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SUMMARY 

Correspondence analysis is commonly used by ecologists to analyze data on the incidence or 
abundance of species in samples. The first few axes are interpreted as latent variables and are presumed 
to relate to underlying environmental variables. In this paper correspondence analysis is shown to 
approximate the maximum likelihood solution of explicit unimodal response models in one latent 
variable. These models are logistic-linear for presence/absence data and loglinear for Poisson counts, 
with predictors that are quadratic in the latent variable. The approximation is best when the maxima 
and tolerances (widths) of the response curves are equal and the species' optima and the sample 
values of the latent variable are equally spaced. It is still fairly good for uniformly distributed optima 
and sample values, as shown by simulation. For the models extended to two latent variables, the 
approximation is often ba:d because of the horseshoe effect in correspondence analysis, but improves 
considerably in the simulations when this effect is removed as it is in detrended correspondence 
analysis. 

1. Introduction 

Correspondence analysis is a multivariate technique primarily developed for the analysis 

of contingency table data (Nishisato, 1980; Greenacre, 1984). However, in ecology and 

archaeology, correspondence analysis is commonly applied to incidence or abundance 

matrices· (Gauch, 1982). In: ecology these matrices typically record the presence/absence or 

abundance of species in samples, e.g., plant species in quadrats or animal species in areas. 

Such matrices are not transformed to m-way contingency tables "on the grounds that the 

data are essentially asymmetric and the absences indicate little" (Hill, 1974). Clearly a 

different rationale is needed for the application of correspondence analysis to incidence or 

abundance data. A pertinent result concerns so-called Petrie matrices (a Petrie matrix is an 

incidence matrix which has a block of consecutive 1 's in every row and in every column, 

the block of the first row starting in the first column and the block of the last row ending 

in the last column). The result says that if a matrix can be rearranged to a Petrie matrix by 

a permutation of rows and columns, then this permutation is generated by the first nontrivial 

solution of correspondence analysis (see Hill, 1974). 

Hill ( 197 3) introduced correspondence analysis to ecology, under the name of "reciprocal 

averaging." He suggested the technique as a natural extension of the method of weighted 

averaging used in Whittaker's (1956) "direct gradient analysis." Whittaker, among others, 

observed that species typically show unimodal (bell-shaped) response curves with respect 

to environmental gradients. For example, a plant species may prefer a particular soil 

moisture content, and not grow at all in places where the soil is either too dry or too wet. 

Key words: Correspondence analysis; Detrended correspondence analysis; Dual scaling; Ecology; 
Generalized linear models; Joint plot; Reciprocal averaging; Species packing model; Unfolding; 
Unimodal response model. 
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Each species is therefore largely confined to a specific interval along an environmental 

variable. The value most preferred by a species was termed its "indicator value" or optimum. 

In Whittaker's method, the indicator value of a species is estimated by taking the average 

of the values of the environmental variable in those samples in which the species occurs. 

(For quantitative data, the average is weighted by species abundance.) Conversely, with 

known indicator values of species, weighted averaging is used to estimate the value of an 

environmental variable in a sample from the species that it contained [see e.g., Kovacs 

(1969) for an application]. Hill (1973) showed that if iterated, this process of "reciprocal 

averaging" converges to a solution independent of initial indicator values, namely the first 
nontrivial axis of correspondence analysis (see also Greenacre, 1984, §4.2). Hill's method 

therefore amounts to arranging samples and species along a latent variable, an activity 

Whittaker (1967) termed "indirect gradient analysis." After such analysis, attempts are 

made to identify the latent variable by comparison with known variation in the environment 

(Gauch, 1982). The Petrie matrix provides a deterministic example of a response model 

wherein the response curves are (weakly) unimodal "block functions." Unimodal models 

also play an important role in unfolding theory (Coombs, 1964). 

In this paper, correspondence analysis is regarded as an estimation method for latent 

variable models and is compared with. maximum likelihood under parametric unimodal 

response models with respect to one or two latent variables. The models considered are 

loglinear and logistic-linear models with predictors that are quadratic in the latent vari­

able(s). Ter Braak and Barendregt (in press) showed that these are the only models with 

Poisson and binomial error, respectively, for which the weighted average of indicator values 

can achieve unit asymptotic efficiency with respect to maximum likelihood. The compari­

son gives some idea about the model that is implicitly invoked when correspondence 

analysis is applied to incidence or abundance data. This comparison is important because 

the maximum likelihood approach may be computationally too demanding for the numbers 

of species and samples commonly encountered in ecological research. Moreover, when the 

maximum likelihood approach is considered worthwhile, the results suggest that good 

initial estimates can be derived from correspondence analysis or, for two latent variables, 

from detrended correspondence analysis (Hill and Gauch, 1980). 

2. Correspondence Analysis 

Nishisato ( 1980) takes the view that correspondence analysis, alias dual scaling, assigns real 

numbers or "scores" to rows and columns of a table so as to optimize a particular criterion. 

Consider a species-by-sample matrix Y = [yk;] (k = 1, ... , m; i = 1, ... , n) of nonnegative 

real numbers, denoting the presence/absence ( Yki = 1 or 0) or count of individuals of each 

of m species inn samples. Let u = [uk] (k = 1, ... , m) and x = [x;] (i = 1, ... , n) contain 

the scores for species (rows) and samples (columns), respectively. In correspondence analysis 

these scores are chosen so that the weighted sum of squares of the sample scores is 

maximum with respect to the weighted sum of squares of the sample scores within species, 

i.e., the criterion maximized is 

(2.1) 

where z = ~i Y+iXiY++ and the subscript + denotes summation over that subscript. 
Maximization of Jj2 will give each species a score close to the seores of those samples in 

which it is abundant. (An alternative interpretation ofthis criterion is given in Section 4.3.) 

With the Lagrange method of multipliers and the sample scores centred so that z = 0, we 

obtain after some rearrangement the transition formulae of correspondence analysis (with 



a= 0): 
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.>.1 -"x; = L Yk;Uk/Y+; (i = 1, ... , n), 
k 

A"Uk = L Yk;x;/yk+ (k = 1, ... , m), 
i 
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(2.2) 

(2.3) 

where A is a real number (0 .., A .., 1 ). The extra parameter a governs the scaling of the 

species scores and the sample scores with respect to one another. There are three choices 
of a in common usage, namely a = 0, 1, or !. Criterion (2.1) leads to a = 0. With a = 0, 

the species scores Uk are weighted averages of the sample scores X; [equation (2.3)] and the 
sample scores are proportional to the weighted averages of the species scores [equation 

(2.2)]. With a = 1, the role of species and samples is interchanged, also in the criterion 

being maximized. The third choice, a = !, is a compromise in that it treats species and 

sample scores in a symmetric way. 

The transition formulae have more than one solution. All solutions can be obtained 
from the singular value decomposition ofR- 112 YC-112 (see Hill, 1974) with R = diag(Yk+) 

and C = diag( Y+;). When the left and right normalized singular vectors in this decomposition 

are denoted by CJs and r., corresponding to singular value Ps = ~ (s = 0, 1, 2, ... ), then 

the solutions are Us = PsR- 112qsyW and Xs = c- 112rsy.VJ. The solutions are the "axes" of 

correspondence analysis and As is termed the eigenvalue of the sth axis. The maximum 
singular value is always 1, corresponding to the trivial solution in which all sample and 

species scores equal 1. The first nontrivial solution (s = 1) is orthogonal to the trivial 
solution, hence satisfies the previously applied centering z = 0, and maximizes the criterion 

IY with u = u~, x = x~, and IY = 1/(1 -AI). Moreover, the singular value decomposition 
implies that the species and sample scores, u and x, approximate the data in a weighted 

least squares sense by the bilinear model (see Nishisato, 1980) 

(2.4) 

with ek; = Yk+Y+;/Y++• the expectation under the assumption of row/column independence 
in contingency tables. 

3. A Unimodal Response Model 

From now on the species-by-sample matrix Y will be assumed to consist either of counts 

Yk; that are independent Poisson variables with expected value J.Lk;, or of presence/absence 

(1/0) data that are independent Bernoulli variables with probability J.Lk; that the kth species 

is present in the ith sample. The models assumed for J.Lk; are loglinear and logistic-linear 

models (Neider and Wedderburn, 1972) in which the linear predictor is a quadratic 

polynomial in the latent variable x. It is convenient to write these models in the form 

(3.1) 

where link is the logarithmic function for counts and the logistic function for the 1/0 data. 
In (3.1) the parameters for the kth species are ak, the maximum on log or logit scale; uk, 

the mode or optimum (i.e., the value of x for which the maximum is attained); and tk, the 

tolerance, a measure of ecological amplitude. The value of the latent variable in the ith 
sample is X;, which is treated as a fixed incidental parameter. Figure 1 displays an example 

for 1/0 data. The loglinear model is precisely the "Gaussian" response curve that is put 

forward by ecologists as an ideal for species responses along a gradient [see Austin ( 1976) 

and Gauch (1982) for reviews]. 
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Figure 1. Unimodal response curves ( 3.1) for the probability ( P) of occurrence along a latent variable 
(x), fitted by correspondence analysis to Table 2. The species optima and sample points are indicated 
by ticks below and above the abscissa. The length of a tick is proportional to the number of sample 
points. The numbers below the optima correspond to row numbers in Table 2. The horizontal bar 

is 1 tolerance unit. 

The arbitrariness in the scale of the latent variable can be resolved, for example by 
centering as in correspondence analysis (L; Y+;X; = 0) and by setting the mean square of 
the tolerances to unity (Lk tVm = 1), so that the latent variable can be measured in (mean) 
tolerance units. Then, the maximum likelihood equations for the parameters x = [x;] 
(i = 1, ... , n) and u = [uk] (k = 1, ... , m) become, after some rearrangement, 

X;= L Yki~k/L Y~i- [L (X;- ~k)llki;· L Y~i]. 
k tk k tk k tk k tk . 

(3.2) 

Uk = ~ Yk;X;/Yk+ - [ ~ (X;- Uk)/lki/Yk+]. (3.3) 

These (implicit) equations could be simplified further by using the maximum likelihood 
equations for the parameters a = [ak] (k = 1, ... , m), but for the comparison with 
correspondence analysis, (3.2) and (3.3) are sufficient. 

4. Theoretical Comparisons 

Hill's approach to correspondence analysis makes plausible that the species scores and 
sample scores in Section 2 play a role similar to the species optima and sample values in 
Section 3; that is why similar symbols are used in Sections 2 and 3. Our aim is to show 
that the terms between square brackets in (3.2) and (3.3) are negligible in certain cases, so 
that the maximum likelihood equations reduce effectively to the transitional formulae (2.2) 
and (2.3) of correspondence analysis. These cases are as follows: either /lki is small or /lki is 
symmetric around X; and around uk. 
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4.1 Equations for the Sample Scores 

863 

For the comparison of the estimation equations (2.2) and (3.2), let us first assume that xis 

a manifest environmental variable, and that the species' tolerances are equal (tk = t = 1). 

With known species' optima and maxima, a missing value of the environmental variable 

in a sample can be estimated by using (3.1) as calibration relation. The naive estimator is 

the weighted average (2.2) with a = 1. The maximum likelihood equation (3.2) would give 

the same result when the term between square brackets is negligible, e.g., if for all species 

the maximum of f.Lk; as a function of xis close to 0 (ak- -oo). This case may have some 

practical relevance, as it implies very sparse matrices, which are not uncommon in ecology. 

A more interesting case arises when f.Lki is symmetric around X;. This happens under the 

species packing model (MacArthur and Levins, 1967). This is an ecological model based 

on the idea that during evolution species evolve to occupy maximally separated niches with 

respect to a limiting resource. Christiansen and Fenchel ( 1977, Chap. 3) provide a lucid 

introduction. With x the resource, maximally separated niches mean minimal overlap 

between the response curves and thus, for a given number of species on a fixed-length 

interval and equal maxima, equal spacing between the optima (apart from edge effects). If 

in this situation (i) the interval is longer than, say, 10 tolerance units, (ii) the spacing 

between the optima on this interval is closer than ca. 1 and (iii) the sample value X; is well 

within this interval, then the term between square brackets is negligible because of the 

symmetry in the model (3.1). Simulations showed that under the stated conditions the 

weighted average has, in terms of mean squared error, an efficiency of 1.00 with respect to 

the maximum likelihood estimator (with an uninformative prior for X;). Moreover, Ter 

Braak and Barendregt (in press) showed that the asymptotic efficiency is unity when the 

spacing decreases to 0 on an interval of increasing length and that in the class of response 

curves that form a location family on x, the models considered here are the only models 

with this property. 

The weighted average still has approximately unit efficiency when the species maxima 

and optima vary in a cyclic pattern along the environmental variable, i.e., when the species 

can be divided into sets so that within each set the species have equal maxima and equally­

spaced optima with spacing less than 1 tolerance unit. However, the efficiency may drop 

considerably when the tolerance varies. For example, with two tolerances differing by a 

factor 2, the efficiency drops to ca .. 6 in the logistic model with maximum probability of 

occurrence .5. In that case the term between square brackets still vanishes, but what remains 

is not a simple weighted average. If the tolerances are known a priori, then the weighted 

average should be applied to Yk;/d, instead of to Yk;, in order to retain high efficiency. 

More realistically, let us assume a superpopulation of response curves in which (i) the 

optima are independently and uniformly distributed on an interval ( cf. Whittaker, Levin, 
and Root, 1973), (ii) the species maxima are either constant or random variables indepen­

dent of the species optima, and (iii) the tolerances are equal. In this superpopulation the 

numerator of the term in square brackets in (3.2) vanishes in expected value, provided the 

sample value X; is, again, well within the interval on which the optima are uniformly 

distributed. Because expectation is involved now, neglecting the term in square brackets 

makes weighted averaging less efficient with respect to maximum likelihood. In the logistic 

model with equal maxima, the asymptotic efficiencies are .96, .79, and .50 when the 

maximum probability of occurrence is .1, .5, and .9, respectively (Ter Braak and Barendregt, 

in press). 

With a = 1, the difference between the correspondence analysis equation (2.2) and the 

. maximum likelihood equation (3.2) for latent xis the term between square brackets. The 

above comparisons for manifest x indicate in which situations neglecting this term does 



864 Biometrics, December 1985 

not affect the solution too much. Note that equation (2.2) does not involve the species 
maxima and, further, that for equation (2.2) to be efficient for all samples, the sampled 
interval should be amply contained in the interval of the optima. With the choice a = 1 
the latter condition is pre-assumed. 

4.2 Equations for the Species Optima 

When the sample values are known a priori, estimation of the optima is a regression 
problem. From the symmetry between sample values and species optima in model (3.1) 
when the maxima and tolerances are equal, we deduce that the results of the previous 
section carry over to those species whose optima lie well within the sampled interval. For 
those species the weighted average is therefore asymptotically fully efficient with respect to 
the maximum likelihood estimator of the optimum, when the sample points are equally 
spaced with spacing less than 1 tolerance unit, and has a somewhat lower efficiency when 
the sample points are independently and uniformly distributed over the sampled interval 

(Ter Braak and Looman, in press). (That the maximum and the tolerance are to be 
estimated as well does not matter, because for these species the estimator for the optimum 
has under the stated conditions negligible correlation with the estimators for the maximum 
and the tolerance.) However, for species whose optima lie near the edge of, or even outside, 
the sampled interval, the weighted average is biased toward the center of the sampled 
interval, because these species' response curves are truncated. For example, the weighted 
average always gives a value inside the sampled interval, whereas the true optimum may 

lie outside this interval. This is where the eigenvalue X of correspondence analysis comes 
in. With a = 1 as in the previous section, equation (2.3) can be rewritten as 

uk = L Yk;X;/Yk+- (X - 1)uk. (4.1) 
i 

The term (X - 1)uk can be considered as an overall correction term for the bias, or, 
alternatively, as a crude approximation to the term between square brackets in the 
maximum likelihood equation (3.3). The first nontrivial solution to the transition formulae 

has an eigenvalue X closest to 1 and is therefore the solution where the least correction is 
required. This must be the solution with the longest underlying gradient, because the edge 
effects that cause the bias decrease with increasinglength of the sampled interval. Although 
the correction term acts in the right direction, it overcorrects for optima well within the 
sampled interval and still undercorrects for optima on the edge of or outside the sampled 
interval. This observation explains the "compression of the first axis' ends relative to the 
axis middle" (Gauch, 1982) in correspondence analysis. 

4.3 Scaling of the Correspondence Analysis Solution 

The choice of a in the transition formulae (2.2) and (2.3) affects the scaling of the species 
scores with respect to the sample scores. If the sampling interval is contained well within 
the interval of the species optima, then a should naturally be 1 (§4.1 ). If the converse 
applies, then a should be 0. In practice, the intervals may coincide or may only partly 
overlap. The choice of a is then arbitrary and should be decided upon by other means (see 
§6.2). 

The standardization of the sample scores also requires attention. Commonly the disper­

sion s2 of the sample scores, s2 = ~; Y+;XffY++, is set equal to the eigenvalue X, so that 
differences between sample scores approximate "chi-squared distances" between samples 
(see, e.g., Greenacre, 1984, p. 82). In the maximum likelihood approach (§3), the mean 
squared tolerance is set to unity. Assuming the loglinear model and the species packing 
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model, Hill (1979) estimated the mean squared tolerance by ~k ~i Yki(xi- ukf!Y++ and 
standardized the correspondence analysis solution so that this estimator becomes 1. Hill's 

standardization gives as dispersion of the sample scores 1/(1 - X) for a = 0 (see §2) and 

X/(1 - X) for a = 1. Under the species packing model an alternative interpretation of 

criterion (2.1) is therefore that correspondence analysis maximizes the dispersion of the 

sample scores, subject to maintaining species response curves with unit mean squared 

tolerances. (By contrast, principal component analysis maximizes the variance of the 

sample scores subject to the condition that the sample scores are a normalized linear 

combination of the species' abundances.) 

4.4 Conclusion 

In conclusion, the transition formulae of correspondence analysis approximate the maxi­

mum likelihood equations for model (3.1). For equally-spaced optima and sample points, 

and equal maxima and tolerances, correspondence analysis uses a rough approximation to 

correct for edge effects. For uniformly distributed optima and sample points a second kind 

of approximation is involved, namely that the expectation is taken with respect to these 

uniform distributions over these parts of the maximum likelihood equations that do not 

depend on the data Yki. The equality of the species maxima does not appear to be a crucial 

assumption. For unequal and unknown tolerances the approximation is worse, because the 

transition formulae then need to be weighted as well by the tolerances, which is not done 

in correspondence analysis. 

5. Two Latent Variables 

5.1 A Unimodal Model 

The obvious extension of model (3.1) with equal tolerances to two latent variables is 

link(#Lki) = ak- !(xil - uk,f- !(xiz- uk2)2• (5.1) 

The maximum likelihood equations for x~, xz, and u~, Uz are analogous to (3.2) and (3.3) 

and nothing new arises in the comparison with the transition formulae. However, the edge 

effects due to truncation are likely to be more severe in two dimensions. First, there is 

more edge; second, the bias of the weighted average for, say, uk, will in general depend not 

only on uk 1 but also, through #Lki, on Ukz· Approximating this bias by (X, - 1)uk, is thus 

· dubious; yet only with such approximations do the maximum likelihood equations reduce 

to the transition formulae of correspondence analysis. 

5.2 Detrended Correspondence Analysis 

Hill and Gauch ( 1980) developed detrended correspondence analysis as a heuristic modi­

fication of correspondence analysis, designed to correct two major "faults": (i) that the ends 

of the first axis are often compressed relative to the axis middle (see §4.2); (ii) that the 

scores of the second axis frequently show a systematic, often quadratic relation with those 

of the first axis. The latter fault, known as the horseshoe or arch effect, can be proven to 

occur for certain matrices (Hill, 1974, Proposition 8; Schriever, 1983). 

Hill and Gauch ( 1980) adopt the species packing model to remedy the compression 

problem. The "species turnover rate" (assumed constant) can be estimated at a point along 

the gradient by the dispersion of the scores of the species present in a sample at that point. 

Hill and Gauch therefore try to equalize the mean within-sample dispersion of the species 

scores at all points along the axis by rescaling the species scores [see Hill (1979) for the 

details]. Thereafter the sample scores are simply derived by weighted averaging. 
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The horseshoe effect is considered by Hill and Gauch (1980) as "a mathematical artifact, 
corresponding to no real structure in the data." They eliminate the horseshoe by "detrend­
ing." Detrending intends to assure that, at any point along the first axis, the mean value of 
the sample scores on the subsequent axes is approximately 0. To this end the first axis is 

divided into a number ofsegments and within each segment the sample scores on axis 2 
are adjusted by centering them to zero mean. The program by Hill ( 1979) uses running 

segments for this purpose. This process of detrending is built into the reciprocal averaging 
algorithm that generates the normal correspondence analysis solution, and replaces the 
usual orthogonalization procedure. Subsequent axes are derived similarly by detrending 
with respect to each of the existing axes. 

Detrended correspondence analysis has been tested on data sets simulated under the 
Gaussian response model in one to four dimensions and was found to recover the structure 

of the data well (Hill and Gauch, 1980; Gauch, Whittaker, and Singer, 1981). 

6. Numerical Comparisons 

6.1 Introduction 

The theoretical comparisons described so far are approximate and are supplemented in this 
section by numerical comparisons, using simulated data sets and one reaf data set. The 
performance of correspondence analysis is judged by correlations of the sample scores with 
the real values and by log-likelihood. 

6.2 Methods 

Data were simulated under the response models (3.1) and (5.1) in one and two dimensions, 
respectively, using unit tolerance and equal maxima. The optima and sample points were 
drawn in each simulation independently from a uniform distribution on an interval and 
rectangle with prechosen length and sides, respectively. Ecologists refer to such simulations 
as coenOc:line and coenoplane simulations [see Gauch ( 1982)]. The simulations were 
constrained to give at least three occurrences in each sample and at ieast three occurrences 
per species, to ensure that all parameters could be estimated. 

Subroutines from Hill (1979) were used to calculate the (detrended) correspondence 
analysis solutioJ;t for the species optima and sample scores with a = 1 and Hill's ( 1979) 
standardization (§4.3). With these scores and t = 1 the species maxima were estimated by 
maximum likelihood, analytically in case of Poisson counts (Kooijman, 1977), and nu­
merically in case of 1/0 data. For this solution the likelihood was calculated. In this simple 
approach the choice of a is arbitrary, but influences the likelihood. In a second approach 
this problem was solved by calculating for each species the regression of the species' 
responses on the sample scores. This is easy because models (3.1) and (5.1) are generalized 
linear models (Neider and Wedderburn, 1972). The tolerances were kept fixed to 1 in the 

regressions. 
The maximum likelihood solution was derived by alternating "regressions" to estimate 

the species parameters and "calibrations" to estimate the sample parameters, the latter 
being centred and, in two dimensions, rotated to principal axes in each iteration (Kooijman, 
1977). Thus, regression and calibration replace the simple weighted averages in the two­
way averaging algorithm to derive the correspondence analysis solution. In each regression 

step and each calibration step the Gauss-Newton method was used with Gallant's (1975) 
chopping rule for stepshortening, and a primitive method that prevented parameters from 
iterating to infinity. As usual, it cannot be guaranteed that the overall maximum of the 
likelihood is found, but the algorithm is at least hill climbing. This optimization method is 
akin to the EM algorithm (Dempster, Laird, and Rubin, 1977), the difference being that 
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with the EM algorithm it is assumed that the incidental parameters are random, whereas 
in this paper they are treated as fixed parameters. EM maximizes therefore a marginal 
likelihood (Bock and Aitkin, 1981), whereas het:e the joint likelihood is maximized. The 
(detrended) correspondence analysis solutions and also, when available, the true parameter 
values provided the initial parameter values. 

6.3 Simulation Results 

Table 1 summarizes simulations of incidence matrices (A-E) and matrices with counts 
(F-1), the former simulated from the logistic response curves (3.1 ), the latter from the 
loglinear response surfaces (5.1), all with unit tolerance. The maximum probability of 

occurrence is . 7 in A, B, and C, and .5 in D and E. The maximum count is either 5 (F, G, 
H) or 1 (1). 

Table 2 shows an example of B in which the length of the sampled interval is 5 tolerance 
units and Figure 1 displays its correspondence analysis solution. Although some of the 
species scores are out of order, the correlation of the scores of samples and of species with 
the true values is over .9 and the deviance is even lower than under the true parameter 
values. Table 1 shows that in all simulations correspondence analysis performed well for 
the first dimension, but in simulations F-1, badly for the second dimension. Detrended 
correspondence analysis is comparable to correspondence analysis in one dimension 
(A-E), but far superior in two dimensions (F-1). 

Table I 
Results of simulations of the models (3.1) and (5.1) with unit tolerance,for 1/0 data in one 

dimension (A-E) and for Poisson counts in two dimensions (F-1). Shown are average values of at 
least four simulations (first axis 1, then axis 2, if appropriate). 

Simulation A B c D E F G H I 

No. of species 30 10 30 30 30 40 40 40 40 
No. of samples 20 50 50 50 50 50 50 50 50 

Range ofu 12 6 5 5 3 10;5 5;5 7;4 7;4 
Range ofx 10 5 4 4 2 8;4 4;4 6;3 6;3 
Value of a 1 1 1 0 0 1.6 1.6 1.6 0 

No. ofpar. 79 69 109 109 109 218 218 218 218 
df 521 431 1391 1391 1391 1782 1782 1782 1782 

Eigenvalues (X 100) 
CA 90 50 38 52 18 88;63 61; 49 77;44 81;57 
DCA 90 50 38 52 18 88;45 61; 39 77;34 81;44 

Deviances 
Null model 634 654 1941 1641 1936 3448 4316 4000 1477 
True par. 327 483 1556 1396 1883 836 1377 1225 856 
CA 308 458 1506 1289 1778 1696 1708 1958 907 
DCA 292 445 1533 1324 1789 1010 1433 1194 681 
CA+REGR 264 441 1475 1280 1758 1167 1320 1374 754 
DCA+REGR 279 423 1495 1309 1781 775 1255 1070 642 
ML 217 417 1440 1259 1739 648 1170 994 598 

Correlation with true sample scores {X 100) 
CA 98 90 95 95 67 97;57 98;64 96;53 
DCA 98 90 96 91 51 98;83 99;91 96;77 
ML 99 86 94 92 67 99;95 99;93 96;77 

No. = number; u = species optima; x = sample scores; par. = parameters; df = degrees of freedom; CA = 
correspondence analysis; DCA = detrended correspondence analysis; (D)CA + REGR = (D)CA followed by 

regression on (D)CA sample scores; ML = maximum likelihood. 

- : Meaningless. 
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Table 2 
Incidence matrix simulated from unimodal response curves (3.1) under condition Bin Table l. The 

species (rows) and samples (columns) are arranged in increasing order of the true optima and 
sample values, respectively. 

llllllllllOllOOIOIOIOOOOOIOOOIOOOOOOOOOOOOOOOOOOOO 
lllOlllllOOlllllllOOIIOOIOOIOOOOOOOOOOOOOOOOOOOOOO 
llOOOOOllOOIOllOllllllllOOIOOOOOllOOOOOOOOOOOOOOOO 
OlllOOlllllOllOOIOlllOllOIOIOllllOIOllOOOOOOOOOOOO 
lllllllOOIOOllllOllllOOlllOIOOIOllOOOOOOOOIOOOOOOO 
OOllOOOIOlllOllOIOllllOlllllOlllOlllllOllOOOOOOOOO 
OOOIOIOIOllOOOOlllllOlllllOOIOOOIOlllllOllOOlllOOO 
000000000000000 II 0 l 0000 l 00 l 000 l l l l l l 0 II II II II l I Ill 
000000000000 l 0 l 00000 Ill 00 l 00 l l 0 l l 00 II 0 l II 0 l Ill Ill I 
OOOOOOOOOOOOOOOOOOOOOOOOOOOOIOOOIOIOOIOlllOIOOllll 

In two dimensions each solution of correspondence analysis showed the horseshoe, most 
in F and H, least in G and I. The lower the maximum of the response curves, the better 
correspondence analysis (D vs C and I vs H), in accordance with the theory. The simulations 
also confirm the observation of Hill and Gauch ( 1980) that correspondence analysis works 
more satisfactorily with square sampling regions as compared to rectangular regions (G vs 
F, H). In order to determine whether the success of detrended correspondence analysis is 
due to the rescaling of the axes or to the detrending, some tests were done with rescaling, 
but without detrending. These tests showed a slight, but unimportant improvement over 
the results of correspondence analysis. The success of detrended correspondence analysis is 
therefore mainly due to the detrending. 

The eigenvalues showed little variation between simulations of the same type; for 
example, in A and F the standard deviations were below 0.05. 

The estimates ofthe species optima can be improved by regressing each species response 
on the sample scores, as can be seen from the drop in the deviance (Table 1) and the 
increase in correlation with the true optima (not shown). The deviance after regression on 
the sample scores from detrended correspondence analysis was in nearly all simulations 
less than the deviance under the true parameters. 

The maximum likelihood solution has, by definition, the lowest deviance, but does not 
always give the highest correlation with the true sample scores. Of the three sets of initial 
values used to derive the maximum likelihood solution, the true values and the values 
from detrended correspondence analysis gave nearly identical solutions. Starting from the 
correspondence analysis solution, the maximization procedure frequently became trapped 
in a local maximum in simulations F-1. 

For statistical tests and confidence regions it is tempting to assume that deviances are 
chi-squared distributed. This assumption is risky in this context because the number of 
parameters increases with the number of observations. Indeed, the true parameter values 
lie outside the usual 95% confidence region in 34% of the 29 simulations of the one­
dimensional model and in 12% of the 24 simulations of the two-dimensional model. 

6.4 A Real Data Set 

The real data set, taken from Vander Aart and Smeenk-Enserink (1975), concerns the 
cJ.istribution of twelve wolfspiders (Lycosidae) in a dune area and consists of their accu­
mulated catches in 100 samples. The maximum count in the data is 189, far higher than 
in the simulations, but zeroes are as equally abundant as in the simulations. Correspondence 
analysis was applied to these data, giving .65 and .42 for the first two eigenvalues. The 
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sample scores ofthe second axis showed a clear quadratic trend with respect to those ofthe 
first axis. Removing this trend, detrended correspondence analysis resulted in a second 
eigenvalue of .09. This small value indicates that the second axis is unimportant for these 
data, which agrees with the results ofKooijman ( 1977), who fitted one- and two-dimensional 

Gaussian response models to these data by maximum likelihood. 
Table 3 shows the results ofloglinear regressions of the catches of the wolfspiders on the 

sample scores of the first axis of detrended correspondence analysis. When a quadratic 
term was added to the model, the deviance decreased considerably for nine of the twelve 
spider species. Their fitted curves are all unimodal (see Figure 2). The rescaling of the axis 
in detrended correspondence analysis appears advantageous for these data, as the quadratic 
fit with respect to the first axis of the usual correspondence analysis resulted in a 50% 
higher deviance. The full maximum likelihood solution (with equal tolerances) gave a 
deviance of 4890, 30% lower than the deviance of the quadratic model in Table 3. Yet the 
sample scores as estimated by maximum likelihood showed a high correlation (.95) with 
those of detrended correspondence analysis. 

Vander Aart and Smeenk-Enserink (1975) also characterized the vegetation and the soil 
around 28 of the 100 pitfall traps. They state, "The sites were selected in such a way that 
as many biotope types as possible were represented." Interpreting the first axis of detrended 
correspondence analysis as a latent variable, we can therefore attempt to relate this latent 
variable to the measured environmental variables. A multiple regression of the first axis' 
scores on the logarithms of the variables soil water content, percentage of bare sand, and 

percentage cover by mosses accounted for 90% of the variance. All three variables contrib­
uted to this regression, as judged by t tests on the regression coefficients. The first axis can 
therefore be interpreted as a composite gradient of soil moisture and openness of the 
habitat. A possible explanation for these results is that wolfspiders require an open habitat 
for hunting purposes but, on the other hand, require moisture to avoid desiccation. Each 
species balances these conflicting requirements in its own way and is therefore largely 
confined to a specific interval along the composite gradient of soil moisture and openness. 
Other factors related to soil moisture or openness cannot be excluded to be operational. 

Table 3 
Loglinear regressions of catches of wo/fspiders (k) on the sample scores (x;) of the first axis of 

detrended correspondence analysis. Given are the deviance of the null model and the decreases in 
deviance when the loglinear model is extended successively with a linear (bkix) and a quadratic term 
(bk2x2). Provided bk2 < 0, the quadratic mode/fits Gaussian response curves with unequal tolerances 

[equation (3.1 )]. The spiders are arranged in order of the species score of the first axis. 

Deviance 
Successive decrease in deviance 

Model: log J.tk; = b,.-o + bk1X; + bk2xr 

k Wolfspider 
I Pardosa /ugubris 1494 1159 II 
2 Zora spinimana 935 245 341 
3 Pardosa nigriceps 3109 388 1490 
4 Trochosa terrico/a 3671 1033 1743 
5 Pardosa pul/ata 4504 427 2570 
6 Arctosa lutetiana 315 18 149 
7 Aulonia albimana 958 93 488 
8 Alopecosa cuneata 1396 57 696 
9 Pardosa monticola 4103 130 3023 

10 A/opecosa accentuata 856 329 202 
II A/opecosa fabrilis 864 693 24 
12 Arctosa perita 340 254 3 

Total 22545 4826 10740 
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X 

Figure 2. Unimodal response curves (3.1) for the expected number (JL) ofwolfspiders along the first 
axis of detrended correspondence analysis (x), fitted by loglinear regression (Table 3, last column). 
The curves are labelled by the species identification numbers of Table 3. The sample points are 
indicated by ticks below the abscissa (length proportional to number). Data from Vander Aart and 

Smeenk-Enserink ( 197 5). · 

7. Discussion 

Both the unimodal model (3.1) with tk = t and the bilinear model (2.4) stand at the basis 
of correspondence analysis. The clue to this apparent paradox is data transformation. In 
linear regression, data transformation can be used to linearize monotone relationships. In 
multivariate analysis, data transformation can also be used to linearize nonmonotone 
relationships. Correspondence analysis is not the only example. Kooijman ( 1977) showed 
that principal component analysis recovers exactly the parameters of equal tolerance 

Gaussian curves and surfaces from error-free data when the data matrix is centered by rows 
and by columns after log transformation. Aitchison ( 1983) proposed this transformation to 
overcome the difficulty of the constant-sum constraint in principal component analysis of 

compositional data. He notices that "the nonlinearity of the logarithmic function opens up 
the possibility of coping with curvature in data sets ... , " but does not refer to the Gaussian 
or unimodal response model. [His Figure 2(b) clearly shows the unimodal response of 
constituent F along the first principal component.] Ibm and Van Groenewoud (1975) used 
a different transformation to analyze Gaussian response curves by principal component 

analysis. Their method requires the same assumptions as correspondence analysis about 
the distribution of the optima and the sample points. 

Four conditions (equal tolerances, equal or independent maxima, and equally-spaced or 
uniformly distributed optima and sample points) are needed to show that (detrended) 
correspondence analysis provides an approximate solution to the' unimodal models (3.1) 
and (5.1). How realistic are these assumptions in practice and how robust is correspondence 
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analysis to violations of the assumptions? Some checks on the assumptions are possible, 
e.g., by regressing each species' responses on the derived sample scores, allowing the 

tolerances and maxima to vary among species, and I suggest that this should be done 

routinely, if only to determine the goodness-of-fit of the model for descriptive purposes. 

Ihm and Van Groenewoud (1975) and Kooijman (1977) reported that the optima and 

sample values as estimated by their methods are fairly robust against unequal tolerances, 

as did Hill and Gauch ( 1980) for detrended correspondence analysis. The four conditions 

are not needed in the maximum likelihood approach, taken by Gauch, Chase, and 
Whittaker (1974) for normal data, Kooijman (1977) for Poisson data, and Goodall and 

Johnson (1982) for presence/absence data. Yet, the maximum likelihood approach is 
applied seldom in ecological research because of its computational complexity and the lack 

of reliable and flexible software (Gauch, 1982). Another reason might be that correspon­

dence analysis appears to be "non parametric." However, this paper reveals its close 

connection with "Gaussian" response curves with equal tolerances. 

Commonly high values in the data matrix are downweighted in correspondence analysis 

by, for example, a prior square root transformation. However, when the variance is 
proportional to the mean, transformation is not required (Wedderburn, 1974). Overdisper­

sion then inflates the mean deviance, not necessarily implying lack of fit. When the type 

of dispersion or lack of fit is allowed to vary between species, all problems of common 

factor analysis are lurking in the way. 

Principal component analysis and correspondence analysis are rival methods for dimen­

sionality reduction for abundance data (Gauch, Whittaker, and Wentworth, 1977; Greig­

Smith, 1983), both allowing "major features" of the data to be visualized in joint plots of 
species and sample scores. The geometrical interpretation of a principal component plot is 

based on the bilinear model, as stressed by Gabriel ( 1971 ), who termed the plot a biplot. 
The value of a variable, as approximated by the biplot, changes linearly across the plot. 
Correspondence analysis therefore gives a biplot of the transformed data values (2.4). 

However, in terms of the original data Y the joint plot of correspondence analysis is not a 

biplot, because the model for the original data is unimodal rather than bilinear. The original 
value of a variable, as approximated by a correspondence analysis plot, is maximum at this 

variable's point in the plot and decreases with distance from that point, disregarding for a 

moment the fact that (detrended) correspondence analysis provides only an approximate 

solution to the unimodal models (3.1) and (5.1). We may interpret the correspondence 
analysis plot more informally as Benzecri et al. (1973) do. Their centroid principle (le 

principe barycentrique) is simply the transition formulae interpreted geometrically. Multi­
dimensional unfolding provides the same kind of plot (Carroll, 1972). 

Although principal component analysis and correspondence analysis model and display 

multivariate data in different ways, the resulting plots of the sample scores are sometimes 

similar. This happens when all unimodal surfaces are truncated to monotone surfaces over 

the region actually sampled, the monotone surfaces being approximated by planes in 

principal component analysis. In such cases the correspondence analysis solution with 

a = 1 shows some species points close to the centroid of the sample points, whereas the 

other species' points fall outside the region where the sample points lie. 
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RESUME 

L'analyse des correspondances est couramment utilisee par les ecologistes pour analyser des donnees 
de presence/absence ou d'abondance d'especes. Les tout premiers axes sont interpretes en termes de 
variables sous-jacentes conditionnant Ia distribution des especes. On fait !'hypothese que ces variables 



872 Biometrics, December 1985 

sont liees aux variables de milieu non explicitees. Dans cet article, on montre qu'en utilisant l'analyse 
des correspondances, on obtient une solution approchee de Ia solution donnee par Ia technique du 
maximum de vraisemblance dans le cas de modeles de reponse unimodale a une variable sous-jacente. 
Les modeles utilises sont des modeles logistiques-lineaires en ce qui concerne les donnees de presence/ 
absence et log-lineaires pour des abondances suivant des lois de Poisson, les estimateurs etant des 
fonctions quadratiques de Ia variable sous-jacente. On obtient une approximation de meilleure qualite 
lorsque, d'une part, les maximum et les amplitudes (tolerances des especes aux conditions de milieu) 
des courbes de reponse des especes ont memes valeurs et que, d'autre part, les valeurs de Ia variable 
sous-jacente correspondant aux optimum de chaque espece et aux pointes d'echantillonnage sont 
regulierement reparties. L'approximation demeure satisfaisante pour des optimum et des valeurs 
correspondant aux echantillons distribues uniformement, ainsi que le montre Ia simulation. Pour des 
modeles a 2 variables sous-jacentes, !'approximation est souvent mauvaise en raison de Ia presence 
d'un effet Guttman. L'approximation est de bien meilleure qualite lorsque I' on realise des simulations 
apres avoir retire cet effet, ce qui se produit lorsqu'on utilise une technique d'analyse des correspond­
ances qui efface Ia tendance centrale du phenomene etudie. 
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