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We describe a novel procedure to map the field equations of nonlinear Ricci-based metric-affine theories
of gravity, coupled to scalar matter described by a given Lagrangian, into the field equations of general
relativity coupled to a different scalar field Lagrangian. Our analysis considers examples with a single and
N real scalar fields, described either by canonical Lagrangians or by generalized functions of the kinetic
and potential terms. In particular, we consider several explicit examples involving fðRÞ theories and the
Eddington-inspired Born-Infeld gravity model, coupled to different scalar field Lagrangians. We show how
the nonlinearities of the gravitational sector of these theories can be traded to nonlinearities in the matter
fields and how the procedure allows to find new solutions on both sides of the correspondence. The
potential of this procedure for applications of scalar field models in astrophysical and cosmological
scenarios is highlighted.
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I. INTRODUCTION

In the wake of gravitational wave astronomy after the
observation of binary black hole [1,2] and neutron star
mergers [3] by the LIGO/Virgo Collaboration and the
future launching of new cosmological probes such as
EUCLID [4,5], many of the gravitational extensions of
general relativity (GR) proposed in the literature will be put
to experimental test in astrophysical [6,7], extragalactic [8],
and cosmological [9] contexts, thus going beyond the
classical solar system ones [10]. Indeed, the recent com-
bined gravitational and electromagnetic observations from
a neutron star merger have already been able to rule out
many of the most popular such extensions and to put strong
constraints upon many others [11–15] (see the enlightening
discussion in Refs. [16,17]). As the pool of observationally
viable theories of gravity beyond GR diminishes, there is
more than ever a need to rethink the underlying physical
and gravitational principles under which such models are

formulated, which has triggered the investigation of a
number of alternatives [18–23]. The present work focuses
on the formulation of gravitational models where metric
and affine connection are independent objects (commonly
known as metric-affine or Palatini-formulated theories
[24]), which has been comparatively much less explored
in the literature than their metric cousins, where the affine
connection is taken to be given by the Christoffel symbols
of the metric ab initio.
The analysis of metric-affine extensions of GR has so far

been almost exclusively restricted to Lagrangians involving
functions of the metric and the Ricci tensor [Ricci-based
gravities (RBGs)]. To our knowledge, the only exceptions
are the so-called Lovelock theories [25–27] and some
scalar-tensor models involving explicitly the nonmetricity
tensor (covariant derivatives of the metric) [28]. The
reasons behind this limitation can be found in the diffi-
culties of obtaining solutions for the connection equation.
In fact, efficient algorithms have only been implemented
for RBGs, whereas for theories involving the Riemann
tensor and/or other objects, the analysis has simply been
limited to verifying the existence of some solutions, not to
prove their uniqueness by any means.
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In the RBG framework, the fact that (part of) the
connection equation can be solved in terms of an auxiliary
metric qμν has allowed us to identify the existence of an
Einstein frame for these theories. This Einstein frame is
useful as long as it can be used to write the field equations
of the corresponding gravity theory in a compact form,
namely, in terms of the Einstein tensor of the auxiliary
metric on the left-hand side and everything else on the
right-hand side. The latter is made out of the stress-energy
tensor of the matter fields, the spacetime metric gμν, and
possibly the auxiliary metric qμν as well. The fact that gμν
cannot always be explicitly expressed in terms of qμν and
the matter fields is an important drawback, as it forces one
to deal with cumbersome equations and rely on the
existence of the particular simplifications that may arise
in scenarios with specific symmetries. This is the case, for
instance, of homogeneous and isotropic cosmological
models [29,30] and of static spherically symmetric space-
times [31–33]. Any other more sophisticated (or physical)
considerations make it impossible in practice to try to solve
the field equations. This essential difficulty is precluding
further progress on the implementation of astrophysical and
cosmological applications of these models. In particular,
the application of numerical methods to explore dynamical
scenarios such as binary black hole/neutron stars mergers
and the generation of gravitational waves appears as a
daunting task, requiring the development of specific meth-
ods to fit the peculiarities of each particular model.
In a recent article [34], we pointed out that there is a

systematic way to avoid the difficulties described above.
It turns out that it is possible to establish a correspondence
between the space of solutions of an arbitrary RBG
coupled to a certain matter source and the space of solutions
of GR coupled to that same source but with a modified
Lagrangian. This correspondence is complete at the level of
the field equations, and as such, it is not limited to specific
solutions (or symmetries), but rather, it is valid for all of
them. In a subsequent article [35], we make made explicit
this idea using the case of electromagnetic fields. The main
aim of the present work is to implement in detail this
procedure for scalar matter fields, discussing also some
corrections to the results derived in Ref. [34]. The con-
sideration of scalar fields is motivated due the their interest
for boson [36] and Proca stars [37], rotating black holes
[38], black hole shadows [39], hairy solutions [40],
inflation [41], accelerating solutions [42], or topological
defects [43], among many others.
The map between theories that we present here proposes

the reinterpretation of the terms on the right-hand side of
the Einstein frame metric field equations in such a way that
they take on the same structure as the stress-energy tensor
of a nonlinear matter field. This identification is subject
to certain integrability conditions, related to stress-energy
conservation, between the effective Lagrangian and its
partial derivatives, which involve both the metric field

equations and the scalar field ones. By carefully analyzing
these conditions, we show that the correspondence is
always well defined for generic (minimally coupled) matter
Lagrangians made out of the scalar field and its quadratic
kinetic term. This means that, given a RBG coupled to a
scalar field Lagrangian, one can always find a new scalar
field Lagrangian coupled to GR of which the solutions are
in correspondence with those of the original RBG theory.
Moreover, the inverse problem is also true; namely, given
GR coupled to a scalar field Lagrangian, it is always
possible to obtain the modified scalar Lagrangian coupled
to a chosen RBG of which the solutions can be generated
using those of the GR case. For particular cases of interest,
we will see that the map that relates a nonlinear gravity
theory coupled to a free canonical scalar field to GR
generically leads to a nonlinear matter Lagrangian.1

Conversely, if one starts with GR coupled to a canonical,
free scalar field, the map to nonlinear gravity theories also
involves a nonlinear realization of the matter sources. We
explicitly reconstruct those matter sources in the examples
mentioned above. The results of this analysis are particu-
larly useful within the applications of noncanonical scalar
fields in the literature; see, e.g., Refs. [41–43].
The content of this work is organized as follows. In

Sec. II, we establish the general framework for RBGs and
derive the corresponding field equations. In Sec. III, the
main elements of the mapping are provided, together with
explicit applications to quadratic (Starobinski) fðRÞmodels
[44] and to the Eddington-inspired Born-Infeld theory of
gravity [45], besides a particular example. The extension to
N-components real scalar fields is carried out in Sec. IVand
illustrated with the same two gravitational theories above.
We conclude in Sec. V with a discussion of our results and
some perspectives for future research.

II. FIELD EQUATIONS FOR
RICCI-BASED GRAVITIES

In this work, we refer to RBGs as the family of metric-
affine theories defined by an action of the form

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
LGðgμν; RðμνÞðΓÞÞ þ Sm½gμν;ψm�; ð1Þ

where the gravitational Lagrangian LGðgμν; RðμνÞðΓÞÞ
is a scalar function built out of the spacetime metric gμν
(with g denoting its determinant) and the (symmetrized)
Ricci tensor RðμνÞðΓÞ of the affine connection Γα

μν,
which is a priori independent of the metric, i.e.,
Rμν ≡ Rα

μαν, where the Riemann tensor is defined as

1The nonlinear transformation of the matter Lagrangian was
overlooked in Ref. [34]. Nonetheless, within the range of
parameters considered there, the analytical solutions obtained
were in excellent agreement with the numerical results, though
they were just approximations rather than exact solutions.
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Rα
βμν ¼ ∂μΓα

νβ − ∂νΓα
μβ þ Γα

μλΓλ
νβ − Γα

νλΓλ
μβ. The matter

sector, Sm ¼ R
d4x

ffiffiffiffiffiffi−gp
Lmðgμν;ψmÞ, contains the matter

fields ψm and is only coupled to the metric gμν. A careful
and rather complete discussion of the role of torsion (the
antisymmetric part of the connection) within the field
equations of RBGs was carried out by some of us in
Ref. [46]. It was shown there that for bosonic fields, which
is the case that concerns us in this work, torsion can be set
to zero by a gauge choice related to the projective
invariance of these theories (hence the need to symmetrize
the Ricci). On practical grounds, therefore, one can just
forget about torsional terms and set them to zero at the end
of the variation with respect to the connection.
The action (1) is general enough to encompass a large

variety of models previously considered in the literature,
including (besides GR itself) fðRÞ, fðR;RμνRμνÞ, Born-
Infeld–inspired theories of gravity, etc. These models
correspond, indeed, to structures where LGðgμν; RμνÞ is
an arbitrary scalar function of the objectMμ

ν ≡ gμαRαν. For
the sake of this paper, models involving nonminimally
coupled matter fields [such as fðR; TÞ] are out of the
analysis. However, some recent results [46,47] have shown
that the formalism can be naturally enlarged to accom-
modate them.
To derive the field equations for the action (1), we take

independent variations with respect to metric and connec-
tion, which yields the two systems of equations [46]

∂LG

∂gμν −
1

2
LGgμν ¼ Tμν ð2Þ

∇Γ
μð ffiffiffiffiffiffi

−q
p

qαβÞ ¼ 0; ð3Þ

where Tμν ¼ −2ffiffiffiffi−gp δð ffiffiffiffi−gp
LmÞ

δgμν is the stress-energy tensor of the

matter, and we have introduced the auxiliary metric qμν
defined by

ffiffiffiffiffiffi
−q

p
qμν ≡ 2κ2

ffiffiffiffiffiffi
−g

p ∂LG

∂Rμν
; ð4Þ

with q its determinant, while κ2 is a constant with suitable
dimensions (in GR, κ2 ¼ 8πG). Note that, by construction,
qμν inherits the index symmetry of the Ricci tensor. Note
also that Eq. (3) is fully equivalent to the compatibility
condition ∇Γ

αqμν ¼ 0, which means that Γλ
μν is Levi-Cività

with respect to qμν; in other words, the components of Γλ
μν

are given by the Christoffel symbols of qμν:

Γλ
μν ¼

1

2
qλαð∂μqνα þ ∂νqμα − ∂αgμνÞ: ð5Þ

Now, in RBGs, it is always possible to introduce
a “deformation matrix” Ωα

β, implementing the relation
between the original (RBG frame) metric gμν and the

auxiliary (Einstein frame) metric qμν, through the algebraic
relation

qμν ¼ gμαΩα
ν: ð6Þ

This matrix depends on the matter fields and (possibly) on
the spacetime metric gμν as well, after working out the
relation (4) for the particular RBG chosen. Now, tracing
with qμα over the metric field equations (2), using the
relation (6), and suitably rearranging terms, one arrives to
the set of Einstein-like equations

Gμ
νðqÞ ¼

κ2

jΩ̂j1=2
�
Tμ

ν −
�
LG þ T

2

�
δμν

�
; ð7Þ

where Gμ
νðqÞ≡ qμαGανðqÞ ¼ qμαðRμνðqÞ − 1

2
qμνRðqÞÞ is

the Einstein tensor of the auxiliary metric qμν, jΩ̂j denotes
the determinant of the matrix Ωμ

ν, and T ≡ gμνTμν is the
trace of the stress-energy tensor. Remarkably, the right-
hand side of (7) is completely determined by the matter
sources (as LG and jΩ̂j are on-shell functions of Tμ

ν) and
the metric gμν (generically contained in Tμ

ν). Thus, Eqs. (7)
allow us to mimic the GR philosophy of having the
geometric part on the left-hand side and the matter
contribution on the right-hand side. Written this way, the
effect of the modified dynamics of the RBGs is to engender
nonlinearities in the matter sector. Let us point out that in
vacuum (Tμ

ν ¼ 0) Eqs. (7) boil down to Einstein equations
(with possibly a cosmological constant term), which
implies that there are no new dynamical degrees of freedom
in these theories. Therefore, in vacuum, RBGs only
propagate the two tensorial perturbations of the gravita-
tional field traveling at the speed of light, thus allowing
these theories to naturally pass the constrains following the
almost simultaneous observation of the GW170817 and
GRB170817 events [48].

III. MAPPING RBGs WITH SCALAR
MATTER INTO GR

To fix ideas, let us consider a free matter real scalar field,
Lm ¼ − 1

2
gαβ∂αϕ∂βϕ, the stress-energy tensor of which

takes the form

Tμ
ν ¼ gμα∂αϕ∂νϕ −

1

2
δμνgαβ∂αϕ∂βϕ: ð8Þ

The right-hand side of Eq. (7) then becomes

Gμ
νðqÞ ¼

κ2

jΩ̂j1=2 ½g
μα∂αϕ∂νϕ − LGδ

μ
ν�: ð9Þ

In the case of fðRÞ theories, for instance, one has LG ¼
fðRÞ=2κ2; thus, Eqs. (4) and (6) yield Ωμ

ν ¼ fRδμν, while
the trace of (2) provides R ¼ RðTÞ, via the algebraic
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equation RfR − 2f ¼ κ2T, where fR ≡ df=dR and
T ¼ −gαβ∂αϕ∂βϕ. Since by Eq. (6) one finds qμν ¼
fRgμν and fR is a function of T, which depends on gαβ,
it is nontrivial to express gμν as a function of the matter
sources and qμν, though it is possible. In fact, by noting that
T̃ ≡ −qαβ∂αϕ∂βϕ ¼ T=fRðTÞ, one could invert this rela-
tion to obtain T ¼ TðT̃Þ and write the right-hand side of (9)
in terms of qμν and the first derivatives of ϕ contracted with
qαβ. The corresponding result would take the form

Gμ
νðqÞ ¼ κ2

�
1

fRðR½T̃�Þ
qμα∂αϕ∂νϕ −

fðR½T̃�Þ
2κ2f2R

δμν

�
: ð10Þ

This expression suggests that the right-hand side could
be written as the stress-energy tensor of a scalar field
with a nonlinear Lagrangian of the form KðZÞ with
Z ¼ qαβ∂αϕ∂βϕ. That idea is further reinforced by the

fact that the contracted Bianchi identities ∇ðqÞ
μ Gμ

ν ¼ 0
impose the conservation of the right-hand side as well,
which is automatically accomplished if it takes the form

T̃μ
ν ¼ KZqμα∂αϕ∂νϕ −

KðZ;ϕÞ
2

δμν: ð11Þ

As we will see next, this can be rigorously formalized
for arbitrary RBGs coupled to generic scalar matter
Lagrangians.

A. General form of the mapping

When the gravity Lagrangian is more general than the
fðRÞ case, the relation between the spacetime, gμν, and
auxiliary, qμν, metrics takes the form of Eq. (6), with Ωμ

ν

being a nonlinear function of the Tμ
ν of the matter sources.

For a real scalar field with a generic noncanonical action

SmðX;ϕÞ ¼ −
1

2

Z
d4x

ffiffiffiffiffiffi
−g

p
PðX;ϕÞ; ð12Þ

where X ¼ gαβ∂αϕ∂βϕ and P is some arbitrary function of
its arguments, the stress-energy tensor reads

Tμ
ν ¼ PXgμα∂αϕ∂νϕ −

PðX;ϕÞ
2

δμν; ð13Þ

where PX ≡ dP=dX. In this case, one can formally con-
sider a series expansion for Ωμ

ν of the form

Ωμ
ν ¼ a0ðX;ϕÞδμν þ a1ðX;ϕÞTμ

ν þ a2ðX;ϕÞTμ
αTα

ν þ � � �
ð14Þ

A crucial simplifying property of the above expansion
arises when one writes (13) as Tμ

ν ¼ PXXμ
ν − δμνP=2,

with Xμ
ν ≡ gμα∂αϕ∂νϕ (so that X is simply its trace) and

one notes that all powers of X̂ ≡ Xμ
ν turn out to be

proportional to itself, thus leading to X̂n ¼ Xn−1X̂. As a
result, Ωμ

ν must necessarily have the form

Ωμ
ν ¼ CðX;ϕÞδμν þDðX;ϕÞXμ

ν; ð15Þ

where CðX;ϕÞ and DðX;ϕÞ are model-dependent func-
tions. Thanks to this structure, it is now possible to show
that the dependence of the right-hand side of Eq. (7) on gμν

can be completely eliminated in favor of qμν and the matter
fields. To see this, note that from the relations (6) it follows
that gμα∂αϕ ¼ qμαΩα

λ∂λϕ. Given that Eq. (15) implies
Ωα

λ∂λϕ ¼ ðCþDXÞ∂αϕ, from Eq. (6), we find that

Xμ
ν ¼ ðCþDXÞZμ

ν ⇒ Z ¼ X
CþDX

; ð16Þ

where Zμ
ν ¼ qμα∂αϕ∂νϕ, consistently with our definition

above of Z≡ Zμ
μ. We thus see that Z ¼ ZðX;ϕÞ can, in

principle, be used to obtain an expression for X ¼ XðZ;ϕÞ.
This means that the right-hand side of Eq. (7) could be
written as the stress-energy tensor of the scalar field theory
defined by

S̃mðZ;ϕÞ ¼ −
1

2

Z
d4x

ffiffiffiffiffiffi
−q

p
KðZ;ϕÞ; ð17Þ

which takes the form

T̃μ
ν ¼ KZZμ

ν −
KðZ;ϕÞ

2
δμν: ð18Þ

Thus, in order to establish the mapping between the RBG
coupled to the scalar matter action (12) and GR coupled to
another scalar field (17), one must solve the algebraic
equation

T̃μ
ν ¼

1

jΩ̂j1=2
�
Tμ

ν −
�
LG þ T

2

�
δμν

�
;

¼ 1

jΩ̂j1=2
�
PXXμ

ν −
�
LG þ XPX − P

2

�
δμν

�
ð19Þ

and also verify that the solution is compatible with the
evolution equation of the scalar field. That equation comes
from variation of the matter action with respect to the scalar
field and can be written in the two equivalent forms,
namely,

∂μð
ffiffiffiffiffiffi
−g

p
PXgμα∂αϕÞ −

ffiffiffiffiffiffi
−g

p Pϕ

2
¼ 0; ð20Þ

and

∂μð ffiffiffiffiffiffi
−q

p
KZqμα∂αϕÞ − ffiffiffiffiffiffi

−q
p Kϕ

2
¼ 0: ð21Þ
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Now, attending to the fact that, from Eqs. (6) and (16),
one has

ffiffiffiffiffiffi
−g

p
PXgμα∂αϕ ¼ ffiffiffiffiffiffi

−q
p jΩ̂j−1=2PXðCþDXÞqμα∂αϕ; ð22Þ

it then follows that, together with Eq. (16), the relevant
relations of this mapping are

KðZ;ϕÞ ¼ 1

jΩ̂j1=2 ð2LG þ XPX − PÞ ð23Þ

KZZμ
ν ¼

PXXμ
ν

jΩ̂j1=2 ⇒ ZKZ ¼ XPX

jΩ̂j1=2 ð24Þ

Kϕ ¼ Pϕ

jΩ̂j1=2 : ð25Þ

Note that Eqs. (23) and (24) arise from identifying the
diagonal and nondiagonal terms on both sides of Eq. (19),
respectively. The second of those equations is consistent
with the scalar field equation, which demands

KZ ¼ PXðCþDXÞ
jΩ̂j1=2 : ð26Þ

If relation (16) can be inverted to obtain X ¼ XðZ;ϕÞ, then
the KðZ;ϕÞ Lagrangian follows automatically by inserting
that expression into Eq. (23). The consistency of this
approach requires that the partial derivatives of KðZ;ϕÞ
obtained from Eq. (23) should agree with the expressions
given in (25) and (26). In this respect, it is worth noting
that, in general, it is much easier to find an expression for
KðZ;ϕÞ in terms of the variables X and ϕ than inverting the
relation (16) to write explicitly K ¼ KðZ;ϕÞ. As a result,
from a practical point of view, it will be much more
convenient to compute KX directly from (23) and compare
it with KZZX, where KZ comes from (26) and ZX follows
automatically from (16). For the verification of (25), one
should note that Kϕ actually denotes ∂ϕKðZ;ϕÞ, which can
be written as

∂ϕKðZ;ϕÞ ¼ ∂ϕKðX;ϕÞ − KZZϕ; ð27Þ

with KZ given in (26) and Zϕ computable using (16).

B. f ðRÞ theories
As pointed out above, for fðRÞ theories, we have that

LG ¼ fðRÞ=2κ2 and Ωμ
ν ¼ fRδμν, which, from the general

expression (15), leads to CðX;ϕÞ ¼ fR and DðX;ϕÞ ¼ 0.
In these theories, fR must be seen as a function of the
matter fields alone. Its explicit dependence follows from
solving RfR − 2f ¼ κ2T ¼ κ2ðXPX − 2PÞ for a specific
function fðRÞ. From Eq. (23), the K ¼ KðX;ϕÞ
Lagrangian in this case is thus given by

KðX;ϕÞ ¼ 1

f2R

�
f
κ2

þ XPX − P

�
: ð28Þ

If the relation Z ¼ X=fR can be inverted to yield
X ¼ XðZ;ϕÞ, it is immediate to obtain K ¼ KðZ;ϕÞ
as K ¼ KðXðZÞ;ϕÞ.
For illustrative purposes, let us consider the quadratic

gravity model

fðRÞ ¼ Rþ αR2; ð29Þ

where α is a constant with dimensions of length squared.
For this model, one has R ¼ −κ2T ¼ −κ2ðXPX − 2PÞ. It is
immediate to verify by direct calculation that, for any
Lagrangian PðX;ϕÞ, the KðZ;ϕÞ Lagrangian obtained in
Eq. (23) is consistent with the conditions imposed by the
partial derivatives in Eqs. (25) and (26). Consider now for
simplicity a (canonical) scalar Lagrangian of the form

PðX;ϕÞ ¼ X − 2VðϕÞ; ð30Þ

for which R ¼ κ2ðX − 4VðϕÞÞ. Then, from Eq. (16),
one finds

X ¼ Zð1 − 8ακ2VðϕÞÞ
1 − 2ακ2Z

; ð31Þ

which inserted in Eq. (28) yields the Lagrangian density

KðZ;ϕÞ ¼ Z − ακ2Z2

1 − 8ακ2VðϕÞ −
2VðϕÞ

1 − 8ακ2VðϕÞ : ð32Þ

It is worth noting that in the case of a free scalar field,
VðϕÞ ¼ 0, the Einstein-frame scalar Lagrangian density is
simply

KðZ;ϕÞ ¼ Z − ακ2Z2; ð33Þ

which, aside from a sign, nicely mimics the quadratic
structure of (29). The bottom line of this result is that the
nonlinearities on the gravitational sector (since we started
with a canonical scalar field Lagrangian density) have been
transferred to the matter sector via this correspondence.
Later in this section, we shall show an explicit example
where this procedure is implemented to generate new
solutions.

1. Inverse problem: Obtaining PðX;ϕÞ
It is also possible to consider the inverse problem, i.e.,

starting from GR coupled to some scalar field described by
K ¼ KðZ;ϕÞ, to generate the Lagrangian PðX;ϕÞ, asso-
ciated to some fðRÞ theory. To proceed, we take first
Eq. (28) and use Eq. (24) to put it in the form
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PðZ;ϕÞ ¼ fðRÞ
κ2

þ f2R½ZKZ − K�: ð34Þ

The next step requires finding an expression for R
as a function of KðZ;ϕÞ. As gμν ¼ fRqμν, we have
R ¼ gμνRμνðqÞ ¼ fRqμνRμνðqÞ, and given that in the
Einstein frame RðqÞ ¼ −κ2T̃, we get

R
fR

¼ κ2ð2K − ZKZÞ: ð35Þ

This allows to algebraically obtain R as a function of the
Einstein frame scalar field Lagrangian. This is all we
needed to obtain P ¼ PðZ;ϕÞ in Eq. (34). One can now
make use of Eq. (16), which in the fðRÞ case becomes
X ¼ ZfR, to find an expression for Z ¼ ZðXÞ, to be used in
(34) to eventually find P ¼ PðX;ϕÞ.
To illustrate the procedure above, let us take for

simplicity the canonical scalar field Lagrangian (on the
Einstein frame)

KðZ;ϕÞ ¼ Z − 2VðϕÞ: ð36Þ

Inserting it in Eq. (35), one finds

PðX;ϕÞ ¼ X þ ακ2X2

1þ 8ακ2VðϕÞ −
2VðϕÞ

1þ 8ακ2VðϕÞ : ð37Þ

Comparison of this result with Eq. (32) indicates that going
from the Einstein frame with a canonical field to the fðRÞ
frame induces a transformation on the scalar Lagrangian
which is formally equivalent to that occurring when a
canonical field is transformed from the fðRÞ frame to the
Einstein frame; see Eqs. (29) and (33). The only difference
is a sign in the parameter that controls the nonlinearity in
the gravitational sector. Needless to say, mapping the
matter Lagrangian (37) back to the Einstein frame, one
recovers the original matter Lagrangian (36).

C. Eddington-inspired Born-Infeld gravity theory

Let us now consider the Eddington-inspired Born-Infeld
(EiBI) gravity theory, the many applications of which have
been extensively discussed in the literature in the last few
years [49–59] (see Ref. [60] for a comprehensive review on
this kind of theories). In this case, the gravitational action is
given by

SEiBI ¼
1

κ2ϵ

Z
d4x

h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−jgμν þ ϵRμνj

q
− λ

ffiffiffiffiffiffi
−g

p i
: ð38Þ

A perturbative expansion in the (length-squared) para-
meter ϵ for fields jRμνj ≪ 1=ϵ on the action above yields
GRþ Λeff þOðϵÞ, where the effective cosmological con-
stant is given by Λeff ¼ λ−1

ϵκ2
. Therefore, in EiBI gravity,

deviances with respect to GR solutions occur only in

high-curvature (or high-energy density) environments, thus
being safe, for instance, from the point of view of the
reported equality of the speed of propagation of gravita-
tional waves and electromagnetic radiation in vacuum; see
Ref. [61] for a discussion on this point.
In this case, the relation between Ωμ

ν and the matter
fields is given by

jΩ̂j12½Ω−1�μν ¼ λδμν − ϵκ2Tμ
ν: ð39Þ

For a scalar field with the Tμ
ν given in Eq. (13), this relation

takes the form

jΩ̂j12½Ω−1�μν ¼ Aδμν þ BXμ
ν; ð40Þ

where we have defined the functions

A≡ AðX;ϕÞ ¼ λþ ϵκ2

2
PðX;ϕÞ ð41Þ

B≡ BðX;ϕÞ ¼ −ϵκ2PX: ð42Þ

Now, Eq. (40) can be inverted as

Ωμ
ν ¼ Cδμν þDXμ

ν; ð43Þ
with the definitions

C≡ CðX;ϕÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AðAþ BXÞ

p
ð44Þ

D≡DðX;ϕÞ ¼ −B
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A
Aþ BX

r
; ð45Þ

so that the determinant of Ωμ
ν reads jΩ̂j ¼ A3ðAþ XBÞ.

It is also useful to have expressions for the above
quantities in terms of the KðZ;ϕÞ Lagrangian of the
Einstein frame. These can be obtained using Eq. (40) in
combination with (23) and (24), together with the fact that
the EiBI Lagrangian density in the action (38) can be
written under the compact form2 LEiBI ¼ ðjΩ̂j12 − λÞ=ϵκ2.
One then finds

½Ω−1�μν ¼ Ãδμν þ B̃Zμ
ν ð46Þ

Ã≡ ÃðZ;ϕÞ ¼ 1 −
ϵκ2

2
ðK − ZKZÞ ð47Þ

B̃≡ B̃ðZ;ϕÞ ¼ −ϵκ2KZ; ð48Þ

which is inverted as

Ωμ
ν ¼ C̃δμν þ D̃Zμ

ν ð49Þ

2This is so because in EiBI gravity the connection-compatible
metric qμν turns out to be qμν ¼ gμν þ ϵRμν. Thus, the first term in
the EiBI action (38) is just

ffiffiffiffiffiffi−qp
, which, via the basic definition

(6), leads to the above form of the Lagrangian density.
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C̃≡ C̃ðZ;ϕÞ ¼ 1

Ã
ð50Þ

D̃≡ D̃ðZ;ϕÞ ¼ −
B̃

ÃðÃþ B̃ZÞ ; ð51Þ

so that the determinant now becomes jΩ̂j ¼ C̃3ðC̃þ ZD̃Þ.
By direct calculation, one can verify that for generic
PðX;ϕÞ matter models the relations above together with
the mapped Lagrangian (23) and its partial derivatives (24)
and (25) are fully consistent.
As an example, let us consider the EiBI theory (38)

coupled to the family of scalar field models defined by

PðX;ϕÞ ¼ pðXÞ − 2VðϕÞ: ð52Þ

The corresponding scalar Lagrangian in the Einstein frame
can be written in parametric form as

ZðX;ϕÞ ¼ 2X

ffiffiffiffiffi
a
b3

r
ð53Þ

KðX;ϕÞ ¼ 2ð
ffiffiffiffiffiffiffiffi
ab3

p
− 2ðaþ ϵκ2XpXÞÞ
ϵκ2

ffiffiffiffiffiffiffiffi
ab3

p ð54Þ

with

a≡ 2λþ ϵκ2½pðXÞ − 2VðϕÞ − 2XpX� ð55Þ

b ¼ 2λþ ϵκ2½pðXÞ − 2VðϕÞ�: ð56Þ

If one focuses, for simplicity, on the free canonical scalar
case, fpðXÞ ¼ X;V ¼ 0g, the above expressions become
explicitly

ZðXÞ ¼ X

�
λ −

ϵκ2

2
X

�1
2

�
λþ ϵκ2

2
X

�−3
2 ð57Þ

KðXÞ ¼ 2

ϵκ2

�
1 − λ

�
λ −

ϵκ2

2
X

�−1
2

�
λþ ϵκ2

2
X

�−3
2

�
: ð58Þ

The weak-field expansion of the above expressions leads to

KðZÞ ≈ Z þ ϵκ2

4
Z2; ð59Þ

whereas the strong-field regime depends on the sign of ϵ.
If ϵ > 0, in that region, we find that beyond the threshold
XMax ¼ 1=ϵκ2 the Lagrangian density KðZÞ is no longer a
real function. The linear approximation turns out to be a
good one all over this domain, which ends at ZMax ¼
ð2= ffiffiffiffiffi

27
p Þ=ϵκ2. If ϵ < 0, the domain of X is bounded, with

XMax ¼ j2=ϵκ2j, but Z is unbounded from above. In that
asymptotic limit, one finds that KðZÞ ≈ ðj2=ϵκ2j þ Z=2þ
ð3=2ÞZ1=3Þ=jϵκ2j2=3 is a very good approximation. The
fact that the linear term dominates in this regime justifies
the excellent agreement between the analytical approxi-
mation found in Ref. [34] and the numerical results
of Ref. [62].

1. Inverse problem

Let us now consider the problem of mapping a scalar
field matter model coupled to GR into another scalar
field model coupled to the EiBI gravity. Following
similar steps as in the fðRÞ case above, it is easy to show
that, given a scalar theory KðZ;ϕÞ and a gravitational
Lagrangian LG, it is always possible to find the associated
scalar field Lagrangian P ¼ PðZ;ϕÞ using the combination
of Eqs. (23) and (24) as

PðZ;ϕÞ ¼ 2LG þ jΩ̂j1=2ðZKZ − KÞ: ð60Þ

According to expressions for jΩ̂j and LG in terms of Z for
the EiBI theory given in the previous section, one can
easily find

PðZ;ϕÞ ¼ 2

ϵκ2

�
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½2þ ϵκ2ðK þ ZKZÞ�½2þ ϵκ2ðK − ZKZÞ�
p − λ

�
: ð61Þ

In general, for RBGs, one must note that in order to
get a scalar object the nonlinear function LG must be made
out of traces of powers of the object gμαRανðΓÞ. As, on
shell, RανðΓÞ ¼ RανðqÞ, one can thus use the relation
gμαRανðqÞ ¼ Ωμ

αqαβRβνðqÞ and the fact that in the
Einstein frame qαβRβνðqÞ ¼ κ2ðT̃α

ν − T̃δαν=2Þ to express
gμαRανðΓÞ in terms of quantities related to KðZ;ϕÞ. On the
other hand, sinceΩμ

α must be of the form given in Eq. (49),
Eq. (16) can also be written as X ¼ ðC̃þ D̃ZÞZ, thus
providing a parametric representation for PðX;ϕÞ.

As an example of the above reasoning, let us investigate
how the canonical matter model,

KðZ;ϕÞ ¼ Z − 2VðϕÞ; ð62Þ

coupled to GR gets mapped to the EiBI framework.
Inserting this Lagrangian into Eq. (60) and using the
expression of the determinant for EiBI gravity obtained
above, we get
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PðZ;ϕÞ¼ 2

ϵκ2

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þϵκ2VðϕÞÞð1−Zϵκ2þϵκ2VðϕÞÞ
p −λ

�
;

ð63Þ

while the relation between Z and X becomes

Z ¼ Xð1þ ϵκ2VðϕÞÞ
1þ ϵκ2X

: ð64Þ

Combining these two expressions, one obtains

PðX;ϕÞ ¼ 2ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ϵκ2X

p
− λð1þ ϵκ2VðϕÞÞÞ

ϵκ2ð1þ ϵκ2VðϕÞÞ : ð65Þ

The free field case, VðϕÞ → 0, reduces to

PðXÞ ¼ 2ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ϵκ2X

p
− λÞ

ϵκ2
; ð66Þ

which has the characteristic square-root structure of
Born-Infeld–like theories of matter [63–65]. One can verify
that this Lagrangian in the EiBI frame transforms into its
original form Z − 2VðϕÞ in the Einstein frame, which
confirms the consistency of our approach.

D. Generating exact solutions

Before moving forward, let us further illustrate the power
of the above-developed method as a tool for constructing
exact analytical solutions for RBGs. For this purpose, we
take a static spherically symmetric free scalar field in GR
and use it to generate the corresponding solution in the
quadratic fðRÞ model discussed above [see Sec. III B and
Eq. (29)]. The solutions for this GR scalar field model were
originally obtained by Wyman in Ref. [66]. Since in static
spherically symmetric spacetimes there are only two non-
trivial independent metric functions, the line element can be
suitably cast into the form

ds2GR ¼ −eνdt2 þ eν

W4
dy2 þ 1

W2
ðdθ2 þ sin θ2dφ2Þ; ð67Þ

where ν andW are functions of the radial coordinate y. This
unusual form of the line element is justified on the fact that
it leads to a very simple equation for the scalar field,
namely, ϕyy ¼ 0. Without loss of generality, its solution can
be taken as ϕ ¼ y. Demanding asymptotic flatness, the
solutions of Einstein’s equations take the form [66]

eν ¼ eβy ð68Þ

W ¼ γ−1eβy=2 sinhðγyÞ; ð69Þ

where the constant β is related to the asymptotic Newtonian
mass of the solution as β ¼ −2GM, and we have intro-
duced the constant γ ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

β2 þ 2κ2
p

=2.

Since this solution corresponds to GR coupled to the
canonical Lagrangian KðZÞ ¼ Z, with it, we can generate
the corresponding solution in many different RBGs. For
instance, in the case of the quadratic fðRÞ ¼ Rþ αR2

model (29), the scalar Lagrangian KðZÞ ¼ Z is mapped
into PðXÞ ¼ X þ ακ2X2, as shown in Eq. (37). Since the
scalar field profile is already known, we just need to write
the relation between the metrics in terms of quantities
obtained in the Einstein frame. This means, in particular,
that the function fR that relates gμν and qμν must be written
in terms of Z rather than X. Using the relation (35), it is
easy to see that

fR ¼ 1

1 − 2ακ2Z
; ð70Þ

where Z¼qμν∂μϕ∂νϕ¼qyyϕ2
y¼qyy¼W4e−ν. Therefore,

the line element corresponding to gμν becomes

ds2fðRÞ ¼
1

1 − 2ακ2W4e−ν
ds2GR: ð71Þ

Had we chosen the EiBI theory as our modified gravity
model, the corresponding line element would take the form

ds2EiBI¼−eνdt2þ
�
eν

W4
−ϵκ2

�
dy2þ 1

W2
ðdθ2þsinθ2dφ2Þ:

ð72Þ

Despite the innocent appearance of the above line
element (72), a quick analysis puts forward a dramatic
modification of the physical content as compared to GR.
For instance, the radial proper distance in the GR case as
one approaches the central region y → ∞ shortens expo-
nentially fast, lGR ∝ e−λy, with λ ¼ β þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2κ2 þ β2

p
. On

the contrary, in the EiBI case with ϵ < 0, one can easily
verify that, in the same approximation, lEiBI ¼

ffiffiffiffiffijϵjp
κy.

Thus, in this case, the center lies at an infinite proper
radial distance, and therefore the internal structure of
these objects is radically different from the GR Wyman
solution. On the other hand, for EiBI with ϵ > 0, there
exists a maximum value attainable by the y coordinate,
ymax ¼ − log½jϵjκ2=ð2κ2 þ β2Þ2�. The neighborhood of
this region exhibits an interesting geometric structure
in which both the t − y and the spherical sectors behave
as maximally symmetric subspaces, with the t − y being
de Sitter type, while the spherical part has divergent
curvature. Radial geodesics can get there in a finite
proper time.
Further details of this derivation and an in-depth analysis

of its physical implications will be given elsewhere.3

3See Ref. [62] for a direct attack on this problem for the case of
Born-Infeld gravity coupled to a canonical free scalar field.
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IV. SEVERAL SCALAR FIELDS

In the previous sections, we have considered the case of a
single real scalar field. We will now extend those results to
the case of an arbitrary number of real scalar fields. A
similar approach can also be followed for complex fields.
In order to parallel our previous derivation, we will need to
adapt the notation to accommodate several scalar fields. Let
us thus focus on a generic multiscalar Lagrangian density
defined by

P ¼ PðXij;ϕkÞ ð73Þ
Xij

μ
ν ≡ gμα∂αϕi∂νϕj ð74Þ

Xij ≡ gαβ∂αϕi∂βϕj ¼ Xji; ð75Þ
where i, j run from 1 to N scalar fields and the stress-
energy tensor of which takes the form

Tμ
ν ¼

X
i;j

PijXji
μ
ν −

P
2
δμν; ð76Þ

where Pij ≡ ∂P=∂Xij. Inserting this expression in the RBG
field equations (7), one finds

Gμ
νðqÞ ¼

κ2

jΩ̂j12
�X

i;j

PijXji
μ
ν

−
1

2

�
2LG þ

X
m;n

PmnXnm − P

�
δμν

�
: ð77Þ

The right-hand side of this equation should be equal to

κ2T̃μ
ν ¼ κ2

X
i;j

KijZji
μ
ν −

κ2

2
Kδμν; ð78Þ

where Zij
μ
ν ≡ qμα∂αϕi∂νϕj and Kij ≡ ∂K=∂Zij. The con-

struction of the Lagrangian KðZij;ϕkÞ is a natural gener-
alization of the approach detailed in the previous section.
Indeed, comparing the right-hand side of (77) with (78),
we find

KðZij;ϕkÞ ¼ jΩ̂j−1
2

�
2LG þ

X
m;n

PmnXnm − P

�
; ð79Þ

X
i;j

KijZji
μ
ν ¼ jΩ̂j−1

2

X
i;j

PijXji
μ
ν: ð80Þ

The first equation provides a parametric represen-
tation of the scalar matter Lagrangian density in terms
of quantities in the RBG frame, once a specific solution of
the metric field equations for the RBG theory is specified.
To implement this, we expand the Ω matrix as a power
series of the energy-momentum tensor. Now, the energy-
momentum tensor (76) depends just on two tensorial
quantities, namely, the identity δμν and Xij

μ
ν. These objects

reproduce themselves upon multiplications due to the
fundamental property

Xij
μ
ρXmn

ρ
ν ¼ XjmXin

μ
ν; ð81Þ

where Xij ≡ Xij
μ
μ. Therefore, one can propose the general

ansatz

½Ω−1�μν ¼ Aδμν þ
X
i;j

BijXji
μ
ν; ð82Þ

where A and Bij are model-dependent functions of Xmn
and ϕk, that can be deduced for each case from the
corresponding metric field equations. The parametrization
of the kinetic term Zij of the scalars in the GR frame can be
established by noticing that

Zij
μ
ν ¼ ½Ω−1�μρXij

ρ
ν; ð83Þ

where we have used qμα ¼ ½Ω−1�μβgβα. Thus, substituting
(82) and using (81), one finds the generalization of (16):

Zmn
μ
ρ ¼

X
i

�
Aδim þ

X
j

BjiXmj

�
Xin

μ
ρ: ð84Þ

The last ingredient needed to find the parametrization
of the Lagrangian K½ZijðXmn;ϕlÞ;ϕk� from Eq. (79) is the
determinant of theΩmatrix. This problem is reduced to the
calculation of traces of powers of it. Using the property
(81), one can easily find that

jΩ̂j−1 ¼ A4 þA3B1 þB4
1 þ

1

2
A2ðB2

1 −B2Þ−
1

4
B2
1B2

þ 3B2
2 þ

1

3
B1B3 þ

1

6
AðB3

1 − 3B1B2 þ 2B3Þ−
1

4
B4;

ð85Þ

where

B1 ¼
X
ij

BijXij B2 ¼
X
ijkl

BijBklXilXjk;

B3 ¼
X
ijklmn

BijBklBmnXinXjkXlm;

B4 ¼
X

ijklmnpq

BijBklBmnBpqXiqXjkXlmXnp: ð86Þ

1. Inverse multiscalar problem.—The inverse problem
can also be worked out by noting that Eqs. (80) and (79)
imply the following expression for the scalar sector of the
RBG:

PðXij;ϕkÞ ¼ 2LG þ jΩ̂j12
�X
m;n

KmnZnm − K

�
: ð87Þ

Therefore, the parametric representation of the RBG-frame
Lagrangian P½XijðZmn;ϕlÞ;ϕk� is reduced to finding an
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expression of the Ω matrix in terms of quantities of the GR
frame, in order to write the RBG metric in terms of the GR
metric via the fundamental relation gμν ¼ qμρðΩ−1Þρν of
Eq. (6). Following the same arguments as in the single field
case and taking into account that relation (81) is now
replaced by

Zij
μ
ρZmn

ρ
ν ¼ ZjmZin

μ
ν; ð88Þ

one can write the analog of (82) in the GR frame, namely,

½Ω−1�μν ¼ Ãδμν þ
X
ij

B̃ijZji
μ
ν: ð89Þ

The crucial step of this approach relies on finding the
explicit expressions of Ã and B̃ij in terms of Zmn and ϕk,
that depend on the form of the metric field equations and
the mapping defining equations (79) and (80). Once Ã and
B̃ij are known, it becomes straightforward to compute the
determinant of the Ω matrix in the GR frame, which reads

jΩ̂j−1¼
�
Ã4þ Ã3B̃1þ B̃4

1þ
1

2
Ã2ðB̃2

1− B̃2Þ−
1

4
B̃2
1B̃2

þ3B̃2
2þ

1

3
B̃1B̃3þ

1

6
ÃðB̃3

1−3B̃1B̃2þ2B̃3Þ−
1

4
B̃4

�
;

ð90Þ

where

B̃1 ¼
X
ij

B̃ijZij B̃2 ¼
X
ijkl

B̃ijB̃klZilZjk;

B̃3 ¼
X
ijklmn

B̃ijB̃klB̃mnZinZjkZlm;

B̃4 ¼
X

ijklmnpq

B̃ijB̃klB̃mnB̃pqZiqZjkZlmZnp: ð91Þ

Furthermore, it is possible to invert explicitly the Ω-matrix
representation (89). Once again, using (88), one can justify
the ansatz

Ωμ
ν ¼ C̃δμν þ

X
ij

D̃ijZji
μ
ν: ð92Þ

The explicit form of C̃ and D̃ij can be obtained by imposing
that this expression is the inverse matrix of (89), leading to
the following equations for C̃ and D̃ij:

ÃC̃ ¼ 1;

C̃B̃ij þ
X
l

D̃il

�
Ãδjl þ

X
k

B̃kjZlk

�
¼ 0: ð93Þ

The solution can be conveniently expressed introducing
matrix notation for latin indices spanning the scalar space,

C̃ ¼ 1

Ã
; ˆ̃D

ij ¼ −
1

Ã
ðÃI þ Ẑ ˆ̃BÞ−1 ˆ̃B: ð94Þ

From relation (92) and the property (88), one can obtain the
parametrization of the kinetic term XmnðZij;ϕlÞ via the
following equation:

Xmn
μ
ρ ¼

X
i

�
C̃δim þ

X
j

D̃jiZmj

�
Zin

μ
ρ: ð95Þ

The conditions that the partial derivatives of the
Lagrangians PðXij;ϕkÞ and KðZij;ϕkÞ must satisfy follow
straightforwardly from the equations of motion of the ϕk
scalar fields in the two (RBG and GR, respectively) frames

∂μ

� ffiffiffiffiffiffi
−g

p
gμν

�
2Pii∂νϕi þ

X
j≠i

Pij∂νϕj

��

−
ffiffiffiffiffiffi
−g

p
Pϕi

¼ 0; ð96Þ

∂μ

� ffiffiffiffiffiffi
−q

p
qμν

�
2Kii∂νϕi þ

X
j≠i

Kij∂νϕj

��

−
ffiffiffiffiffiffi
−q

p
Kϕi

¼ 0: ð97Þ

The most natural compatibility conditions of these two field
equations are obtained by matching the spacetime deriva-
tive sectors and the derivatives with respect to the scalar
fields according to the two equations

2Pii∂μϕi þ
X
j≠i

Pij∂μϕj

¼ jΩ̂j1=2ðΩ−1Þαμ
�
2Kii∂αϕi þ

X
j≠i

Kij∂αϕj

�
; ð98Þ

Pϕi
¼ jΩ̂j1=2Kϕi

: ð99Þ

Using (82), the first equation provides the following two
relations:

jΩ̂j−1=2Pii ¼
�
Aþ

X
k

BkiXki

�
Kii

þ 1

2

X
k;j≠i

BkiXkjKij; ð100Þ

jΩ̂j−1=2Pij ¼
X
k≠i

�
Aδjk þ

X
m

BmjXmk

�
Kik

þ 2
X
m

BmjXmiKii: ð101Þ

Let us consider the simplest case of two real scalar fields.
Then, Eqs. (100) and (101) reduce to
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jΩ̂j−1
2P11 ¼

�
Aþ

X2
m¼1

Bm1Xm1

�
K11

þ 1

2

X2
m¼1

Bm1Xm2K12 ð102Þ

jΩ̂j−1
2P22 ¼

�
Aþ

X2
m¼1

Bm2Xm2

�
K22

þ 1

2

X2
m¼1

Bm2Xm1K12 ð103Þ

jΩ̂j−1
2P12 ¼

�
Aþ

X2
m¼1

Bm2Xm2

�
K12

þ 2
X2
m¼1

Bm2Xm1K11; ð104Þ

supplemented by the compatibility constraint

X2
m¼1

½ðBm2Xm2 − Bm1Xm1ÞK12

þ2ðBm2Xm1K11 − Bm1Xm2K22Þ� ¼ 0: ð105Þ

The above expressions generalize the results obtained in
Sec. III A to the case of a set of N-components real scalar
fields. Next, we shall give two explicit examples illustrating
these results.

A. Application 1: f ðRÞ gravity with a complex
scalar or many scalar fields

For its relevance in different astrophysical and cosmo-
logical applications, we will next consider a situation
involving two real scalar fields coupled to the quadratic
fðRÞ theory discussed in the previous sections. Having
in mind the case of a complex scalar field, that can be
represented in terms of two real fields without the crossed
term X12, we focus on an action of the form

Sm ¼ −
1

2

Z
d4x

ffiffiffiffiffiffi
−g

p
PðX11; X22;ϕ1;ϕ2Þ: ð106Þ

We shall furthermore assume the dynamics to be given by
two canonical scalar fields, namely,

PðX11; X22;ϕ1;ϕ2Þ ¼ X11 þ X22 − 2Vðϕ1;ϕ2Þ: ð107Þ

The GR-frameKðZij;ϕkÞ Lagrangian follows directly from
Eq. (79) and takes the form

K ¼ X11 þ X22 − 2V þ ακ2ðX11 þ X22 − 4VÞ2
ð1þ 2ακ2ðX11 þ X22 − 4VÞÞ2 : ð108Þ

The relation between X11 and X22 with the Zij is estab-
lished by Eq. (84) and leads to

Z11 ¼
1

fR
X11; Z22 ¼

1

fR
X22; ð109Þ

where fR ¼ 1þ 2ακ2ðX11 þ X22 − 4VÞ. Inverting those
relations, one finds

X11 ¼
Z11ð1 − 8ακ2VÞ

1 − 2ακ2ðZ11 þ Z22Þ
ð110Þ

X22 ¼
Z22

Z11

X11; ð111Þ

and inserting this result in Eq. (108), we finally get

K ¼ ðZ11 þ Z22Þð1 − ακ2ðZ11 þ Z22ÞÞ − 2V
1 − 8ακ2V

: ð112Þ

For free fields, the Lagrangian takes the simpler form

K ¼ ðZ11 þ Z22Þð1 − ακ2ðZ11 þ Z22ÞÞ: ð113Þ

Denoting X ≡ X11 þ X22 ¼ gμν∂μϕ∂νϕ
� and Z≡Z11þ

Z22¼qμν∂μϕ∂νϕ
�, with ϕ¼ϕ1þiϕ2 and ϕ� ¼ ϕ1 − iϕ2,

it is easy to see that the original RBG canonical scalar
Lagrangian PðXÞ ¼ X turns into the GR noncanonical field
KðZÞ ¼ Z − ακ2Z2, much in the same way as in the single
real scalar field case discussed in Sec. III B.
It is straightforward to generalize the above analysis for

two real scalar fields to an arbitrary number of scalar fields.
In this case, the Lagrangian density has the form

PðXmn;ϕkÞ ¼ XTot − 2Vðϕ1;…;ϕNÞ; ð114Þ

where XTot ¼
P

m;nXmn. The key nontrivial step is the
extension of Eq. (109), which generically turns into

Zij ¼
1

fR
Xij; Xmn ¼

Xij

Zij
Zmn; ð115Þ

where for N scalar fields we have

fR ¼ 1 − 8ακ2V þ 2ακ2XTot: ð116Þ

Writing in this last expression XTot ¼ ZTotXij=Zij, from the
first relation in Eq. (115), one finds

Xij ¼
Zijð1 − 8ακ2VÞ
1 − 2ακ2ZTot

; ð117Þ

which also leads to
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XTot ¼
ZTotð1 − 8ακ2VÞ
1 − 2ακ2ZTot

: ð118Þ

Since the parametric representation of the Lagrangian
density (79) for our choice of P and fðRÞ only depends
on XTot, using the above expression, we finally obtain

KðZij;ϕkÞ ¼
ZTotð1 − ακ2ZTotÞ − 2V

1 − 8ακ2V
; ð119Þ

which naturally generalizes our previous results to an
arbitrary number of scalar fields with arbitrary couplings Xij.
For the inverse problem in the quadratic fðRÞ model we

are dealing with, we can proceed in exactly the sameway as
for a single real scalar field. The generalization of Eq. (35)
for a Lagrangian of the form

KðZij;ϕkÞ ¼ ZTot − 2Vðϕ1;…;ϕNÞ ð120Þ

is now

R
fR

¼ κ2ðZTot − 4VÞ ð121Þ

and leads to

R ¼ ZTot − 4V
1 − 2αðZTot − 4VÞ : ð122Þ

From the relation XTot ¼ fRZTot with fR ¼ 1þ 2αR
written using the solution of Eq. (121), one finally finds

PðXij;ϕkÞ ¼
XTotð1þ ακ2XTotÞ − 2V

1þ 8ακ2V
; ð123Þ

which is in complete agreement with our previous result for
a single scalar field in Eq. (37).

B. Application 2: EiBI gravity coupled
to many scalar fields

In the EiBI case, the approach slightly differs from the
general one. In fact, the relation (39) specified to the case of
many scalar fields with associated energy-momentum
tensor (76) provides the following equation,

jΩ̂j12½Ω−1�μν ¼ Aδμν þ
X
ij

BijXij
μ
ν; ð124Þ

where

A≡ λþ ϵκ2

2
P; Bij ≡ −ϵκ2Pij: ð125Þ

Taking the determinant of both sides of (124), one can find

jΩ̂j ¼ A4 þA3B1 þ B4
1 þ

1

2
A2ðB2

1 − B2Þ −
1

4
B2
1B2

þ 3B2
2 þ

1

3
B1B3 þ

1

6
AðB3

1 − 3B1B2 þ 2B3Þ −
1

4
B4;

ð126Þ

where

B1 ¼
X
ij

BijXij; B2 ¼
X
ijkl

BijBklXilXjk;

B3 ¼
X
ijklmn

BijBklBmnXinXjkXlm;

B4 ¼
X

ijklmnpq

BijBklBmnBpqXiqXjkXlmXnp: ð127Þ

The mapping equation (79), specified to the EiBI case,
provides the parametrization of the Einstein-frame
Lagrangian in terms of RBG quantities as

K½ZijðXmnÞ;ϕl�

¼ 2

ϵκ2

�
1 − jΩ̂j−1=2

�
λþ ϵκ2

2

�
P −

X
i;j

PijXij

���
;

ð128Þ

which, together with Eq. (80), allows us to find the explicit
form of the functions defined in (89) as

Ã ¼ 1 −
ϵκ2

2

�
K −

X
i;j

KijZij

�
ð129Þ

B̃ij ¼ −ϵκ2Kij: ð130Þ

The scalar sector in the GR frame is unveiled upon
replacing the kinetic term of the scalars Xij

μ
ν from (95)

in (128).
Concerning the inverse problem, let us assume that the

scalar sector KðZij;ϕlÞ is known. Then, from (87), one can
find the parametrization of the scalar sector in the RBG
frame as

P½XijðKmn;ϕlÞ;ϕk�

¼ 2

ϵκ2

�
jΩ̂j1=2

�
1þ ϵκ2

2

�X
m;n

KmnZmn − K

��
− λ

�
:

ð131Þ

Finally, using (82), in which, according to (124), one finds
A ¼ jΩ̂j−1=2A and Bij ¼ jΩ̂j−1=2Bij, it is possible to write
the Lagrangian density of the scalar sector in the RBG
frame PðXij;ϕlÞ.
For an example of the above considerations, let us

analyze the scalar sector (107) of the previous section.
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In this case, the determinant of the Ω matrix (126) can be
computed in terms of the functions defined in (127) and
(125), that assume the following form,

B1 ¼ −ϵκ2ðX11 þ X22Þ;
B2 ¼ ðϵκ2Þ2ðX2

11 þ 2X2
12 þ X2

22Þ;
B3 ¼ −ðϵκ2Þ3ðX3

11 þ 3X11X2
12 þ 3X22X2

12 þ X3
22Þ;

B4 ¼ ðϵκ2Þ4ðX4
11 þ 4X2

11X
2
12 þ 2X4

12 þ 4X11X22X2
12

þ 4X2
22X

2
12 þ X4

22Þ; ð132Þ

with the definitions

A ¼ λþ ϵκ2

2
ðX11 þ X22 − 2VÞ; B11 ¼ B22 ¼ −ϵκ2;

ð133Þ

that, in turn, completely specify the Ω matrix in the RBG
frame. It is clear from the above discussion that in the GR
frame nonlinear interaction terms will appear. The relation
between the kinetic terms is encoded in (84), which in
matricial notation is given by

�
Z1

μ
ν

Z2
μ
ν

�
¼

�
M 0

0 M

��
X1

μ
ν

X2
μ
ν

�
; ð134Þ

where we have introduced the matrix

M ¼
�
Aþ BX11 BX12

BX12 Aþ BX22

�
ð135Þ

together with the vectors

Z1
μ
ν ¼

�
Z11

μ
ν

Z21
μ
ν

�
; Z2

μ
ν ¼

�
Z12

μ
ν

Z22
μ
ν

�
ð136Þ

and defined the functions

A≡ jΩ̂j−1=2A ¼ jΩ̂j−1=2
�
λþ ϵκ2

2
ðX11 þ X22 − 2VÞ

�
;

B≡ jΩ̂j−1=2B11 ¼ jΩ̂j−1=2B22 ¼ −ϵκ2jΩ̂j−1=2; ð137Þ

consistently with Eqs. (82) and (124). Finally, the para-
metric form of the scalar sector in the GR frame as given in
(128) turns out to be

K½ZijðXmnÞ;ϕl� ¼
2

ϵκ2
f1 − jΩ̂j−1=2ðλþ ϵκ2VÞg: ð138Þ

Due to the dependence on the determinant of the Ω matrix,
one can find KðZij;ϕlÞ just by expressing the Ω matrix in
the GR frame (89), using (129) and (130). This concludes
our analysis of the multicomponent scalar field case.

V. CONCLUSIONS AND PERSPECTIVES

In this work, we have investigated a family of metric-
affine theories of gravity of which the Lagrangian density is
a nonlinear function of scalars built out of contractions of
the metric and the Ricci tensor (Ricci-based gravity theories
or RBGs) and coupled to scalar field matter. This family of
theories includes many particular cases of interest previ-
ously considered in the literature, besides GR itself. It has
been shown that the field equations admit an Einstein-
frame representation in terms of an auxiliary metric and
that, more importantly, the right-hand side of the resulting
Einstein-like equations can be written in the form of a
conserved stress-energy tensor in which the scalar matter is
coupled to the auxiliary metric, exactly reproducing the
structure of Einstein’s equation of GR.
We have made explicit the Einstein-frame representation

for the case of a single real scalar field described either by
canonical Lagrangians or by generalized functions of the
kinetic and potential terms, finding the general equations of
the mapping in those cases. On the gravitational sector, we
have chosen two theories of interest, namely, quadratic
fðRÞ theories and Eddington-inspired Born-Infeld gravity.
This way, we have explicitly shown how to construct the
Einstein-frame matter Lagrangian when the scalar matter
model is defined in the original RBG frame. The inverse
problem, namely, constructing the matter Lagrangian in the
RBG frame if a specific scalar theory is defined in the
Einstein frame, has also been worked out in detail. In
particular, this has been used to generate specific solutions
within a quadratic fðRÞmodel, coupled to a self-gravitating
spherically symmetric real scalar field, the GR counterpart
of which has been known in analytical form for a long time
[66]. The physical properties of such solutions in RBG
theories beyond GR will be analyzed in detail in a separate
paper. Furthermore, we have extended these results by
considering the case of several real scalar fields, where a
number of subtleties have been unveiled.
The procedure presented in this work allows us to

subsequently farm the many astrophysical and cosmologi-
cal applications of both canonical and noncanonical scalar-
field models in gravitational theories beyond GR. By
setting a specific RBG coupled to scalar field matter and
finding the corresponding scalar Lagrangian on the GR
side, one can go and solve the GR problem using well-
established analytical and numerical methods and transfer
the obtained solution to the RBG side via the inverse
correspondence. This way, problems and scenarios with
scalar fields previously hardly accessible within the context
of RBGs by other means can now be tackled from within
GR itself. Moreover, though our analysis has focused on
scalar field matter in four spacetime dimensions, it can be
extended to other matter sources (for instance, the electro-
magnetic field case was recently discussed in Ref. [34])
and to other dimensions with the necessary adjustments.
Furthermore, according to the theorem presented in
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Ref. [67] following an approach completely different from
ours, the extension of this analysis beyond RBGs should
also be possible, at least in a formal way.
The results here presented might be relevant to identify

potential degeneracies between exotic matter sources
coupled to GR and standard sources coupled to modified
theories of gravity, with important implications from both
theoretical and observational perspectives, for instance,
within the context of gravitational wave emission. These
and other related issues will be explored elsewhere.

ACKNOWLEDGMENTS

The authors thank Piotr T. Chrusciel for bringing
Ref. [67] to our attention. G. J. O. is funded by the

Ramon y Cajal Contract No. RYC-2013-13019 (Spain).
D. R. G. is funded by the Fundação para a Ciência e a
Tecnologia (FCT, Portugal) postdoctoral Fellowship
No. SFRH/BPD/102958/2014 and by the FCT research
Grants No. UID/FIS/04434/2013 and No. PTDC/FIS-
OUT/29048/2017. This work is supported by the
Spanish project FIS2014-57387-C3-1-P (MINECO/
FEDER, European Union), Project No. H2020-MSCA-
RISE-2017 Grant No. FunFiCO-777740, Project No. SEJI/
2017/042 (Generalitat Valenciana), the Consolider Program
No. CPANPHY-1205388, and the Severo Ochoa Grant
No. SEV-2014-0398 (Spain). This article is based upon
work from COST Action CA15117, supported by COST
(European Cooperation in Science and Technology).

[1] B. P. Abbott et al. (LIGO Scientific and Virgo Collabora-
tions), Phys. Rev. Lett. 116, 061102 (2016).

[2] B. P. Abbott et al. (LIGO Scientific and Virgo Collabora-
tions), Phys. Rev. Lett. 119, 141101 (2017).

[3] B. P. Abbott et al. (LIGO Scientific and Virgo Collabora-
tions), Phys. Rev. Lett. 119, 161101 (2017).

[4] R. Laureijs et al. (EUCLID Collaboration), arXiv:1110
.3193.

[5] L. Amendola et al., Living Rev. Relativity 21, 2 (2018).
[6] L. Barack et al., arXiv:1806.05195.
[7] B. Seymour and K. Yagi, Phys. Rev. D 98, 124007 (2018).
[8] T. E. Collett, L. J. Oldham, R. J. Smith, M.W. Auger, K. B.

Westfall, D. Bacon, R. C. Nichol, K. L. Masters, K.
Koyama, and R. van den Bosch, Science 360, 1342 (2018).

[9] M. Ishak, Living Rev. Relativity 22, 1 (2019).
[10] C. M. Will, Living Rev. Relativity 17, 4 (2014).
[11] L. Lombriser and A. Taylor, J. Cosmol. Astropart. Phys. 03

(2016) 031.
[12] L. Lombriser and N. A. Lima, Phys. Lett. B 765, 382

(2017).
[13] T. Baker, E. Bellini, P. G. Ferreira, M. Lagos, J. Noller, and

I. Sawicki, Phys. Rev. Lett. 119, 251301 (2017).
[14] J. Sakstein and B. Jain, Phys. Rev. Lett. 119, 251303 (2017).
[15] P. Creminelli and F. Vernizzi, Phys. Rev. Lett. 119, 251302

(2017).
[16] J. M. Ezquiaga and M. Zumalacárregui, Phys. Rev. Lett.

119, 251304 (2017).
[17] J. M. Ezquiaga and M. Zumalacárregui, Front. Astron.

Space Sci. 5, 44 (2018).
[18] R. Ferraro and F. Fiorini, Phys. Rev. D 75, 084031 (2007).
[19] J. W. Maluf, Ann. Phys. (Berlin) 525, 339 (2013).
[20] K. Bamba, S. Capozziello, M. De Laurentis, S. Nojiri, and

D. Sáez-Gómez, Phys. Lett. B 727, 194 (2013).
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