshots) as training set, 16%
(10,000 subshots) as validation set and the remaining 19% (11,901 subshots) as test set. For CBCF, the
training set is further split into two parts: one part (32000 subshots) is used for training the individual
SVMs in the first detection step, the other part (8000 subshots) is used for training the contextual

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 5, No. 1, Article 3, Publication date: October 2008.



3:16 o G.-J. Qietal.

classifier in the second fusion step. For performance evaluation, we use the official performance metric
Average Precision (AP) in the TRECVID tasks to evaluate and compare the algorithms on each concept.
The AP corresponds to the area under a noninterpolated recall/precision curve and it favors highly
ranked relevant subshots. We average the AP over all the 39 concepts to create the mean average
precision (MAP), which is the overall evaluation result.

For performance evaluation, we compare our algorithm with two state-of-the-art approaches in first
and second paradigms. The first approach, called IndSVM in this section, is the combination of multiple
binary encoded SVMs (see the left part of Figure 2), which are trained independently on each concept;
the other approach is developed by adding a contextual fusion level on the detection output of the first
approach [Godbole and Sarawagi 2004]. In our implementation, we use the SVM for this fusion level.
We denote this context-based concept fusion approach as CBCF in this section.

The parameters of the algorithms are determined through a validation process according to their
performances on the validation set. For a fair comparison, the results of all the 3 paradigm algorithms
reported in this section are the best ones from the chosen parameters. Specifically, two parameters need
to be estimated in the proposed CML: the trading-off parameter A and the Gaussian kernel bandwidth o
of the Gaussian kernel function (x, &) in Equations (5) and (24). They are respectively selected from sets
{0.5,1.0, 10, 100} and {0.65, 1.0, 1.5, 2.0} via the validation process. Similarly, the trading-off parameter
A and the Gaussian kernel bandwidth o in the IndSVM and CBCF are also respectively selected from
{0.5,1.0, 10, 100} and {0.65, 1.0, 1.5, 2.0}, and the best one on the validation set is chosen.

We extract several kinds of low-level features on the keyframes of these subshots [Hua et al. 2006],
including

1. Block-wise Color Moment in Lab color space (225D): based on 5-by-5 division of images in Lab color
space;

Co-occurrence Texture (20D);

Wavelet Texture (128D);

Edge Distribution Layout (75D);

Face (7D): consisting of the face number, face area ratio, the position of the largest face.

A

Since these features are extracted statically on only keyframes, they are called Static Features (SF),
which are different from the Dynamic Features (DF) used in temporal kernel (Equation (23)).

4.2 An lllustration: Interacting Concepts

In Section 2.2, we revealed the connection between the proposed algorithm and GRFs. As has been
discussed, the neighborhood set A is a collection of the interacting concept pairs, and as for CML, this
set contains all possible pairs.

However, in practice, some concept pairs may have rather weak interactions, including both positive
and negative ones. For example, the concept pairs (airplane, walking running), (people marching, corpo-
rate leader) indeed do not have too many correlations, that is to say, the presence/absence of one concept
will not contribute to the presence/absence of another concept (i.e., they occur nearly independently).
Based on this observation, we only need involve the strongly interacted concept pairs into the set N/,
and accordingly the kernel function (5) used in CML becomes

O, 9),067) = @8 Y, Sllye =51+ olly,=3,08lly, =30. (28

The selection of concept pairs can be manually determined by experts or automatically selected by data-
driven approaches. In our algorithm, we adopt an automatic selection process in which the expensive
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Fig. 8. Each block in this figure illustrates the corresponding normalized mutual information between each pair of the 39
concepts in the LSCOM-Lite annotations data set. These are computed based on the annotations of the development data set in
the experiments (see Section 4). The brighter the block is, the large the corresponding mutual information is.

expert labors are not required. First, we use the normalized mutual information [Yao 2003] to measure
the correlations of each concept pair (p, q) as

MI(p,q)

NormMIp, @) = e (Hp), H@))” 29
where MI(p, ¢) is the mutual information of the concept p and ¢, defined by
P(yp, ¥q)
MI(p,q) = P(y,, yg)log ————— (30)
p.q Zyp,yq Yp» Yq) 108 P(yp,)P(yq)

and H(p) is the marginal entropy of concept p defined by
H(p)==3, (1 _yPyp)logPly)). (31)

Here the label prior probabilities P(y,) and P(y,) can be estimated from the labeled ground-truth of
the training dataset. According to the information theory [Yao 2003], the larger the NormMI (p, q) is,
the stronger the interaction between concept pair p and g is. Such a normalized measure of concept
interrelation has the following advantages:

—1It is normalized into the interval [0, 1]: 0 < NormMI(p, q) < 1;
—NormMI(p, q) = 0 when the concept p and g are statistically independent;
—NormMI(p, p) = 1.

These properties are consistent with our intuition on concept correlations, and can be easily proven
based on the above definitions. From the above properties, the normalized mutual information is scaled
into the interval [0, 1] by the minimum concept entropy. With such a scale, the normalized mutual infor-
mation only considers the concept correlations, which is irrelevant to the distributions of positive and
negative examples of the individual concepts. From the normalized mutual information, the concept
pairs whose correlations are larger than a threshold are selected into A/. Figure 8 illustrates the nor-
malized mutual information among the 39 concepts in LSCOM-Lite annotation data set. The brighter
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Fig. 9. The selected concept pairs according to the computed normalized mutual information in Figure 8. The white blocks
indicate the selected concept pairs with significant correlations.

the grid is, the larger the corresponding normalized mutual information is, and hence the correlation
of the concept pair. For example, (“boat ship,” “waterscape waterfront”), (“weather,” “maps”) etc. have
larger normalized mutual information. The white dots in Figure 9 represent the selected concept pairs.

4.3 Experiment One: Correlative Multilabel Kernel Machine

In this section, we report experiment results on TRECVID data set. Two different modeling strategies
are adopted in the experiments. In the first experiment, all concept pairs are taken into consideration
in the model and the kernel function in Equation (5) is adopted. We denote this method by CML(I)
in our experiment. In the second one, we adopt the strategy described in Section 4.2, and a subset of
the concept pairs is applied based on their interacting significance. Accordingly, the kernel function in
Equation (28) is used, and this approach is denoted by CML(II).

4.3.1 Experiment 1A: Fully Correlative Concepts. We first conduct experiments of the multilabel
method CML (I) with the fully correlative concepts. It considers all possible correlations between the
concepts. Figure 10 illustrates the performance of CML(I) compared to that of IndSVM (first paradigm)
and CBCF (second paradigm). The following observations can be obtained:

—CML(I) obtains about 15.4% and 12.2% relative improvements on MAP compared to IndSVM and
CBCF. Compared to the improvement of CBCF (2%) relative to the baseline IndSVM, such an im-
provement (i.e., 15.4% relative MAP improvement compared to IndSVM) is significant.

—CML(I) performs the best on 28 of the all 39 concepts. Some of the improvements are significant, such
as “office” (477% better than InidSVM and 260% better than CBCF), “people-marching” (68% better
than IndSVM and 160% better than CBCF), “walking running” (565% better than IndSVM and 48%
better than CBCF).

—CML(I) deteriorates on some concepts compared to IndSVM and CBCF. For example, it has 12%
and 14% deterioration on “snow” respectively and 11% and 17% deterioration on “bus” respectively.
As discussed in Section 4.2, the performance deterioration is due to insignificant concept relations.
Next subsection will present CML(II), which solves this deterioration problem and obtains a more
consistent and robust performance improvement.
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Fig. 10. The performance comparison of IndSVM, CBCF and CML(D).
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Fig. 11. The performance comparison of IndSVM, CBCF, CML (I) and CML(II).

4.3.2 Experiment 1B: Partially Correlative Concepts. Following the proposed approach in Section 4.2,
the deterioration problem can be solved by removing concept pairs with insignificant correlations.

Figure 8 illustrates the normalized mutual entropy among all concepts. They are computed on the
development set which includes training set and validation set, but does NOT include the test set.
The average normalized mutual information entropy is Avgyy = 0.02. An important aspect of a good
algorithm is ifits parameters can be determined automatically. Following such a principle, the threshold
Thgy is automatically determined to be Thgy = 2Avgyy such that any concept pairs whose normalized
mutual entropy less than Thgy are removed. Figure 9 shows these selected concept pairs. As we can
see, these preserved concept pairs either have intuitive semantic correlations for example, “waterscape
waterfront” and “boat ship” or statistically tend to co-occur in the news broadcast videos, for example,
“maps” and “weather” in weather forecast video subshots.

Figure 11 illustrates the performance of CML(II) with these selected concept pairs compared to
IndSVM, CBCF and CML(). We can find

—CML(I) has the best overall performance compared to the other algorithms. It outperforms IndSVM,
CBCF and CML(I) by 17%, 14% and 2%, respectively.
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—Furthermore, CML(II) has a more consistent and robust performance improvement over all 39 con-
cepts compared to IndSVM and CBCF. For example, on “bus” and “snow,” CML(I) gave worse per-
formance than IndSVM and CBCEF. In the contrary, CML(II) gains about 71% and 3% improvement
compared to IndSVM and 58% and 1% improvement compared to CBCF with no deterioration.

In summary, CML(II) is the best approach in terms of its best overall MAP improvement as well
as its consistent and robust performance on the diverse 39 concepts. As we can find in Figure 11,
CML(II) has improved the performance on 24 of all the 39 concepts compared to IndSVM, CBCF, CML(I).
Most of these improvements attribute to the compensation of complementary information between
different labels, for example, the annotation of “Bus” can obtain the complementary information from
the annotation of “road.” However, there also exist fewer concepts whose annotation performance are
reduced. For example, CML(II) has a degradation on “Office” compared to CML(I). It is probably caused
by removal of too many related concept pairs relevant to “Office.” According to Figure 11, we only retain
two concept pairs “Office/Outdoor” and “Office/Person” while the related pairs, such as “Office/Face,”
“Office/Meeting,” and “Office/Corporate-Leader,” have been removed. These removed pairs potentially
contribute a lot to the annotation of “Office.” It indicates the trade-off between removing useless concept
interactions and preserving significant interactions is still a difficult problem. A promising solution to
this problem is to involve human experts’ prior knowledge to determine which concept interactions
are mostly helpful to concept annotation. We leave the study of such a human-centered method in the
future work.

4.4 Experiment Two: Correlative Multilabel Temporal Kernel Machine

In this section, we evaluate the proposed CMLT kernel method in Section 3. As aforementioned, this
method can further capture the temporal information of video sequences. Compared to the formal CML
method that only extracts static features on the keyframes of video subshots, this CMLT kernel machine
can capture the dynamic features contained in the temporal patterns of the videos. Such dynamic
patterns are important sources for improving the discrimination between different video concepts.

As depicted in Section 3, all subshots are regarded as sequences of video frames, and the low-level
features are extracted on these frame sequences rather than only keyframes of each subshot. To accel-
erate the feature extraction and model learning, we do not extract features on every frame. Instead, we
only extract the features at the rate of one frame per second. These extracted features are then used to
train the HMM for each subshot. In more detail, a universal reference model is first trained on 5000
video subshots which are randomly selected from the training set. Then for each subshot, a HMM is
adapted from this URM according to Equation (27) and EM algorithm (see Section 3.2 for detail). The
low-level features extracted on the video frames are the same as the static features used in experiment
one. However, since they are extracted on frame sequences to train a dynamic model, we call them
Dynamic Features (DF) (see Figure 12). It is worthy of noting that URM only provides a background
model and it is not used to obtain temporal kernel directly. Actually, the temporal information in each
subshot is encoded into the adapted HMMSs through MAP adaption instead. As stated in Section 3.2, the
effect of URM is to make the underlying states in each adapted HMM have a reasonable correspondence
between them, so that the obtained KLD upper bound between two HMMs is tight enough.

For the sake of the fair comparison, we follow the same experiment settings in experiment one. Table I
illustrates the performance of CMLT kernel method with the comparisons of IndSVM, CBCF, CML(I),
CMLI). From these results, we can find

—The CMLT machine has the best overall performance in terms of MAP. It outperforms the IndSVM,
CBCF, CML(I) and CML(II) by 35.0%, 31.3%, 17.0%, 14.7%.

—CMLT gains the best performance on 30 concepts out of the whole 39 concepts.
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Video Sequence

Face feature

AH”‘]JLHHHLJ Caolor feature

Fig. 12. The dynamic features used in temporal kernel: the low-level features are extracted at the rate of one frame per second,
and these extracted features are then used to train an adapted HMM from URM. It is contrast to the static features that are
extracted only on keyframes of the subshots.

Take a more insight observation into the CMLT result, we can find on four event-related concepts, that is,
“Explosion_Fire,” “Natural-Disaster,” “People-Marching,” “Walking Running,” the CMLT significantly
outperforms the other four methods. This takes advantage of the temporal dynamics contained in these
event concepts. On the other hand, we can also observe performance degradation on few concepts such
as “Computer_TV-screen” and “Entertainment.” It is due to the relatively weak temporal information
in these video sequences.

Finally, we would like to have a brief discussion about the computational cost of the proposed CML
methods. In fact, under the different parameter settings, the computational cost is different largely.
But in general, as for IndSVM and CBCF, the models of each concept are independent without coupled
relation with each other, so they can be trained in parallel, that is, the models of different concepts
can be trained at the same time. Therefore, the computing time needed is much less than CML in
which the modeling of the whole concept set is conducted in a coupled manner and thus is unable to
be operated in parallel. In our experiment, the speed of CML is about 25 times slower than IndSVM
and CBCF. Therefore how to accelerate the computation speed of CML will be the focus of our future
work. Specifically, an online algorithm can be a good choice to solve the efficiency issue on the large-scale
problem; that is, the online algorithm can incrementally learn the multilabeled prediction model so that
the model parameters can be updated once one or a batch training samples arrive, instead of learning
these parameters after accumulating all training samples. We believe such an online algorithm can
greatly accelerate the training process in real time.

5. CONCLUSION AND FUTURE WORK

We propose a Correlative Multilabel (CML) kernel machine in this paper to leverage the label corre-
lations to help infer the video concepts. It exploits the individual concepts and their correlations in
a single formulation. We analogize the CML to the Gibbs Random Field (GRF) to justify that CML
can simultaneously model the individual concepts and their correlations from a statistical perspective.
Based on this GRF formulation, we give an efficient inference algorithm to predict the labels given
an input video sequence. The experimental results show the CML and improve the overall annotation
performance compared to the state-of-the-art algorithms in the other two paradigms for video annota-
tion. Moreover, they can consistently improve the annotation accuracy over the most of concepts with
slight degradation on very few concepts. As we have pointed out, this degradation can be avoided by
more sophisticated interactive method to incorporate experts’ knowledge of concept ontology structure
to preserve the most significant concept interactions. This will be the topic of our future work. Another
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Table I.

The average precision over 39 LSCOM-lite concepts for the five
algorithms: IndSVM, CBCF, CML(I), CML(I), CMLT. The CMLT gains
the best over performance of these algorithm, and it also outperforms
the other four algorithms on 30 out of 39 concepts. The bold indicates the
best approach for each concept in this table.

IndSVM CBCF CML(I) CMLII) CMLT

Airplane 0.1005 0.1019  0.1712 0.2325 0.2563
Animal 0.5265 0.5336  0.5302 0.55824  0.7193
Boat_Ship 0.087 0.0798  0.0849 0.0707 0.0779
Building 0.3375 0.3538  0.3486 0.3585 0.3952
Bus 0.0669 0.0724  0.0602 0.1147 0.1706
Car 0.2469 0.2673  0.2983 0.3296 0.4185
Charts 0.0981 0.0709  0.1277 0.182 0.2558
Computer_TV-screen 0.3773 0.3927  0.3976 0.3438 0.379
Corporate-Leader 0.0112 0.014 0.03 0.0438 0.0483
Court 0.1462 0.1568  0.294 0.232 0.2558
Crowd 0.3073 0.3598  0.3775 0.3676 0.4053
Desert 0.1047 0.1053  0.0902 0.125 0.1378
Entertainment 0.1174  0.1687 0.14 0.1171 0.1291
Explosion_Fire 0.1773 0.1768  0.2755 0.3447 0.38
Face 0.8779 0.8782  0.8854 0.9062 0.9762
Flag-US 0.0571 0.0563  0.0759 0.084 0.0926
Government-leader 0.0774 0.0838  0.1029 0.1515 0.167
Maps 0.3147 0.3206  0.4347 0.4156 0.5228
Meeting 0.2208 0.2391 0.183 0.232 0.2558
Military 0.2202 0.2337  0.2405 0.2571 0.2394
Mountain 0.1367 0.135 0.1397 0.148 0.1632
Natural-Disaster 0.0462 0.0381  0.0633 0.0664 0.0932
Office 0.044 0.0706  0.2541 0.1053 0.1161
Outdoor 0.823 0.8517  0.8695 0.8607 0.8166
People-Marching 0.095 0.0998 0.1595 0.1561 0.2949
Person 0.8441 0.8535  0.8453 0.844 0.9856
Police_Security 0.0301 0.0253  0.02 0.058 0.0639
Prisoner 0.0026 0.0016  0.0039 0.0096 0.0106
Road 0.2169 0.2158  0.2249 0.2656 0.2928
Sky 0.4204 0.4261  0.4281 0.4213 0.4645
Snow 0.3625 0.37 0.3179 0.374 0.4123
Sports 0.2025 0.2194 0.329 0.3226 0.3998
Studio 0.8109 0.8448 0.889 0.8283 0.9132
Truck 0.0552 0.0529 0.0727 0.1381 0.1523
Urban 0.151 0.1528  0.1517 0.1861 0.2052
Vegetation 0.2596 0.2511 0.2537 0.2675 0.2949
Walking_Running 0.2094 0.2188  0.3251 0.2565 0.3828
Waterscape_Waterfront 0.2049 0.2219  0.3055 0.2642 0.2913
Weather 0.2200 0.1690  0.2898 0.2765 0.3364

Mean average precision 0.2463 0.2534  0.2843 0.2901 0.3326

promising extension to CML and CMLT is to design an online learning algorithm to learn the multi-
labeled model. It can greatly accelerate the learning process so that once one or a batch of new train-
ing samples arrive, the model parameters can be updated in time with no need of training the model
after all the samples are accumulated. We believe such an online extension can make the algorithm
applicable in many real-time environments such as Web application.
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Besides the correlative multilabel model, we also introduce a temporal kernel into the CML formu-
lation to form a Correlative Multilabel Temporal (CMLT) kernel machine. This new kernel method
takes into account not only feature dynamics but also concept interactions in an integrated manner.
It obeys the principle of least commitment without any extra step that induces propagate errors to its
consecutive step so that a better performance can be expected. Experiments also show this temporal
information used in CMLT can serve as an important resource to improve the annotation accuracy on
many event-related concepts, such as “People-Marching,” and “Explosion_Fire.” The event detection in
video sequences have attracted many attentions, and we believe this temporal kernel can contribute to
revealing if and how temporal information be utilized to detect various event concepts of videos.

APPENDIX A—LEARNING THE CLASSIFICATION FUNCTION

In this section, we will introduce how to train the classification model (1) with the presented kernel
(5). The procedure follows a similar derivation as in the conventional SVM (details about SVM can be
found in Cristianini and Shawe-Taylor [2000]) and in particular one of its variants for the structural
output spaces [Tsochantaridis et al. 2004]. Given an example x; and its label vector y; from the training
set {x;,y;}"_,, according to Equations (1) and (2), a misclassification occurs when we have

AF;(y) 2 Fxi,y,) — F(x;,5) = (w, A6i(y)) < 0,¥y £y;,y €V, (32)

where A6;(y) = 0(x;,y;) — 6(x;,y). Therefore, the empirical prediction risk on training set wrt the
parameter w can be expressed as

. [
Rlxi,ylipw)=—> 0 > o 1 yw), (33)
where ((x;, y;w) is a loss function counting the errors as

1 if (w, AG;(y)) <0,Vy #£y,,y ),
Ui, y;w) = (34)
0 if (w, AG;(y)) > 0,Vy £y, y € ).
Our goal is to find a parameter w that minimizes the empirical error R({xi,yi}l’f:l; w). Considering the
computational efficiency, in practice, we use the following convex loss which upper bounds ¢(x;, y; w) to
avoid directly minimize the step-function loss:

Lplxi, y;w) = (1 — (w, AG;(¥)))+, (35)

where (-); is a hinge loss in classification. Correspondingly, we can now define the following empirical
hinge risk which upper bounds R ({x;, y;}I_;;w):

R, yi)j_y3w) = Zl 1D i yey (i Y3 0). (36)

Accordingly, we can formulate a regularized version of R, ({x; , y;}? *_,;w) that minimizes an appropriate

combination of the empirical error and a regularization term Q(||w||?) to avoid overfitting of the learned
model. That is,

mui)n{RA'h({xi,yl L w)+ A Qw| ), 37

where Q is a strictly monotonically increasing function, and A is a parameter trading off between the
empirical risk and the regularizer. As indicated in Cristianini and Shawe-Taylor [2000], such a regular-
ization term can give some smoothness to the obtained function so that the nearby mapped 6(x, y), 6(x, y)
have the similar function value F(0(x, y); w), F(0(x,¥); w). Such a local smoothness assumption is in-
tuitive and can relieve the negative influence of the noise training data.
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In practice, the above optimization problem can be solved by reducing it to a convex quadratic problem.
Similar to what is done in SVMs [Cristianini and Shawe-Taylor 2000], by introducing a slack variable
&;(y) for each pair (x;, y), the optimization formulation in (37) can be rewritten as

S TR R
min 5 {jee|” + - > i Zy#yi,yey 5 (38)
st.(w, A0;(y) > 1 -, 5@ >0 y#y,ye)

On introducing Lagrange multipliers ¢;(y) into the above inequalities and formulating the Lagrangian
dual according to Karush-Kuhn-Tucker (KKT) theorem [Boyd and Vandenberghe 2004], the above
problem further reduces to the following convex quadratic problem (QP):

max Y e~ 5 3 3 oy GHAGG), A6;$)

LYZYi LYY J.YEY )
A .
5t.0 < Z#yi,ygyai(y)f b £y,ye),1<i<n (39)
and the equality
W=D ey HAGE) (40)

Different from those dual variables in the conventional SVMs which only depend on the training data
of observation and the associated label pairs (x;,y;),1 < i < n, the Lagrangian duals in (39) depend
on all assignment of labels y, which are not limited to the true label of y;. We can iteratively find the
active constraints and the associated label variable y* which most violates the constraints in (35) as
y* = argmaxy,, F(x;, y;w) and AF;(y*) < 1. An active set is maintained for these corresponding active
dual variables «;(y*), and w is optimized over this set during each iteration using commonly available
QP solvers (e.g., SMO [Cristianini and Shawe-Taylor 2000]).

APPENDIX B—PROOF OF KULLBACK-LEIBLER UPPER BOUNDS

Here we prove the upper bounds (20), (21) of KLD between two HMMs ©, ®. This proof is given by Do
[2003]. The approximation is motivated from the following upper bound that is based on the chain rule
for relative entropy [Cover and Thomas 1991]:

LemmA 1. Given two mixture distributions [ = ZiL=1 w;f;and g = ZiL=1 v; i, the KLD between them
is upper bounded by

Dir.(fllg) < Dz wliv) + Y. wi D (fillgo), (41)

where Dk, (w||v) = ZiL:l w; log Ll‘)’—; This inequality directly follows the log-sum inequality (see pp. 31 of
Cover and Thomas [1991])).

Let backward variables B;(i) = P (0;0:41---07|s; =1, ®) denote the probability that the sequence
0:041 - -07 is observed given the current state s; isi and 7 = [71 72 -+ 7g 17 denote the initial
state distribution. Thus the distribution of the whole observation sequences can be computed by the
Baum-Welch algorithm [Rabiner 1989] as

Q
P(010) =) "m0 (42)
i=1
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Therefore based on Lemma 1, the KLD between two HMMs ©, © can be computed from Lemma 1 as
~ Q . QR . ..
Dia(©118) = Dt (31 i - B OIY1 7 - Buld))

Q _ (43)
< Dr (xll#)+ Y~ 7 - Drz, (BB ().
The term Dxgz,(B;(i)||B:(i)) can be computed by utilizing the following recursive formulation:
Q
i) =bi(00) ) aijBria(i). (44)
j=1
Thus
~ ~ Q ~

Dir, (B:()11B:(0)) < Dgr(b;|1b;) + Dgr(a;,.|1G;,.) + Zai,jDKL (Be+1(Br+1())). (45)

i=1

We can define D; = [D}Dt2~-~DtQ]T with D! = Dgz(8;(0)]|:(i)) and C = [C1Cy---CqlT with C; =
Dy (b;115;) + Dki(a;.||@;,.). Thus Equations (43) and (45) can be rewritten as

Dk1(©]|0) < Dz, (x||7) + n T D,
D; <C+A- Dy,

(46)
where A = (a; j)g«q is the transition matrix. Therefore, we have

T-1
Dgi.(©]|0) < Dgr, (||7) + 7T <Z AHC+A7—1D). 47)

t=1
Assume that the model @ is stationary so a stationary distribution y exists, that is,
)/T A= J/T

lim 7T At = T,

t—00

Therefore, combining Equations (47) and (48), the KLLD rate between two HMMs can be

(48)

~ - | .
Dg1(0]]0) = Tlgrolo ?DKL(@)H@)
Q ~ (49)
<y"C =" yi{DrL®Billb) + Drr(a; 11G:.)}.

i=1

Similarly, we can obtain the reverse KLD rate as

— ~ Q ~
Dgr(011©) < ) #{Dgr(b]1b;) + Dz, |la;, )}, (50)
=1

where 7 is the stationary distribution of the model ® .
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