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Loglinear analysis and correspondence analysis provide us with two different methods for the
decomposition of contingency tables. In this paper we will show that there are cases in which
these two techniques can be used complementary to each other. More.specifically, we will show
that often correspondence analysis can be viewed as providing a decomposition of the difference
between two matrices, each following a specific loglinear model. Therefore, in these cases the
correspondence analysis solution can be interpreted in terms of the difference between these
loglinear models. A generalization of correspondence analysis, recently proposed by Escofier, will
also be discussed. With this decomposition, which includes classical correspondence analysis as a
special case, it is possible to use correspondence analysis complementary to loglinear analysis in
more instances than those described for classical correspondence analysis. In this context corre-
spondence analysis is used for the decomposition of the residuals of specific restricted loglinear
models.
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’1. Introduction

For the analysis of contingency tables, loglinear analysis is already a very popular

technique in the English speaking countries. Standard references are Andersen (1980),

Bishop, Fienberg and Holland (1975), and Fienberg (1980). In the last few years there 

growing interest in correspondence analysis, which has been the most important data

analytic technique in France for many years. When one has full command of the French

language, the basic works are those of the group around Benz6cri (1973, 1980). In the

English speaking world the growing interest is apparent from works written by de Leeuw

(1984), Girl (1981), Greenacre (1984), and Nishisato (1980). Apart from these books, 

number of articles and contributions at conferences is growing rapidly.

Strangely enough, correspondence analysis was already known in the English litera-

ture for a long time be it under several other names. Nishisato (1980) gives a full survey 

all these names and references which have appeared in the history of correspondence

analysis. Greenacre (1984) accentuates that these other approaches have a different ration-

ale and interpretation. He discusses this for the approaches "reciprocal averaging," "dual

(or optimal) scaling," "canonical correlation analysis," and "simultaneous linear regres-

sions." The recent flourishing of correspondence analysis as a data analytic technique is

probably due to the heavy emphasis on the geometrical aspects of the method. Canonical

correlation analysis of categorical data (Kendall & Stuart, 1973, pp. 588-598), which 
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proved by de Leeuw (1971) to be formally identical to correspondence analysis, empha-

sizes the quantification aspect.

With the growing interest in correspondence analysis, there is a natural interest in

relations between correspondence analysis and loglinear analysis. Until now, the literature
on this topic can be divided into two approaches. The first approach deals with the

RC-model (RC for "row, column") of Goodman (1979, 1981a, 1981b) and generalizations

of this model (Agresti, 1983; de Leeuw, 1983). The RC-model is a model for a two-way

contingency table in which the loglinear interaction parameter has a multiplicative form.

Goodman (1981b) shows that, when the frequencies in a two-way table are generated

from an underlying discretized bivariate normal distribution (or a bivariate distribution
which is bivariate normal after a proper transformation), the estimates of the multipli-

cative row and column parameters are approximately the same as the row and column

scores found for the first dimension in correspondence analysis. See also Fienberg and

Meyer (1983) and Isra~ls and Sikkel (1982) for other relations between the RC-model 

correspondence analysis.

Contributions in the second approach discuss the complementary use of correspon-

dence analysis and loglinear analysis. Examples are Daudin and Tr6court (1980) and
Isra~ls and Sikkel (1982). They conclude that loglinear analysis is the method most apt 

trace higher-order interactions, although it is recognized that the interpretation of these

interactions is often difficult. When the number of variables is small, loglinear analysis can

be complemented by correspondence analysis. In these two papers complementary use of
the techniques is advocated only in a general way. It is not made explicit how exactly
these methods can be used in a complementary way. It is our purpose to proposemore
specific ways of combination in this paper.

First we give a short introduction to correspondence analysis. Following the French

tradition, heavy emphasis will be placed upon the geometrical aspects of the technique.

Correspondence analysis as such is a technique for the analysis of two-way tables. We will

discuss the most usual way to analyse higher-way tables with correspondence analysis.

We will not deal with correspondence analysis of higher-way contingency tables by means

of the so-called Butt matrix (see Girl, 1981, pp. 134-162; Greenacre, 1984, chap. 5). 
section 3 we will discuss loglinear analysis. Special attention is paid to the case of the

three-way contingency table. In section 4 we will present our main results on the comple-

mentary relation of correspondence analysis and loglinear analysis. It will be shown that
the correspondence analysis solution is based on the decomposition of the difference be-
tween two loglinear models, which will be specified there. The results will be presented for

two-way, three-way and higher-way contingency tables respectively. Our results will be

illustrated by an example. A three-way table on suicide behavior is analyzed. In section 5

a generalization of correspondence analysis is discussed. The generalization is used to
make it possible to use correspondence analysis complementary to loglinear analysis in

more cases than these discussed in section 4. We will end with some conclusions.

2. Correspondence Analysis of Contingency Tables

We will treat correspondence analysis briefly here, with an emphasis on the geo-

metrical aspects. For details and proofs we refer to Girl (1981) or Greenacre (1984), 
the references mentioned there.

Correspondence analysis is a technique with which it is possible to find a multi-

dimensional representation of the dependence between the row and column variable of a

two-way contingency table. This representation can be constructed using the scores found
for row and column categories as coordinates for the category points. These scores can be

normalized in such a way that distances between row points or between column points in
euclidian space are equal to chi-squared distances. By emphasizing the chi-squared dis-
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tances, Heiser and Meulman (1983) treat correspondence analysis within the multi-
dimensional scaling frame work.

Consider a two-way contingency table F with elementsfo, having I rows (i = 1 ..... i,
.... i’, .... I) and J columns (j = 1, ..., j ..... j’, .... J). An index is replaced by "+" when

summed over the corresponding variable, for example Ejf~j =f~+. The chi-squared dis-
tances are computed on the profiles of the corresponding rows or columns, where for

example the profile of row i is the row of values fo/f~+. So E~fo/f~+ = 1. The chi-squared
distance between rows i and i’ is defined as

f~÷ f~,+/
~2(i, i’) = Y.~

f+~
, (1)

n

where n =f÷ +. Equation (1) shows that 62(i, i’) is a measure of the difference between 

profiles of row i and i’; when i and i’ have the same profile, 62(i, i’) = O.

The correspondence analysis solution can be found as follows: let X be the matrix to

be analysed; Dr and Dc diagonal matrices with marginal row frequencies x~÷ and column

frequencies x÷~ respectively; E = Dr tt’Dc/n, where n =f+ ÷ and t is a vector with ones, the
length of which depends on the context. Elements of E have the following form:

e~j = x!÷x+: (2)
n

Subsequently the singular value decomposition of the matrix D71/2(X - E)D: 1/2 is

computed. Elements of this matrix have value (1/nl/2)((xi~ - ei~)/e~J2), which are standard-
ized residuals, scaled by (l/n) 1/2. These residuals are decomposed with (3):

D,- t/2(X -- E)D~- 1/2 = UAV’, (3)

where U’U = I, V’V = I, and A is a diagonal matrix with singular values 2, in descending
order; ~t is the index for dimension. The dimensionality of the solution is equal to min

(I - 1, J - 1). For the remaining dimensions 2~ = 0.

U and V contain scores corresponding with the row and column categories. These
scores are normalized as follows:

R = D~12UI’I1/2, and

C = D~- 112 Vnl/2.
(4)

So R’DrR = nI and C’D~C = nl. Furthermore t’D,R = 0 and t’D~ C = 0: For each di-
mension row scores and column scores have .a weighted variance of 1 and a weighed

average of 0.

One can make a simultaneous representation of row and column points in three ways
(Girl, 1981, pp. 134-151): (a) The first can be made by using scores R and (~ = 

coordinates, so that the euclidean distances between column points are equal to chi-

squared distances. The weighted variance of the coordinates of the column points equals
2~2 for each dimension. (b) The second is made by using/~ = RA and C as coordinates, 

that the analogous result holds for the row points. (c) The third simultaneous repre-

sentation is made by using RA1/2 and CA~/2, so that a symmetric representation of row
and column points is chosen. Row scores can be derived from column scores (and column

scores from row scores) with the so called "transition formulas":

R = D~ 1XCA-~, and

C = D~- ~X’RA- ~.
(5)
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Bringing A from the right to the left side of (5), it is easily seen that in the above
mentioned simultaneous representation, (b), the row scores/~ are in the weighted average

of the column scores C, and in (a) the column scores ~ in the weighted average of the row

scores R. This property is called the "barycentric principle." Here the weighting is done by

the column and row profiles. The transition formulas define the rationale for the "recipro-

cal averaging" approach.
Chi-squared distances between row i and i’, and their approximations, can be com-

puted with (6):

(Ii -- Ii,)D~-1XD~ iX’D71(Ii- Ii,)’n = (Yi -- Yi,)’(Yi -- (6)

where Ii is the i-th row of the identity matrix, Yi the i-th row of matrix/~. With the right

term of (6) one can compute approximations of the chi-squared distance by dropping the

last column(s) of 
The so-called reconstitution formula (Benz6cri, 1973, 1980; Greenacre, 1984, p. 93)

can be found by substituting (4) in (3):

D~- l(X -- E)D~- in = RAC’,

so that

X = E + Dr RAC’Dc n- i = n- 1Dr(tt’ + RAC’)Dc. (7)

Elements of RAC’ are equal to (xi~ - e0/e~. Equation (7) shows that correspondence
analysis decomposes the departure from independence in a matrix. This decomposition
has the following relation with the well-known Pearson goodness-of-fit X2 statistic, which

will be defined in (14):

trace A2 = X2/n, (8)

where trace A2 is called the total "inertia." So, correspondence analysis decomposes the
X2-value of a matrix (Kendall & Stuart, 1971, pp. 588-594). The importance of dimension

~ can be evaluated by the ratio of the inertia of dimension ~t and the total inertia: 2,2/

E, 2, 2. This quantity can be interpreted as the proportion "explained" inertia for dimen-

sion ~, or the proportion of X2 that is decomposed in dimension ~.

Clouds of points can be interpreted using chi-squared distances: when two row
points (or two column points) are near each other, their profiles are similar. When profiles

differ considerably, the distance between the points is large. The profiles of the marginal
frequencies of X are projected into the origin. When the distance of a category point to

the origin is small, the profile of this category point does not differ much from the mean

profile. The distance of row i to column j can be interpreted with the transition formulas;

roughly one can say that i and j will be near each other when x~ >> eu, and that i and j

are far apart from xu << ej.
An important aid in the interpretation of a solution is the property that the sum of

the weighted squared distances of the row points (or column points) to the origin, is equal

to 2,2 for dimension ~:

(9)

With (9) one can ~valuate the relative contribution of row i to dimension ~ with the ratio
((f~+/n)~,)/2,2, which can also be interpreted as the proportion of variance in dimension ~

accounted for by row i. The same holds for column point j, wl~en one uses the last term of

(9). Using the theorem of Pythagoras, it is also possible to compute for row i on dimen-
sion ~ the ratio of the squared projected distance and the squared total distance to the
origin. With this ratio is is possible to evaluate how good the total chi-squared distance of
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row i to the origin is represented on dimension ~t. We will use these ratios when we
interpret the examples.

In the introduction it was stated that correspondence analysis is formally identical to
canonical correlation analysis of contingency tables. From this follows the special relation

between ~-1 and the Pearson product-moment correlation coefficient: The correlation be-

tween the row and column variable is, under all possible rescalings of the row and column

categories, maximal and equal to 21, when as quantification of the categories of both
variables the scores for the first dimension are taken. 22 is equal to the maximal corre-

lation of the quantified variables, where the quantification is restricted to be orthogonal

to the quantification for the first dimension, and so forth (Kendall & Stuart, 1973, pp.

588-594). Correspondence analysis thus finds the maximal canonical correlations between

the row and column variables.
Correspondence analysis as explained above is a method for the analysis of two-way

contingency tables. A higher-way contingency table can be analysed in several ways. We

will differentiate between three approaches. The first approach takes "slices" of a data

block as its starting point: one can analyze separate tables for each category of other

variables, for example when the three way table F is of order I x J x K, one can analyze
two-way tables of order I x d for every category of the third variable. It is also possible to
concatenate these slices, thus creating "interactive variables." Interactive variables are

constructed by merging two or more original variables. For a three-way table F one can

find three two-way matrices having order I x (d x K), J x (I x K) and K x (I x J) 

spectively. As far as we know, Girl (1981, p. 151) is the only English standard reference 
which this alternative is actually applied. On the other hand, in the French literature this

is the method used most often to study interaction in higher-way tables. The two-way
tables that are formed in this way are called "tableaux multiples" (e.g. Benzrcri, 1973,

1980). In the sequel we will confine ourselves to this alternative and refer to these tables as

"multiple tables." Multiple tables will be notated by placing the variables, which consti-

tute the interactive variables, between brackets, for example in a three-way table the three
possible multiple tables are F x × (2 x 3), F 2 × t~ × 3) and F 3 × tx x 2)

A second approach for the analysis of higher way tables takes adding up over vari-
ables as its starting point. One can analyze marginal tables of two variables, but it is also

possible to analyze concatenations of these marginal tables, for example in the three-way

table one possibility is a table of order I x (J + K) formed by concatenating the marginal

tables of order I x K and I x J. Leclerc (1975) discusses properties of correspondence
analysis solutions. A third possibility in this approach is to analyze the so-called Butt

matrix, which consists of concatenations of uni- and bivariate marginal matrices, and is of

order (I + J + K) x (I + J + K) (Greenacre, 1984, p. 140-143). Correspondence analysis

of a Burt matrix comes to the same as homogeneity analysis (Girl, 1981) or multiple
correspondence analysis (Greenacre).

In the third approach a higher way analogue of singular value decomposition is

performed on standardized residuals of the higher-way matrix (Kroonenberg, 1983). For

four and higher way tables the three approaches can of course be mixed, leaving us with
an abundance of possibilities. Further research is needed to get a better understanding of

all these possibilities, especially as to which possibility gives the best answer to which
question.

Practice seems to show that in the two variable case correspondence analysis is an

especially good method to gain insight into the relation between the variables of a contin-

gency table when the number of categories is large.

3. Loglinear Analysis

Loglinear analysis is a well-known method to study the structural relations between
variables in a contingency table. We treat here only some main points of loglinear analy-



434 PSYCHOMETRIKA

sis. For details and proofs we refer to Andersen (1980), Bishop et al. (1975), and Fienberg

(1980). Loglinear analysis decomposes the logarithm of the frequencies using the linear

model. For example, in the case of a three-way matrix, the unrestricted loglinear model

(called "saturated model") has the form

Iogf/jk = U + Ul(0 + U2tj) + Ua(k) -q- U12{ij} --~ Ul3(ik} -~- U23tjk) + U123{/jk). (10)

In the saturated case one has for a frequency ~k one parameter for the mean; three sets of

parameters for the margins; three sets of parameters for the so-called first order interac-

tion (or two-factor interaction); and one set of parameters for second order interaction.
The u-parameters follow the usual ANOVA constraints: they sum to zero for each sub-

script.

The purpose of loglinear model fitting is to investigate whether, for a given dataset,

certain u-parameters can be restricted to have value zero, for all i, j and k. The procedure

is to specify a restricted model, to compute expected frequencies under this model, and to
evaluate whether the difference between the expected frequencies and the observed fre-

quencies is large. This evaluation usually takes pla~ with the aid of Pearson’s goodness-
of-fit statistic X2, or the likelihood-ratio chi-squared test G2. Consult the above men-

tioned reference for details. Very often attention is restricted to the class of hierarchical

models; When a u-term is zero, all higher order u-terms having the same indices are also

zero; for example when Ul2(ij)= 0, then UI23(OR ) = 0. The primary reason for this re-
striction is interpretive (Fienberg, 1980, p. 43).

Maximum likelihood-estimation is the most often used estimation method for loglin-

ear models. The estimates are unique, and the estimation formulas do not differ when the

frequencies form a sample from a (product-) multinomial or Poisson distribution. ML-
estimation amounts to the same thing as fitting marginal tables to the full table. For

example in the restricted model

1og~j k = U + Ul(i) + U2U) + U3(/) + U230k), (11)

and expected frequencies m~k have the following structure:

m~ = mi+ +m+/~ (12)
n

Complete minimal su~cient statistics for m~+ + and m+~k are~+ + andf+~k respectively, so

for model (11)

" ~+ +f+~ (13)mij k =
n

It is easy to see that for the fitted marginals~+ + = ~+ + andf+~k = ~+~k, that is for

the fitted margins the observed marginal frequencies are equal to margins of estimates of

the expected frequencies. This is a special property of ML-estimation. For (11), it is possi-
ble to estimate the expected frequencies directly. This is not always the case: Sometimes

expected frequencies have to be estimated iteratively when they can not be written out in
closed form. The procedure mostly used is called "iterative-proportional fitting." For the

three variable case this is only needed in case of hypothesis u123 = 0. See Reynolds (1977,

chap. 6) for details on this procedure, and for general specifications when direct estimates

cannot be found.

Evaluation of the fit of models is done with the Pearson goodness-of-fit chi-squared

statistic X2,

X2 = Z (Observed-Expected)2 (14)
Expected ’



PETER G. M. VAN DER I-IEIJDEN AND JAN DE LEEUV¢ 435

where the sum is taken over all frequencies; or the likelihood-ratio chi-squared statistic

G2 = 2Y. Observed log (Observed/Expected), (15)

where again the sum is taken over all frequencies. The values of Xz and Gz are asymp-

totically distributed as a chi-squared variate when the specified model is true. The number

of degrees of freedom is equal to the number of cells with non-zero fitted values minus the

number of fitted independent parameters. A good review of goodness-of-fit measures is

Bonett and Bentler (1983).
We code LL-models by placing the variables that constitute the highest fitted mar-

ginals between brackets: For the example above we write the model as [1][23], for the

saturated model we write [123].

It is not usual to interpret individual u-parameters. This has the following reasons:
Unlike in the ANOVA situation, there is no underlying empirical scale for a dependent

variable. The "dependent variable" here is the logarithm of a frequency. Furthermore, the

number of u-parameters that must be interpreted often becomes very large, especially

when there are higher order interactions present, or when the number of categories is

large. Moreover, it is not necessary to estimate these u-parameters if we only want to
investigate whether variables are related or not.

Loglinear analysis seems especially a useful method to trace relations between vari-

ables when the number of variables and the number of categories is not too large.

4. Correspondence Analysis Decomposing the Difference Between

Two Specific Loglinear Models

Equation (6) showed that correspondence analysis decomposes the difference
(X - E), where the computation of values of E is based on the margins of X, see (2). 

will show that values x~j and e~j are equal to ML-estimates of expected frequencies, com-
puted under a specified loglinear model. This is the case for two-way contingency tables,

and multiple tables formed from three-or-higher way tables. This result makes it possible
to interpret the correspondence analysis solution in terms of loglinear models, and to

circumvent the often arising interpretation problems with loglinear u-parameters. We will

consider these applications more thoroughly at the end of this section. First we will dis-
cuss the situation for a two-way table, then for a three-way table, and finally for higher-

way tables.

For a two-way contingency table with elements f~ it is easy to show that values
and eo. are equal to ML-estimates of expected frequencies following models [12] and

[1][2] respectively. For xo this is evident, since X = F: we take as X--the matrix to be
analysed--the matrix of observed frequencies F, and in case of the saturated model [12]

estimates of the expected frequencies are equal to the observed frequencies, rho =f~.
Values e~ are equal to estimates of the expected frequencies following the independence

model [1][2]: For this model rhij =fi,f,,i/n, and since eo = xl, x,~/n, (see (2), and X = 
it follows that x~, =f~, and x,~ =f,~. So, in case of a two-way contingency table the
correspondence analysis solution can be interpreted in terms of the difference between the

loglinear models [12] and [1][2]. Of course, this result is not very amazing. Without

explicit reference to loglinear models, it is stated in almost all correspondence analysis

literature that correspondence analysis decomposes the departure from independence of

the row and column variable.
Results become more interesting in case of analysis of three-or-higher-way tables by

means of multiple tables. First consider the three-way table F with frequencies f~, from
which (without loss of generality) the multiple table F 1 × t2 × 3) is constructed. We will
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index the elements of X and E as x.. and e~m, where each distinct combination of variable

2 and 3 forms a different category of the interactive variable, which is indexed by m. Of
course, since X = F1 ×~2× 3), elements x~,, are equal to ML-estimates of expected fre-

quencies for the saturated model [123]. Values e~ are equal to ML-estimates of expected

frequencies for model [1][23]. These expected frequencies ~hOk are estimated with (13),
l~ij

k 
=fi**f,~k/n. We know that e~,~ = x~,x,,,/n. Since X = F 1×(2×3), it follows that

x~, =f~** and x,~ =f,~k and consequently e~m ---- rh~k- So when the three-way matrix F is
flattened to the multiple matrix F 1 x(2 x 3), the correspondence analysis solution can be

interpreted in terms of the difference between the loglinear models [123] and [1][23].

When multiple tables F2x(1 x a) or F3×tl x2) would have been constructed, values e~
would follow model [2][13] or [3][12] respectively.

When we have higher-way contingency table F, we can construct multiple table
F A × B, where A and B are two groups of variables which together constitute the higher-

way table, where A ~ B = 0. So, from the variables of group A and B two interactive

variables are constructed. (When a group has only one variable, this variable is the new

interactive variable.) In this case the correspondence analysis solution can be interpreted

in terms of the difference between loglinear models [A ~ B] and [ALIBI: elements xab of

X are equal to elements fab of Fa × B; elements eab of E are equal to e,~ = x., x.~/n. For

model [ALIBI expected frequencies mab are estimated with the formula ~h.b =f.,f,~/n,

and since X = Fa ×~, we find that x~, =f~,, x,b =f,b, and e,~ = rh.b.
For three- and higher-way tables we can conclude that, when one analyses multiple

tables with correspondence analysis, the correspondence analysis solution can be interpre-

ted in terms of the difference between two loglinear models. We have also shown that,
when one inspects the correspondence analysis solution, one does not see all the depen-

dence in the data matrix, but only a part of it. For example, for the multiple table
F ~ × ~2 × 3) constructed from the three-way table F, the first-order interaction between Vari-

ables 2 and 3 does not influence the solution. One can use this fact in two ways when one
has to decide which multiple table can best be chosen. Let us consider again a three-way

table. Firstly, when some first-order interaction does not seem interesting, one can code
the corresponding two variables interactively. Secondly, when one is especially interested

in the relation of some variable with the other two, this variable should not be coded

interactively with another variable. The correspondence analysis solution shows the two

first-order interactions of this variable with the other two, and the second-order interac-
tion.

Another implication of our results is that it is in some cases possible to use corre-

spondence analysis and loglinear analysis complementary to each other. One can use the

two techniques to find answers to different questions: loglinear analysis can answer the
question of which variables are related: correspondence analysis can answer the question

of how these variables are related, that is, which categories occur more often together
than expected, and which categories less often. Or, to put it differently, loglinear analysis

answers questions about interaction between variables on the "variable level," and corre-

spondence analysis on the "category level." Not only for two-way tables but also for
three- or higher-way tables, some of the computable Pearson goodness-of-fit measures can

be decomposed with correspondence analysis. One circumvents problems with the inter-

pretation of u-parameters in this way. For this reason we would advise one to do a
loglinear analysis, and evaluate the acceptability of models with the X2-statistic first.

Secondly, we decide which multiple matrix or matrices one should choose, and thirdly we

perform the correspondence analysis on these matrices. Correspondence analysis decom-
poses the values of the X2-statistics, computed in the loglinear analysis. We will illustrate

this procedure with an example.
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Example: Suicide Behavior

A contingency table with data on suicide behavior is analysed. The number of suc-
cessful suicides is arranged by the variables "age" (18 categories)x "sex" x "cause 

death" (10 categories). In a cell one finds the number of times persons of a certain age and

sex, committed suicide, using one of ten methods. The data are collected by the German

Office for Statistics in Western Germany for the years 1974 to 1977, and can be found in a

book on suicide prevention by Heuer (1979, Table 1). We have omitted one age-group

(5-10 years old; n = 1) and one cause of death ("died later because of suicide attempt";

n = 5) from the analyses because of their small marginal frequency.
In literature on suicide, official statistics are often said to be not completely reliable

(Diekstra, 1981, pp. 63-84, Douglas, 1973, pp. 163-231; Heuler, 1979, pp. 63-72). The
most important reason is that suicides are sometimes not reported as such, but as acci-

dents, due for example to different definitions on suicide and attempts to conceal them.

This will occur more often with certain methods and certain ages (especially with
children). Apart from case histories, theory on suicide has for’various reasons relied heavi-

ly on official statistics (Douglas, pp. 164-167). One reason is that a good theory on suicide

should be capable to explain these statistics. A precise under.standing of the structure of
these statistics is therefore important.

Loglinear analysis is performed with the program BMDP4F (Dixon, 1981), with

which all possible hierarchical models are examined. The results can be found in Table 2.

All goodness-of-fit statistics are significantly different from zero. This is not surprising,

since chi-squares are proportional to n (n = 53,210). The three first order interactions
seem to be important (which can be seen from the difference in 2 and X2 between all

models with two first-order interactions, and the model with three first order interactions),
and even the second order interaction cannot be neglected. We can conclude that there is
good reason to investigate in which way the three variables are related.

Which multiple tables should be analysed with correspondence analysis? Here are

some possible considerations. When one first-order interaction would have been less im-

portant, we could have used this as an argument to construct from the corresponding two

variables the interactive variable; but this is not the case. There is no first order interac-
tion in which we have a priori interest, so that consideration can not be used here. We are

most interested in the relation of variable "cause-of-death" with the two background vari-

ables age and sex: in what way is the background related with the chosen cause of death?
This points to the multiple table FM×~A ×s).

Correspondence analysis of Fs×tM×A~ shows us a one-dimensional solution, since

"sex" has only two categories; we cannot benefit from the nice geometrical aspects of
correspondence analysis in the one-dimensional case, and therefore we skipped this analy-

sis. The analyses of F~txta×s~ and FAx(M×S) remain, of which the first one seems most

interesting. We will represent results using symmetric normalization. The solutions are
computed using APL.

Correspondence analysis of matrix FM×ts×A~ decomposes the value of X2, which is

9995 for model [M][SA], in 8 dimensions. The first two dimensions are shown in Figure
1. The singular values are .312 and .268, and they "explain" 52 percent and 38 percent of

the Xz value respectively. These singular values can be interpreted as maximal canonical

correlations between the background variables and the cause of death. The first order
interaction between age and sex does not influence the solution. Roughly, the first dimen-

sion stresses the differences in behavior of men and women, the second dimension stresses
the different use of methods by people of different ages. In Table 3 the contributions to

the eigenvalues for the individual categories can be found, as well as the contributions of
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Table 1: Suicide behavior: age by sex by cause of death

Labels for cause of death-categories:

1. Suicide by solid or liquid matter
2. Suicide by toxification of gas at home
3. Suicide by toxification with other gas
4. Suicide by hanging, strangling, suffocating
5. Suicide by drowning
6. Suicide with guns and explosives
7. Suicide with knifes etc.
8. Suicide by jumping
9. Suicide with other methods

(MATT)
(GASH)
(GASO)
(HANG)
(DROW)
(GUNS)
(STAB)
(JUMP)
(OTHE)

MATT GASH GASO HANG DROW GUNS STAB JUMP OTHE TOTAL

Men

10-15 4 0 0 "247 1 17 1 6 9 285
15-20 348 7 67 578 22 179 11 74 175 1461
20-25 808 32 229 699 44 316 35 109 289 2561
25-30 789 26 243 648 52 268 38 109 226 2399
30-35 916 17 257 825 ~74 291 52 123 281 2836
35-40 1118 27 313 1278 87 293 49 134 268 3567
40-45 926 13 250 1273 89 299 53 78 198 3179
45-50 855 9 203 1381 71 347 68 103 190 3227
50-55 684 14 136 1282 87 229 62 63 146 2703
55-60 502 6 77 972 49 151 46 66 77 1946
60-65 516 5 74 1249 83 162 52 92 122 2355
65-70 513 8 31 1360 75 164 56 115 95 2417
70-75 425 5 21 1268 90 121 44 119 82 2175
75-80 266 4 9 866 63 78 30 79 34 1429
80-85 159 2 2 479 39 18 18 46 19 782
85-90 70 1 0 259 16 10 9 18 10 393
90+ 18 0 1 76 4 2 4 6 2 113

TOT 8917 176 1913 14740 946 2945 628 1340 2223 33828

Women

10-15 28 0 3 20 0 1 0 10 6 68
15-20 353 2 11 81 6 15 2 43 47 560
20-25 540 4 20 111 24 9 9 78 67 862
25-30 454 6 27 125 33 26 7 86 75 839
30-35 530 2 29 178 42 14 20 92 78 985
35-40 688 5 44 272 64 24 14 98 110 1319
40-45 566 4 24 343 76 18 22 103 86 1242
45-50 716 6 24 447 94 13 21 95 88 1504
50-55 942 7 26 691 184 21 37 129 131 2168
55-60 723 3 14 527 163 14 30 92 92 1658
60-65 820 8 8 702 245 11 35 140 114 2083
65-70 740 8 4 785 271 4 38 156 90 2096
70-75 624 6 4 610 244 1 27 129 46 1691
75-80 495 8 1 420 161 2 29 129 35 1279
80-85 292 3 2 223 78 0 10 84 23 715
85-90 113 4 0 83 14 0 6 34 2 256
90+ 24 1 0 19 4 0 2 7 0 57

TOT 8648 77 241 5637 1703 172 309 1505 1090 19382
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Table 2: Locjlinear analysis of data in table 1

Only hierarchical models with all main effects are reported.

.1 is added to each cell for all analyses.
Labels M, S, A denote variables method, sex and age.

Model df G2 X2

[M] IS] [A] 280 12337 12304

[M] [SA] 264 10313 9995

IS] [MA] 152 7780 7198

[A] [MS] 272 6858 6522

[MS ][MA ] 144 2300 2253

[MA ][SA ] 136 5756 5369

.[MS] [SA] 256 4834 4519

[MS] [MA] [SA] 128 429 436

the first two dimensions to the squared distances of the categories to the origin. Note that

for the methods with high marginal frequencies almost the complete distance is projected

on the first two dimensions. Combining the results from Figure 1 and Table 3, interpreta-
tion becomes easy: JUMP is done more by women, MATT more by older women, and

DROW by younger women. Men use more "violent" methods: HANG is done more by

older men and boys--this last group almost exclusively commits suicide by HANG, and

GASO and GUNS by younger men. (See Table 1 for an explanation of the cause-of-death

labels.)
The correspondence analysis solution for matrix FA ×tM ×s) can be found in Figure 

and Table 4. The point for children from 10 to 15 years old is not plotted (coordinates are
-.469, -2.878) to make the structure of the other points more clear. This solution is not

influenced by the first order interaction between method and sex. The first two singular
values are .315 and .100, with respective "explained" percentages of X2 81 percent and 8

percent--the first dimension is very dominant. On this dimension a gradual shift in use of
methods can be found from young persons to persons older than 65. Most women points

lie on the left, most men points on the right: women commit suicide relatively more often

when they are older. At younger age men predominantly commit suicide using methods as
MATT, GASO, OTHE and GUNS. Men use HANG most often when they are children,

middle-aged or old. Women use HANG and DROW especially when they are old. The

second dimension is dominated by children up to 15 years (contribution is .55), for which
the boys commit almost exclusively suicide by HANG (contribution is .60). We saw this

result already in the previous analysis.

In this section we have tried to show how correspondence analysis can complement
loglinear analysis by decomposing the X2-statistics found with loglinear analysis. The

correspondence analysis plots prove to be a very useful aid in the interpretation of loglin-

ear interaction, especially when used together with tables of contributions of individual
category points. Because of the large number of categories, and the presence of first- and
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F!gure 1: Analysis of FMx(SxA), first two dimensions. The line for

men is solid. Singular values with relative contributions:

X1 = .312 (.519), 2 =.2 68 (. 381).

second-order interaction effects, the interpretation of u-parameters would have been a

cumbersome job.

5. Using a Generalization of Correspondence Analysis for the

Decomposition of the Difference Between Other Loglinear Models

In the previous section it was shown that, when analyzing multiple tables, the corre-

spondence analysis solution can be interpreted in terms of the difference between the

saturated model (the observed frequencies) and a specific loglinear model. When the dif-
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Table 3: Contributions of categories to eigenvalues r anal~/sis FMx(GxA)

Contributions of methods
to dimensions:

Proportion squared projected
distance to the origin:

MATT . 240 . 142 . 666 . 290
GASH .001 .009 .036 .384
GASO .119 .207 .401 .514
HANG .127 .404 .297 .695
DROW o176 .058 .608 .148
GUNS .261 .061 .824 .140
STAB .001 .005 .052 .320
JUMP . 071 . 000 . 720 . 000
OTHE .005 .113 .048 .766

1.000 1.000

Contributions of sex-age categories
to dimensions:

10-15
15-20
20-25
25-30
30-35
35-40
40-45
45-50
50-55
55-60
60-65
65-70
7O-75
75-8O
80-85
85-90
90-+

Men

.019 .046

.028 .006

.033 .106

.024 .096
022 .079
028 .036
041 .009
056 .001
034 .006
020 .013
023 035

.021 069

.013 089

.009 O78

.001 051

.002 032

.001 010

Women

.001 .001

.021 .028

.046 .039

.028 .033

.036 .023

.037 .027

.030 .003
.037 .001
.052 .000
.047 .001
.065 .010
061 .031
066 .028
056 .012
033 .003
009 .001
002 .000

1.000 1.000 1.000 1.000

Proportion squared projected
distances to the origin:

Men Women

.333 .586 .149 .122

.545 .087 .390 .378
.282 .653 ,532 .328
.238 .710 .485 .419
.261 .692 .604 .285
.449 .430 .599 .330
.752 .120 .871 .061
.920 .011 .871 .024
.827 .100 .949 .004
.602 .288 .908 .017
.463 .515 .823 .090
.272 .662 .647 .236
.161 .798 .653 .199
.132 .836 .774 .119
.025 .920 .836 .055
.076 .864 .554 .022
.084 .812 .533 .057

ference between such a model and the observed frequencies is significant, it makes sense
to complement loglinear analysis with correspondence analysis. Unfortunately, it is possi-

ble to complement loglinear analysis only in a limited number of cases, for example in a

three-way matrix when one wants to analyze the difference between the observed fre-
quencies and one of the models [1][23-1, I-2][13,1 or l-3,1112]. In this section we will de-

scribe a generalization of correspondence analysis proposed by Escofier (1983), which 

will use to analyze the difference between other restricted loglinear models and the satu-

rated model. At the end of this section we will illustrate this with two examples.

Escofier (1983) generalizes correspondence analysis by computing the singular value
decomposition of the matrix S~-I/2(GI- G2)S~ -1/2 instead of the matrix D~-ll2(X

-- E)D~-1/2, (3), to find row and column scores R and C, and singular values A. Here 

and G2 are matrices of the same size, and S, and Sc are diagonal matrices with weights for
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Figure 2: Analysis of FAx(Mxs), first two dimensions. Singular values

with relative contributions: A1 = .315 (.808), 2 =.1 00 (. 082)

row and column categories. In contrast to classical correspondence analysis, S,, Sc, G1

and G2 are not necessarily related in the way that D,, Dc and E are to the matrix X. So,
St- 1/2(G1 __ G2)S~- 1/2 = UAV’,

(16)

where U, V and A follow the same restrictions as in (3). Row and column scores are found
as--compare with (4):

R - 1/2 1/2= S~, Un, and

C = ,~- 1/2 [/’r~l/2 (17)

where n, = trace S, and n~ = trace S~. The transition formulas are

R = S,- I(G1 -- G2)CA- and
(18)

C = Se- l(Gt - G2)’RA- 1.

The transition equations, (5), are more simple, since 71ECA-1 =0 and D~-tE’RA- ~ =

0. The reconstitution formula is

G1 - G2 = S, RAC’S, nT1/2n~-w2 (19)

Comparable with (6), the chi-squared distance between row i and i’, and their approxi-

mations, can be computed as

(I, -- I,,)$71(G1 -- G2)SF l(G1 - G2)’S~-1(I, - = (Yi - ~v)’(f , - Yv). (20)
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Table 4: Contributions of categories to eigenvalues r analysis FAx(MxG)

Contributions of age
to dimensions:

10-15
15-20
20-25
25-30
30-35
35-40
40-45
45-50
50-55
55-60
60-65
65-70
70-75
75-80
80-85
85-90
90-+

.005 .547

.031 .069

.138 .010
o124 .023
.110 .009
.082 .005
.029 .025
.007 .026
.019 .063
.029 .050
.069 .O4O
.111 010
.097 008
.085 002
.046 002
.014 073
.003 038

1.000 1.000

categories Proportion squared projected
distance to the origin:

¯ 071
¯ 509
¯ 925
¯ 945
¯ 951
¯ 899
¯ 674
¯ 383
¯514
¯ 708
.911
¯ 951
.913
¯ 926
¯ 832
¯ 493
.361

1.000

.860
¯115
.007
017
008
005
060
143
174
123

¯ 055
¯ 009
¯ O07
¯ 002

¯ 005
¯ 263

.412

1.000

Contributions of methods-sex
categories to dimensions:

Men

Proportion squared projected
distances to the origin:

MATT
GASH
GASO
HANG
DROW
GUNS
STAB
JUMP
OTHE

.165 .043
.013 .006
.170 .021
042 .603
001 .001
077 ¯001
000 .005
OO2 .004
114 ¯000

Women Men Women

¯ 014 .070 .934 ¯025 .392 .207
¯ 001 .000 ¯702 .035 .227 .010
¯ 014 .000 .942 .012 .784 .001
¯ 232 .107 .401 .583 .941 .044
¯ 125 .101 .178 .011 .877 .072
¯ 007 .001 .871 .001 .513 .009
¯ 009 .010 .033 .135 .734 .084
¯ 014 .001 .166 .020 .507 .003
¯ 001 .027 .886 .000 .061 .240

1.000 1¯000 1.000 1¯000

We will now discuss some principles important for the interpretation. A row point

(or column point) is placed far from the origin when the corresponding row (or column) 

the left term of (16) has high values. Two row points (or two column points) deviate in 
same direction from the origin when the corresponding rows (or columns) have roughly

the same values. A row point is placed near a column point when the corresponding value

in the left term of (16) is high. When for G1 and G2 the marginal row or column fre-
quencies are different, Escofier (1983) advises to take as weights for S, and Sc the marginal

frequencies of G1 or of G2 or of (G~ + G2)/2. When the marginal frequencies of the rows
(or columns) of G~ and G2 are very different, the weighted average of the column points

(or row points) is far away from the origin. Escofier indicates correctly that formulas (16)
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to (20) are difficult to interpret in their most general form, that is when S,, c, G1 and G2
are not related. Interpretation becomes easier when one of the following conditions holds:

1. Glt = (3:2 t, G! and G2 have equal marginal row frequencies;

2. G’~t = G’2 t, Gt and G2 have equal marginal column frequencies;

3. as in Condition 1, but also G~t = S,t, as weights for the rows the marginal row

frequencies are taken;

4. as in Condition 2, but also G’~t = Sc t, as weights for the columns the marginal
column frequencies are taken;

5. G2 = G~tt’G’~/n, that is, Gt = X and G2 = E.

When Condition 1 holds, t’S~ C = 0: the weighted average for the column scores is

zero for each dimension when the marginal row frequencies of G~ and G2 are equal. For

Condition 2 comparable results hold for the row scores. When Condition 3 holds, (17) can

be interpreted in terms of the barycentric principle: row points are in the weighted
average of the column points (when for the simultaneous representation /~ and C are

taken as coordinates). A row point represents the difference between the profiles of the

row in G~ and G2. When Condition 4 holds, we find comparable results for the column

points. When Condition 5 holds, Condition 1 and Condition 2 also hold. When in addi-

tion Condition 3 and Condition 4 also hold, we deal with classical correspondence analy-

sis. Escofier (1983) shows that when only Condition 3 and Condition 4 both hold, the

generalized correspondence analysis solution can be found with a classical correspon-

dence analysis program analysing the matrix (G~ - G2 + E). Comparing (3) and (16), 

will be clear.
This generalization can be used for the analysis of residuals of various sorts of

models. Our experience with the generalization of correspondence analysis is promising in
cases that G1 and G2 have equal marginal frequencies--which often occurs, since it is not
unusual in model fitting to condition on the marginals. Examples are Goodmgn’s RC-

model (1979) and quasi-symmetry models for mobility tables, confusion matrices, import-

export tables, et cetera. For pairs of loglinear models, multiple tables with expected fre-

quencies also have often the same marginals. When one or both marginals are unequal,

this fact may dominate the solution, especially when the difference is large. In the sense of
(19), in the first few dimensions first the difference between these marginals is reconstitu-

ted. One is usually not interested in the reconstitution of this part of the difference be-

tween G~ and G2. This is also the case in our context, and therefore we will discuss here
only examples for which Conditions 3 and 4 hold. Another important property is that a

point represents the difference between the profiles of the category in G~ and G2.

Examples

For the suicide data, we will show two examples. The first example shows the differ-

ence between the saturated model (observed frequencies) and the model with two first
order interactions [MA][SA], using multiple table FM × ts × A~. In the resulting solution the

relation between sex and method will be shown; that is, how this relation is the same over
ages (first order interaction) and how it differs over ages (second order interaction). 

second example shows the difference between the models [MSA] and [MS-J[MA][SA],
using the same multiple table. Here the solution should be interpreted in terms of the

second order interaction only.
The first two dimensions of the first example are plotted in Figure 3. Singular values

are .305 and .095, and they explain 87 percent and 10 percent of the total inertia respec-

tively. For the first dimension this solution is roughly the same as the solution in Figure
1 : this dimension is dominated by the first order interaction between sex and method. The
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Difference between I{V{SA] vs.

¯ 305 (.865), 2 =.0 95 (. 085)

second dimension is dominated by the second order interaction. This is clear from the fact

that the age lines for men and women are reflected--roughly--in the origin: for example,
apart from the first order interaction that women drown themselves more often than men,

we can see that the second order interaction is that older women and younger men drown

themselves more than older men and younger women. Contributions of individual catego-

ries can be computed in the same way as for classical correspondence analysis. For’~ea-
sons of space we do not give them here. ’,

Figure 4 shows the first two dimensions of the second example. Singular values are

.056 and .040, which explain 49 percent and 26 percent of the total inertia. It makes sense

to study the third dimension, but for reasons of space we skip the discussion of this part
of the analysis. This solution should be interpreted in terms of the second order interac-

tion only. Again, the men and women age line is roughly reflected in the origin. The point
for women from 10 to 15 years old is not plotted (coordinates are 2.808 and .308) to make

the structure of the other points more clear. A study of contributions of method categories

shows that the first dimension is dominated by HANG and MATT, and the second di-
mension by DROW and JUMP. For example, part of the second order interaction is that

solid and liquid matter is used more by younger and older women, and men of moderate

age.

6. Conclusions

It is shown that correspondence analysis of multiple tables can be seen as the de-

composition of the difference between two matrices, each following a specific loglinear
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Figure 4: Analysis of FNx(sxA). Difference between [NSA] vs.

[MS][MA][SA]. Singular values ~’1 : .056 (.491), ~2 : .040 (.255)

model. Apart from the fact that this is of theoretical interest, it can lead to a better

understanding of what correspondence analysis shows us, and it can lead to a comple-

mentary use of loglinear analysis and correspondence analysis: instead of the cumbersome

interpretation of u-parameters, one has the disposal of a nice geometrical representation

of the data. This complementary relation is made more complete by the introduction of
Escofier’s generalization of correspondence analysis (1983).

We have shown that the analysis of a three-way table using multiple tables works out

fine. Our experience is that this is usually the case, when marginal row and column fre-

quencies of the multiple table are not too low. Low marginal row or column frequencies

can cause instability of (parts of) the solution. When the number of variables is larger

than 3, and the number of categories of the row and column variable becomes large, the
interpretation of the correspondence analysis solution can become difficult. Computing

weighted averaged points over the interactive variable (where the weighting is done over

the marginal frequencies, and the averages are taken over the categories of the original
variables) is often helpful in these cases. For example in the first example, 2 weighted

sex-categories and 17 weighted age-categories can be computed.
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