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Correlator convolutional neural networks as an
interpretable architecture for image-like quantum
matter data
Cole Miles 1, Annabelle Bohrdt 2,3,4, Ruihan Wu5, Christie Chiu 2,6,7, Muqing Xu2, Geoffrey Ji 2,

Markus Greiner2, Kilian Q. Weinberger5, Eugene Demler2 & Eun-Ah Kim 1✉

Image-like data from quantum systems promises to offer greater insight into the physics of

correlated quantum matter. However, the traditional framework of condensed matter physics

lacks principled approaches for analyzing such data. Machine learning models are a powerful

theoretical tool for analyzing image-like data including many-body snapshots from quantum

simulators. Recently, they have successfully distinguished between simulated snapshots that

are indistinguishable from one and two point correlation functions. Thus far, the complexity of

these models has inhibited new physical insights from such approaches. Here, we develop a

set of nonlinearities for use in a neural network architecture that discovers features in the

data which are directly interpretable in terms of physical observables. Applied to simulated

snapshots produced by two candidate theories approximating the doped Fermi-Hubbard

model, we uncover that the key distinguishing features are fourth-order spin-charge corre-

lators. Our approach lends itself well to the construction of simple, versatile, end-to-end

interpretable architectures, thus paving the way for new physical insights from machine

learning studies of experimental and numerical data.
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There have been growing efforts to adopt data science tools
that have proved effective at recognizing every-day objects
for objective analysis of image-like data on quantum

matter1–6. The key idea is to use the ability of neural networks to
express and model functions to learn key features found in the
image-like data in an objective manner. However, there are two
central challenges to this approach. First, the “black box” nature
of neural networks is particularly problematic when it comes to
scientific applications, where it is critical that the outcome of the
analysis is based on scientifically correct reasoning7. The second
challenge unique to scientific application of supervised machine
learning (ML) approaches is the shortage of real training
data. Hence the community has generally relied on simulated
data for training1,3,8. However, it has not been clear whether
the neural networks trained on simulated data properly generalize
to experimental data. The path to surmounting both of these
issues is to obtain some form of interpretability in our models. To
date, most efforts at interpretable ML on scientific data have
relied on manual inspection and translation of learned features
from training standard architectures9–11. Instead, here we pro-
pose an approach designed from the ground-up to automatically
learn information that is meaningful within the framework of
physics.

The need for a principled data-centric approach is particularly
great and urgent in the case of synthetic matter experiments such
as quantum gas microscopy (QGM)12–14, ion traps15, and Ryd-
berg atom arrays16,17. While our technique is generally applicable,
in this work we focus on QGM, which enables researchers to
directly sample from the many-body density matrix of strongly
correlated quantum states that are simulated using ultra-cold
atoms. With the quantum simulation of the fermionic Hubbard
model finally reaching magnetism14 and the strange metal
regime18,19, QGM is poised to capture a wealth of information on
this famous model that bears many open questions and is closely
linked to quantum materials. However, the real-space snapshots
QGM measures are a fundamentally new form of data resulting

from a direct projective measurement of a many-body density
matrix as opposed to a thermal expectation value of observables.
While this means richer information is present in a full dataset,
little is known about how to efficiently extract all the information.
When it comes to the questions regarding the enigmatic under-
doped region of the fermionic Hubbard model, the challenge is
magnified by the fact that fundamentally different theories can
predict QGM data with seemingly subtle differences within
standard approaches19,20.

In this work, we develop Correlator Convolutional Neural
Networks (CCNNs) as an architecture with a set of nonlinearities
which produce features that are directly interpretable in terms of
correlation functions in image-like data (see Fig. 1). Following
training of this architecture, we employ regularization path
analysis21 to rigorously identify the features that are critical in the
CCNN’s performance. We apply this powerful combination of
CCNNs and regularization path analysis to simulated QGM data
of the under-doped Fermi-Hubbard model, as well as additional
pedagogical examples in Supplementary Note 2. Following this,
we discuss the new insights we gain regarding the hidden sig-
natures of two theories, geometric string theory22 and π-flux
theory23,24.

Results
The Hubbard model of fermionic particles on a lattice is a famous
model that bears many open questions and is closely linked to
quantum materials such as high-temperature superconductors.
The model Hamiltonian is given by

H ¼ �t ∑
σ¼";#

∑
hi;ji

ð̂cyi;σ ĉj;σ þ h:c: Þ þ U ∑
i
n̂i;"n̂i;# ð1Þ

where the first term describes the kinetic energy associated to
electrons hopping between lattice sites, and the second term
describes an on-site repulsion between electrons. At half-filling,
and in the limit U≫ t, the repulsive Hubbard model maps to the
Heisenberg antiferromagnet (AFM)25. However, the behavior of

Fig. 1 Correlator Convolutional Neural Network Architecture. The construction of our Correlator Convolutional Neural Network, shown here with two
learnable filters (M= 2). The input is a three-channel image: S1(x)= n↑(x), S2(x)= n↓(x), S3(x)= nhole(x)= 1− S1(x)− S2(x). Note that S3 is redundant
information, but is provided for improved performance and interpretability. The image is first convolved with learned filters fα to produce a set of convolutional
maps Cð1Þ

α ðxÞ. Maps containing information about higher-order local correlations can then be recursively constructed using the lower-order maps, truncating at
some order N. Spatially averaging these maps produces features cðnÞα which in expectation are equal to weighted sums of correlators found as subpatterns of
the corresponding convolutional filter. These features are normalized to zero mean and unit variance by a BatchNorm layer, then used by a logistic classifier
with coefficients βðnÞα to produce the final output ŷ.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-23952-w

2 NATURE COMMUNICATIONS |         (2021) 12:3905 | https://doi.org/10.1038/s41467-021-23952-w |www.nature.com/naturecommunications

www.nature.com/naturecommunications


the model as the system is doped away from half-filling is not as
well-understood. Several candidate theories exist which attempt
to describe this regime, including geometric string theory22 and
π-flux theory23,24. These theories are conceptually very distinct,
but at low dopings measurements in the occupation basis do not
differ enough in simple conventional observables such as stag-
gered magnetization or two-point correlation functions to fully
explain previous ML success3 in discrimination (see Supple-
mentary Note 4). Nevertheless, there are more subtle hidden
structures involving more than two sites20 which are noticeable.
In the “frozen spin approximation”26, geometric string theory
predicts that the motion of the holes simply displaces spins
backwards along the path the hole takes. Hence the propagation
of the doped hole will tend to produce a “wake” of parallel line
segments of aligned spins in its trail (Fig. 2(a)). Meanwhile, the π-
flux theory describes a spin liquid of singlet pairs, where it is more
difficult to conceive of characteristic structures (Fig. 2(b)).

Current QGM experiments are able to directly simulate the
Fermi-Hubbard model, obtaining one or two-dimensional occu-
pation snapshots sampled from the thermal density matrix ρ �
e�βH prescribed by the model14. However, currently our experi-
ment can only resolve a single spin species at a time, leaving all
other sites appearing as empty. This is not a fundamental lim-
itation of QGM experiments and complete spin and charge
readout is beginning to become available to select groups27,28. As
we aim to learn true spin correlations, in this work we use pri-
marily simulated snapshots at doping δ= 0.09 sampled from the
geometric string and π-flux theories using Monte-Carlo sampling
techniques under periodic boundary conditions. In particular,
geometric string snapshots are generated by first sampling
snapshots from the AFM Heisenberg model, then randomly
inserting strings with lengths drawn from the analytic
distribution20. π-flux snapshots are generated by standard
Metropolis sampling from the Gutzwiller projected thermal
density matrix given by the associated mean-field Hamiltonian.
(See Supplementary Note 1 for further details.)

We point out that in the context of this paper, when referring
to two models as different, we do not imply that they are fun-
damentally distinct, in the sense that they can not be connected
smoothly without encountering a singularity in the partition
function. Rather, this is a practical question: we have two or more
mathematical procedures for generating many-body snapshots
based on variational wavefunctions, Monte-Carlo sampling, or
any other theoretical approach. Our goal is to develop a ML

algorithm that separates snapshots based on which procedure
they are more likely to come from and, most importantly, the
algorithm should provide information about which correlation
functions are most important for making these assignments.

To learn how to distinguish these two theories we propose a
neural network architecture, CCNNs, schematically shown in
Fig. 1. The input to the network is an image-like map with 3-
channels {Sk(x)∣k= 1, 2, 3}, where S1(x)= n↑(x), S2(x)= n↓(x),
S3(x)= nhole(x). Since the models we consider are restricted to the
singly-occupied Hilbert space, this input only takes on values 0 or
1. From this input, the CCNN constructs nonlinear “correlation
maps” containing information of local spin-hole correlations up
to some order N across the snapshot. This operation is para-
meterized by a set of learnable 3-channel filters, {fα,k∣α= 1,⋯ ,
M} where M is the number of filters in the model. The maps for
the given filter α are defined as:

Cð1Þ
α ðxÞ ¼ ∑

a;k
f α;kðaÞSkðx þ aÞ

Cð2Þ
α ðxÞ ¼ ∑

ða;kÞ≠ðb;k0Þ
f α;kðaÞf α;k0 ðbÞSkðx þ aÞSk0 ðx þ bÞ

..

.

CðNÞ
α ðxÞ ¼ ∑

ða1;k1Þ≠¼≠ðaN ;kN Þ

QN

j¼1
f α;kj ðajÞSkj ðx þ ajÞ:

ð2Þ

Here a runs over the convolutional window of the filter α.
Traditional convolutional neural networks employ only the first
of these operations, alternating with some nonlinear activation
function such as tanh or ReLU ðxÞ ¼ maxð0; xÞ. The issue with
these typical nonlinear functions is that they mix all orders of
correlations into the output features, making it difficult to dis-
entangle what exactly traditional networks measure. In contrast,
each order of our nonlinear convolutions CðnÞ

α ðxÞ are specifically
designed to learn n-site semi-local correlations in the vicinity of
the site x, which appear as patterns in the convolutional filters fα.
Note that the sums in Eq. (2) exclude any self-correlations to aid
interpretability. During training, a CCNN tunes the filters fα,k(a)
such that correlators characteristic of the labeled theory are
amplified while others are suppressed. To aid interpretation, we
force all filters to be positive fα,k(a) ≥0 by taking the absolute value
before use on each forward pass. We note that a multi-site kernel
used in a support vector machine, as introduced in refs. 29,30,
could also learn higher-order correlators. However, CCNNs allow
high-order correlations to be efficiently parameterized and dis-
covered by leveraging automatic differentiation and the structure
of convolutions.

A direct computation of the nonlinear convolutions following
Eq. (2) up to order N requires OððKPÞNÞ operations per site,
where P is the number of pixels in the window of the filter and K
is the number of species of particles. However, we can use the
following recursive formula which we prove in Supplementary
Note 3:

CðnÞ
α ðxÞ ¼ 1

n
∑
n

l¼1
ð�1Þl�1 ∑

a;k
f α;kðaÞlSkðx þ aÞl

� �

Cðn�lÞ
α ðxÞ ð3Þ

where all powers are done pixelwise, and we define Cð0Þ
α ðxÞ ¼ 1.

This improves the computational complexity to OðN2KPÞ while
also allowing us to leverage existing highly-optimized GPU
convolution implementations. Use of this formula leads to a
“cascading” structure to our model similar to31, as seen in Fig. 1.
First, the input S is convolved with filters fα to produce the first-
order maps Cð1Þ

α . Using Eq. (3), these first-order maps can be used
to construct second order maps Cð2Þ

α , and onwards until the model
is truncated at some order N. Since the Hamiltonians being
studied are translation-invariant, we then obtain estimates of

Fig. 2 Model effective theories of the 2D Fermi-Hubbard model. A
cartoon depicting the features of two candidate theories approximating the
low-T, low-doping limit of the Fermi-Hubbard model. Red, blue sites are
spin-up, spin-down electrons respectively, while green circles represent
holes. a Geometric string theory, showing two geometric strings in the
presence of an antiferromagnetic background. Note that the propagation of
the doped holes creates parallel line segments of aligned spins,
perpendicular to the direction of the hole propagation. b π-flux theory,
which describes a spin liquid of singlet pairs.
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correlators from these correlation maps by simple spatial averages
to produce cðnÞα ¼ 1

Nsites
∑xC

ðnÞ
α ðxÞ. In addition, we employ an

explicit symmetrization procedure to enforce that the model’s
predictions are invariant to arbitrary rotations and flips of the
input, detailed in Supplementary Note 1. Concatenating these
correlator estimates results in an NM-dimensional feature vector
c ¼ fcðnÞα g.

In the back portion of a CCNN (see Fig. 1), the feature vector c
is normalized using a BatchNorm layer32, then used by a logistic
classifier which produces the classification output ŷðc; β; ϵÞ ¼
½1þ expð�β � cþ ϵÞ��1 where β ¼ fβðnÞα g and ϵ are trainable
parameters. If ŷ<0:5, the snapshot is classified as π-flux, and
otherwise it is classified as geometric string theory. The βðnÞα
coefficients are central to the interpretation of the final archi-
tecture, as they directly couple the normalized correlator features
cðnÞα to the output. For training, we use L1 loss in addition to the
standard cross-entropy loss, i.e.,

Ltrainðy; ŷÞ � �ylog ŷ � ð1� yÞlog ð1� ŷÞ þ γ ∑
α;k;a

f α;kðaÞ; ð4Þ

where y= {0, 1} is the label of the snapshot, and γ is the L1
regularization strength. The role of the L1 loss is to promote
sparsity in the filter patterns by turning off pixels which are
unnecessary10,11.

We fix the number of filters M and the maximum order of the
nonlinear convolutions N, a hyper-parameter specific to CCNN,
by systematically observing the training performance. We found
that two filters gives sufficient performance while allowing for
simple interpretation. Hence we consider two filters, i.e., M= 2 in
the rest of the paper. For the maximum order of nonlinear
convolution N we found the performance to rapidly increase with
increase in N up to N= 4, past which performance plateaus.
Hence we fix N= 4 in the rest of the paper. In addition, we limit
our investigation to 3 × 3 convolutional filters. With the archi-
tecture of the CCNN so-fixed we found the performance of this
minimalistic model to be comparable with a more complex tra-
ditional CNN architecture3 (see Supplementary Note 1 for these
performance results).

After a CCNN is trained, we fix the convolutional filters fα and
move on to a second phase to interpret what it has learned. We
first determine which features are the most relevant to the
model’s performance by constructing and analyzing regulariza-
tion paths33 to examine the role of the logistic coefficients βðnÞα .
We apply an L1 regularization loss to these βðnÞα and re-train the
back portion of the model (see Fig. 1) using a new loss function:

Lpathðy; ŷÞ � �ylog ŷ � ð1� yÞlog ð1� ŷÞ þ λ∑
α;n

jβðnÞα j; ð5Þ

where λ is the regularization strength. Again, the L1 loss plays a
special role in promoting sparsity in the model parameters, but
we are now penalizing the use of coefficients βðnÞα and hence the
corresponding features cðnÞα . This results in an optimization trade-
off between minimizing the classification loss and attempting to
keep βðnÞα at zero, where the relative importance of these terms is
tuned by λ. At large λ, the loss is minimized by keeping all βðnÞα at
zero, resulting in a 50% classification accuracy due to the model
always predicting a single class. As λ is slowly ramped down,
eventually the “most important” coefficient βðnÞα will begin to
activate, due to the decrease in classification loss surpassing the
increase in the activation loss. As these coefficients couple the
correlator features cðnÞα to the prediction output, this process offers
clear insight into which features are the most relevant.

We show a typical regularization path analysis in Fig. 3, where
the filters fα of a trained model are shown in the inset. The
activation of each coefficient βðnÞα is tracked while tuning down the
regularization strength λ (increasing 1/λ). The resulting

trajectories in Fig. 3(a) show that the 4th order correlator features,
cð4Þ1 and cð4Þ2 are most significant for the CCNN’s decision making
since βð4Þ1 and βð4Þ2 are the two first coefficients to activate. Fur-
thermore, parallel tracking of the accuracy in Fig. 3(b) shows that
the activation of these features results in large jumps in the
classification accuracy, comprising almost all of the network’s
predictive power. While the details of the paths vary between
training runs, we find robust dominance of fourth-order corre-
lations as the first features to be activated to give the majority of
the network’s performance.

The regularization path distinguishing the geometric string and
π-flux ansatzes shown in Fig. 3 is in stark contrast to what
happens when the identical architecture is trained to discriminate
between a thermally excited antiferromagnetic Heisenberg state
and a state with purely random spins (see Supplementary Note 2).
In that scenario, the network learns that two-point correlations
cð2Þα carry the key information for near-perfect classification. In
Supplementary Fig. 5, the regularization path shows only βð2Þ1
activating to achieve full performance, and the learned filter
obviously resembles the AFM pattern. Meanwhile, the behavior
seen in Fig. 3 evidences that the subtle differences between π-flux
and geometric string theory instead hinges on fourth-order
correlations.

Now that we know fourth-order correlations are the important
features, we look at which physical correlators are being measured
by the features cð4Þα by simply inspecting 4-pixel patterns made
from high-intensity pixels from each channel of the learned fil-
ters, as we show in Fig. 4. Comparing these patterns with the
depiction of the two candidate theories, we can understand why
these correlators measured by the two filters are indeed promi-
nent motifs. Specifically, the 2 × 2 correlators in the fourth-order
feature of the filter associated to the geometric string theory
(Fig. 4(a)) are easily recognizable in the “wake” and the termi-
nation of a string. These discovered correlations are in agreement

Fig. 3 Regularization path analysis of a learned fourth-order model. a The
regularization path of βðnÞα coefficient values traced out by two learned filters
as a function of the inverse regularization strength 1/λ. Positive and
negative signs of βðnÞα are associated with geometric string and π-flux labels
respectively. b The accuracies of the model at each point of the
regularization path in (a) on both the training dataset, as well a validation
dataset unseen by the model during training and a test dataset unseen by
us until final evaluation. We use the standard definition of accuracy as the
fraction of the snapshots correctly assigned.
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with those examined in ref. 28, which found pronounced spin
anti-correlations induced on the spins located on the diagonal
adjacent to a mobile chargon. Meanwhile, the 2 × 2 motifs in the
filter learned to represent the π-flux theory (Fig. 4(b)) are either a
single spin-flip or a simple placement of a hole into an AFM
background. It is evident that this CCNN is learning the finger-
print correlations of geometric string theory, recognizing the π-
flux theory instead from fluctuations which are uncharacteristic
of the string picture. Furthermore, a subset of learned patterns
that are not obvious from the simple cartoons can be used as
additional markers to detect the states born out of the two the-
oretical hypotheses in experiment (see Supplementary Note 4 for
more detail).

It is important to note that the above insights relied on the fact
that our CCNN’s structure can be understood as measuring
collections of correlators. Although the regularization path ana-
lysis can be applied to any architecture, the typical nonlinear
structures of off-the-shelf CNNs inhibit direct connections
between the dominant filters and physically meaningful
information34. In Supplementary Note 5 we present how inter-
pretation of the architecture of ref. 3 can be attempted following
similar steps as above. Since the fully connected layer contains
tens of thousands of parameters, after training we show that we
can reduce this layer to a simple spatial averaging to attempt
interpretation, with no loss in performance. The reduced archi-
tecture with a single “feature” per convolutional filter, similar to
the architecture of ref. 34, is trained, after which we fix the filters
for the regularization path analysis. We can clearly determine
which filters produce the important features, but it is unclear
what these features are actually measuring due to the ReLU
nonlinearity. However, without any nonlinearity the architecture
only achieves close to 50% performance. This failure to enforce
simplicity on traditional architectures shows the importance of
designing an architecture, which measures physically meaningful
information from the outset.

The ML method presented in this paper considers short-range
multi-point correlation functions (up to three lattice sites in both
x and y directions), but does not include long-range two-point
correlations needed for identifying spontaneous symmetry
breaking. Two considerations motivate this choice: (i) Current
experiments with the Fermi-Hubbard model are done in the
regime where correlations involving charge degrees of freedom
are not expected to exceed a few lattice constants due to thermal
fluctuations. (ii) The energy of systems with local interactions,
such as the Fermi-Hubbard model, is primarily determined by
short-range correlations. We note, however, that the current
method can be extended to include longer range correlations
either by expanding the size of the filters used in Eq. (2), or by
using dilated convolutions.

To summarize, we proposed a neural network architecture
that discovers most relevant multi-site correlators as key dis-
criminative features of the state of interest. We then applied
this architecture to the supervised learning problem of distin-
guishing two theoretical hypotheses for the doped Hubbard
model: π-flux theory and geometric string theory. Employing a
regularization path analysis technique on these trained CCNN
architectures, we found that four-site correlators deriving from
the learned filters hold the key fingerprints of geometric string
theory. A subset of these four-site motifs fit into what is
expected from the wake of a propagating hole in an anti-
ferromagnetic background. The remaining four-site motifs
which go beyond our existing intuition can be used as addi-
tional signatures of the two quantum states. As higher-order
correlators are beginning to be probed in QGM experiments19,
our work demonstrates an automated method for learning high
signal-to-noise correlators useful for theory hypothesis testing.
It will be interesting to extend our analysis to a broader col-
lection of candidate theories, as well as snapshots generated
using recently developed finite-T tensor network methods35,36

and spin-resolved experimental data.

Discussion
The broad implications of CCNN-based ML for analysis and
acquisition of image-like data are threefold. Firstly, CCNN is
the first neural network architecture that was explicitly
designed for image-like quantum matter data. Our results
showcase how a successful design of ML architecture that is
designed with scientific objectives at the forefront can offer new
scientific insight.

Secondly, our approach can guide quantum simulator design
by revealing necessary discriminating features. In particular, we
found that experimental uncertainties on the actual doping level
in QGM without spin-resolution led the CCNN to focus on the
doping level rather than a meaningful hypothesis testing (see
Supplementary Note 6). Hence, access to either spin or charge-
resolved snapshots, which are just now becoming
available27,28,37,38, will be essential. Finally, our results showcase
how a targeted “tomography” can be achieved to extract new
insights from near-term quantum systems from quantum-
classical hybrid approaches. Full reconstruction of the density
matrices from projective measurements is an exponentially dif-
ficult task. However, available and near-term quantum systems
are showing great promise as quantum simulators with their
design and objectives guided by classical simulations. For such
quantum systems, CCNN-based hypothesis testing can offer
much needed state characterization in a scalable fashion.

Disclaimer
This report was prepared as an account of work sponsored by
an agency of the United States Government. Neither the United

Fig. 4 Extracting four-point correlators from learned filters. a, b The
highest-weight terms of Eq. (2) when constructing correlator features
cð4Þ1 ; cð4Þ2 from the discovered convolutional filter patterns f1, f2. We ignore
correlators with two or more holes, since these motifs are exceedingly
rare in the low-doping regime. Each feature cð4Þα measures a weighted
sum of the bare correlators drawn on the right-hand side, obtained by
selecting all four-pixel subpatterns from the learned filters. Due to the
symmetrization procedure, the model measures all correlations which are
symmetry-equivalent under rotations and flips to those drawn. Weights
shown above each correlator are obtained as the product of the component
filter pixel weights, normalized such that the largest correlator from each
filter has weight 1.0.
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States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes
any legal liability or responsibility for the accuracy, complete-
ness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe
privately owned rights. Reference herein to any specific com-
mercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or any
agency thereof.

Data availability
All simulated snapshots examined in this work are available publically at Zenodo,
ref. 39. All experimental snapshots examined in the Supplementary Notes are available
from ref. 20.

Code availability
All code used for training and analysis of the CCNNs is available at Github, ref. 40.
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