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An algorithm is described to solve multiple-phase optimal control problems using a recently de-
veloped numerical method called the Gauss pseudospectral method. The algorithm is well suited
for use in modern vectorized programming languages such as FORTRAN 95 and MATLAB. The
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1. INTRODUCTION

Due to the increasing complexity of engineering applications, over the past two
decades the subject of optimal control has transitioned from theory to computa-
tion. In particular, computational optimal control has become a science in and of
itself, resulting in a variety of numerical methods and corresponding software
implementations of these methods. The vast majority of software implementa-
tions of optimal control today are those that involve the direct transcription of
a continuous-time optimal control problem to a nonlinear program (NLP). The
NLP is then solved using one of a variety of well-known software packages [Gill
et al. 2002; Byrd et al. 2006; Betts and Frank 1994].

Over the last decade, a particular class of direct collocation methods, called
pseudospectral methods [Canuto et al. 1988, 2007; Fornberg 1998; Trefethen
2001], have risen to prominence in the numerical solution of optimal control
problems [Elnagar et al. 1995; Elnagar and Kazemi 1998; Vlassenbroeck and
Doreen 1988; Fahroo and Ross 2000, 2001; Ross and Fahroo 2004b; Rao 2003;
Williams 2004a, 2004b, 2005; Ross and Fahroo 2004a, 2004b; Ross and Fahroo
2008a, 2008b; Benson 2004; Benson et al. 2006; Huntington 2007; Kameswaran
and Biegler 2008]. In a pseudospectral method, the state and control are approx-
imated using global polynomials and collocation of the differential-algebraic
equations is performed at orthogonal collocation points (i.e., the collocation
points are the roots of an orthogonal polynomial and/or a linear combination
of an orthogonal polynomial and its derivatives). Pseudospectral methods, that
is, the combination of using global polynomials with orthogonally collocated
points, are known to converge spectrally (i.e., converging to the solution faster
than any power of N−m where N is the number of collocation points and m is
any finite value [Fornberg 1994]). Furthermore, pseudospectral methods have
been shown to be mathematically sound [Fornberg 1994, 1998; Trefethen 2001]
and have been used extensively in fluid dynamics [Canuto et al. 1988, 2007;
Don 2000]. In situations where global collocation is inadequate (e.g., problems
where the solution has steep gradients or possible discontinuities), pseudospec-
tral methods are employed in the form of multidomain techniques (i.e., the
problem is divided into a relatively small number of subintervals and global
collocation is performed across each subinterval) [Canuto et al. 2007].1 Finally,

1The multidomain approach differs significantly from the local collocation approach [Betts 2001]
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it is noted that, in the context of optimal control problems, a study has been
performed that supports the use of global (semi-global) spectral collocation over
local spectral collocation [Huntington and Rao 2008a].

The three most commonly used set of orthogonal collocation points in a pseu-
dospectral method are Legendre-Gauss (LG), Legendre-Gauss-Radau (LGR),
and Legendre-Gauss-Lobatto (LGL) points. These three sets of points are ob-
tained from the roots of a Legendre polynomial and/or linear combinations of a
Legendre polynomial and its derivatives. All three sets of points are defined on
the domain [−1, 1], but differ significantly in that the LG points include neither

of the endpoints, the LGR points include one of the endpoints, and the LGL
points include both of the endpoints. In addition, the LGR points are asymmet-
ric relative to the origin and are not unique in that they can be defined using
either the initial point or the terminal point. As a result of these three collo-
cation points, the following three mathematical methods have been developed:
the Legendre pseudospectral method (LPM) [Elnagar et al. 1995; Fahroo and
Ross 2001], the Radau pseudospectral method (RPM) [Kameswaran and Biegler
2008], and the Gauss pseudospectral method (GPM) [Benson 2004; Benson et al.
2006; Huntington 2007]. In addition, methods have been developed to handle
interior point constraints [Fahroo and Ross 2000; Ross and Fahroo 2004a], and
nonsequential phases [Rao 2003].

While many pseudospectral methods and subsequent extensions have been
described mathematically, these methods have to date not been described in
the open literature in the form of algorithms that enable implementation in
mathematical software. As a result, it is difficult for a researcher or an en-
gineer to study these mathematical methods and arrive at a tractable soft-
ware implementation after any reasonable investment of time. Instead, most
users typically resort to using either commercial off-the-shelf (COTS) or open-
source software to solve optimal control problems. Examples of COTS soft-
ware include SOCS [Betts and Huffman 1997], DIRCOL [von Stryk 2000],
GESOP [Jansch et al. 1994], OTIS [Vlases et al. 1990], DIDO [Ross and
Fahroo 2001], DIRECT [Williams 2008], and MISER [Goh and Teo 1988], while
examples of open-source optimal control software include DYNOPT [Cizniar
et al. 2006], OPTCONTROLCENTRE [Jockenhovel 2002], and PSOPT [Becerra
2009]. The typical alternative to COTS or open-source software is “home-grown”
software.

While users benefit greatly from COTS software, such programs require a
great investment of time to learn. Moreover, even after overcoming the steep
learning curve associated with using these programs, a user has gained little
insight into the underlying algorithm used in the software. Thus the underly-
ing algorithm remains a “black box” and the user would still find it difficult
to implement such an algorithm independently. Even worse, because using a
“black-box” provides little insight about the underlying methodology, COTS
programs are limited in their educational value.

in that in local collocation the problem is divided into many small subintervals whereas in the
multidomain technique the problem is divided into few relatively large subdomains.
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The purpose of this article is to enhance the understanding of the imple-
mentation of pseudospectral methods in mathematical software for solving op-
timal control problems. To achieve this goal, this article provides a detailed
description of an algorithm and a supporting software implementation of the
algorithm. In particular, the algorithm developed in this article utilizes the
aforementioned Gauss pseudospectral method (GPM) [Benson 2004; Benson
et al. 2006; Huntington 2007] for solving multiple-phase optimal control prob-
lems. The GPM was chosen as the basis for the algorithm of this article be-
cause it has many useful numerical properties including the ability to generate
highly accurate costates (adjoints) [Benson 2004; Benson et al. 2006; Hunting-
ton 2007] of the continuous-time optimal control problem.2 It is noted that the
authors of this article have already developed customized (i.e., nonreusable)
implementations of the algorithm described in this article for applications in
flight dynamics [Huntington 2007; Huntington et al. 2007; Huntington and Rao
2007, 2008b], but until now no detailed information has been provided to the
research community on how to implement the GPM in a general-purpose soft-
ware program. As a result, this article is an attempt to fill the gap between
the theory and the implementation of pseudospectral methods for optimal con-
trol by providing a general-purpose vectorized implementation of the Gauss
pseudospectral method [Benson 2004; Benson et al. 2006; Huntington 2007;
Huntington et al. 2007; Huntington and Rao 2007, 2008b]. The algorithm de-
scribed in this article can be used in modern vectorized programming languages
such as FORTRAN 95/98/2000 or MATLAB. A particular MATLAB implemen-
tation, called GPOPS, is provided and is found to work well on a variety of com-
plex multiple-phase continuous-time optimal control problems. After describing
the algorithm, three examples are provided to demonstrate the flexibility and
utility of the software. The first example is a modified version of the chemical
engineering fed-batch reactor problem known as the Lee-Ramirez Bioreactor

[Balsa-Canto et al. 2001]. The second and third examples are aerospace en-
gineering problems of a multiple-stage launch vehicle ascent [Benson 2004;
Huntington 2007; Huntington and Rao 2007] and a classical one-dimensional
sounding rocket ascent (known as the Goddard rocket problem [Betts 2001]).3

In order to see the power of the software, the first example is compared against
the commercially available software PROPT [Rutquist and Edvall 2008], while
the second and third examples are compared against the well-known and com-
mercially available program Sparse Optimal Control Software SOCS [Betts and
Huffman 1997]. It is found that the solutions obtained using GPOPS compare
well with those obtained using PROPT and SOCS, respectively. The results
of this article demonstrate that GPOPS is useful for solving optimal control
problems that arise in different branches of engineering.

2With some modifications, the algorithm described in this article can be adapted to other pseu-
dospectral methods such as the aforementioned RPM [Kameswaran and Biegler 2008] or the LPM
[Elnagar et al. 1995; Fahroo and Ross 2001].
3It is well known that the Goddard rocket problem has a segment that consists of a singular arc
and this example is a demonstration of the ability of GPOPS to handle problems with singular arcs.
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2. GENERAL MULTIPLE-PHASE OPTIMAL CONTROL PROBLEMS

The problems that GPOPS is capable of solving fall into the following general
category. Given a set of P phases (where p ∈ [1, . . . , P ]), minimize the cost
functional

J =

P
∑

p=1

[

�(p)
(

x(p)(t0), t
(p)
0 , x(p)(t f ), t

(p)
f ; q(p)

)

+

∫ t
(p)
f

t
(p)
0

L
(p)

(

x(p)(t), u(p)(t), t; q(p)
)

dt

]

(1)

subject to the dynamic constraints

ẋ(p) = f (p)
(

x(p), u(p), t; q(p)
)

, (p = 1, . . . , P ), (2)

the inequality path constraints

C
(p)
min ≤ C(p)

(

x(p)(t), u(p)(t), t; q(p)
)

≤ C(p)
max, (p = 1, . . . , P ), (3)

the boundary conditions

φ
(p)
min ≤ φ(p)

(

x(p)(t0), t
(p)
0 , x(p)(t f ), t

(p)
f ; q(p)

)

≤ φ(p)
max, (p = 1, . . . , P ), (4)

and the linkage constraints [Betts 2001]

L(s)
min ≤ L(s)

(

x(ps
l )(t f ), t

(ps
l )

f ; q(ps
l ), x(ps

r )(t0), t
(ps

r )
0 ; q(ps

r )
)

≤ L(s)
max,

{

pl , pr ∈ [1, . . . , P ],
s = 1, . . . , L.

(5)

where x(p)(t) ∈ R
n

(p)
x , u(p)(t) ∈ R

n
(p)
u , q(p) ∈ R

n
(p)
q , and t ∈ R are, respectively, the

state, control, static parameters, and time in phase p = [1, . . . , P ], L is the
number of pairs of phases to be linked, and (p(s)

l , p(s)
r ) ∈ [1, . . . , P ], s = 1, . . . , L,

are the “left” and “right” phase numbers, respectively. Specifically, the functions
�(p), L(p), f(p), C(p), φ(p), and L(s) are defined by the following mappings:

�(p) : R
n

(p)
x × R × R

n
(p)
x × R × R

n
(p)
q −→ R,

L(p) : R
n

(p)
x × R

n
(p)
u × R × R

n
(p)
q −→ R,

f(p) : R
n

(p)
x × R

n
(p)
u × R × R

n
(p)
q −→ R

n
(p)
x ,

C(p) : R
n

(p)
x × R

n
(p)
u × R × R

n
(p)
q −→ R

n
(p)
c ,

φ(p) : R
n

(p)
x × R × R

n
(p)
x × R × R

n
(p)
q −→ R

n
(p)
φ ,

L(s) : R
n

(ps
l

)
x × R × R

n
(ps

l
)

q × R
n

(ps
r )

x × R × R
n

(ps
r )

q −→ R
n(s)

L ,

(6)

where n
(p)
x , n

(p)
u , n

(p)
q , n

(p)
c , and n

(p)
φ are the dimensions of the state, control,

static parameter vector, path constraint vector, and boundary condition vector
in phase p = [1, . . . , P ], and n(s)

L is the dimension of the vector formed by the
sth set of linkage constraints. While much of the time a user may want to solve
a problem consisting of multiple phases, it is important to note that the phases
need not be sequential. To the contrary, any two phases may be linked provided
that the independent variable does not change direction (i.e., the independent
variable moves in the same direction during each phase that is linked). It is
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Phases 2 and 5 Connected
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Fig. 1. Schematic of linkages for multiple-phase optimal control problem. The example shown in
the picture consists of five phases where the ends of phases 1, 2, and 3 are linked to the starts of
phases 2, 3, and 4, respectively, while the end of phase 2 is linked to the start of phase 5.

noted that the approach to linking phases used in GPOPS is based on well-
known formulations in the literature such as those given in Betts [2001] and
Betts [1998]. A schematic of how phases can potentially be linked is given in
Figure 1.

3. GAUSS PSEUDOSPECTRAL DISCRETIZATION

Before proceeding to a description of the GPOPS algorithm, in this section we
provide a detailed description of the discretization of a multiple-phase optimal
control problem via the GPM. For completeness, we restate some of the basic
equations that have been previously developed for the GPM [Benson 2004;
Benson et al. 2006; Huntington 2007].

Let p ∈ [1, . . . , P ] be a particular phase of an optimal control problem and
let (·)(p) denote information in the pth phase. For every phase of the problem,
consider now the following transformation of the independent variable, t, to the
variable τ ∈ [−1, 1]4:

t(p) =
t

(p)
f − t

(p)
0

2
τ (p) +

t
(p)
f + t

(p)
0

2
. (7)

Furthermore, suppose we choose the collocation points in each phase to be the
set of Legendre-Gauss (LG) points, (τ1, . . . , τN (p) ), which are the roots of the
N th-degree Legendre polynomial, PN (τ ), given as5

PN =
1

2N N !

d N

dτ N

{[

τ 2 − 1
]N}

. (8)

4For simplicity with the remainder of this section, superscript “(p)” denoting the phase number
will be suppressed unless it is needed to distinguish between phases.
5The Legendre-Gauss (LG) points are conveniently obtained by computing the eigenvalues of the
N × N Jacobi matrix as is done in the pseudospectral differentiation matrix suite [Weideman and
Reddy 2000].
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Corresponding to the LG points are the LG weights which are computed as

wi =
2

(

1 − τ 2
i

) [

P ′
N

]2
(i = 1, . . . , N ). (9)

Finally, the discretization points used in the GPM are the LG points plus
the points τ0 = −1 and τN+1 = 1 (thus resulting in a complete set of points
(τ0, . . . , τN+1).

The discretization in each phase p = [1, . . . , P ] of the problem can then
be stated in terms of the independent variable τ as follows. First, the state
is approximated using a basis of N + 1 Lagrange interpolating polynomials,
Li(τ ) (i = 0, . . . , N ),

x(τ ) ≈ X(τ ) =

N
∑

i=0

X(τi)Li(τ ), (10)

where Li(τ ) (i = 0, . . . , N ) are defined as

Li(τ ) =

N
∏

j=0, j �=i

τ − τ j

τi − τ j

. (11)

It is known that the Lagrange polynomials Li(τ ) (i = 0, . . . , N ) satisfy the so
called isolation property

Li(τ j ) =

{

1, i = j ,

0, i �= j .
(12)

The continuous cost functional of Equation (1) is then approximated using the
values of the state, control, and time at the LG points via a Gauss quadrature
[Davis and Rabinowitz 1984] as

J =

P
∑

p=1

�(p)
(

X
(p)
0 , t

(p)
0 , X

(p)
f , t

(p)
f

)

+

P
∑

p=1

t
(p)
f − t

(p)
0

2

N (p)
∑

k=1

w
(p)
k L

(p)
(

X
(p)
k , U

(p)
k , τ

(p)
k ; q(p), t

(p)
0 , t

(p)
f

)

. (13)

Next, differentiating the expression in Equation (10) with respect to τ gives

dX

dτ
≈

N
∑

i=0

X(τi)
dLi(τ )

dτ
. (14)

The derivative of each Lagrange polynomial at the LG points can be represented
compactly in the form of a differentiation matrix, D ∈ R

N×N+1 as

Dki = L̇i(τk) =

N
∑

l=0

N
∏

j=0, j �=i,l

(τk − τ j )

N
∏

j=0, j �=i

(τi − τ j )

, (15)
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where k = 1, . . . , N and i = 0, . . . , N . The dynamic constraint of Equation (2)
is then transcribed into algebraic constraints in each phase p = [1, . . . , P ] of
the problem as

N
∑

i=0

DkiXi −
t f − t0

2
f(Xk , Uk , τk ; q, t0, t f ) = 0 (k = 1, . . . , N ), (16)

where Xk ≡ X(τk) ∈ R
n and Uk ≡ U(τk) ∈ R

m (k = 1, . . . , N ). Next, define an
additional variable X f ≡ XN+1 ≡ X(τ f ) as

X0 = X(τ0), (17)

XN+1 = X0 +
t f − t0

2

N
∑

k=1

wk f(Xk , Uk , τk ; q, t0, t f ). (18)

It is noted that, because we have introduced an additional variable,
Equation (18) is an additional constraint in the discretization (in order to main-
tain the same number of degrees of freedom). Now, because Equation (18) is a
function of the right-hand side of the differential equation at each LG point,
Equation (16) can be used to solve for f and the result can be substituted into
Equation (18). The result of this substitution transforms Equation (18) into a
linear equation given as

XN+1 − X0 −

N
∑

i=0

N
∑

k=1

wkDkiXi = 0. (19)

Because it is linear, Equation (19) is implemented [as opposed to Equation (18)].
Similarly, the path constraints of Equation (3) are discretized at the LG points
as

Cmin ≤ C(Xk , Uk , τk ; t0, q, t f ) ≤ Cmax (k = 1, . . . , N ). (20)

Furthermore, the boundary conditions of Equation (4) are expressed as

φmin ≤ φ(X0, t0, XN+1, t f ) ≤ φmax. (21)

Finally, the linkage constraints are mapped using the values at the termini and
start, respectively, of the phase pairs (pl , pr ) ∈ [1, . . . , P ] (l , r = [1, . . . , P ]) as

L(s)
min ≤ L(s)

(

X
(ps

l )

N+1, t
(ps

l )
f ; q(ps

l ), X
(ps

u)

0 , t
(ps

u)

0 ; q(ps
u)
)

≤ L(s)
max,

{

pl , pu ∈ [1, . . . , P ],

s = 1, . . . , L.

(22)

4. ALGORITHM FOR SOLVING MULTIPLE-PHASE OPTIMAL CONTROL
PROBLEMS USING THE GAUSS PSEUDOSPECTRAL METHOD

In this section we provide the algorithm for mapping of the multiple-phase
GPM to an NLP in standard form. As mentioned in the Introduction, we note
that the approach described in this section is a generalization of many custom
(nonreusable) MATLAB programs that have been developed by the authors or
MATLAB programs codeveloped by the authors and their colleagues [Rao 2003;
Benson 2004; Huntington 2007; Huntington et al. 2007; Huntington and Rao
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2007, 2008a, 2008b]. It is noted that the algorithm described is a formalization
of an extensive amount of programming experience.

In general, an NLP has the following standard form. Minimize the cost func-
tion

f (Z) (23)

subject to the algebraic equality and inequality constraints

Zmin ≤ Z ≤ Zmax,

cE (Z) = 0,

cI,min ≤ cI (Z) ≤ cI,max.

(24)

It is important to note in Equations (23) and (24) that the column vector
z ∈ R

nz contains the NLP decision variables for the entire problem. Similar,
c(z) is a column vector of constraints for the entire problem. Finally the sub-
scripts “E” and “I” correspond, respectively, to the equality and the inequality

constraints. Recalling that the entire problem consists of P phases and denot-
ing the decision vector within a given phase p ∈ [1, . . . , P ] by z, the complete
vector of decision variables is a concatenation of the decision variables in each
phase of the problem, that is,

Z =

⎡

⎢

⎣

z(1)

...
z(P )

⎤

⎥

⎦
. (25)

In order to make the algorithm somewhat more manageable, the constraints
are rearranged such that the constraints in each phase are a concatenation of
the equality constraints and inequality constraints in the phase, that is,

c(p) =

[

c
(p)
E

c
(p)
I

]

, (26)

where c is the subvector of constraints in phase p = [1, . . . , P ]. Finally, ap-
pended to the phase constraints are the linkage constraints, denoted cL. The
total constraint vector is then given as

c =

⎡

⎢

⎢

⎢

⎣

c(1)

...
c(P )

cL

⎤

⎥

⎥

⎥

⎦

. (27)

4.1 Mapping of Decision Variables in a Single Phase

We now proceed to describe the mapping of the optimization vector within a
particular phase p ∈ [1, . . . , P ] to the values of the state, control, time, and
static parameters. In order to make it easier to follow the details, the superscript
(·)(p) (denoting the phase number) is for the most part suppressed.
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The total vector of optimization variables z ∈ R
nx (N+2)+nu N+nq+2 in a particu-

lar phase p = [1, . . . , P ] is given as

z(p) ≡ z =

⎡

⎢

⎢

⎢

⎢

⎣

zx

zu

q

t0

t f

⎤

⎥

⎥

⎥

⎥

⎦

(p = 1, . . . , P ), (28)

where zx is the vector of variables associated with the values of the state at the
discretization points, zu is the vector of variables associated with the values of
the control at the LG points, q is the vector of static optimization parameters,
t0 is the initial time, and t f is the terminal time. The vector zx is given as

zx =

⎡

⎢

⎣

χ1
...

χnx

⎤

⎥

⎦
, (29)

where the column vectors χ j ( j = 1, . . . , nx) are given as

χ j =

⎡

⎢

⎣

x j 1

...
x j ,(N+2)

⎤

⎥

⎦
( j = 1, . . . , nx), (30)

and x j k ( j = 1, . . . , nx ; k = 1, . . . , N + 2) is the value of the j th component of
the state at the kth discretization point. Next, the vector zu is given as

zu =

⎡

⎢

⎣

σ1

...
σnu

⎤

⎥

⎦
, (31)

where the column vectors σ j ( j = 1, . . . , nu) are given as

σ j =

⎡

⎢

⎣

u j 1

...
u j ,N

⎤

⎥

⎦
( j = 1, . . . , nu), (32)

and u j k ( j = 1, . . . , nu; k = 1, . . . , N ) is the value of the j th component of the
control at the kth collocation (LG) point. For use in vectorized operations in
MATLAB [The Mathworks, Inc. 2008], it is convenient to reshape the vectors
zx and zu into matrices Yx ∈ R

(N+2)×nx and Yx ∈ R
N×nu whose rows contain a

single vector value of the state and control, respectively. First, Yx is obtained
from zx as

Yx = reshape(zx , N + 2, nx), (33)

where reshape is a pseudocoded version of the MATLAB “reshape” command.
The vector zx can be reacquired from Yx as

zx = Yx(:), (34)
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where “:” is a pseudocoded version of the MATLAB [The Mathworks, Inc. 2008]
column-stacking operator. Next, Yu is obtained from zu as

Yu = reshape(zu, N , nu). (35)

The vector zu can be reacquired from Yu as

zu = Yu(:). (36)

4.2 Construction of Total Vector of Decision Variables

To construct the total vector of NLP decision variables, the process described in
the previous subsection is repeated for all phases p = [1, . . . , P ]. In other words,
we construct the vector z by stacking the variables z(p) using Equation (25).

4.3 Construction of Constraint Vector within a Single Phase

Next, the algorithm for constructing the column vector of all NLP constraints
within a given phase is described. The constraints within a single phase are
obtained by stacking the collocated dynamic constraints, the collocated path
constraints, and the boundary conditions.6 The vector of constraints within a
single phase can then be written as

c(z) =

[

cE (z)
cI (z)

]

, (37)

where, as before, the subscripts “E” and “I” correspond to equality and in-

equality constraints, respectively. A relatively straightforward way to map the
equality constraints to a single column vector is as follows. First, suppose we
define the defect constraints, δk , k = 1, . . . , N , as

δk =

N
∑

i=0

DkiXi −
t f − t0

2
f(Xk , Uk , tk ; q) (k = 1, . . . , N ), (38)

δN+1 = XN+1 − X0 −

N
∑

i=0

N
∑

k=1

wkDkiXi = 0, (39)

where we have assumed that f(Xk , Uk , tk ; q) is a row vector of length n. Then
we can define the matrix ∆ as

∆ =

⎡

⎢

⎣

δ1

...
δN+1

⎤

⎥

⎦
. (40)

It turns out that ∆ can be computed as

∆ =

[

DYx(1 : N + 1, :) −
t f −t0

2 F

Yx(end, :) − Yx(1, :) − wT DY(1 : N + 1, :)

]

, (41)

6It is noted that the collocated dynamic constraints are equality constraints while the path con-
straints and boundary conditions are inequality constraints.
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where w is a column vector of LG weights, the notation “1 : N + 1” is a pseu-
docode for the first N + 1 rows of the matrix Yx , and F is a vectorized evalua-
tion of the right-hand sides of the differential equations at the LG (collocation)
points, that is,

F =

⎡

⎢

⎣

f(X1, U1, t1; q)
...

f(XN , UN , tN ; q)

⎤

⎥

⎦

≡ F(Yx(2 : N + 1, :), Yu, t(2 : N + 1); q), (42)

where the column vector t ∈ R
N+2 is given as

t =

⎡

⎢

⎢

⎢

⎣

t0

t1

...
tN+1

⎤

⎥

⎥

⎥

⎦

. (43)

The matrix ∆ can then be isomorphically mapped to the column vector of equal-
ity constraints cE using a pseudocoded version of the MATLAB [The Math-
works, Inc. 2008] column-stacking operator “:” as

cE = ∆(:). (44)

Next, let HC be the matrix that arises from the evaluation of the path con-
straints at all of the LG points. Then H is given as

HC =

⎡

⎢

⎣

C(X1, U1, t1; q)
...

C(XN , UN , tN ; q)

⎤

⎥

⎦
≡ C(Yx(2 : N + 1, :), Yu, t; q). (45)

Also, let Hφ be the vector that arises from the evaluation of the boundary con-
ditions. Noting that the boundary conditions are functions of only the state and
time at the endpoints of the phase, we have

Hφ = φ(Yx(1, :), t0, Yx(end, :), t f ), (46)

where it is noted that Yx(1, :) = X0 and Yx(end, :) = X f , respectively. The
inequality constraint vector is then given as

cI =

[

HC(:)
Hφ

]

, (47)

where we once again note the use of the MATLAB [The Mathworks, Inc. 2008]
column-stacking operator “:” to isomorphically map the matrix of path con-
straints to a column vector of length nc N .

4.4 Construction of Linkage Constraint Vector

The vector of linkage constraints is obtained by using the values of the state
and time at the terminus and start of each pair that is to be linked. We can
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write the evaluation of the sth set of linkage constraints as follows:

t
(p(s)

l )
f − t

(p(s)
r )

0

S(s)
(

Y
(p(s)

l )
x (end, :), q(p(s)

l ), Y
(p(s)

r )
x (1, :), q(p(s)

r )
)

{

pl , pr ∈ [1, . . . , P ],

s = 1, . . . , L.
(48)

It is noted that the linkage conditions in Equation (48) have been separated
into those that link the independent variable (i.e., time) between phases and
those that link the state and parameters between phases. The reason for this
separation is that the linkage of the independent variable is a linear constraint
and thus has a structure that can be taken advantage of when implementing
the NLP in software.

5. CONSTRUCTION OF TOTAL VECTOR OF CONSTRAINTS

The total vector of constraints for all phases and the linkage constraints is then
given as

c(Z) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

⎡

⎣

∆
(1)(:)

H(1)
C (:)

H(1)
φ

⎤

⎦

...

⎡

⎣

∆
(P )(:)

H(P )
C (:)

H(P )
φ

⎤

⎦

[

t
(p(1)

l )
f − t

(p(1)
r )

0

S(1)
(

Y
(p(1)

l )
x (end, :), q(p(1)

l ), Y
(p(1)

r )
x (1, :), q(p(1)

r )
)

]

...

[

t
(p(L)

l )
f − t

(p(L)
r )

0

S(L)
(

Y
(p(L)

l )
x (end, :), q(p(L)

l ), Y
(p(L)

r )
x (1, :), q(p(L)

r )
)

]

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

. (49)

6. STRUCTURE OF GAUSS PSEUDOSPECTRAL NLP SPARSITY PATTERN

As it turns out, the NLP described in the previous section has an extremely
well-defined structure that can be taken advantage of in a software implemen-
tation. First, the constraint Jacobian, ∂c/∂z, is sparse. A graphical represen-
tation of the structure of a single phase of the constraint Jacobian is shown
in Figure 2. The sparsity pattern for a given phase p ∈ [1, . . . , P ] is divided
into rows and columns such that the rows correspond to the phase constraints
while the columns correspond to the phase variables. Furthermore, the rows in
Figure 2 contain the derivatives of the defect constraints, path constraints, and
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Fig. 2. Structure of single phase of constraint Jacobian of discretization of multiple-phase Gauss
pseudospectral method.

event constraints with respect to each value of the state, control, initial and
terminal times, and the static parameters. The derivatives of the defect con-
straints are divided into a set of main diagonal blocks and off-diagonal blocks.
The main diagonal blocks are the derivatives of the ith set of defect constraints
(i.e., those associated with the ith state) with respect to the values of the ith
state at the discretization points. The off-diagonal blocks of the derivatives of
the defect constraints are the derivatives with respect to the values of the j th
state (where j �= i) and the kth control (in that order column-wise). Finally, the
columns that lie to the right of those associated with the control are the deriva-
tives with respect to the initial time, t0, the terminal time, t f , and the static
parameters q, respectively. The rows of the phase sparsity that lie below those
associated with the defect constraints are the derivatives of the path constraints
and contain the derivatives with respect to the values of the state, control, ini-
tial and terminal times, and static parameters. Finally, the rows that lie below
those associated with the path constraints contain the derivatives of the event
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Fig. 3. Structure of entire sparsity pattern for discretization of the multiple-phase Gauss pseu-
dospectral Method. Each phase has nonzeros as given in Figure 2.

constraints. It is seen that the event constraint derivatives are nonzero only
with respect to the initial state and terminal state, the initial and terminal
time, and the static parameters.

Using the phase sparsity given in Figure 2, the complete sparsity pattern
for a multiple-phase problem is shown in Figure 3. It is seen that the complete
sparsity pattern is block-diagonal concatenation of the sparsity pattern in each
phase, where the variables in each phase are nonoverlapping with the exception
of the linkage constraints. With regard to the linkage constraint derivatives,
the overlap in variables between phases is confined to variables at the terminus
and start of the pair of phases to be linked.

7. LAGRANGE MULTIPLIERS OF NLP AND COSTATE MAPPING

Each constraint in the NLP has a corresponding Lagrange multiplier. Suppose

we let Λ̃
(p)
k (k = 1, . . . , N ) and Λ̃

(p)
f be the Lagrange multipliers associated with

the discretized dynamic constraints of Equation (16) and the quadrature con-
straint of Equation (19), respectively, in each phase p = [1, . . . , P ] of the optimal
control problem. Furthermore, let µ̃k(k = 1, . . . , N ) be the Lagrange multipli-
ers associated with the discretized path constraints of Equation (20). Finally,
let ν̃ be the Lagrange multiplier associated with the discretized boundary con-
ditions of Equation (21). Then it has been shown [Benson 2004; Benson et al.
2006; Huntington 2007] that the costate (i.e., the adjoint) of the continuous-time
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optimal control problem is related to the Lagrange multipliers Λ̃k(k = 1, . . . , N )
and Λ̃ f as

Λ(t f ) = Λ̃ f ,

Λk = Λ̃k/wk ,

Λ(t0) = (1 + α)Λ̃(t f ) −

N
∑

i=1

Di0Λ̃i,

µk =
2

t f − t0

µ̃k

wk

,

ν = ν̃,

α =

N
∑

i=1

wi Di0.

(50)

The NLP described in Section 4 has a dual solution that includes the Lagrange
multipliers for each category of discretized constraints. In particular, suppose
we let Γ be the vector of Lagrange multipliers associated with the differential
dynamic constraints and the quadrature constraints. Then, because the dy-
namics are discretized at N Legendre-Gauss points, we know that Γ ∈ R

nx (N+1)

(i.e., we have nx N multipliers for the discretized dynamic constraints and an-
other N multipliers for the quadrature constraints). The column vector Γ can
be isomorphically mapped to a matrix of size (N + 1) × nx via a pseudocoded
version of the MATLAB [The Mathworks, Inc. 2008] command reshape [The
Mathworks, Inc. 2008] as

M̃ = reshape(Γ, N + 1, nx) =

⎡

⎢

⎢

⎢

⎣

Λ̃1

Λ̃2

...
Λ̃N+1

⎤

⎥

⎥

⎥

⎦

, (51)

where Λ̃i(i = 1, . . . , N + 1) are row vectors. Next, we can construct a diagonal
matrix W that contains the reciprocals of the Gauss weights as

W = diag(1/w1, . . . , 1/wN ). (52)

The costate estimate given in Equation (50) can then be obtained at the
Legendre-Gauss points as

M = WM̃(1 : end − 1, :). (53)

In addition, the costate estimate at the initial time in phase p = [1, . . . , P ] is
computed as

Λ(t0) = (1 + wT D(:, 1))Λ̃ f − sum(repmat(D(:, 1), 1, nx) .M(1 : end − 1, :), 1),
(54)

where “.” denotes element-by-element multiplication and we have used pseu-
docoded versions of the MATLAB commands repmat and sum (and, by virtue
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of the last argument being unity, the sum is taken along the columns). We can
then augment the initial costate to the matrix M to obtain the complete matrix
of costates as

Ma =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

Λ0

Λ1

Λ2

...
ΛN+1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

. (55)

8. SEPARATION OF CONSTANT AND NONCONSTANT DERIVATIVES
IN CONSTRAINT JACOBIAN

A unique feature of the SNOPTA interface of the NLP solver SNOPT [Gill et al.
2002] is that SNOPTA allows the user to separate the constant derivatives from
the nonconstant derivatives. This feature is described in the SNOPT 7 manual
[Gill et al. 2006] but is repeated here in the context of the Gauss pseudospec-
tral method. First, consider a problem such that each function (constraint or
objective) can be written in the form

Fi(x) = f i(x) +

n
∑

j=1

Ai j x j . (56)

f i(x) is a nonlinear function, n is the total number of optimization (decision)
variables, x ∈ R

n, and the elements Ai j are constant. Clearly the Jacobian of F

is given as

∂F

∂x
=

∂f

∂x
+ A, (57)

where

A =

⎡

⎢

⎢

⎢

⎣

A11 A12 · · · A1n

A21 A22 · · · A2n

...
...

. . .
...

Am1 Am2 · · · Amn

⎤

⎥

⎥

⎥

⎦

. (58)

Suppose now that there exist elements in the matrix A such that the corre-
sponding elements in the matrix ∂f/∂x is zero. In other words, suppose that
there are derivatives of F that are constant. Then these constant derivatives
can be stored (i.e., they never need to be computed, but can be retrieved when
necessary).

The Gauss pseudospectral method is an example of a situation where the
exploitation of separability can be of great benefit. Specifically, it is known
that the majority of the derivatives in the differential defect constraints are
constant. In particular, the only nonconstant elements in a main-diagonal block
are the N elements that contain the derivatives of the right-hand side of the
differential equations. All other elements in a main-diagonal block are constant.
A schematic of the structure of the constant and nonconstant elements of a
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Fig. 4. Schematic showing constant and nonconstant derivatives elements of a main-diagonal
block of the differential equation defect constraints.

main-diagonal block is given in Figure 4. Moreover, the sparsity pattern for all
of the nonconstant elements in a particular phase is given in Figure 5.

9. LINEAR CONSTRAINTS

As mentioned earlier, the constraints on the independent variable are linear.
These linear constraints fall into two categories: monotonicity constraints and
linkage constraints. First, we know that the independent variable must be
monotonic (i.e., either increasing or decreasing throughout the problem). In
order to ensure monotonicity, the following constraints must be placed on the
independent variable in each phase p ∈ [1, . . . , P ] of the problem:

t f − t0 ≥ 0 for an increasing independent variable

t f − t0 ≤ 0 for a decreasing independent variable
(p ∈ [1, . . . , P ]).

(59)

Next, the independent variable must be continuous at a phase interface. The
continuity conditions on the independent variable are then restated from

t
(p(s)

l )
f − t

(p(s)
r )

0 (pl , pr ∈ [1, . . . , L]), (60)

where we recall that L is the number of linkage pairs. The entire set of linear
constraints can then be written in the general linear constraint form

Lmin ≤ Bz ≤ Lmax, (61)

where B ∈ R
nl ×nz is matrix of coefficients for the linear constraints (in this case

a matrix containing only zero, −1, and 1), Lmin ∈ R
nl are the lower bounds on

the linear constraints, and Lmax ∈ R
nl are the upper bounds on the linear con-

straints. It is noted that the lower and upper bounds on the linear constraints
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Fig. 5. Schematic showing the nonconstant derivatives in a single phase of an optimal control
problem discretized via the Gauss pseudospectral method.

are obtained directly from Equations (59) and (60), respectively. Finally, when
treating the constraints on the independent variable as linear, these equations
are removed from the general constraint vector given in Equation (49).

10. COMPUTATION OF LEGENDRE-GAUSS POINTS, WEIGHTS,
AND DIFFERENTIATION MATRIX

A key part of the algorithm described in this article is the ability to compute the
Legendre-Gauss points, weights, and differentiation matrix. It is noted that the
Legendre-Gauss points are the roots of the N th degree Legendre polynomial
while the Legendre-Gauss weights are computed using Equation (9). A conve-
nient way to compute the Legendre-Gauss points is via the eigenvalues of the
tridiagonal Jacobi matrix. The Legendre-Gauss weights are then computed us-
ing Equation (9) where the derivative of the N th-degree Legendre polynomial,
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ṖN , is computed as

ṖN =
−(n + 1)PN (τ )

1 − τ 2
. (62)

Finally, the Gauss pseudospectral differentiation matrix (which is a nonsquare
matrix D ∈ R

N×(N+1)) is given as

Dki =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

(1 + τk)ṖN (τk) + PN (τk)

(τk − τi)
[

(1 + τi)ṖN (τi) + PN (τi)
] i �= k,

(1 + τi)P̈N (τi) + 2ṖN (τi)

2
[

(1 + τi)ṖN (τi) + PN (τi)
] i = k.

(63)

11. COMPUTATION OF ENDPOINT CONTROLS

Because solving the NLP from the Gauss pseudospectral method results in
controls at only at the the interior points (i.e., the Legendre-Gauss points), it is
necessary to obtain the endpoint controls after the NLP is solved. In the algo-
rithm presented here the endpoint controls are computed in two different ways.
The first method for computing the endpoint control is simply to extrapolate the
control to the initial and terminal times. A second method for endpoint control
computation is to employ the Pontryagin minimum principle [Kirk 2004] using
the endpoint values of the state and costate. This second method requires that
the following auxiliary NLP be solved. Minimize the Hamiltonian

H = L + λT f (64)

subject to constraint

Cmin ≤ C ≤ Cmax. (65)

The optimization problem given in Equations (64) and (65) is implemented
by using the values of the state and costate at the endpoints of each phase
obtained by solving the GPM NLP and minimizing over the allowable set of
controls. The endpoint control optimization problem is small (having only a
number of variables equal to the number of controls in each phase) and, thus,
can generally be solved quickly. It is noted, however, that solving the NLP
given in Equations (64) and (65) can lead to erratic controls for certain types of
problems (e.g., problems with singular arcs or bang-bang controls). Thus, both
methods described in this section are used for endpoint control computation
and the user can choose whichever control is most suitable for a particular
application.

12. AUTOMATIC SCALING OF NLP AND DETERMINATION
OF DEPENDENCIES

An extremely important issue that arises in the solution of any optimization
problem is scaling. A poorly scaled problem can lead to either extremely slow
convergence or divergence [Betts 2001]. While not a great deal of information
exists in the literature on scaling (primarily because scaling is more of an art
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than a science), it is a practical matter that needs to be dealt with in any
implementation. In this section we describe a scaling procedure [Betts 2001].
It has been found that this scaling procedure works extremely well on a wide
variety of problems and can be used as a substitute for the tedious work of
manual scaling. Finally, it is noted that the procedure described here scales the
functions of the optimal control problem as opposed to scaling the functions of
the NLP.

The scaling procedure used in the current algorithm is divided into two parts.
The first part of the procedure automatically scales the variables based on
the bounds specified by the user. Given the user-specified bounds on the time,
state, control, and parameters in each phase of the problem, the unscaled NLP
variables are given as box-bound constraints [see Equation (24)] as

zmin ≤ z ≤ zmax. (66)

Now let Sz be a diagonal matrix whose diagonal elements contain the scale
factors for the variables. Then the scaled value of z, denoted z̃, is given as

z̃ = Szz. (67)

Because the user may set some of the lower and upper limits to ±∞, the first
step is to find the infinite limits and set the diagonal elements in Sz to unity.
Next, for the lower and upper limits that remain, the larger of |zmin| and |zmax|

is determined. The corresponding diagonal elements of Sz are then set to the
reciprocal of the larger values. In this manner, the variables are scaled such
that their scaled limits either lie between −1 and 1, −1 and ∞, −∞ and 1, or
−∞ and ∞. It is noted, however, that if sensible noninfinite bounds are chosen,
all scaled limits will lie between −1 and 1.

The second step in the automatic scaling procedure is to scale the functions
of the optimal control problem. First, as has been suggested in the literature
[Betts 2001], the differential equation constraints (i.e., the defect constraints)
are scaled using the same scale factors as used to scale the states. Next, suppose
we let x, u, and q be the state, control, and static parameters in a given phase
p ∈ [1, . . . , P ] of the optimal control problem with corresponding scaled values
x̃, ũ, and q̃. Furthermore, let Sx, Su, and Sq be diagonal matrices whose diagonal
elements contain the corresponding scale factors. We then have

x̃ = Sxx,

ũ = Suu,

q̃ = Sqq.

(68)

Finally, let C̃ be the scaled value of the path constraints with a corresponding
diagonal scaling matrix SC. Then, in a manner similar to the variables, we have

C̃ = SCC. (69)

Suppose now that the Jacobian of C is computed as
[

∂C

∂x

∂C

∂u

∂C

∂q

]

. (70)
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Then the scale factors for the path constraints are obtained by (1) evaluat-
ing the Jacobian given in Equation (70) at a specified number of trial points
(xi, ui, qi) (i = 1, . . . , nT ), where nT is the number of trials in the phase;
(2) computing the row norm of the path constraint Jacobian at the trial points;
and (3) taking the average of the row norms. The scale factor for each scalar
path constraint is then applied at each collocation point. The boundary condi-
tions (i.e., the event constraints) and the linkage constraints are scaled in a
manner similar to that used to scale the differential-algebraic equations.

Simultaneous with the determination of scale factors for the NLP, a proce-
dure has been implemented to determine the dependencies of the differential
equations and path constraints on the state and control. In particular, recall in
Section 6 that the off-diagonal blocks in each phase are either zero or structured
depending upon whether a particular differential equation or path constraint is
a function of a particular variable. In the algorithm described here, the Jacobian
pattern (i.e., a matrix of ones and zeros) is determined at the nT trial points. If
at any of the trial points a particular element in the Jacobian is nonzero, then
this dependence is included in the NLP sparsity pattern and the particular
off-diagonal block in Figure 5 is nonzero.

13. NUMERICAL METHODS FOR COMPUTATION OF OBJECTIVE
FUNCTION GRADIENT AND CONSTRAINT JACOBIAN

A key issue that arises in the solution of any NLP is the computation of the
derivatives to obtain the objective function gradient and constraint Jacobian.
GPOPS has three options for computation of these quantities. The first option
is the built-in finite difference method in SNOPT [Gill et al. 2006]. While finite
differencing will work on some problems, it is computationally inefficient and
can be problematic due to inaccurate derivative approximations, thereby lead-
ing to a failure of SNOPT to converge to an optimal solution. As a result, the
following derivative methods can also be used in GPOPS:

(1) Automatic differentiation via one of the following programs:
(a) built-in forward mode automatic differentiation,
(b) Matlab Automatic Differentiation (MAD) [Forth 2006; Forth and Edvall

2007],
(c) Interval Laboratory (INTLAB) [Rump 2008];

(2) complex-step differentiation [Martins et al. 2003];

(3) analytic (user-supplied) derivatives.

We have provided three options for automatic differentiation primarily because
some users may prefer to obtain a commercial automatic differentiation pack-
age (MAD) with the maximum functionality while others may be prefer a freely
available package (INTLAB or the built-in automatic differentiator). Next, as
discussed in Martins et al. [2003], complex-step differentiation provides ex-
tremely high-accuracy derivatives and is insensitive to the choice of the step
size (as compared with finite difference approximations which create round-
off error for small values of the step). It is noted that the current procedure
for complex-step differentiation is quite simple in that it does independently
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perturb variables in a particular phase (which is possible in this case due to the
fact, in any given phase, the constraints are functions of variables in only that
phase and are independent of variables in the other phases).7 Furthermore, the
following functions in MATLAB can create issues with complex-step differenti-
ation: “abs,” “min,” “max,” and “dot.”8 Finally, the user needs to code the problem
carefully and not use the standard transpose operation in MATLAB, but use
the “dot-transpose” to ensure that a real transpose is taken (i.e., not a complex-
conjugate transpose). Finally, the complex-step method has been tested on all
of the problems included with the GPOPS software and has been found to work
extremely well in practice.

14. USER INTERFACE TO GPOPS

GPOPS has a user interface that enables the optimal control problem to be input
in an intuitive yet compact manner. The key MATLAB programming element
that makes this user interface possible is the structure. In particular, GPOPS
utilizes multilevel structures that enable compact specification of the lower
and upper bounds on all variables and constraints in each phase of the problem
and provide equal flexibility when specifying how the phases are to be linked.
Finally, all of the functions in the optimal control problem (i.e., cost function,
differential-algebraic equations, boundary conditions, and linkage conditions)
use structure inputs, thus being consistent with other inputs in the software.
All of the details regarding the GPOPS interface are found in the GPOPS user’s
manual that accompanies this article.

15. APPLICATIONS OF GPOPS

In this section we consider three examples that demonstrate various aspects
of the GPOPS software. The first example is a modified version of the well-
known chemical engineering problem called the Lee-Ramirez bioreactor where
it is desired to maximize profitability of a fed-batch reactor for induced foreign
protein production by recombinant bacteria [Balsa-Canto et al. 2001]. The sec-
ond and third problems are aerospace engineering applications of maximizing
the final mass during the ascent of a multiple-stage launch vehicle [Benson
2004] and maximizing the final altitude during a one-dimensional ascent of a
sounding rocket [Betts 2001], respectively. As mentioned earlier, the MATLAB
version of the sparse NLP solver SNOPT [Gill et al. 2006] was used. Moreover,
in all examples the default optimization and feasibility tolerances were used
in SNOPT along with a limited memory Hessian and an LU factorization with
complete pivoting (see the SNOPT manual [Gill et al. 2006] for more details).
All examples given below are included in the software distribution of GPOPS.

7It is noted that algorithms such as that given in Curtis et al. [1974] perturb groups of variables,
and such an algorithm is expected to be implemented in a future version of GPOPS.
8Complex-step differentiation of the functions “abs,” “min,” and “max” can be accommodated by
developing a MATLAB class, which is likely to be implemented in a future release of GPOPS.
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15.1 Example 1: Modified Lee-Ramirez Bioreactor Problem

Consider the following optimal control problem. Maximize the cost functional

J = x1(t f )x4(t f ) (71)

subject to the dynamic constraints

ẋ1 = u1 + u2,

ẋ2 = g1x2 −
u1 + u2

x1
x2,

ẋ3 = c1
u1

x1
−

u1 + u2

x1
x3 − g1

x2

c2
,

ẋ4 = g2x2 − (u1 + u2)
x4

x1
,

ẋ5 = c3
u2

x1
−

u1 + u2

x1
x5,

ẋ6 = −g3x6,

ẋ7 = g3(1 − x7),

(72)

where x1 is the reactor volume, x2 is the cell density, x3 is the nutrient concen-
tration, x4 is the foreign protein concentration, x5 is the inducer concentration,
x6 is the inducer shock factor on cell growth rate, x7 is the inducer recovery
factor on cell growth rate, u1 is the glucose rate, and u2 is the inducer feeding
rate. The coefficients g1, g2, and g3 are given as follows:

t1 = 14.35 + x3 +
x2

3

111.5
,

t2 = 0.22 + x5,

t3 = x6 +
0.22

t2
x7,

g1 =
x3

t1

[

x6 + 0.22
x7

t2

]

,

g2 = 0.233
x3

t1

0.0005 + x5

0.022 + x5
,

g3 = 0.09
x5

0.034 + x5
.

(73)

It is noted that (x1, . . . , x7) are the components of the state while (u1, u2) are
the components of the control for this problem. The controls are constrained as

0 ≤ u1 ≤ 1,

0 ≤ u2 ≤ 1.
(74)
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Fig. 6. Components of the state for the modified Lee-Ramirez bioreactor problem.

For this example we choose a fixed final time of t f = 10 with the initial condi-
tions

x1(0) = 1, x2(0) = 0.1,

x3(0) = 40, x4(0) = 0,

x5(0) = 0, x6(0) = 1,

x7(0) = 0.

(75)

Finally, it is known that the optimal control has an extremely large rate near
the end of the time interval. Thus, in order to obtain a well-behaved control
without greatly affecting the cost, we modify the cost function of Equation (71)
as in Rutquist and Edvall [2008]:

J = x1(t f )x4(t f ) + f

∫ t f

0

(

w2
1 + w2

2

)

dt, (76)

where f = 0.1N−1 [Rutquist and Edvall 2008] (N = number of LG points) is a
small penalty term and w1 and w2 are pseudocontrols obtained by augmenting
the dynamics of Equation (72) with the following two equations:

u̇1 = w1,

u̇2 = w2.
(77)

As stated, the integral term in Equation (76) is a small penalty added to the
cost in order to obtain a smooth control and this penalty approaches zero as N

gets large.
The modified Lee-Ramirez bioreactor problem was solved in GPOPS as a

one-phase optimal control problem using 80 LG points and built-in automatic
differentiation. The 80 LG point solution is shown in Figures 6–8, where it
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Fig. 7. Components of the control for the modified Lee-Ramirez bioreactor problem.

Fig. 8. Hamiltonian for the modified Lee-Ramirez bioreactor problem.

is noted that the state x3 is divided by 10 to improve the visual appearance
of Figure 6. While not shown in Figures 6–8, the optimal trajectory and con-
trol obtained using GPOPS is in excellent agreement with the corresponding
solution obtained using the commercial software program PROPT [Rutquist
and Edvall 2008] (the results of the PROPT solution for this problem can be
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Table I. Mass and Propulsion Properties of Launch Vehicle Ascent
Problem

Solid rocket boosters Stage 1 Stage 2

Total mass (kg) 19290 104380 19300

Propellant mass (kg) 17010 95550 16820

Engine thrust (N) 628500 1083100 110094

Is p (s) 283.3334 301.6878 467.2131

Number of engines 9 1 1

Burn time (s) 75.2 261 700

found online9). Moreover, the optimal objective functions obtained with GPOPS
and PROPT are approximately 6.14923 and 6.14933, respectively. Finally, it is
known theoretically that the optimal Hamiltonian for this problem is constant
(because the Hamiltonian is not an explicit function of time) and Figure 8 shows
that the Hamiltonian obtained from GPOPS is in excellent agreement with this
theoretical result.

15.2 Example 2: Multiple-Stage Launch Vehicle Ascent Problem

The problem considered in this section is the ascent of a multiple-stage launch
vehicle. The objective is to maneuver the launch vehicle from the ground to the
target orbit while maximizing the remaining fuel in the upper stage. It is noted
that this example is found in several places in the open literature [Benson 2004;
Huntington 2007].

15.2.1 Vehicle Properties. The launch vehicle considered in this example
has two main stages along with nine strap-on solid rocket boosters. The flight
of the vehicle can be divided into four distinct phases. The first phase begins
with the rocket at rest on the ground and, at time t0, the main engine and six of
the nine solid boosters ignite. When the boosters are depleted at time t1, their
remaining dry mass is jettisoned. The final three boosters are then ignited, and,
along with the main engine, represent the thrust for the second phase of flight.
These three remaining boosters are jettisoned when their fuel is exhausted at
time t2, and the main engine alone creates the thrust for the third phase. The
fourth phase begins when the main engine fuel has been exhausted (MECO)
and the dry mass associated with the main engine is ejected at time t3. The
thrust during phase four is from a second stage, which burns until the target
orbit has been reached (SECO) at time t4, thus completing the trajectory. The
specific characteristics of these rocket motors can be seen in Table I.10 Note that
the solid boosters and main engine burn for their entire duration (meaning t1,
t2, and t3 are fixed), while the second stage engine is shut off when the target
orbit is achieved (t4 is free).

9http://tomdyn.com.
10It is noted that the values of specific impulse shown in Table I were obtained by computing
Ttb/(g0m prop), where T is the thrust, tb is the burn time, g0 = 9.80665, and mprop is the propellant
mass
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Table II. Constants Used in Launch Vehicle
Example

Constant Value

Payload Mass (kg) 4164

S (m2) 4π

Cd 0.5

ρ0 (kg/m3) 1.225

H (m) 7200

t1 (s) 75.2

t2 (s) 150.4

t3 (s) 261

Re (m) 6378145 m

	 (rad/s) 7.29211585 × 10−5

15.2.2 Dynamic Model. The equations of motion for a nonlifting point
mass in flight over a spherical rotating planet are expressed in Cartesian
earth-centered inertial (ECI) coordinates as

ṙ = v,

v̇ = −
μ

‖r‖3
r +

T

m
u +

D

m
,

ṁ = −
T

g0 Isp

,

(78)

where r = [ x y z ]T is the Cartesian ECI position, v = [ vx vy vz ]T is the
Cartesian ECI velocity, μ is the gravitational parameter, T is the vacuum
thrust, m is the mass, g0 is the acceleration due to gravity at sea level, Isp

is the specific impulse of the engine, u = [ ux u y uz ]T is the thrust direction,

and D =
[

Dx D y Dz

]T
is the drag force. The drag force is defined in vector

form as

D = −
1

2
ρSCD‖vrel‖vrel, (79)

where CD is the drag coefficient, S is the reference area, ρ is the atmospheric
density, and vrel is the Earth relative velocity, where vrel is given as

vrel = v − Ω × r, (80)

where Ω is the angular velocity of the earth relative to the inertial reference
frame. The atmospheric density is modeled as the exponential function

ρ = ρ0exp[−h/H], (81)

where ρ0 is the atmospheric density at sea level, h = ‖r‖ − Re is the altitude,
Re is the equatorial radius of the earth, and H is the density scale height. The
numerical values for these constants can be found in Table II.
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15.2.3 Constraints. The launch vehicle starts on the ground at rest (rela-
tive to the earth) at time t0, so that the ECI initial conditions are

r(t0) = r0 =
[

Re cos φ0 0 Re sin φ0

]T
,

v(t0) = v0 = Ω × r0,

m(t0) = m0 = 301454 kg,

(82)

where φ0 = 28.5◦ and corresponds to the geocentric latitude of Cape Canaveral,
Florida, and it is arbitrarily assumed that the inertially fixed axes are such
that the initial inertial longitude is zero. The terminal constraints define the
target geosynchronous transfer orbit (GTO), which is defined in terms of orbital
elements as

a f = 24361.14 km,
e f = 0.7308,
i f = 28.5◦,

	 f = 269.8◦,
ω f = 130.5◦,

(83)

where a is the semimajor axis, e is the eccentricity, i is the inclination, 	 is
the inertial longitude of the ascending node, and ω is the argument of perigee.
It is noted that, because we are not specifying the location in terminal orbit
that must be attained by the vehicle, the true anomaly, ν, is free. These orbital
elements can be transformed into ECI coordinates via the transformation, To2c

as given in Bate et al. [1971].
In addition to the boundary constraints, there exists both a state path con-

straint and a control path constraint in this problem. A state path constraint
is imposed to keep the vehicle’s altitude above the surface of the earth, so
that

|r| ≥ Re, (84)

where Re is the equatorial radius of the earth. Next, the thrust direction is
constrained to be of unit length via the equality path constraint

‖u‖2 = u2
x + u2

y + u2
z = 1. (85)

Last, the phases are connected via the following set of linkage constraints at the
terminus of phases 1, 2, and 3 and the start of phases 2, 3, and 4, respectively
as

r(t f ) − r
(

t
(p+1)
0

)

= 0,

v
(

t
(p)
f

)

− v
(

t
(p+1)
0

)

= 0 (p = 1, . . . , 3),

m
(

t
(p)
f

)

− m
(p)
dry − m

(

t
(p+1)
0

)

= 0.

(86)

It is noted that the linkage constraint on the mass at each of the phase inter-
faces includes an instantaneous drop of the dry mass of the particular stage. In
this case, mass drops at the ends of phases 1, 2, and 3 are given, respectively,
as 6m srb

dry, 3m srb
dry, and m first

dry , where the subscript “dry” denotes the dry mass

(i.e., mass excluding fuel) and the superscripts “srb” and “first” denote a single
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Fig. 9. Altitude versus time for the launch vehicle ascent problem.

solid rocket booster and the first stage, respectively. The objective of the prob-
lem is to determine the control (and corresponding trajectory) that minimizes
the cost functional

J = −m
(

t(4)
f

)

(87)

subject to the conditions of Equations (78), (82), (83), (84), and (85). The problem
was posed in SI units using the aforementioned auto-scaling procedure and 15
Legendre-Gauss points (i.e., nodes) in each phase. Finally, a constant initial
guess was used for the position and velocity in each phase while a linear initial
guess was used for the mass.

The GPOPS solution obtained for the launch vehicle ascent problem is
summarized in the following Figures 9–12 that contain the altitude, speed,
components of control, and Hamiltonian, respectively, alongside the solution
obtained using the commercial software program Sparse Optimal Control

Software (SOCS) [Betts and Huffman 1997]. It is seen that the GPOPS solution
and the SOCS solution are in excellent agreement. With regard to accuracy, the
optimal objective functions obtained using GPOPS and SOCS are 7529.7123 kg
and 7529.7125 kg, respectively, (i.e., resulting in a difference of approximately
2.1 × 10−4 kg). In addition to the excellent agreement of between GPOPS
and SOCS, it is seen that the Hamiltonian obtained from GPOPS is piecewise
constant. In this case it is known that the durations of the first three phases are
fixed while the duration of the fourth phase is free. Because the Hamiltonian is
not an explicit function of time for this problem, we know that its value in the
first three phases should be constant (but not necessarily zero) while its value
in the fourth phase should be zero (which, indeed, is the case). The additional
result showing that the Hamiltonian is constant in each phase (and zero in
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Fig. 10. Inertial speed versus time for the launch vehicle ascent problem.

Fig. 11. Components of control versus time for the launch vehicle ascent problem.

the fourth phase) provides further validation of the accuracy of the GPOPS
solution.

15.3 Example 3: Goddard Rocket Maximum Ascent Problem

Consider the following well-known optimal control problem [Bryson and Ho
1975] known as the Goddard rocket maximum ascent problem. Maximize the
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Fig. 12. Hamiltonian versus time for the launch vehicle ascent problem (GPOPS solution only).

cost functional

J = h(t f ) (88)

subject to the dynamic constraints

ḣ = v,

v̇ =
T − D

m
− g ,

ṁ = −
T

Ve

,

(89)

with the boundary conditions

h(0) = 0,

v(0) = 0,

m(0) = 3,

m(t f ) = 1,

(90)

where h is the altitude, v is the velocity, m is the mass, T is the thrust (and is
the control), D is the drag, g is the acceleration due to gravity, and Ve is the
exhaust velocity. The drag is modeled as

D = D0v2 exp(−h/H), (91)

where D0 = 5.49153485 × 10−5 H = 23800 is the density scale height. For this
problem the thrust is constrained so that

0 ≤ T ≤ Tmax, (92)

where Tmax = 193.
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Fig. 13. Thrust versus time for the Goddard rocket maximum ascent problem formulated in
GPOPS as a single-phase problem using 40, 80, and 120 LG points.

One of the interesting characteristics of the optimal thrust profile for the
Goddard rocket problem is that it contains singular arc [Betts 2001], that is,
there exists a segment of the solution where the control cannot be determined
from the optimality conditions because Hu and Huu are both zero during the
singular arc (recalling that H is the Hamiltonian). Commensurate with the
fact that the continuous-time optimality conditions are indeterminate during
a singular arc, the NLP obtained from a direct collocation method will also
have an indeterminacy and the NLP solver will have difficulty determining
the optimal control during the singular arc. In this case, the Goddard rocket
problem was solved as a one-phase problem using GPOPS without any knowl-
edge of the fact that a singular arc exists in the solution. Figure 13 shows
the thrust as a function of time for N = (40, 80, 120). Examining the mid-
dle portion of the thrust (where the thrust takes on neither its maximum nor
minimum allowable value), it is seen that, while it is no means perfect, the
one-phase GPOPS formulation captures the singular arc “reasonably well” as
the number of LG points increases. Thus, without any knowledge of the sin-
gular arc, the one-phase solution would lead a user to the conclusion that
such a behavior exists and could prompt the user to reformulate the prob-
lem using multiple phases to obtain a smoother solution during the singular
arc.

It is well known that, in order to obtain a more accurate control during the
singular arc, it is necessary to impose the singular arc condition which is given
as

d

dt
(Huu) = 0, (93)
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Fig. 14. Altitude versus time for the Goddard rocket maximum ascent problem for 25 LG points
using GPOPS alongside SOCS solution.

where H is the Hamiltonian of the continuous-time optimal control problem
and Huu is the second derivative of H with respect to the control. Applying
Equation (93), the Goddard rocket problem can be cast as a three-phase optimal
control problem with the following conditions added to the original problem
[Betts 2001]:

(i) An equality path constraint in phase 2 that arises from Equation (93):

c2(1 + v/c)

g H − 1 − 2c/v
+

mg

1 + 4c/v + 2c2/v2
= 0, (94)

where c = 1580.942528;

(ii) An event constraint at the end of phase two that places a boundary condition
on the end of the singular arc [Bryson and Ho 1975]:

mg − (1 + v/c)D = 0. (95)

The three-phase optimal control problem then has the objective of maximizing

J = h
(

t(3)
f

)

, (96)

where the altitude is maximized at the end of phase three. It is noted that the
three-phase formulation with the conditions of Equations (94) and (95) is the
same as that found in Betts [2001] solved with the software SOCS [Betts and
Huffman 1997].

Using the three-phase formulation described above, the Goddard rocket prob-
lem was solved with GPOPS using 5 LG (node) points in each phase. This
five-node solution was then used as an initial guess to solve the problem with
25 nodes in each phase. The 25-node solutions for h(t), v(t), m(t), and T (t)
are shown in Figures 14–17 alongside a solution generated with the software
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Fig. 15. Velocity versus time for the Goddard rocket maximum ascent problem for 25 LG points
using GPOPS alongside SOCS solution.

Fig. 16. Mass versus time for the Goddard rocket maximum ascent problem for 25 LG points using
GPOPS alongside SOCS solution.

SOCS [Betts and Huffman 1997]. It is seen that, despite the fact that a rela-
tively small number of nodes is used in each phase, the GPOPS solution and
the SOCS solution are in excellent agreement. Finally, it is useful to note that
the execution time for solving this problem extremely small (on the order of a
few seconds) using the built-in automatic differentiator on an Intel Core Duo
2.5-Ghz MacBook Pro running MATLAB R2008b.
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Fig. 17. Thrust versus time for the Goddard rocket maximum ascent problem for 25 LG points
using GPOPS alongside SOCS solution.

16. POSSIBLE LIMITATIONS IN THE GPOPS ALGORITHM

It is important to note that, like all software, GPOPS has limitations. First,
in the implementation described in this article it is assumed that the state,
control, and costate are smooth within any phase of the problem. While for
some nonsmooth problems it may be possible to obtain good solutions without
increasing the number of phases, it is nevertheless recommended for such prob-
lems to ensure smoothness within each phase. Also, while inequality path con-
straints will be satisfied at the collocation points (i.e., the LG points), in be-
tween the collocation points the constraints may be violated (via interpolation
using the appropriate basis of Lagrange polynomials). Correspondingly, the
costate approximation given in Section 7 may need to be modified for the case
of active inequality constraints. Another point related to inequality constraints
is that high-index path constraints (i.e., path constraints with index greater
than 2) can lead to violations in constraint qualifications for fine grids. In such
cases, unique Lagrange multipliers do not exist and it is possible that these
Lagrange multipliers may become unbounded. Finally, as seen with Example
3 (the Goddard rocket problem), while relatively crude estimates of the control
can be obtained during a singular arc, in order to obtain an accurate singular
arc control it is necessary to apply the proper singular arc conditions.

17. CONCLUSIONS

An algorithm has been described for solving multiple-phase optimal control
problems using the Gauss pseudospectral method (GPM). In particular, a de-
tailed explanation has been given of the mathematical structure of the non-
linear programming problem (NLP) that arises from the multiple-phase GPM.
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Many of the implementation details are subsequently discussed. The approach
allows the user to design each phase of the optimal control problem indepen-
dently and then connect any two phases via general linkage conditions on the
state and time. In order to alleviate the burden of manually scaling the opti-
mal control problem, an automatic scaling routine has been developed as part
of the algorithm. Significant features of the algorithm include the separation
of the constant derivatives of the constraint Jacobian from the nonconstant
derivatives, highly accurate computation of the costates (adjoints), and the use
of automatic differentiation. A reusable MATLAB software implementation,
called GPOPS, has been included with the algorithm developed and has been
demonstrated successfully on three examples.

AVAILABILITY OF SOFTWARE

The GPOPS software can be downloaded in the form of MATLAB source code
at no charge from online.11 Additional infomration about GPOPS can also be
obtained online.12
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