
d zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
dence 
io0 

R irs zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
he estimation of correspondences in natural 
image pairs plays an important role in a large 
number of applications such as video cod- 
ing, frame rate conversion, multi-viewpoint 

First, there is a growing interest in high-accuracy, 
high-resolution 3D scene acquisition. This has been ap- 
plied successfully in projects such as the European PAN- 
ORAMA project [36]. High-resolution analysis requires 

image gen- 
eration, camera cali- 
brat ion,  3D f r om zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
stereo, and structure 
f rom mot ion .  The  
meaning of the corre- 
spondences differs in 
each application. I n  
v ideo coding,  .e. ,  
MPEG-2, correspon- 
dences are motion vec- 
tors f rom a known 
image to an unknown 
image. The luminance 
of the unknown image 
is predicted along the 
vector and thus, the 
vectors have a photo- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Photometric 1 \ Geometric 

- Frame rate 

- Multi-viewpoint - Camera calibration 

MPEG-2 video coding 
- MPEG-4 video coding 

conversion - Multi-viewpoint extrapolation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A 

metric meaning.1n camera calibration [ 151, [56], struc- 
ture from motion [2], [32], [41] and 3D from stereo 
applications [36], [43], each correspondence is used to 
extract a 3D scene point. Therefore the correspon- 
dences have a geometric meaning. Frame-rate conver- 
sion [ 191 and multi-viewpoint image interpolation 
[34], [58] lie more or less between the photometric and 
geometric extremes. 

In the area of correspondence estimation, we see a ten- 
dency toward simultaneous estimation of pixel-dense geo- 
metric correspondence fields, including explicit object 
segmentation [lo], [ l l ] ,  [26], [52], [54], [60], [61]. 
This is due to several reasons. 

the estimated fields io be 
pixel-dense. Simulta- 
neous estimation of all 
vectors in the field allows 
for complex field models 
that contain any kind of 
interaction, which en- 
hances the accuracy. Al- 
gorithms that estimate 
the vectors one by one im- 
pose a causality constraint 
on the field models. This 
may enable a fast imple- 
mentation, but it restricts 
the accuracy. 

Furthermore, in 
multi-viewpoint image 
generation, extrapolation 

[45] provides additional viewpoints to those obtained 
through interpolation [58], enlarging the geometric role 
of the correspondences. New image-coding techniques, 
such as MPEG-4, aim at object-based processing to in- 
crease interactability with the image content. In the cam- 
era calibration area, fEed calibration [15], [56] is an 
off-line technique that requires a special calibration object 
and a sparse correspondence field. Self-calibration tech- 
niques allow for online processing without special objects 
or user intervention. A dense field can be used to obtain 
high parameter accuracy [48]. 

The simultaneous estimation of a dense geometric cor- 
respondence field is a challenge for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtwo reasons [26]: 
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The dimensionality of the solution space is extremely 
rge, in the order of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlo6. This is computationally de- 

mandmg, but it becomes more feasible regardmg the con- 
tinuing increase in computational power. 

The estimation of a geometric correspondence field 
based on photometric luminance fields of an image pair is 
not straightforward. The strongest constraint that relates 
correspondence and luminance is the so-called constant 
image brightness (CIB) assumption zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[23 ] .  It states that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa 
corresponding pixel pair has equal luminance. In Fig. 1, 
two contours of equal luminance are depicted in an image 
pair. If we take a point zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPA on the contour in image A, the 
question is to which point in image B it corresponds. 

For a photometric correspondence, all points on the 
contour in B would do. But there is only one point that 
corresponds geometrically, and we are not sure whether it 
lies on the contour in B, or not. If it does not, this can be 
due to camera noise, specular reflectivity of scene sur- 
faces, or the use of a stereo camera with unbalanced pho- 
tometric properties. 

Thus, the CIB constraint alone is insufficient for the 
estimation of dense geometric correspondences. For this 
reason correspondence estimation is often called an 
ill-posed problem zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[4]. Additional geometric constraints 
are needed, together with an appropriate photometric 
model that accounts for deviations from the CIB model. 

This article provides an overview of current techniques 
for dense geometric correspondence estimation. We will 
first formally define geometric correspondence and inves- 
tigate the different types of image pairs. Then, we briefly 
look at the classic approaches to correspondence estima- 
tion, at their feasibility and flaws for simultaneous dense 
estimation. We will focus on the Bayesian approach, 
which is very well suited for this task, and for which sev- 
eral promising algorithms have recently been developed. 
After having a look at the hture of the Bayesian ap- 
proaches, we conclude with a discussion. 

Geometric Correspondence in Image Pairs zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Definition of Geometric Correspondence 
If the luminance I of a point PA in image A and a point zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPB in 
image B have been defined by the same scene point, we 
say that PA and P, correspond (Fig. 2). From this point on, 
we specifically mean geometric correspondence when- 
ever we mention correspondence, unless stated otherwise. 
Due to object transparency and camera defocus, the lu- 
minance of one point in an image may be defined by 
several scene points at the same time. This holds for 
both images, giving rise to multiple (many-to-many) 
correspondences (Fig. 3) .  

At this point, we are not aware of any attempt to take 
multiple correspondence into account in dense corre- 
spondence estimation. Therefore, from this point on, we 
will assume that all scene objects are opaque. 

Opaque objects that move in front of each other cause 
occlusion in images. It is possible that a scene point P is 

visible in image A as PA, while in image B it is occluded by 
mother scene point, Q, visible in B as a. We define that 
there is a pseudo-correspondence from PA to& (Fig. 4). 
The point  PA is called an occlusion point .  
Pseudo-correspondences enhance the quality of images 
generated in multi-viewpoint and frame-rate conversion 
applications. They provide information about the posi- 
tion of point P in all intermediate images in which P is vis- 
ible. In 3D-from-stereo and structure-from-motion 
applications, the models obtained are more complete. It is 
expected that pseudo-correspondences can be obtained 
less accurately than real correspondences, since no photo- 
metric constraints are available for their estimation. Geo- 
metric constraints are the only clue. 

Spatial and Temporal Image Pairs 
The image pairs in all applications up to this point can be 
categorized into two types: spatial and temporal image 
pairs. A special subset of spatial pairs comprises the paral- 

1 .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPhotometric similarity is insufficient in geometric correspon- 
dence estimation. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

I 

I I I 

2. Correspondence between PA and P,. 

A 3. Multiple correspondences. 

I I 

I I I I 

4. Pseudo-correspondence from occlusion point PA to some 
point Q, 
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le1 image pairs. We will discuss these image pairs and illus- 
t ra te the i r  use in  the 3-D- f rom-stereo and 
structure-from-motion applications. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Spatial image Pairs 
Spatial image pairs are obtained by simultaneously re- 
cording a scene with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtwo cameras (A and B) at different 
positions (Fig. 5). In spatial image pairs, correspondence 
estimation is called chsparity estimation. 

In 3D-from-stereo applications, we can reconstruct a 
3D scene point by triangulating a pair of corresponding 
points, as depicted in Fig. 6. Triangulation requires cali- 
brating the cameras. The relative position, orientation, 
and some adchtional parameters of the cameras must be 
known. An overview of camera-calibration methods ap- 
pears (“Multi-Camera Systems: Calibration and Applica- 
tions,” pp. 55-65, this issue). 

The distance between the cameras is called the base- 
line. The larger the baseline, the more accurate the trian- 
gulation, given the finite accuracy of the estimated 
correspondences. Large baselines zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAalso yield large differ- 
ences in the image pair-a challenge for the estimation al- 
gorithms (Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 ) .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

A special situation arises if the cameras are in a 
so-called parallel setup. This setup requires that two iden- 
tical pinhole cameras (no lens distortion or CCD mis- 
placement) are placed with equal orientations, while their zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Scene 

Ca 

A 5. A stereo camera provides a spatial image pair. 

Image Image 
Plane A Plane B zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1 Opticat Center I Camera B 
Optical Center 

Camera A 

A 6. Triangulation of correspondences. 

positions differ only in the direction of the scan lines. In 
this way, a parallel image pair is obtained, in which corre- 
spondmg pixel pairs lie on equal scan lines (Fig. 8). 

This restriction on the correspondences reduces the 
complexity of estimation by an order of magnitude. Many 
disparity estimation algorithms are developed for parallel 
image pairs [ l l ] ,  [16], [24], [44], [58], [60]. 

When cameras providing a spatial image pair are cali- 
brated, the A and B images can be warped in a so-called rec- 
tification procedure [ 371. The result is a parallel image pair 
A‘, B ’, in whch disparity can be estimated by means of al- 
gorithms for parallel pairs. For uncalibrated cameras, which 
provide uncalibrated spatial image pairs, this can not be 
done directly. The one-dimensional nature of dsparity esti- 
mation can still be applied on the basis of epipolar geometry 
[15], [56], which will be discussed later. 

Temporal Image Pairs 
Temporal image pairs are obtained by recording a scene 
by a single camera that takes a shot at two different time 
instants, tA and tB (Fig. 9) .  The correspondences are re- 
lated to the motion ofscene objects. Correspondence esti- 
mation in temporal image pairs is, therefore, called 
motion estimation [lo], [26], [52]. 

For scenes with rigid objects, temporal and spatial 
image pairs can be converted into each other. Those 
parts in the temporal pair that arise from one scene ob- 
ject can be reconstructed by placing two virtual cameras 
A‘, B ‘ at appropriate positions around the selected ob- 
ject (Fig. 10). The difference in the positions and orien- 
tations of the virtual A ’ and B ’ cameras relate to the 
translation and rotation of the selected scene object. If 
the scene consists of only one object, the spatial and tem- 
poral image pairs are the same. This assertion is used in 
[41] for estimation of structure from motion. 

In structure-from-motion applications, the recon- 
struction of the selected object can be handled in the same 
way as in the 3D-from-stereo application, with one ex- 
ception. The two virtual spatial cameras cannot be cali- 
brated offline. As a result, self-calibration techniques have 
to be used on the basis of the estimated correspondence 
field [41], [48]. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Classic Approaches to 
Correspondence Estimation 
We will briefly discuss the classic approaches to corre- 
spondence estimation including: feature detection and 
matching, block matching, pel-recursive, and opti- 
cal-flow techniques. For more details we refer the reader 
to the excellent overview in [ 531. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Feature-Based Algorithms 
Feature-based algorithms [3], [28] first extract prede- 
fined features, and then match these (Fig. 11). The sepa- 
ration of detection and matching is a restriction on the 
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quality that can be obtained. The definition of features is 
not easy. The most well-known and general feature is the 
edge. Edge definition and estimation has been investi- 
gated over long periods 191. This approach yields a sparse 
correspondence field. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Block-Matching Algorithms 
In block matching, rectangular blocks of pixels are 
matched zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 11,1221 (Fig. 12). For each block in image B, a 
block is sought in image zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA most resembling the block in B 
according to some criterion. Adense field can be obtained 
by means of interpolation or the use of overlapping 
blocks. During estimation, a single correspondence vec- 
tor is used for all pixels within one block. Since the vector 
models only translation, this approach does not work well 
for rotated and skewed objects in an image pair. 

For large textured areas undergoing relatively uniform 
motion, large blocks enable high-accuracy correspon- 
dence estimation. The uniform-motion restriction, how- 
ever, limits the resolution obtained. To some extent, this 
can be overcome by adapting the block size to the image 
content [25]. 

Pel-Recursive Algorithms 
These algorithms [5], [6] have been developed for im- 
age-sequence coding. They obtain a dense field by scan- 
ning, i.e., they start the estimation at the upper-left pixel 
and end at the bottom-right pixel (Fig. 13). First, the lu- 
minance of pixel zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx in image B is predicted from image A 
by means of the correspondence vector found at the pre- 
vious pixel in B (pixel 6 in Fig. 13). Then a group of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN 
pixels (hereN= 7) is matched to image A. The group has a 
“causal” shape in the sense that it contains only pixels with 
known luminance in B. In the pel-recursive approach, we 
use an analytical expression to obtain the new vector on 
the basis of the previous one. It is assumed that the previ- 
ous vector is a good estimate of the new vector and thus, 
only small changes are allowed between two vectors. 

The regular structure and causahty of block matching 
and pel-recursive techtuques allow them to be implemented 
efficiently in hardware [22], [36]. However, the causahty 
restricts the quality of the correspondences obtained. 

Optical-Flo w Algorithms 
T h ~ s  method is the first approach to the simultaneous esti- 
mation of a dense correspondence field [23]. The method 
relies on the relation between photometric correspondence 
vectors with components (C,,C,) and spatiotemporal deriv- 
atives of luminance in an image sequence: 

a 
a c, .-+cy . -+-  I (x ,y , t )=O ( ax ‘ ay at 

An additional regularization term biases the solution to- 
ward a globally smooth correspondence field zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 2 3 ] ,  [57]. 

7. Small (top) and large (bottom) baseline. 

Image Image 
Plane zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA Plane B 

8. A parallel camera setup provides a parallel image pair. 

Discontinuity fields have been incorporated to avoid 
oversmoothing at object boundaries [21]. 

The drawback in this approach is that the luminance 
derivatives are numerically approximated. This requires 
local spatiotemporal linearity of luminance. In image se- 
quences with large motion, the local linearity is violated. 
In stereo applications, the temporal axis is replaced by a 
camera position axis. For a camera baseline of any reason- 
able size, the position linearity is violated. 

Bayesian Approach to 
Correspondence Estimation 
More recent approaches for dense correspondence esti- 
mation are the Bayesian methods, applied to temporal 
image pairs [7],  [ lo], [26], [51], 1541, [61] andtospatial 
pairs [ 111, [48], [60]. In this approach, the simultaneous 
estimation of dense correspondence fields is easily com- 
bined with object segmentation. The luminance deriva- 
tives in the optical flow method are avoided. 

In the Bayesian approach or framework, we distin- 
guish four steps, depicted in Fig. 14. The separation ofthe 
problem statement in the first three steps and the derivation 
of a search algorithm in step 4 [ 131 increases the portability 
and adaptabdity of algorithms among different applications 
and lfferent designers. 
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Time Instants zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtA , tg zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

9. A single camera provides a temporal image pair. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

In the first step, the input images zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIA and I,, and all out- 
put fields {F], F2, . .. } to be estimated are defined. The out- 
put fields represent correspondence, occlusion, and 
possibly discontinuity and segmentation fields. 

In step zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2, the relations between all these fields are mod- 
eled with a joint probability function in F = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{TI,  F,, ... }, 
conditioned by the observed image pair zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAiA, i,: 

P F  I,. I ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(f, iA iB  ) (2) 

It is a density in the continuous fields inF and a mass func- 
tion in the discrete fields. In the remainder of this article, 
we will not refer to this explicitly. The design of the joint 
model is usually decomposed by means of the Bayes rule, 
hence the name of these approaches: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

10. Spatial construction of a rigid object from a temporal im- 
age pair. 

I $. Detection I 

A 1 1 .  Feature detection and matching. 

A 12. Block matching. 

In the third step, the best solution FsoL is defined by a cri- 
terion on the probability function, such as the maximum 
a posteriori (MAP)  criterion. 

In the fourth and final step, a search algorithm is for- 
mulated that computes the defined solution or a relevant 
approximation. We will now focus on each of the four 
steps in the Bayesian framework. 

Dense-Field Representations 
For the correspondences and occlusions defined earlier, 
dense-field representations C and 0 have been developed. 
For segmentation purposes, additional edge-based seg- 
mentation fields S and region-based fields R have been 
proposed. 

Table 1 shows a list of fields used by several authors in 
their and our notation. We will now take a close look at 
each of these fields. 

Correspondence und Occlusion Fields 
The  occlusion points, the real and the 
pseudo-correspondences, can be represented by several 
pixel-dense fields. They are all defined on the pixel lattice 
Ap (Fig. 15). The lattices of the images I, and IB are de- 
noted by A,, and A,,, respectively. 

The correspondence fields C that are most commonly 
used are defined on one of the image's lattices ApA, ApB 

[lo], [48], [52] ,  [54], [60], [61]. The CA field is depicted in 
Fig. 16. Each entry CA (PA) contains a vector with its starting 
point at the entry PA on the lattice ApA. For pixel accuracy 
correspondences, the endpoint of the vector lies on the 
lattice ApB. For subpixel accuracy, the vectors end on the 
continuous domain AxpB. 

Most applications benefit from subpixel accuracy, 
which is reflected in the number of subpixel estimation al- 
gorithms that have been developed [ 71, [ 101, [ 521, [ 541, 
[60], [61]. For subpixel accuracy, the luminance of the 
images has to be interpolated to the continuous domain 
Axp. In [26], we find (experimentally) that the specific 
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I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

[26] zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAKonrad & Dubois '92 

[lo] Chang et al. '94 

[54] Tekalp '95 

[60] Woo & Ortega '96 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

B zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA13, Pel-recursive technique. 

choice of the interpolation filter does not have much in- 
fluence on the estimation of correspondences. 

If zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(xAzyA) and (x,~,) are the coordinates of a corre- 
sponding pixel pair, the value of the correspondence field 
CA is: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

IA O A  RA 

Bt- Bti D, Lt zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
8 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8' w X 

8k Bk-I 

E " F D Q ,  

The value represents the 2-D (vector) displacement ofthe 
projection of a scene point between image A and image B. 
Depending on whether the estimation is performed with 
pixel or subpixel accuracy, the components of C are inte- 
ger or real valued. 

The CA field can represent both real correspondences 
between PA and P, and pseudo correspondences from PA 
to a. In the latter case, PA is an occlusion point. The 
presence of occlusion points can be represented by the oc- 
clusion field 0,: 

[52] Stiller '97 

PA is visible in image B 
CA (PA ) is a real correspondence 0 

PA is an occlusion point 

C, (PA ) is a pseudo - correspondence 
1 

(5) 

0, (PA ) = 

Fig. 17 shows the binary occlusion fields 0, and 0,. If no 
occlusions are taken into account [26], the C, field suf- 
fices in the modeling process because it can represent all 
real correspondences. If occlusions are taken into ac- 
count, but no pseudo-correspondences are estimated, the 
CA field contains all real correspondences and a number 

Bt &+I dt zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsee text 4 

and an additional ordering constraint, discussed near the 
endofthis paper, holds true [ l l ] ,  [16], [44], [58]. 

The C, field used in [43], [44], [45] is defined on a 
different domain ApM. It is the pixel grid of a virtual image 
centered between images A and B (Fig. 18). In [26], a 
more general case is considered where M is placed at an 
arbitrary position in between A and B. The value of the 
C, field is defined similar to (4) : 

x B  - x A  

(6) 

C,(x,,.Y,)= 

with 

14. The Bayesian framework. 

pseudo-correspondences are estimated, 
both CA and C, fields are needed to 
represent zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd pseudo-correspondences. 
In [52], the pseudo-correspondences 
from A to B, contained inCA, are esti- 
mated. At this point, no attempt has 
been made to estimate all 
pseudo-correspondences. 

For parallel image pairs, all real 
correspondences and both occlusion 
fields 0, and 0, can be represented by 
one field, the so-called chain map 
[46], provided pixel accuracy is used 
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Pixel zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
x Entryofh, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA15. The pixel lattice zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAF 

X X X X ‘  ~; x x X ’ X  

A 16. The zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACA correspondence field. 

I I 

OA OB 

0 = 1  

L 17. The occlusion fields zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0, and 0, 

A 18. The C, correspondence field. 

(7) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
The zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC, field is attractive because of its symmetry in the 

A and B images. In 3D-from-stereo applications with 
parallel image pairs, triangulation of the correspondences 
is very easy [45]. However, it does not allow for an easy 
incorporation of asymmetric phenomena, such as occlu- 
sions and pseudo-correspondences. The field can be used 
in applications where these phenomena do not play an 
important role, for example, in face acquisition from ste- 
reo images [43]. 

In some cases, the C, field cannot represent the real 
correspondences. The worst-case example is when image 
B is a 180” rotated version of image A. Then all vectors in- 
tersect in the center of C,. 

Object Segmentation and Correspondence 
Discontinuity Fields 
Some approaches in correspondence estimation do not 
model discontinuities [23], [26 (MEC algorithm)]. 
High-quality correspondence estimates are possible if the 
scene does not contain more than one object of interest, 
such as face acquisition from stereo [43]. 

Segmentation and correspondence discontinuities 
need to be introduced for image pairs with multiple ob- 
jects. This has led to the introduction of correspondence 
discontinuity fields S,, often called line fields [ 261, [ 541, 
[61] and object label fields R [lo], [52]. 

Fig. 19 illustrates the discontinuities S,  in the corre- 
spondence fields C in the case of a simple scene with 
two objects in front of a background. Obviously, the 
discontinuities coincide with the object boundaries. As 
Fig. 17 depicts, object boundaries often coincide with 
boundaries of occlusion areas as well. In [21], experi- 
mental results indicate that the incorporation of S or R 
fields is useful only if occlusion fields 0 are also taken 
into account. 

The discontinuity fields zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS are edge-based, for which a 
domain has to be defined. A widely used domain is defined 
as all sites between two pixels that are four-connected 
neighbors, denoted by AH, shown in Fig. 20. Clearly, As4 

contains two dfferent kinds of sites, corresponding to 
horizontal edges between upper and lower pixels, and 
vertical edges between left and right pixels. 

The discontinuity fields S normally have binary values. 
A “ 0  indicates continuity, and a “1” represents a discon- 
tinuity (Fig. 21). Region-based segmentation fields R 
contain labels for each pixel in the image lattice Ap. In 
[52], a label field RA is introduced containing natural 
numbers. Each region of pixels sharing the same label 
represents a region that is smooth both in the luminance 
and correspondence fields. In [lo], [52] a correspon- 
dence discontinuity field S ,  is derived from a label field 
RA (Fig. 22). In [lo], the RA field is only used for this pur- 
pose, while in [52], additional ordering information al- 
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19. Discontinuities in correspondence fields. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI I I I I I 

I I 

I . . .  . . .  . . .  . . .  I 

I Pixel 

x Entry of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs4 

A 20. Four-connected edge domain zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA, 

lows for the analytic derivation of the occlusion field zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAO,, 
using the CA field as well. A major difference between the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
S and R fields is that R fields can not model the open 
curves as shown within the square in Fig. 21. These open 
curves may appear in real images, however, as shown in 
Fig. 23. A single object consisting of a pyramid attached 
to a plane is recorded by a stereo camera. The fact that the 
object occludes itself partly in image A leads to open 
curves of correspondence discontinuities in A. 

Modeling the Joint Probability zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof 
Several Dense Fields 
The design of a joint probability model for several dense 
fields is by no means an easy task. In general, the model- 
ing process is decomposed at two levels. First, via the 
Bayes rule, each field can be modeled one at a time. Sec- 
ondly, we can obtain the global model of each of these 
fields by combining many equal, simple local models. 
These assume independence of all entries in a field, or de- 
pendence only in a small neighborhood reflecting the 
Markov property (see “Gibbs and Markov Random 
Fields”). 

As an example we take the approach of [54], in which 
the following joint probability is modeled: 

Pc, . s C : ~  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA, o A  I 1.4 . I ,  (13) 

With the Bayes rule, the joint model is decomposed in 
several single field models: 

In this decomposition, several independencies among the 
fields are assumed. Table 2 shows the joint probability 
models and Bayes decompositions for the fields in Table 1. 

Each of the Bayes factors represents a specific photo- 
metric or geometric model, or a combination of both. Ex- 
amples of photometric models are the CIB assumption 
and its deviations. Geometric models involve continuity 
and smoothness of the correspondence field. 

We will now present several commonly used models 
and then combine them into a joint model. 

Image Luminance Models 
The factor in the denominator of (14) is a constant, given 
that we have observed the images zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAiA and iB. In steps 3 and 4, 
in the framework, criteria for best solutions and search algo- 
rithms are selected that do not need the actual value. Thus 
t hs  factor is never modeled [lo], [26], [52], [54], [60]. 

The first factor in the numerator is similar to the sec- 
ond factor in all Bayes decompositions in Table 2. It has 
the form: 

P I ,  l I B . ( -  (15) 

The factor represents the probability of the A image, 
given that we are able to predict its luminance by the B 
image, the correspondence, and other fields. 

All current models for (15) assume that luminance is a 
field with independent entries: 

Independence : P, ~, = n P P d  ,E * , (16) 
ul/prreli 
m rnzqc A 

The basic tool for (16) is the CIB assumption: 

CIB: I ,  (PA ) = I (PR ) (17) 

The CIB assumption is valid if the cameras are noiseless 
and all objects have diffuse reflection properties. Addi- 
tionally, in a spatial image pair, the cameras should be 
photometrically equal. In a temporal pair, the photome- 
try of the camera must not change over time, and light 
sources cannot move, with respect to other objects. 

All current correspondence estimation algorithms as- 
sume CIB as a starting point, and model the deviations to 
some extent. Mostly, the causes for CIB deviations are 
modeled together by a zero-mean Gaussian [lo], [26], 
~ 4 1 ,  W I :  

I :  : I  
I I -  - - . . .  

. . .  - - . . .  I :  

. . . s=o 

- S = l  

A 2 1. An edge-based correspondence discontinuity field S. 
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A12 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
CIB deviations: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp ( N )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= - 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp 7  

JzG 
cameras can be accounted for in advance by using lumi- 
nance histogram warping [12]. 

For occlusion points in image A, no relation, such as (18) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
In [52], a generalized Gaussian is used, with shape and ( 7, Or ( 8, , can be In [521, the luminance is 

variance estimated from the The then modeled with a uniform probability distribution 

shape parameters obtained suggest that a Laplacian out- 
performs a Gaussian-a result found earlier in [31]. 

Over a" gray levels: 

[39], deviations due to specular reflections of scene s 
faces are modeled in a feature-based approach for corre 
spondence estimation. Photometric differences in ' (19) 

Occlusion points: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1) - 1 
N)J,avievd "~ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Cibbs and Markov Random Fields 

fice for our overview. 
In MRF models, all entries interact with each other only 

via their direct neighbors. Fig. A shows typical examples for 
neighborhoods on the Ap and As lattice. Mathematically, if 
all entries that are neighbors to entryQ are known, the prob- 
ability distribution for theQentry does not depend anymore 
on the rest of the field: 

arliov random field (MRF) models can be used 
model interactions between entries in a field. Fo 

thorough introduction in MRFs we refer to [18]. Here 
will recall the basic characteristics of MRFs, which will s 

Neighborhoods MRF 

M 

1 Pixels zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD D 
Cliques GRF 
X Entries 

(8) - 
Penoyeldiootherenrrier - P e n n y e ~ m ~ ~ w s o f ~  

Applying (8) to all entries in the field defines the joint proba- 
bility for the whole field. However, a practical problem is 
that the joint probability is not available explicitly. This is 
solved by the introduction ofthe Gibbs random field (GRF), 
see Fig. B. There is a one to one mapping between GRFs and 
MRFs [ 181. A GRF is defined in the energy domain: 

4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 EntryQ 

X Neighbors 

I 

A A. Typical neighborhoods in a Markov random field. 

A B. Joint probability of MRF and GRF. 

C. Neighborhoods and cliques for Ap and A,, 

(9) 

The joint energy of the GRF is defined as a sum of clique ener- 
gies: 

U(;Rfijotm = C U+u (10) 
a// ciryzres 

A clique is a small group of field entries whose energy is a 
function of the field values. The neighborhoods in MRFs are 
related to the cliques in GRFs. Fig. C shows the cliques ac- 
cording to the neighborhoods in Fig. A. The neighbors of an 
entry Q are all entries that share a clique with Q. 

The normalization constant 2 in (9 )  is called the partition 
hnction, and is given by (assuming a discrete valued GRF) : 

(11) z = y f-L~<;lul,>,?&]l 
~I U 

all d,ffci%fe.t,,tfddsf 
Analvtical comwtation o f 2  is impossible in general, and 

v 

so is numerical computation since the space of all different 
fields is very high dimensional (in the order of 10'). For the 
successful use of GRF models, the application should not de- 
pend on the actual value of 2. 

An example ofa GKF model that enforces global smooth- 
ness on a correspondence fieldCA is ( 12). Large variations in 
the CA field yield a high energ7, which leads to a low proba- 
bility for that field. In ( 12), the cliques are chosen as depicted 
in Fig. C for the A,, lattice. 
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As an example, in “Modeling Image Luminance: CIB De- 
viations and Occlusions,” the image luminance model 
(15) is derived on the basis of (16), (18), and (19), result- 
ing in (21). 

A similar expression is found in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 521, based on a gener- 
alized Gaussian. In [26], no occlusions are taken into ac- 
count, and they obtain only the product series with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0, = 
0 in (2 1). The same holds for [ 541, in which the occlusion 
point model is discarded. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Correspondence Smoothness Models 
Within continuous areas of a correspondence field, it is 
assumed that the field is also a smooth function of posi- 
tion. Smoothness of correspondence reflects smoothness 
of scene surfaces. The most basic smoothness constraint 
penalizes large values of the spatial derivatives of the cor- 
respondence field. This means that differences of neigh- 
boring entries in the field are penalized. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs seen in the 
sidebar “Gibbs and Markov Random Fields,” Gibbs and 
Markov random field models take into account such in- 
teractions between neighboring field entries. 

An example of a Gibbs random field (GRF) model that 
enforces global smoothness on correspondence fieldC, is: 

Fig. 24 illustrates (22). For all neighboring entries zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(P,,, 
PQ2) on the P domain, the cliques, the difference in the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACA 

entries are squared and added. In (22), the cliques are in- 
dexed by the entries Q of domain As4. Large fluctuations 
in the correspondence field yield high energies that result 
in a low probability for that field. The scale factor zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa is 
used in all approaches to regulate the influence of the 
smoothness constraint with respect to other constraints. 
Each constraint has its own parameter, and all parameters 
are usually determined by experiment. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

As shown in “Gibbs and Markov Random Fields,” the 
energy UCA in (22) results in a Bayes factor: 

As discussed in Fig. 24, the value of Z cannot be com- 
puted. However, it is a constant and can be discarded 
from the modeling process in a similar way as the denom- 
inator in (14). 

In [27], the square in (22) is replaced by more general 
hnctions that more or less incorporate discontinuities 
without modeling them explicitly. 

It is often assumed that the smoothness of correspon- 
dence C is correlated with the smoothness of luminance I .  
Overviews of these photometric-geometric models can 
be found in [ 141, [ 331, and [ 501. Basically, these models 
relax smoothness constraints across luminance edges, re- 
sulting in so-called oriented smoothness constraints. 

Smoothing the correspondence field CA while taking 
the discontinuities according to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS,, into account can be 
performed by a compound GRF model involving both 
fields [26] : 

Variations of (24) can be found in [54] and [61]. In 
[ l o ]  and [60], a segmentation field RA is used as in Fig. 
22. In [60], the occlusion field 0, is used as approxi- 
mation to RA. 

elli 
ev 

s an example, we will derive a model for the I,, image zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApi6 iven the I ,  image, the CA correspondence field, and 
the 0, occlusion field. According to (16), we model each 
pixel independently: 

P I A l ~ ~ A . o A ~ l l ~  = r I P I , ( I ’ , ,  ) I C A . O A , I I ,  (20) 
1; A I’.i 

In the figure, the iinage pair is depicted, along with the 
correspondence and occlusion fields C, and 0,. To in- 
corporate the occlusion pixel model (19) in (20), we need 
to know which pixels in A are occlusion points, and for 
the Gaussian CIB deviation model (18) which are not. 
This information is contained in occlusion field 0, ( 5 ) .  In 
(18), the I term refers to the luminance difference of a 
pair of corresponding pixels in A and R. For each 
non-occlusion pixel in image A, we need a real correspon- 
dence vector that originates from that pixel. These vectors 
are the real correspondence vectors contained in the C,< 
field. Ifwe apply (18) and (19) in (20) using the C, and 
0, fields (4) and (5), we obtain 

- - 
P1AlcA>oA,18 
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Correspondence Discontinuity Models zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
For the discontinuity field zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS ,  in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(24), several models 
have been proposed, in which three different types can be 
distinguished. First, discontinuities can be penalized in- 
dependently for each entry in the field: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
us,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= a  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACS,(Q) 

In the case of a zero in the denominator, no discontinuity 
is allowed. 

In [ 521, a discontinuity field is defined on As*, that also 
includes entries for diagonally neighboring pixels 
(eight-connectedness). The field is extracted from a label 
field RA in a similar way as that in Fig. 22. 

The third model for discontinuities is globally con- 
nected curves. The connectivity is modeled in general by 
means of a GRF. Fig. 25 shows an example of the cliques zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(25) 

Y S A \ l A  

In [lo], a model similar to ( 2 5 )  is used based on label fie1 

R 1  1 3 3  

1 2 2 1  

1 2 2 1  

1 1 1 1  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

~I 

Rdand Fig. 22. 
A second model for dxontinuities is that they often 

coincide with luminance discontinuities [26] ,  [61], re- 
flecting a combined photometric-geometric constraint: 

A 22. Extraction of a correspondence discontinuity field S, from a 
label field R. 

A 

IA 

SCA 

Object 

A 23. Open curves of correspondence discontinuities. 

%"and their energy in7541. In [26], similar cliques aride- 
fined, including additional cliques that forbid pixels from 
being surrounded by discontinuities. 

Occlusion Models 
For the occlusion field, two types of models are generally 
applied. First, the presence of occlusions can be penalized 

I' [ 5 3 ] ,  similar to (25) for S,: 

U,, = a  CO,(P,)  (27) 
I ' ,  EA,% 

Penalizing occlusion points promotes the presence of real 
correspondences in an image pair. 

The second model for occlusions encourages connec- 
tivity of occlusion points [60]. Such a model can be ob- 
tained by applying (25) on discontinuities So extracted 
from the 0 field, as depicted in Fig. 22. 

Combination into a Joint Model 
To combine the models (21), (24), and (26) and the oc- 
clusion model (27) into a joint probability model, we will 
convert the latter three to the probability domain. For the 
occlusion model, this results in: 

Similar to (23), the partition function Z is a constant and 
can be neglected. For the discontinuity adaptive corre- 
spondence smoothness model (24) we have: 
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Entries of C zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 
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. .  . .  . .  . . .  . . .  

R 
' pQ2 

24. Cliques in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACRF for correspondence smoothing. 
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25. Cliques to enforce conneci?wty of correspondence disc0nt;nuities. 

In this case, the partition function Z is not a constant, but 
a hinction ofthe conditioning field SCA [ 181, which itself 
is not constant during estimation. This can be neglected, 
as is done in [lo], [26], [54], [60]. 

In general, non-constant partition functions arise 
when two or more output fields interact with each other 
and are modeled in the energy domain. A way to circum- 
vent this is to refrain from applying the Bayes rule on 
those fields. Instead, we combine the energies of (24) and 
(26) to form a model that is joint in these two fields: 

In [51], this is applied on the correspondence and seg- 
mentation fields CA and RA (Table 2). 

However, (2  1 ) and (30) contain circular dependencies 
and cannot be combined by means of the Bayes rule. If an 
attempt is made, the wrong image B appears in one of the 
Bayes factors (Table 2) .  One solution is to transform (21) 
to the energy domain via U=-In p, and then add all ener- 
gies to form a joint model: 

For the energy terms in (31), no relation with any Bayes 
factor can be established for the decomposition of p '. In 
the optical-flow-based approach in [21], a joint model is 
designed similarly. 

In (31), the joint model is constructed by adding ener- 
gies freely instead of using the Bayes rule. This is at the 
cost of some explicitness in the modeling process, but it 
allows for the integration of several useful constraints. 

Criteria for Best Solutions 
The best solutionf,,,, can be defined in many ways. In 
the area of simultaneous estimation of dense correspon- 
dence fields, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtwo criteria are commonly used: the masi- 
mum a posteriori (MAP) criterion and the mean field 
(MF) criterion. 

Maximum a Posteriori 

P O I ,  P61, [52l, 1541, [601: 
The most widely used criterion is the MAP criterion [ 71, 

(32) 
f,,, = a r g m p  P F I I , , , , ,  (f, i, , i, ) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

f' 

The MAP criterion selects the solution that has highest 
probability given the observed images iA and i,. Since 
these are constants in the maximization in (32) we have: 

P i , l A ~ l l ,  OC P J 3 l i . I l ,  OC P ~ . l l , ~ I i  Dc P t . 1 ,  I ,  (33) 

The MAP solution can be obtained by maximizing any of 
the probability functions in (33). 

Mean Field 
The mean field (MF) criterion is used less frequently [61] 
than the MAP criterion and is defined as: 

f,,, = j .P, I ,  ~ I , <  ti? 2 ,  14 
f (34) 

It yields the average or expected solution, which is equal 
to the first moment of the probability function on the 
output variables conditioned by the observed image pair. 
It can only be used for continuous output variables, since 
discrete variables such as binary occlusion and disconti- 
nuity fields can not be averaged. 

The MAP and MF criteria are special cases of a family 
of criteria, which is parameterized by some cost function 
[55]. The mean expected cost (MEC) criterion in [26] is 
equal to the mean field criterion. The discrete segmenta- 
tion field in their MAP algorithm was removed for the 
MF algorithm. The MF criterion has been reported to 
yield results similar to the MAP criterion whenever both 
criteria can be applied [26]. 

Search Algorithms 
MAP Search Algorithms 
Since the dimensionality of (32) is extremely large, the 
probabilities get extremely small. Even for the actual 
MAP solutionf,,,,, it may be on the order of 10-'~oo~l~OO". 
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Therefore, energy is used rather than probability in the 
numerical evaluation of (32). As an example, we will con- 
sider the joint model in (33): 

Maximization of  probabil i ty is equivalent to 
minimization of energy, which does not require the com- 
putation of the partition function Z: 

Many search algori thms are available for the 
minimization in (36). They are either exact or approxi- 
mate, and either deterministic or stochastic. 

The most well-known technique for these lunds of 
minimizations is the downhill or gradient-descent 
method [42]. It is a deterministic method that easily gets 
stuck in local minima. To avoid local minima, stochastic 
methods are available, such as simulated annealing (SA). 
In SA, an estimate to the solution is perturbed at random. 
Better estimates (less energy) are always accepted; worse 
estimates are accepted now and then, governed by a tem- 
perature parameter. If the temperature is decreased from zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
To to zero infinitely slowly zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 181, the exact solution to (36) 
is reached. In practice, the temperature is lowered much 
faster and an approximation is obtained. 

To use the SA algorithm, we need to define a tempera- 
ture cooling schedule and a random perturbation genera- 
tor. At this point, there are no general rules to help the 
designer. In [52], the cooling schedule is chosen to be ex- 
ponentially decreasing. A table is presented with several 
perturbations, such as small changes in the correspon- 
dence fields and flipping of the binary values of the occlu- 
sion and discontinuity fields. 

Many different versions of SA have been presented, 
e.g. the Metropolis algorithm [ 541; iterated conditional 
modes (ICM) [lo], [21], [54]; and so-called Gibbs sam- 
pler methods [ 181. The interested reader is referred to the 
specific articles for details. 

The only exact and deterministic algorithm for the 
MAP solution is the dynamic programming (Viterbi) al- 
gorithm[ll], [16], [20], [24], [44], [58].Itcanbeused 
for disparity estimation in parallel image pairs. It requires 
that (36) is separable in all scan lines, excluding interac- 
tions between scan lines, such as smoothing. 

Fig. 26 shows the MAP solutions obtained by an exact 
DP algorithm without vertical smoothing, and an ap- 
proximate SA algorithm including vertical smoothing 
that obtains the dense field simultaneously. 

Adaptations to the DP algorithm have been made in 
[ 351 and [47] that include vertical smoothing to some ex- 
tent, without the need for simultaneous estimation. 

Genetic algorithms (GA) have been used for corre- 
spondence estimation. In [ 171, the estimation is done 
separately for each scan line. For dense simultaneous esti- 

CM CM 

DP zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASA zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
26. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMAP solutions obtained by DP and SA search algorithms. 

mation, the GA approach is not feasible since it requires 
several solution estimates to be maintained at the same 
time. This demands a tremendous amount of memory 
and computational power. 

An extended Kalman-type recursive estimator is de- 
rived in [7] and also used in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[SI to obtain the MAP esti- 
mate for the displacement vector field. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
M F  Search Algorithms 
The mean field theory (MFT) is used in [61] to obtain the 
MF solution. It is based on the following approximation 
to (34) : 

MFT means that if the mean solution of all fieldsx.t5r is 
given except for a single entry of one field j&nle, we can ob- 
tain an approximation to this single variable. Evaluation 
of (37) only requires integration over a single variable of 
the output space, while (34) requires integration over the 
entire solution space. The marginal probability model in 
(37) can easily be obtained from joint models on the basis 
of Gibbs Markov random fields [ 181. 

Given an approximation to the complete solution, we 
can obtain a better approximation for each single variable 
with (37), in order to obtain the next approximation of 
the complete solution. 

In [26], a different technique is used to obtain the 
MF solution, which is based on the so-called Gibbs 
sampler [18]. A Gibbs sampler provides a sequence of 
different realizationsL;,bb,,, of the fields to be estimated, 
according to the probability model in (34). A statistical 
average of N of these realizations is an approximation 
to the mean solution: 

(38) 
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Hierarchical Approach zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
The MAP and MF search algorithms for dense fields yield 
a large computatioiial burden. Although stochastic meth- 
ods are designed to avoid local minima, the restrictions 
for a feasible implementation (fast cooling schedules and 
a low number of iterations) still lead to problems with lo- 
cal minima. 

A general approach that provides faster convergence 
and, at the same time avoids local minima, is the hierar- 
chical approach. Due to its good results for natural im- 
ages, it is used in a wide variety of correspondence 
estimation algorithms [l] ,[lo], zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 141, [21], [26], [28], 
[341, [38l, 1431, [52l. 

Fig. 27 depicts the hierarchical approach. The ob- 
served images are downsampled to lower-resolution ver- 
sions. The original images are at level 0; the resolution 
decreases with level number. At the lower resolution level 
L the estimation starts. After estimation, the fields are 
upsampled to the resolution of level L-1. These fields are 
then used as an initial estimate for the estimation at this 
level. This continues until estimation is performed at full 
resolution level 0. 

Many different upsampling, downsampling, and esti- 
mation schemes can be chosen. This involves the selection 
of new lattices for the lower-resolution fields, suitable fil- 
ters and possibly level-dependent search algorithms. In 
most cases, the influence of these choices is small com- 
pared to other choices made in the four steps in the 
Bayesian framework. 

Most popular schemes for the lower-resolution lattices 
are the 2: 1 schemes [26], [52], in which bothx andy axes 
are subsampled with a factor two. Schemes with 
non-integer ratios also exist. In [30], the effect of these 
schemes on computational efficiency is investigated. 

Many different filters are used for downsampling the 
images, such as Gaussian 1281, [38] and low-pass FIR fil- 
ters [26]. In [52], bilinear filters are used for upsampling 
of the correspondence fields, and nearest-neighbor inter- 
polation filters for discrete label fields. 

Generally, for the estimation at different levels, the 
same algorithm is applied at each level. However, some 
authors include level dependencies, such as increased 
smoothness constraints [ 381, or removal of discontinuity 
fields at lower resolution levels [26]. In [ 291, special types 
of Markov random field probability models are investi- 
gated, for which the efficiency of level-independent esti- 
mation schemes is optimal. Using other models, 
however, may still result in near optimal schemes [52]. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Future Model Improvements 
It is expected that computational power will continue to 
increase. With this, the introduction of more fields and 
their simultaneous estimation becomes feasible. These 
fields enable more complex models with additional pho- 
tometric and geometric constraints, and thus, enhanced 
results. We will discuss several models and constraints 

which have previously been used in correspondence 
estimation, but not yet in approaches for simultaneous es- 
timation of dense fields. 

Two Correspondence Fields 
The introduction of both,, and CB fields enables the es- 
timation of all pseudo-correspondences. This is useful in 
several applications as discussed in the definition of 
pseudo-correspondence. Previously, both fields have 
been estimated separately to remove outliers in real corre- 
spondences [ 341, [ 361. 

Image Restoration 
The models for image luminance shown in this article all 
assume independence between pixels. A more complex 
image model is used in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[8], where estimation of corre- 
spondence is combined with the restoration of an image 
sequence. These models include noise and blurring due to 
the camera system, that are part of the CIB deviation 
model. 

In [ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA81, the estimation is performed recursively for each 
scan line. In simultaneous estimation of dense fields, the 
improved image model requires the introduction of addi- 
tional dense luminance fields, for example, in the case of 
image noise. 

Specular Scene Sudaces 
A different source of CIB deviations is specular reflec- 
tivity of scene surfaces. In [39], this is taken into account 

Final Estimate of C. 0. .... 

t 
Final Estimate 

Level 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Upsampling J (Downsampling] zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
r 
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A 27. Hierarchical estimation. 
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in a feature-based approach for correspondence estima- 
tion. In dense simultaneous estimation, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAan additional 
field for specular reflectivity is needed. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Image Sequences 
In this article, we deal only with pairs of images. Image se- 
quences, both in temporal and spatial (multiple camera) 
directions, can be used to apply additional constraints. 

In zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 321, correspondences are estimated in a sequence, 
where pairs of images zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(t,t+t) are treated one by one. The 
results are integrated (enhanced) by a Kalman filter. Re- 
cursive approaches apply temporal consistency con- 
straints [52] to enhance the estimation in the current 
image pair on the basis of the previously estimated fields. 
In [38] and [57], the recursive approach is applied on 
combined temporal/spatial image quadruples. In [40], 
spatial image triples are used to obtain accurate fea- 
ture-based correspondences from the edges of curved ob- 
jects. In [20], multi-camera spatial images are used. Due 
to a specific camera setup (all in one line) a single corre- 
spondence field is sufficient in the estimation process. 

Simultaneous estimation of correspondences in general 
image sequences requires that multiple sets of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAall fields are 
present simultaneously. The number of fields is thus, (at 
least) linear with the number of images in the sequence. 

Epipolar Geometry 
Epipolar geometry provides a very powerful restriction 
on correspondences that have general validity. In dense 
correspondence estimation it has been widely applied on 
parallel image pairs, and on spatial image pairs from cali- 
brated cameras. These pairs are equivalent up to a warp- 
ing of the image lattices [37]. In [48], a first attempt is 
made to apply the epipolar constraint on spatial pairs 
from uncalibrated cameras. On temporal image pairs, the 
constraint has been applied in a block-based approach 
[ 5 11. In simultaneous estimation of dense fields, epipolar 
geometry has not been used yet on temporal pairs. 

We will explain the geometry and its applications in 
correspondence estimation. For more detailed overviews 
of epipolar geometry, we refer to [ 151 and [56]. 

Fig. 28 shows the interior of a stereo pinhole camera, 
including the optical centers and the image planes. The 
baseline is the line through the optical centers of the cam- 
eras (the term baseline is also used for the distance be- 
tween the optical centers). Any plane that contains the 
baseline is called an epipolar plane. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAALL scene points in 
such a plane are projected on a line in each of the images. 
These lines are the epipolar lines. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA pair of epipolar lines 
that share the same epipolar plane are called conjugate 
epipolar lines. If two points from the image pair corre- 
spond, they should lie on conjugate epipolar lines. This is 
called the epipolar constraint. It reduces the set of possi- 
ble correspondence candidates for a point in image A 
from all points in image B to only those on the conjugated 
epipolar line in B (Fig. 29). For pinhole cameras, the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

A 28. Epipolar geometry in a spatial pair. 

A 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 
A 29. Correspondence is restricted to conjugate epipolar lines. 

epipolar lines are straight lines. Due to lens distortion 
[ 591, the epipolar lines may become curved. 

Parallel Image Pair 
In a parallel image pair, the scan lines coincide with the 
epipolar lines. The epipolar constraint is applied by re- 
moving the y components from a correspondence field, 
which is then called a disparity field. Disparity estimation 
algorithms for parallel image pairs are widely available 
1111, [241,[441, ~581, ~601. 

Spatial Image Pair 
For a spatial pair from uncalibrated cameras, the epipolar 
constraint can still be imposed if the geometry is esti- 
mated along with the correspondences. In [41], the pin- 
hole camera geometry is estimated in a preprocessing step 
using sparse feature (corner) detection and matching. 

In the simultaneous estimation of correspondences in 
uncalibrated spatial image pairs, the epipolar constraint 
has been applied recently [48] for cameras with lens dis- 
tortion. In this approach, a field models the angle of the 
local tangent to the epipolar lines, and is estimated simul- 
taneously (Fig. 30). The curvature of the epipolar lines is 
extracted from both images and, interpreted as lens dis- 
tortion, penalized. The advantage of this approach is that 
it does not require feature extraction and estimation of 
predefined distortion parameters in a preprocessing step. 

Temporal Image Pairs 
Epipolar geometry can also be used in temporal image 
pairs. Consider a scene with a number of rigid objects 
moving differently. Each of these objects has its own 
epipolar geometry, shown in Fig. 31. This can be seen 
when the spatial construction in Fig. 10 is applied, which 
results in Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA32. To apply the epipolar constraint in tem- 
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poral pairs with multiple objects, one needs fields both for 
epipolar geometT zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE and its discontinuities S,, visible in 
Fig. 31. From the rod-like object, it is clear that epipolar 
geometry may provide a strong clue for the global cluster- 
ing ofdifferent image regions into one scene object. A sim- 
ilar constraint has been used in object rigidity checking on 
the basis of a sparse set of correspondences [49]. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Ordering Constraint 
A strong and usefill relation exists between correspon- 
dence, its discontinuities, and epipolar geometry. If there is 
an interval without correspondence discontinuities along a 
pair of conjugate epipolar lines, then the ordering con- 
straint holds at this interval. The constraint means that 
scene points appear in the same order along the intervals in 
A and B (Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA33). The ordering constraint does not always 
hold across discontinuities. Fig. 33 shows an example in 
which a thin object moves fast in front of a background 
(temporal pair), or is present in front of it, recorded by a 
stereo camera with large baseline (spatial pair). 

In disparity estimation in parallel image pairs, the or- 
dering constraint is often applied globally, regardless of 
discontinuities [ll], [44], [58]. This simplifies the algo- 
rithms because a strong constraint can be applied without 
the need for discontinuity estimation. Additionally, it en- 
ables the use of the deterministic search algorithm dy- 
namic programming (DP). In temporal and uncalibrated 
spatial image pairs, the ordering constraint has not been 
applied yet. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Discussion 
Applications of Geometric Correspondences 
Correspondence fields for image pairs play an important 
role in a wide variety of applications. These include 
MPEG-4 object-based coding, multi-viewpoint image 
generat ion,  camera cal ibrat ion,  and struc- 
ture-from-motion and 3D-from-stereo applications. 

All of the applications require geometric correspon- 
dences. Such a correspondence represents a 3 D  scene 
point, while a photometric correspondence just repre- 
sents photometric similarity between image points. 

The high-resolution and high-accuracy estimation of 
geometr ic cor  r e zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs p o zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA11 den c e s requires c o m p 1 ex 
(non-causal) dense field models. This, on its turn, re- 
quires algorithms that estimate all correspondences in the 
dense fields simultaneously. 

Simultaneous Estimation o f  Dense Fields 
The classic approaches to correspondence estimation, 
feature detection and matching, block matching, 
pel-recursive algorithms, and optical-flow methods are 
not well-suited for simultaneous estimation of dense geo- 
metric correspondence fields. 

More recently, several promising algorithms for 
this task have been developed using the Bayesian ap- 

proach. They use explicit probability models of the 
images, the correspondence fields, and their segmen- 
tation. Explicit models increase the portability and 
adaptability of algorithms among different applica- 
tions and different designers. 

As discussed in this article, several models for interact- 
ing fields cannot be combined using the 13ayes rule. I n -  
stead, the models can be combined in the energy domain. 
This is at the cost of the explicitness ofthe modeling, but an 
advantage is that the joint model can be synthesized more 
freely and can include more submodels and constraints. 

The submodels can be categorized into photometric 
and geometric models. Photometric models include im- 
age luminance and its discontinuities in relation to those 
of the correspondence field. Geometric models, needed 
for geometric correspondence estimation, currently in- 
clude a priori models for occlusions, and continuity and 
smoothness of correspondence. 

Local 
Tangent 

I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A 30. Epipolar geometry field. 
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A 33. The ordering constraint. 
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Future Improvements zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
The increase in 

[ IO] MAl.  Clnang, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM.I. Sezan, and A.M. Tekalp, “An algorithm for simulta- 

power enable ,.he simulta- 

constraints can be introduced to enhance the quality of 
the estimation results. 

laeonis motion csriination and scene segmentation,” zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAl’ivc. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAICASSP94, no. 5, 
pp. 221-224, 1994. 

neous estimation of more fields in the future. Additional 
[ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1.1. Cox, S.L. Hingorani, and S.B. Rao, “A maximum likelihood stereo al- 

gorithm,” Cornputer Vision and I n q e  Understandirg, vol. 63, no. 3, pp. 
542-567, May 1996. 

The improvements discussed in this article include the 
[I21 I.J. Cox, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS. Roy, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS. Hingormi, “Dynamic histogram warping of im- estimation of all pseudo-correspondences, the inco age pairs for constant image brightness,” l’ruc. ICZP95, pp. 366-369, 1995. 

tion of image restoration models, modeling 
[13] J.N. I>riesscn, “Motion estimation for digital video,” 1’h.D. thesis, De- reflectivity of scene surfaces, the use of imag 

instead of pairs, and the application of epipolar geometry. 
partment of Electrical Engineering, I k l f t  Univ. Technol., Delft, The Nctln- 

erlands, 1992. 
The last provides One Of the constraints [ 141 W. Enkelnyann, “In\ystigations (,f111il]tigrid algorithms fix thc c~tllll.ltl~Jll 
correspondence estimation. It has been applied widely on 
parallel image pairs, and recently on uncalibrated spatial 
pairs. For the simultaneous estimation of dense corre- 
spondence fields for temporal image pairs, it has not yet 

(,foptical tlour fields i l l  image sequellces,” compwtEr ~ i s i u t ~ .  ( ; rn / j /~m~ nlld 

I~~~~ processinc, vol. 43, pp. 150-177 , i~xx .  

[ 151 0. F ~ ~ ~ ~ ~ ~ ~ ~ ,  T/~rec-l)iirrei~sioisiorznl collzpz4ter visiun, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn (;cornmic ~ z a ~ p u i n t ,  
Boston, M A  MIT Pres, 199.1. 

been used. [ 161 R.E.H. Franicli, “Disparity c\tim.ition 111 stereoscopic digital imiges,” 

P1i.D. thesis, Lkpirtmcnt of Elcctric.11 Enginccring, Delft Univ. Technr)l., 
Delft, the Netherlands, 1 996. 
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