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Abstract We explore a formulation of the thermodynamic
geometry of black holes and prove that the divergent points
of the specific heat correspond exactly to the singularities of
the thermodynamic curvature. We investigate this correspon-
dence for different types of black holes. This formulation can
also be applied to an arbitrary thermodynamic system.

1 Introduction

In 1971, Hawking [1] stated that the area, A, of the event
horizon of a black hole can never decrease in physical pro-
cesses. It was later noted by Bekenstein [2] that this result
was analogous to the statement of the ordinary second law
of thermodynamics, namely that the total entropy, S, of a
closed system never decreases. Bekenstein proposed that the
entropy of a black hole is proportional to its area. The corre-
spondence between the thermodynamics of black holes and
the well-known first and second laws of thermodynamics
was further studied in [3]. However, it is still a challenging
problem to find the statistical origin of black-hole thermody-
namics.

The geometric formulation of thermodynamics is a useful
tool in the study of some aspects of physical systems. For
instance, Weinhold [4] introduced in the equilibrium space
a Riemannian metric defined in terms of the second deriva-
tives of the internal energy with respect to the entropy and
other extensive variables of a thermodynamic system. More-
over, in 1979, Ruppeiner [5] introduced a Riemannian metric
structure in thermodynamic fluctuation theory, and related it
to the second derivatives of the entropy. The Ruppeiner met-
ric is based on the thermodynamic state space geometry. For
the second-order phase transitions, the Ruppeiner scalar cur-
vature (R) is expected to diverge at the critical point [6–9].
Over the last decade, thermodynamic geometry and some of
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its new formulations have also been applied to black holes
[10–15]. Another geometric formulation of thermodynamics
was proposed by Quvedo [16]. Quvedo’s method incorpo-
rates Legendre invariance in a natural way, and it allows us to
derive Legendre invariant metrics in the space of equilibrium
states. However, this method not only contains certain ambi-
guities but also fails to explain the correspondence between
phase transitions and singularities of the scalar curvature for
the phantom Reissner–Nordstrom–AdS black hole [17–19].

In this paper, we explore a formulation for the thermo-
dynamic geometry of black holes, and we prove that the
divergent points of the specific heat correspond exactly to
the singularities of the thermodynamic geometry. The out-
line of this paper is as follows. In Sect. 2, certain analytical
techniques are used to prove that singularities of the specific
heat and the scalar curvature occur on identical points. In
Sect. 3, we study the thermodynamic geometry of the phan-
tom Reissner–Nordstrom–AdS (anti-RN-(A)dS) black hole.
We also study another phantom solution, which is called a
black plane [20], and compare Quvedo’s method with our
proposed formulation. In Sect. 4, we study the Kerr New-
man black holes [21] and show that the phase transitions
exactly occur on identical points of the curvature singulari-
ties. Finally, in Sect. 5, we discuss our results.

2 Specific heat and thermodynamic geometry
singularities

The first law of thermodynamics for RN black holes [22],
characterized by their mass M and charge Q, can be written
as follows:

dM = T dS + ΦdQ (1)

where Φ is the potential difference between the horizon and
infinity and T is the Hawking temperature:
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T =
(

∂ M

∂S

)
Q

(2)

Φ =
(

∂ M

∂ Q

)
S

(3)

The heat capacity at constant potential is given by

CΦ = T

(
∂S

∂T

)
Φ

= 1

T
(

∂T
∂S

)
Φ

(4)

Weinhold introduced a geometric formulation of thermody-
namics for the first time [23]. A few years later, Ruppeiner [5]
developed another geometric formulation for thermodynam-
ics and statistical mechanics. The Weinhold metric is defined
as the second derivative of the internal energy with respect
to the entropy and other extensive parameters. We have

gW
i j = ∂2 M(X K )

∂ Xi∂ X J
; Xi = (S, N a) (5)

where S is the entropy and N a determines all other extensive
variables of the system. The Ruppeiner metric is defined as
the second derivative of the entropy of the system with respect
to the internal energy and other extensive variables, and it is
given by

gR
i j = ∂2S(X K )

∂ Xi∂ X J
; Xi = (U, N a) (6)

where U is the internal energy and N a determines all other
extensive variables of the system. The line elements in the
Weinhold and Ruppeiner geometries [24] are conformally
related:

dS2
R = dS2

W

T
. (7)

The Ruppeiner metric of a black hole can be obtained by the
following relations:

gSS = 1

T

(
∂2 M

∂S2

)
= 1

T

∂

∂S

(
∂ M

∂S

)
Q

= 1

T

(
∂T

∂S

)
Q

(8)

gSQ = 1

T

(
∂2 M

∂ Q∂S

)
= 1

T

∂

∂ Q

(
∂ M

∂S

)
Q

= 1

T

(
∂T

∂ Q

)
S

= 1

T

(
∂Φ

∂S

)
Q

= gQS (9)

gQ Q = 1

T

(
∂2 M

∂ Q2

)
= 1

T

∂

∂ Q

(
∂ M

∂ Q

)
S
= 1

T

(
∂Φ

∂ Q

)
S

(10)

where M , S, and Q are mass, entropy, and charge of the
black hole, respectively. In this section, we investigate the
phase transition points of the heat capacity CΦ at a constant
electric potential and show that they exactly correspond to
the singularities of the scalar curvature R(S, Q). Using the
first law, the following Maxwell relation can be obtained:(

∂T

∂ Q

)
S

=
(

∂Φ

∂S

)
Q

(11)

We define M as a new conjugate potential of M(S, Q) in
order to determine another useful Maxwell equation. M is
related to M(S, Q) by the following Legendre transforma-
tion:

M(S, Φ) = M(S, Q) − ΦQ (12)

For this new function, the first law of thermodynamics will
be

dM = T dS − QdΦ (13)

As a result, we obtain another Maxwell relation:(
∂T

∂Φ

)
S

= −
(

∂ Q

∂S

)
Φ

(14)

Moreover, the metric elements for this conjugate potential
are defined as in the following equations:

gSS = 1

T

(
∂2 M

∂2S

)
= 1

T

∂

∂S

(
∂ M

∂S

)
Φ

= 1

T

(
∂T

∂S

)
Φ

(15)

gSΦ = 1

T

(
∂2 M

∂Φ∂S

)
= 1

T

∂

∂Φ

(
∂ M

∂S

)
Φ

= 1

T

(
∂T

∂Φ

)
S

= − 1

T

(
∂ Q

∂S

)
Φ

= gΦS (16)

gΦΦ = 1

T

(
∂2 M

∂Φ2

)
= 1

T

∂

∂Φ

(
∂ M

∂Φ

)
S

= − 1

T

(
∂ Q

∂Φ

)
S

(17)

The last part of the metric elements in (8–10) are written
by using Maxwell’s equations (11) and (14). For calculating
the scalar curvature for two dimensions associated with the
Ruppeiner metric, we use the following relation:

R =

∣∣∣∣∣∣
gSS gQ Q gSQ

gSS,S gQ Q,S gSQ,S

gSS,Q gQ Q,Q gSQ,Q

∣∣∣∣∣∣
−2

∣∣∣∣ gSS gSQ

gSQ gQ Q

∣∣∣∣
2 (18)

The inverse of the heat capacity CΦ can be written as

C−1
Φ = 1

T

(
∂T

∂S

)
Φ

= − 1

T

(
∂T

∂Φ

)
S

(
∂Φ

∂S

)
T

. (19)

We will prove that the square root of the denominator of
R(S, Q) is proportional to the inverse of CΦ :

(gSSgQ Q − (gSQ)2) ∝ − 1

T

(
∂T

∂Φ

)
S

(
∂Φ

∂S

)
T

(20)

The above equation means that the phase transition points
correspond to the singularities of R(S, Q). Substituting the
metric elements (8–10) in the left-hand side of (20) and using
(11) yield
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− 1

T 2

(
∂T

∂ Q

)
S

[(
∂ Q

∂S

)
T

(
∂Φ

∂ Q

)
S

+
(

∂Φ

∂S

)
Q

]
(21)

Equation (21) can be simplified by using the following equa-
tion:

dΦ =
(

∂Φ

∂S

)
Q

dS +
(

∂Φ

∂ Q

)
S

dQ (22)

or(
∂Φ

∂S

)
T

=
(

∂Φ

∂S

)
Q

+
(

∂Φ

∂ Q

)
S

(
∂ Q

∂S

)
T

(23)

Considering T as a function of Q and S, we have

dT =
(

∂T

∂ Q

)
S

dQ +
(

∂T

∂S

)
Q

dS (24)

Therefore, we get another useful equation:

(
∂T

∂ Q

)
S

=
(

∂T
∂Φ

)
S(

∂ Q
∂Φ

)
S

(25)

By substituting Eqs. (23) and (25) in (21), the left-hand side
of Eq. (20) can be simplified as

− 1

T 2

⎛
⎜⎝
(

∂T
∂Φ

)
S(

∂ Q
∂Φ

)
S

⎞
⎟⎠
(

∂Φ

∂S

)
T

=
(

∂Φ
∂ Q

)
S

T
C−1

Φ (26)

We conclude that for a finite value of (∂Φ/∂ Q)S and T �= 0,
we have

∣∣∣∣ gSS gSQ

gSQ gQ Q

∣∣∣∣ =
(

∂Φ
∂ Q

)
S

T
C−1

Φ (27)

This means that the singularities of R(S, Q) correspond
exactly to the phase transition points. A similar calculation
for conjugate potential yields

∣∣∣∣ gSS gSΦ

gSΦ gΦΦ

∣∣∣∣ = −
(

∂ Q
∂Φ

)
S

T
C−1

Q (28)

This means that the singularities of R(S, Φ) are the same as
the transition points of CQ , which identify the Davies curve
[25]. Moreover, the curvature singularity of the free-energy
metric is also located at the Davies curve of CQ .

The Helmholtz free-energy is related to M(S, Q) by the
following Legendre transformation:

M(Q, T ) = M(S, Q) − T S (29)

For this new function, the first law of thermodynamics can
be expressed as

dM(Q, T ) = −SdT + ΦdQ (30)

The metric elements for the Helmholtz free-energy can be
defined by the following equations:

gT T = 1

T

(
∂2 M

∂T 2

)
= − 1

T

(
∂S

∂T

)
Q

(31)

gT Q = 1

T

(
∂2 M

∂T ∂ Q

)
= − 1

T

(
∂S

∂ Q

)
S

= 1

T

(
∂Φ

∂T

)
Q

= gQT (32)

gT T = 1

T

(
∂2 M

∂ Q2

)
= 1

T

(
∂Φ

∂ Q

)
T

(33)

We can also write the metric elements of the Helmholtz
free energy in the same coordinates of the conjugate poten-
tial M(S, Φ) by using a transformation matrix. This matrix
changes coordinates from (T, Q) to (S, Φ). The transforma-
tion matrix can be written in the form

N =
⎛
⎝
(

∂T
∂S

)
Φ

(
∂T
∂Φ

)
S(

∂ Q
∂S

)
Φ

(
∂ Q
∂Φ

)
S

⎞
⎠ (34)

Using the transformation matrix, we can show that the metric

elements of the M(T, Q) in the new coordinates (S, Φ) are
the same as the metric elements of the M(S, Φ):

g′
i j = N T

ik gkl Nl j (35)

where N T is the transpose of N . Therefore, the singularity
points of the scalar curvature for both Helmholtz free-energy
function and conjugate potential occur exactly at the same
phase transition points of CQ (28). In other words, the line

element of the free energy M(Q, T ) is associated with the
line element of the conjugate potential M(S, Φ) [24]. We
have

ds2(M) = −ds2(M) (36)

Furthermore, we are able to define the metric element of
M in terms of the metric elements of M by the conformal
transformation

gi j = −gi j = − 1

T

(
∂2 M

∂ Xi∂ X j

)
; Xi = (S, Φ) (37)

The above calculations confirm our (trivial) expectation that
the curvature is independent of any specific coordinate choice
of the thermodynamic quantities. We can also prove that for
black holes with three parameters, the phase transition points
of the heat capacity CΦ,Ω at a constant electric potential
and angular velocity correspond exactly to the singularities
of the scalar curvature R(S, Q, J ). The scalar curvature is
proportional to the inverse of the square determinant of the
metric:
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R(S, Q, J ) ∝
∣∣∣∣∣∣
gSS gSQ gS J

gQS gQ Q gQ J

gJ S gJ Q gJ J

∣∣∣∣∣∣
−2

(38)

After a long but straightforward calculation, the inverse of
the heat capacity CΦ,Ω can be written as follows (see the
Appendix):
[(

∂Ω

∂ J

)
S,Q

(
∂φ

∂ Q

)
S,J

−
(

∂Ω

∂ Q

)
S,J

(
∂φ

∂ J

)
S,Q

]

× (CΦ,Ω)−1

T 2 =
∣∣∣∣∣∣
gSS gSQ gS J

gQS gQ Q gQ J

gJ S gJ Q gJ J

∣∣∣∣∣∣ (39)

Therefore, we conclude that the singularities of R(S, Q, J )

correspond to the phase transition points of CΦ,Ω and, also,
that those of R(S, Φ,Ω) correspond to the phase transitions
of CQ,J . We have
[(

∂ Q

∂Φ

)
S,Ω

(
∂ J

∂Ω

)
S,Φ

−
(

∂ J

∂Φ

)
S,Ω

(
∂ Q

∂Ω

)
S,Φ

]

× (CQ,J )−1

T 2 =
∣∣∣∣∣∣
gSS gSΦ gSΩ

gΦS gΦΦ gΦΩ

gΩS gΩΦ gΩΩ

∣∣∣∣∣∣ (40)

We may generalize the above-mentioned relations to a large
class of black holes with an arbitrary number of parameters.
The first law of thermodynamics for black holes with (n +1)

parameters can be written as follows:

dM = T dS +
n∑

i=1

Φi Qi (41)

It is clear that the energy M is a function of n + 1 exten-
sive variables (S, Qi ). In addition, we can consider (n + 1)

pairs of intensive/extensive variables (T, S) and (Φi , Qi ).
The Ruppenier metric for black holes with (n + 1) extensive
variables can also be written

gR
i j = 1

T

(
∂2 M

∂ Xi∂ X j

)
; Xi = (S, Q1, Q2, . . . , Qn) (42)

In general, we contend that the transition points of the heat
capacity CΦ1,...,Φn are the same as the singularity points of
the scalar curvature R(S, Q1, . . . , Qn). The scalar curvature
R(S, Q1, . . . , Qn) is proportional to the inverse of the square
determinant of the metric:

R(S, Q1, . . . , Qn) ∝

∣∣∣∣∣∣∣∣

gSS gSQ1 . . . gSQn

gQ1 S gQ1 Q1 . . . gQ1 Qn

: : : :
gQn S gQn Q1 . . . gQn Qn

∣∣∣∣∣∣∣∣

−2

(43)

Using Eq. (43), it is expected that the inverse of the heat
capacity CΦ1,...,Φn can be obtained by

[
(CΦ1,Φ2,...,Φn )

−1

T n

(
∂(Φ1, Φ2, . . . , Φn)

∂(Q1, Q2, . . . , Qn)S

)]

=

∣∣∣∣∣∣∣∣

gSS gSQ1 . . . gSQn

gQ1 S gQ1 Q1 . . . gQ1 Qn

: : : :
gQn S gQn Q1 . . . gQn Qn

∣∣∣∣∣∣∣∣
(44)

where

∂(Φ1, Φ2, . . . , Φn)

∂(Q1, Q2, . . . , Qn)S
=

∣∣∣∣∣∣∣∣∣∣∣

(
∂Φ1
∂ Q1

) (
∂Φ1
∂ Q2

)
. . .

(
∂Φ1
∂ Qn

)
(

∂Φ2
∂ Q1

) (
∂Φ2
∂ Q2

)
. . .

(
∂Φ2
∂ Qn

)
: : : :(

∂Φn
∂ Q1

) (
∂Φn
∂ Q2

)
. . .

(
∂Φn
∂ Qn

)

∣∣∣∣∣∣∣∣∣∣∣
(45)

Thus, the singularities of R(S, Q1, . . . , Qn) correspond to
the phase transition points of CΦ1,...,Φn . Although we have
proved Eqs. (39) and (40), we do not know a rigorous proof
of Eq. (44) at this time. A general proof for Eq. (44) remains
as an open problem. We hope to solve this problem in
the near future. On the other hand, the conjugate potential
M(S, Φ1, . . . , Φn) can be obtained from M(S, Q1, . . . , Qn)

by the Legendre transformation

M(S, Φ1, . . . , Φn) = M(S, Q1, . . . , Qn) −
n∑

i=1

Φi Qi

(46)

by defining the metric elements for the conjugate potential
M(S, Φ1, . . . , Φn) as

gi j = 1

T

(
∂2 M

∂ Xi∂ X j

)
; Xi = (S, Φ1, Φ2, . . . , Φn) (47)

We can assert that the singularity points of R(S, Φ1, Φ2, . . . ,

Φn) correspond to the phase transitions of CQ1,Q2,...,Qn :

(CQ1,Q2,...,Qn )
−1

T n

(
∂(Q1, Q2, . . . , Qn)

∂(Φ1, Φ2, . . . , Φn)S

)

=

∣∣∣∣∣∣∣∣

gSS gSΦ1
. . . gSΦn

gΦ1 S gΦ1Φ1
. . . gΦ1Φn: : : :

gΦn S gΦnΦ1
. . . gΦnΦn

∣∣∣∣∣∣∣∣
(48)

We have collected the mass (M), the conjugate potential
(M), capacities, scalar curvature functions, and temperature
for various black holes and listed them in Tables 1, 2 and
3. It is clear from these tables that both the heat capacity
and the scalar curvature diverge at the same point. For Kerr,
EMGB, and EYMGB black holes, a factor proportional to
temperature appears in the denominator of the Ricci scalar.
In order to probe this argument, we start with the metric
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Table 1 Thermodynamic
variables and scalar curvature
functions for Kerr and RN
(Reissner–Nordstrom) black
holes

Kerr RN

M(S, J ) =
√

S
4π

+ J 2π
S M(S, Q) =

√
Sπ
2

(
1
π

+ Q2

S

)

T (S, J ) = S2−4J 2π2

4S3/2
√

π S2+4J 2π3 T (S, Q) = S−Q2π

4S3/2√
π

R(S, J ) = − S(S2+12π2 J 2)

(S2+4π2 J 2)(4π2 J 2−S2)
R(S, Q) = 0

CΩ(S, J ) = 2
(−S2+4J 2π2)S3

(S2+4J 2π2)
2 CΦ(S, Q) = −2S

M(S,Ω) =
√

S
4π

− ( SΩ
2π

)2
M(S, Φ) =

√
S

4π
(Φ2 − 1)

T (S,Ω) = −2SΩ2+π

4π
√

S(−SΩ2+π)
T (S, Φ) = 1−Φ2

4
√

π S

R(S,Ω) = 4
(−SΩ2+π

)
π2
(
π2−2SΩ2π−8S2Ω4

)
(π2−8SΩ2π+4S2Ω4)

2
(−2SΩ2+π)S

R(S, Φ) = − −1+Φ2

(−1+3Φ2)
2 S

CJ (S,Ω) = −2
π S
(−2SΩ2+π

)
4S2Ω4−8SΩ2π+π2 CQ(S, Φ) = −2

S
(
Φ2−1

)
−1+3Φ2

Table 2 Thermodynamic
variables and scalar curvature
functions for BTZ
(Banados–Teitelboim–Zanelli)
and EMGB (Einstein–Maxwell–
Gauss–Bonnet) black
holes

Λ cosmological constant,
k Chern–Simons coupling
constant and α Gauss–Bonnet
coupling constant

BTZ EMGB

M(S, J ) = S2

16π2l2 + 4π2 J 2

S2 M(S, Q) = πα + π Q2

6
3√

S2
+ π2 3

√
S2 − πΛ

3√
S4

12

T (S, J ) = S4−64π4 J 2 L2

8π2 L2 S3 T (S, Q) = π
(−Q2+3S4/3−ΛS2)

9S5/3

R(S, J ) = 0 R(S, Q) = −Λ
(−6S10/3 Q2+Λ2 S6−9S14/3+3Q4 S2−4Q2ΛS4+8S16/3Λ

)
S(−Q2+3S4/3+ΛS2)

2
(−Q2+3S4/3−ΛS2)

CΩ(S, J ) = S CΦ(S, Q) = −3
(−Q2+3S4/3−ΛS2)S

−Q2+3S4/3+ΛS2

M(S,Ω) = S2

16π2l2 − Ω2 S2

16π2 M(S, Φ) = πα − 3Φ
3√

S2

π
+ π

3√
S2

12 − πΛ
3√

S4

12

T (S,Ω) = − S
(−1+Ω2 L2)

8π2 L2 T (S, Φ) = − 9Φ2−3π2+π2ΛS2/3

9π
3√S

R(S,Ω) = 2 −1+Ω2 L2

(1+3Ω2 L2)
2 S

R(S, Φ) = − A(S,Φ)

S5/3(−45Φ2+3π2+π2ΛS2/3)
2
(9Φ2−3π2+π2ΛS2/3)

CJ (S,Ω) = − S
(−1+Ω2 L2)
1+3Ω2 L2 CQ(S, Φ) = 3S

(
9Φ2−3π2+π2ΛS2/3)

−45Φ2+3π2+π2ΛS2/3

Table 3 Thermodynamic
variables and scalar curvature
functions for EGB
(Einstein–Gauss–Bonnet) and
EYMGB (Einstein–Yang–
Mills–Gauss–Bonnet) black
holes

EGB EYMGB

M(S, Q) = 3
√

S2 + Q2

3
3√

S2
M(S, Q) = 3

√
S2 − 2Q2 ln(S)

3

T (S, Q) = 2(3S4/3−Q2)

9S5/3 T (S, Q) = 2(S−Q2 3√S)

3S4/3

R(S, Q) = 0 R(S, Q) = − B(S,Q)

6
(
−S+Q2 3√S

)(
− ln(S)S+3 ln(S)Q2 3√S+6Q2 3√S

)3

CΦ(S, Q) = −3S CΦ(S, Q) = − 3 ln(S)
(
−S+Q2 3√S

)
S

− ln(S)S+6Q2 3√S+3Q2 ln(S)
3√S

M(S, Φ) = 3
√

S2(1 − 3
4 Φ2) M(S, Φ) = 3

√
S2 + 3Φ2

8 ln(S)

T (S, Φ) = −−4+3Φ2

6 3√S
T (S, Φ) = −−16(ln(S))2 S+9Φ2 3√S

24S4/3(ln(S))2

R(S, Φ) = −8 −4+3Φ2

(−4+15Φ2)
2 S

R(S, Φ) − D(S,Φ)

(ln(S))2
(
−16(ln(S))2 S+9Φ2 3√S

)
S

20
3
(−16(ln(S))2 S2+27Φ2 S4/3

)3

CQ(S, Φ) = −3
(−4+3Φ2

)
S

−4+15Φ2 CQ(S, Φ) = −3
S
(
−16(ln(S))2 S+9Φ2 3√S

)
−16(ln(S))2 S+27Φ2 3√S
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gγβ = 1

T

(
∂2 M

∂γ ∂β

)
= 1

T
hγβ (49)

to show that

gγβ,β = ∂β

(
1

T
hγβ

)
= 1

T 2 h̃γβ,β (50)

where

h̃γβ,β = −hγβ∂β T + T hγβ,β (51)

By replacing these equations in the numerator of the scalar
curvature, we have
∣∣∣∣∣∣∣

1
T hββ

1
T hγ γ

1
T hγβ

1
T 2 h̃ββ,β

1
T 2 h̃γ γ,β

1
T 2 h̃γβ,β

1
T 2 h̃ββ,γ

1
T 2 h̃γ γ,γ

1
T 2 h̃γβ,γ

∣∣∣∣∣∣∣
∝ 1

T 5
(52)

For the denominator of the scalar curvature we have
∣∣∣∣∣

1
T hγ γ

1
T hγβ

1
T hγβ

1
T hββ

∣∣∣∣∣
2

∝ 1

T 4 (53)

Consequently

R ∝ 1

T
(54)

On the other hand, for RN, BTZ, and EGB black holes, two
elements of the metric are equal to zero. For RN and EGB
black holes, we have ∂S(ḡSΦ) = ∂Φ(ḡSS) = 0 and, for BTZ,
∂S(ḡSΩ) = ∂Ω(ḡSS) = 0. Therefore, the numerator of the
scalar curvature is proportional to 1

T 3 and the scalar curvature

is proportional to the temperature (R ∝ T ).

3 Thermodynamic geometry of phantom
Reissner–Nordestrom–AdS and black plane

Recently, a new solution of Einstein–anti-Maxwell the-
ory with a cosmological constant, called the anti-Reissner–
Nordstrom-(A)de Sitter solution, has been investigated [18].
This new solution has led to the following thermodynamic
expression for the mass of this black hole:

M = 1

2
(S/π)3/2

(
π

S
− Λ

3
+ ηπ2 Q2

S2

)
(55)

where Λ is the cosmological constant, which might behave
as Λ > 0 (dS) or Λ < 0 (AdS). At η = 1, we have a
solution for Reissner–Nordstrom–AdS, while η = −1, due
to the negative energy of the field of spin 1, gives us a solution
for anti-Reissner–Nordstrom–AdS (phantom). The Hawking
temperature, T , the electric potential, Φ, and CQ are defined
as follows:

T =
(

∂ M

∂S

)
= −π S + ΛS2 + ηπ2 Q2

−4(π S)3/2 (56)

Φ =
(

∂ M

∂ Q

)
= (S/π)3/2ηπ2 Q

S2 (57)

CQ = T

(
∂S

∂T

)
Q

= T(
∂T
∂S

)
Q

= −2S(−π S + ΛS2 + ηπ2 Q2)

(−π S − ΛS2 + 3ηπ2 Q2)
(58)

In [16], the geometrothermodynamic approach is used to
obtain the phase transition points. However, this theory is not
able to produce the correct phase transition points. In sum-
mary, the geometrothermodynamics of black holes is consid-
ered as a 2n + 1-dimensional thermodynamic phase space,
T , with independent coordinates Φ, Ea, I a , a = 1 . . . n,
where Φ represents the thermodynamic potential, and Ea

and I a are the extensive and intensive thermodynamic vari-
ables, respectively. If the space T possesses a non-degenerate
metric G AB(ZC ), where Zc = Φ, Ea, I a , and one form of
Gibbs � = dΦ − δab I a Eb (in which δab is the Kronecker
delta), then

G = (dΦ − δab I adEb) + (δab Ea I b)(ηcddEcdI d)

ηcd = diag(−1, 1, . . . , 1)
(59)

The Gibbs form is invariant under Legendre transformations,
written as

{Φ, Ea, I a} → {Φ̃, Ẽa, Ĩ a} Φ = Φ̃ − δab Ẽa Ĩ b (60)

where

Ea = − Ĩ a I a = Ẽa (61)

On the other hand, if somebody considers a n-dimensional
subspace E such that E ⊂ T , we will, therefore, obtain dΦ =
δab I adEb, which is called the first law of thermodynamics.
In the space E , the Quevedo metric is given by

gQ =
(

Ec ∂Φ

∂ Ec

)(
ηabδ

bc ∂2Φ

∂ Ec∂ Ed
dEadEb

)
(62)

Using (62) and (55), the scalar curvature is obtained as fol-
lows:

R(S, Q) = A(S, Q)

(Sπ + ΛS2 − 3π2ηQ2)
2

× 1

(−Sπ + ΛS2 − 3π2ηQ2)
3 (63)

where the points S1 = − ( π
2Λ

)
(1 + √

1 + 12ηΛQ2). S2 =
− ( π

2Λ

)
(−1 + √

1 + 12ηΛQ2) and S3 = − ( π
2Λ

)
(1 − √

1 + 12ηΛQ2) are singularities of R(S, Q). All the
other points are negative or have a complex value for the
entropy, and have thus been rejected. The points of the phase
transition of the specific heat in Eq. (58) are only S1 and
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S3. However, the extra point, i.e. S2, does not correspond
to a phase transition. Thus, the geometrodynamic method is
not able to provide the same result as the analysis by using
the heat capacity of RN–AdS and anti-RN–AdS black holes
does.

Using a Legendre transformation, we find a conjugate
potential for M(S, Q):

M(S, Φ) = M(S, Q) − ΦQ. (64)

By solving Q from (57) and substituting it in (64), we have

M(S, Φ) = 1

2

(
S

π

) 3
2
(

π

S
− Λ

3
+ πΦ2

ηS

)

− Φ2S2

(S/π)3/2ηπ2
(65)

We define the following metric:

gi j = 1

T

(
∂2 M

∂ Xi∂ X j

)
; Xi = (S, Φ) (66)

Therefore, we will obtain the scalar curvature, R, as a func-
tion of S and Φ. Finally, using the relation (57), we rewrite
R as a function of S and Q:

R̄(S, Q) = C(S, Q)

(−Sπ − ΛS2 + 3π2ηQ2)
2

× 1

(−Sπ + ΛS2 + π2ηQ2)
(67)

The roots of the first part of the denominator give S1 and S3;
i.e., the phase transition points. The second part of the denom-
inator is only zero at T = 0 or for extremal black holes.
Therefore, the curvature diverges exactly at those points
where the heat capacity diverges with no other additional
roots.

For the RN–AdS black hole, the scalar curvature (67) and
the specific heat (58) are depicted in Figs. 1 and 2, respec-
tively, as a function of the entropy and for a fixed value of
the electric charge: Q = 0.25.

The Ruppeiner curvature can also be used to probe the
microstructure of a thermodynamic system [26,27]. The
scalar curvature is positive in Fig. 1; we, therefore, expect
a fermion-like or short range repulsive behavior for the
microstructure of RN–AdS black holes.

A change of sign for the heat capacity is usually associated
with a drastic change in the stability properties of a thermo-
dynamic system; a negative heat capacity represents a region
of instability whereas the stable domain is characterized by a
positive heat capacity. For an RN–AdS black hole, the unsta-
ble region (CQ < 0) is between S1 and S3, while we expect
stability for S < S1 and S > S3. The scalar curvature and
the specific heat for the phantom Reissner–Nordestrom–AdS
are depicted in Figs. 3 and 4, respectively.

Fig. 1 Graph of the scalar of curvature as a function of entropy, S, in
the RN–AdS case, for an electric charge Q = 0.25 and a cosmological
constant Λ = −1

Fig. 2 Graph of the specific heat as a function of entropy, S, in the
RN–AdS case, for an electric charge Q = 0.25 and a cosmological
constant Λ = −1

The four-dimensional black plane is another interesting
thermodynamic system with two degrees of freedom [20].
The mass of the black plane is given by

M(S, Q) = α2S2 + ηπ2 Q2

πα
√

2S
(68)

where Λ is the cosmological constant and α2 = −Λ
3 . When

considering η = 1, we have a solution for the normal black
plane, whileη = −1 gives us a solution for the phantom black
plane. Furthermore, the temperature and the electric potential
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Fig. 3 Graph of the scalar of curvature as a function of the entropy, S,
of the phantom Reissner–Nordestrom–AdS black hole, for an electric
charge Q = 0.25 and a cosmological constant Λ = −1

Fig. 4 Graph of the specific heat as a function of the entropy, S, of the
phantom Reissner–Nordestrom–AdS black hole for an electric charge
Q = 0.25 and a cosmological constant Λ = −1

can be written in terms of the entropy and the electric charge:

T =
(

∂ M

∂S

)
= 3α2S2 − ηπ2 Q2

πα(
√

2S)
3 (69)

Φ =
(

∂ M

∂ Q

)
= 2π Q

α
√

2S
(70)

The heat capacity for the black plane can be straightforwardly
computed using the fundamental relation (68):

CQ = T

(
∂S

∂T

)
Q

= 2S(3α2S2 − ηπ2 Q2)

3(α2S2 + ηπ2 Q2)
(71)

Phase transitions are then determined by the roots of the
denominator of CQ ; i.e., when the specific heat diverges.
Therefore, there exists only one divergent point Si =
−i

√
ηπ Q/α. This shows that the normal case (η = 1) has no

phase transition, while the phantom case (η = −1) possesses
a phase transition. For the phantom black plane, we compute
the scalar curvature by using our formalism of the thermo-
dynamic geometry. We can consider the following Legendre
transformation of M(S, Q):

M(S, Φ) = M(S, Q) − ΦQ (72)

Using (70) and replacing Q by Φα

√
S

2π2 in (72), we have

M(S, Φ) = α
√

2S(2Sη − Φ2)

4ηπ
(73)

Now, we evaluate the Ricci scalar R(S, Φ) for the black
plane,

R(S, Φ) = 4/3
Φ2

(
18 Sη + 5 Φ2

)
η(

2 Sη + Φ2
)2 (6 Sη − Φ2

) (74)

By replacing relation (70) for Φ, we have

R(S, Q) = −2π2 Q2α2Sη(9S2α2 + 5ηπ2 Q2)

(S2α2 + ηπ2 Q2)
2
(−3S2α2 + ηπ2 Q2)

(75)

The roots of the first term in the denominator correspond to
the phase transition points. The second factor in the denom-
inator is zero only at the extremal limit (T = 0).

4 Thermodynamic geometry of Kerr Newman black
hole

Kerr Newman black holes [21] are described by their mass
(M), entropy (S), charge (Q), and angular momentum (J ).
The mass for the Kerr Newman black hole is given by

M =
√

S(4J 2 + S2 + 2Q2S + Q4)

2S
(76)

The thermodynamic variables and the first law of thermody-
namics are given by

T =
(

∂ M

∂S

)
= S2 − 4J 2 − Q2

4S
3
2
√

S2 + 4J 2 + Q2 + 2Q2S

= S2 − 4J 2 − Q2

4S2 M
(77)

Ω =
(

∂ M

∂ J

)
= 2J√

S2 + 4J 2 + Q2 + 2Q2S
√

S

= J

SM
(78)
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Φ =
(

∂ M

∂ Q

)
= 4QS + 4Q3

4
√

S(4J 2 + S2 + 2Q2S + Q4)

= Q(S + Q2)

2M S
(79)

dM = T dS + ΩdJ + ΦdQ (80)

where T is the Hawking temperature, Ω is the angular veloc-
ity, and Φ is the potential deference of the Kerr Newman
black holes. The following relations also hold among the
seven variables M, T, S,Ω,Φ, Q, J :

2T

(
1

S
− Ω2

)1/2

= 1

2S
− Ω2 − Q2

S2 (81)

Ω2 = 1

S
−
(

Φ

Q

)2

(82)

S

(
Φ

Ω

)
= M + 2T S (83)

These relations help us to obtain exact expressions for the
heat capacities.

CJ,Q is given by

CJ,Q = T(
∂T
∂S

)
J,Q

= F(S, Q, J )

×1/(48J 4 + 24S2 J 2 + 32S J 2 Q2 + 24J 2 Q4

−S4 + 6S2 Q4 + 8SQ6) (84)

The conjugate potential for M(S, Q, J ) can be defined as

M(S,Ω,Φ) = M(S, Q, J ) − Ω J − ΦQ (85)

Now, replacing J by (ΩSM) in Eq. (76) and resolving this
with respect to M will yield the following relation for M :

M(S,Ω, Q) = S + Q2

2
√−Ω2S2 + S

(86)

Using (82) and replacing Q by Φ
√

S√
1−Ω2 S

in (86), we have

M(S,Ω,Φ) = (S − S2Ω2 + SΦ2)

2(1 − SΩ2)
√

S − S2Ω2
(87)

Finally, we obtain the following conjugate potential:

M(S,Ω,Φ) = S(Ω2S − 1)(Ω2S − 1 + Φ2)

2(1 − SΩ2)
√

S − S2Ω2
(88)

Defining the following metric:

gi j = 1

T

(
∂2 M

∂ Xi∂ X j

)
; Xi = (S,Ω,Φ) (89)

We may obtain the resulting scalar curvature in terms of S,
Ω , and Φ as follows:

R(S,Ω,Φ) = E(S,Ω,Φ)

A(S,Ω,Φ)2 B(S,Ω,Φ)
(90)

We can also rewrite CJ,Q as a function of S, Ω , and Φ by
replacing the following equations in relation (84):

J = ΩS

2

(
S√

S − S2Ω2
+ Φ2

√
S − S2Ω2

(
S−1 − Ω2

)
)

(91)

Q = Φ
√

S√
1 − Ω2S

(92)

Thus,

CJ,Q = 2B(S, Φ,Ω)
(−1 + Ω2S − φ2

)
A(S, Φ,Ω)

(93)

where

A = 4Ω8S4 − 16Ω6S3 + 21Ω4S2 + 4Ω4Φ2S2

−2Ω2Φ2S − 10Ω2S + 1 − 3Φ4 − 2Φ2 (94)

B = 2S(Ω4S2 − 3Ω2S + 1 − Φ2) (95)

As a result, the roots of A(S,Ω,Φ) correspond to the diver-
gence point of the heat capacity CJ,Q , while B(S,Ω,Φ) is
zero only at the extreme points (T = 0). For Myers–Perry
black holes and a similar calculation, see [28].

5 Conclusion

In this work, we have explored a formulation for the thermo-
dynamic geometry of black holes. This formulation yields a
proper expression of the relation between heat capacity and
curvature singularities. We also investigated a large class of
black holes in all of which the singularity of the specific heat
corresponds to that of the scalar curvature. We conclude that
our method can be used as a correct and simple formulation
for the characterization of the thermodynamic geometry of
black holes and other thermodynamic systems.

Open Access This article is distributed under the terms of the Creative
Commons Attribution License which permits any use, distribution, and
reproduction in any medium, provided the original author(s) and the
source are credited.
Article funded by SCOAP3 and licensed under CC BY 4.0

Appendix

The first law of thermodynamics for a black hole with the
three parameters S, Q, and J can be written as follows:

dM = T dS + ΦdQ + ΩdJ (96)

The conjugate potential M(S, Φ,Ω) can be obtained from
M(S, Q, J ) by the following Legendre transformation:

M(S, Φ,Ω) = M(S, Q, J ) − ΦQ − Ω J (97)
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Therefore, the first law of thermodynamics for this function
would be

dM = T dS − QdΦ − JdΩ (98)

We can write Maxwell’s relations from Eqs. (96) and (98):(
∂Φ

∂ J

)
S,Q

=
(

∂Ω

∂ Q

)
S,J

;
(

∂Φ

∂S

)
J,Q

=
(

∂T

∂ Q

)
J,S(

∂Ω

∂S

)
J,Q

=
(

∂T

∂ J

)
S,Q

(99)

(
∂ Q

∂Ω

)
Φ,S

=
(

∂ J

∂Φ

)
S,Ω

;
(

∂ Q

∂S

)
Ω,Φ

= −
(

∂T

∂Φ

)
S,Ω(

∂ J

∂S

)
Ω,Φ

= −
(

∂T

∂Ω

)
S,Φ

(100)

In addition, the Ruppeiner metric of the three parameters of
the black hole can be expressed by the following relations:

gSS = 1

T

(
∂2 M

∂S2

)
= 1

T

(
∂T

∂S

)
J,Q

(101)

gSQ = gQS = 1

T

(
∂2 M

∂S∂ Q

)
= 1

T

(
∂T

∂ Q

)
S,J

(102)

gS J = gJ S = 1

T

(
∂2 M

∂S∂ J

)
= 1

T

(
∂T

∂ J

)
S,Q

(103)

gQ J = gJ Q = 1

T

(
∂2 M

∂ Q∂ J

)
= 1

T

(
∂Φ

∂ J

)
S,Q

(104)

gQ Q = 1

T

(
∂2 M

∂ Q2

)
= 1

T

(
∂Φ

∂ Q

)
J,S

(105)

gJ J = 1

T

(
∂2 M

∂ J 2

)
= 1

T

(
∂Ω

∂ J

)
S,Q

(106)

We can expand the right hand side of (39) as follows:

gSS(gQ Q gJ J − (gQ J )2) − gSQ(gSQ gJ J

−gS J gQ J ) + gS J (gSQ gQ J − gQ Q gS J ) (107)

By replacing the elements of the metric (101)–(106) in (107)
and using Maxwell’s relations (99) and (100), we obtain the
following relation:∣∣∣∣∣∣

gSS gSQ gS J
gSQ gQ Q gQ J
gS J gQ J gJ J

∣∣∣∣∣∣
= (CΦ,Ω)−1

T 2

((
∂Ω

∂ J

)
S,Q

(
∂φ

∂ Q

)
S,J

−
(

∂Ω

∂ Q

)
S,J

(
∂φ

∂ J

)
S,Q

)

= (CΩΦ)−1

T 2

(
∂(Ω,Φ)

∂(J, Q)S

)
(108)
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