
CorrNet3D: Unsupervised End-to-end Learning of Dense Correspondence

for 3D Point Clouds

Yiming Zeng1∗ Yue Qian1 Zhiyu Zhu1 Junhui Hou1† Hui Yuan2 Ying He3

1City University of Hong Kong 2Shandong University 3Nanyang Technological University

{ym.zeng, yueqian4-c, zhiyuzhu2-c}@my.cityu.edu.hk, jh.hou@cityu.edu.hk, yhe@ntu.edu.sg

Abstract

Motivated by the intuition that one can transform two

aligned point clouds to each other more easily and mean-

ingfully than a misaligned pair, we propose CorrNet3D –

the first unsupervised and end-to-end deep learning-based

framework – to drive the learning of dense correspon-

dence between 3D shapes by means of deformation-like

reconstruction to overcome the need for annotated data.

Specifically, CorrNet3D consists of a deep feature em-

bedding module and two novel modules called correspon-

dence indicator and symmetric deformer. Feeding a pair

of raw point clouds, our model first learns the pointwise

features and passes them into the indicator to generate a

learnable correspondence matrix used to permute the in-

put pair. The symmetric deformer, with an additional reg-

ularized loss, transforms the two permuted point clouds

to each other to drive the unsupervised learning of the

correspondence. The extensive experiments on both syn-

thetic and real-world datasets of rigid and non-rigid 3D

shapes show our CorrNet3D outperforms state-of-the-art

methods to a large extent, including those taking meshes

as input. CorrNet3D is a flexible framework in that it

can be easily adapted to supervised learning if annotated

data are available. The source code and pre-trained model

will be available at https://github.com/ZENGYIMING-

EAMON/CorrNet3D.git.

1. Introduction

Owing to the flexibility and efficiency in representing 3D

objects/scenes as well as the recent advances in 3D sens-

ing technology, 3D point clouds have been widely adopted

in various applications, e.g., immersive communication [2],

autonomous driving [33], AR/VR [37], etc. Since each

*This work was supported by the HK RGC Grant CityU 11202320, the

NSFC Grant 61871342, and Singapore MOE Grant 20/20.
†Corresponding author.

camera/scanner produces a point cloud in its own camera

space rather than the object space, there is no correspon-

dence between two point clouds (even they represent the

same object), which poses great challenges for downstream

processing and analysis, such as motion transfer [39], shape

editing [24], dynamic point cloud compression [20], object

recognition [3], shape retrieval [11], surface reconstruction

[7], and many others.

Building dense shape correspondence is a fundamen-

tal and challenging problem in computer vision and dig-

ital geometry processing. There are a considerable num-

ber of methods proposed, which can be roughly classified

into two categories: model-based [6, 19, 41, 28] and data-

driven [23, 9, 8]. The model-based methods usually use

handcrafted features to optimize pre-defined processes. The

recent deep learning-based methods train their neural net-

works in a data-driven manner and improve the performance

to a large extent. However, the existing methods either re-

quire a large amount of annotated data which are difficult to

obtain or assume the connectivity information is available

in the input data, i.e., polygonal meshes. This paper focuses

on unsupervised learning of dense correspondence between

non-rigid 3D shapes in the form of 3D point clouds, but the

proposed method can also be used for rigid 3D shapes.

Motivation. Let A ∈ R
n×3 and B ∈ R

n×3 be the two

point clouds to be corresponded*, where ai = {xi, yi, zi},

1 ≤ i ≤ n and bj = {x′

j , y
′

j , z
′

j}, 1 ≤ j ≤ n are the

i-th and j-th 3D points of A and B, respectively. Fig. 1

illustrates our motivation: if A and B are well aligned, it is

easier to transform one model to the other. More precisely,

denote by Â ∈ R
n×3 and B̂ ∈ R

n×3 the re-ordered A and

B via a designed permutation process, respectively. With a

designed reconstruction process, it is expected that we can

reconstruct A (resp. B) from B̂ (resp. Â) more easily and

meaningfully than the manner of reconstructing A (resp.

B) from B (resp. A) directly. Therefore, we can minimize

the reconstruction error from B̂ (resp. Â) to A (resp. B)

*Note that the points are randomly stacked to form a matrix.
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Figure 1. Illustration of the motivation of our unsupervised deep

learning-based framework for computing dense correspondence

between two point clouds.

to drive the learning of the permutation process, which im-

plicitly encodes the dense correspondence between A and

B.

Based on the above intuitive understanding, we propose

the first unsupervised and end-to-end deep learning-based

framework for point clouds. Technically, we propose a

novel correspondence indicator and a deformation-like re-

construction module to achieve the permutation and recon-

struction processes, respectively. To be specific, the corre-

spondence indicator, fed with point-wise high-dimensional

feature representations of the input point clouds learned by a

hierarchical feature embedding module, generates a permu-

tation matrix, which explicitly encodes the point-to-point

correspondence. During training, the deformation-like re-

construction module receives the aligned point clouds and

the global semantic features of inputs to reconstruct each

other by optimizing the reconstruction error and additional

regularization terms to drive the learning of the permutation

matrix.

In summary, we make the following contributions.

1. We propose the first unsupervised deep learning frame-

work for building dense correspondence between point

clouds in an end-to-end manner.

2. We propose two novel modules, i.e., the correspon-

dence indicator with the efficient DeSmooth module,

the symmetric deformation module, as well as a novel

loss function.

3. We show that CorrNet3D can be adapted to both un-

supervised and supervised conditions, and handle both

non-rigid and rigid shapes well.

4. We experimentally demonstrate the significant superi-

ority of CorrNet3D over state-of-the-art methods. Es-

pecially, CorrNet3D even outperforms the method tak-

ing 3D meshes as input.

2. Related Work

2.1. Deep Learning for Point Clouds

Unlike well-developed deep convolution neural network

(CNN) techniques for 2D images/videos, deep learning

based point cloud processing is more challenging and still in

the infant stage, due to its irregular and unorder characteris-

tics. PointNet [31] and PointNet++ [32] are the pioneering

works and verify the effectiveness of multi-layer percep-

trons (MLPs) in learning point cloud features. DGCNN [48]

uses a dynamic graph to aggregate neighborhood informa-

tion in each layer, and the selection of neighbours is based

on feature distances. DCG [45] further boosts DGCNN

by encoding additional local connections in coarse-to-fine

manner. Volumetric-based methods [49, 26, 34, 46, 22] ap-

ply 3D CNNs to process voxelized point clouds; however,

they suffer from high computational costs and inevitable

quantization errors. In the meantime, inspired by the Fold-

ingNet [50], which learns to deform pre-defined 2D regular

grids into 3D shapes, some deformation-based frameworks,

such as AtlasNet [14] and 3D-Coded [13], were proposed,

which deform a fixed templates (e.g., 2D grid or 3D human

mesh) to reconstruct the input point cloud or mesh. Please

refer to [16] for the comprehensive survey on deep learning-

based point cloud processing.

2.2. Non-rigid Shape Correspondence

Non-rigid shape correspondence or matching aims to

find the point-to-point correspondence of two deformable

3D shapes. As an active research area in computer vi-

sion and graphics, many methods have been proposed, and

one may refer to the surveys [43, 35, 4] for a comprehen-

sive understanding. Here we briefly introduce one stream,

i.e., functional map (FM)-based methods [28] which are

compared in this paper. Specifically, this kind of meth-

ods first performs spectral analysis on 3D meshes to con-

struct an FM, and then optimizes a least-squares problem to

convert the resulting FM to point-to-point correspondence

under the assumption of non-rigid but isometric deforma-

tion. To overcome the deficiency of solving the optimiza-

tion problem, Litany et al. [23] proposed deep FM, which

integrates the module of computing FM into a deep neural

network. However, both original FM-based methods and

deep FM use the handcrafted SHOT descriptors [36] , which

may limit their performance. Based on deep FM, Halimi

et al. [17] proposed to minimize the surface distortion be-

tween meshes to drive the correspondence learning process.

Instead of using handcrafted descriptors, the most recent

deep learning-based method named deep geometric func-

tional map (DeepGFM) [9] employs KPConv[42] to achieve

a data-driven feature representation. Although DeepGFM

can achieve state-of-the-art performance, it is only appli-

cable for 3D meshes, and its training has to be supervised

by ground-truth FMs, whose construction requires ground-

truth correspondence. Moreover, additional post-processing

is necessary to obtain the final correspondence.

Recently, FlowNet3D [25] was designed to directly learn

scene flows from two consecutive point clouds in the form
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Figure 2. The flowchart of CorrNet3D, an unsupervised and end-to-end deep learning framework, which aims to obtain a matrix P, which

explicitly indicates the correspondence between any two points. We first represent A and B with high-dimensional point-wise features

Fa and Fb as well as the global features va and vb. Then the correspondence indicator with a novel DeSmooth module takes Fa and Fb

as input to regress P. To drive the unsupervised learning of P, two symmetric deformers with shared parameters takes the A, B, P and

va, and vb as inputs to generate the reconstructed point clouds Ã and B̃ in the deformation-like manner. CorrNet3D is trained with the

reconstruction loss and additional regularization terms on P.

of depth images. To some extent, it can also be used for in-

dicating correspondence, i.e., adding the estimated flow to

one point cloud, and then seeking the closest point in the

other one. However, such a simple extension may result

in serious many-to-one correspondence. Moreover, due to

the specific application scenario, FlowNet3D only utilizes

the neighborhood information based on the Euclidean dis-

tance in two frames, making it not applicable to 3D shapes

with serious deformation. Groueix et al. [15] proposed a

self-supervised approach to achieve deep surface deforma-

tion for shapes in the same category, in which the semantic

labels from a small set of segmented shapes are transferred

to unlabeled data. This work has potential on shape match-

ing.In our experiment, we slightly modified the loss func-

tion of FlowNet3D to produce an improved unsupervised

model for correspondence prediction, which is adopted as a

baseline method for comparisons.

2.3. Rigid Shape Matching

Rigid shape matching or registration aims to obtain a ro-

tation matrix R ∈ R
3×3 and a translation vector t ∈ R

3×1

to align two rigid 3D shapes. Over the past decades, a con-

siderable number of methods have been proposed. Please

refer to [40] for the comprehensive survey of traditional

methods for rigid 3D shape registration. Recently, some

deep learning-based methods were proposed. For example,

PointNetLK [1] utilizes PointNet [31] to extract global fea-

tures for two point clouds separately and then estimate R

and t. DCP [47] introduces a transformer [44] to solve the

seq-2-seq problem, where the point-wise correspondence

and (R, t) are simultaneously estimated. The recent work

RPMNet [51] adopts the Sinkhorn layer [27] to get the cor-

respondence information and weighted SVD [12] to com-

pute R and t. Note that all these learning-based methods

require ground-truth rotations and translations as supervi-

sion or even additional post-processing.

3. Proposed Framework

3.1. Overview

As illustrated in Fig. 2, our CorrNet3D mainly consists

of three modules: feature embedding, correspondence indi-

cator, and symmetric deformer. Specifically, we first pass

paired input point clouds into the shared feature embed-

ding module to generate point-wise high-dimensional fea-

ture embeddings Fa ∈ R
n×d and Fb ∈ R

n×d with d be-

ing the feature dimension, which encode their local geo-

metric structures, respectively, and global feature vectors

va ∈ R
d and vb ∈ R

d, which encode their shape informa-

tion, respectively. Then we predict a correspondence ma-

trix P ∈ R
n×n by feeding Fa and Fb into the correspon-

dence indicator, where the the (i, j)-th element pij = 1
indicates the point ai corresponds to bj . To drive the learn-

ing of P in an unsupervised manner, we propose the sym-

metric deformer in which we utilize vb (resp. va ) and the

permuted point cloud Â (resp. B̂) to reconstruct B (resp.

A). CorrNet3D is end-to-end trained by directly minimiz-

ing ‖A− Ã‖2F + ‖B− B̃‖2F + λR(P), where Ã ∈ R
n×3

and B̃ ∈ R
n×3 are the reconstructed point clouds, ‖ · ‖F

is the Frobenious norm of a matrix, λ > 0 is the penalty

parameter, and R(P) stands for the regularization on P.

Remark. The proposed CorrNet3D is fundamentally

different from the existing works [51],[9], as the correspon-

dence matrix is driven from the perspective of deformation-

like reconstruction, rather than the ground-truth correspon-

dence or the well-known functional maps. In addition, Cor-

rNet3D is able to work as a supervised model by removing

the deformation module and employing ground-truth corre-
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spondence to supervise the learning of P. In the experiment

section, we demonstrate the significant advantage of Corr-

Net3D under both unsupervised and supervised scenarios.

3.2. Feature Embedding

We use a shared DNN-based feature learner, namely

DGCNN [48], to embed A and B to a high-dimensional

feature space in a hierarchical manner. Note that other ad-

vanced feature representation methods [38], [5] can also be

used to further boost performance. To be specific, DGCNN

consists of several layers named EdgeConv. For the i-th
point, we first calculate the Euclidean distance between fea-

tures to determine the set of its k nearest neighbours de-

noted by Ωl
i. Then, we apply an MLP [18] followed by a

max-pooling operator � to obtain a new feature representa-

tion f l+1
i = �f l

j
∈Ωl

i
Ml(f

l
i , f

l
j−f li ), where f li ∈ R

1×d be the

feature representation of point i fed into the l-th EdgeConv.

f l+1
i is capable of capturing the local geometry structure of

point i. After L EdgeConv layers, we can obtain the final

point-wise features Fa ∈ R
n×d for A and Fb ∈ R

n×d

for B. By applying another max-avg-pooling operator, the

global feature vectors for A and B could be accordingly

obtained denoted as va ∈ R
d and vb ∈ R

d, respectively.

Please refer to [48] for more details about DGCNN.

3.3. Correspondence Indicator

Our correspondence indicator module aims to learn a

correspondence matrix P ∈ R
n×n to explicitly indicate the

correspondence between any two points of A and B. Ide-

ally, P should be a permutation matrix that is binary and or-

thogonal, and iff pij = 1, point ai corresponds to point bj .

However, such a permutation matrix is non-differentiable,

making it hard to optimize in a deep learning framework.

Alternatively, we regress an approximate doubly stochastic

matrix instead, which is differentiable and close to binary.

Moreover, there is only a single prominent element domi-

nating each row and column. During inference, we quantize

P to an exact binary matrix P̂.

As shown in Fig. 3, to learn P, we first measure the

similarity between points in the high-dimensional feature

space in the inverse distance sense, i.e.,

p̃ij =
1

‖fa,i − fb,j‖2
, (1)

where p̃ij ⊂ P̃ ∈ R
n×n, and fa,i and fb,j ∈ R

1×d are the

i-th and j-th point-wise features corresponding to ai and

bj , respectively. However, the resulting P̃ is far away from

realizing correspondence. To further enhance P̃, one can

simply adopt Sinkhorn layers [27], which perform the soft-

max operation on in column-wise and row-wise iteratively

and alternatively, as done in [51]; however, the efficiency

of Sinkhorn layers is low due to the iterative manner. To

tackle this issue, we propose a novel DeSmooth module to

improve P̃.

DeSmooth Module. Assume that p̃ij generally obeys a

series of Gaussian distributions†: p̃ij ∼ N
(
μi, σ

2
i

)
, where

μi and σi are the mean and standard deviation of the i-
th row of P̃. We first normalize p̃ij in row-wise, i.e.,

zij =
p̃ij−µi

σi
. Accordingly, zij follows a standard normal

distribution zij =
p̃ij−µi

σi
∼ N (0, 1). Give a prior ratio t to

zij , we have

z̃ij = t · zij ∼ N (0, t) . (2)

For i-th row of Z̃ ∈ R
n×n (z̃ij ⊂ Z̃), we compute the num-

ber of elements whose values are not less than a threshold

τ , i.e.,

ci = # {z̃ij |z̃ij � τ, j = 1, · · · , n} (3)

where #{·} denotes the cardinality. We expect the value

of ci to be close to 1, which means that in each row there’s

a high probability that only a single element dominates the

row.

The n rows of Z̃ could be thought of as n i.i.d events,

and thus the set c = {ci|i = 1, · · · , n} also follows a Gaus-

sian distribution with the expectation μc and variance σc

depending on the prior ratio t. Therefore, According to

the three-sigma rule [30], we can set a proper t to control

the bound [μc − 3σc, μc + 3σc] to be centered around 1,

such that the aforementioned expectation on a feasible cor-

respondence matrix can be realized. Finally, we apply the

softmax operation on z̃ij again and obtain the correspon-

dence matrix P, i.e.,

pij =
ez̃ij∑n
j=1

ez̃ij
. (4)

The advantage of our DeSmooth over Sinkhorn layers is

also experimentally demonstrated in Sec. 4.5.

3.4. Symmetric Deformer

Given ground-truth correspondence between A and B,

the modules for learning P can be easily trained in a su-

pervised manner. Annotating large amount of data is,

†As p̃ij is non-negative, it does not follow a strict Gaussian distribu-

tion. However, we found such an assumption still works well in practice
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The global feature vb encoding the shape information of B is con-

catenated to the 3D coordinate of each point of Â, which are fed

into an MLP to reconstruct B from a deformation perspective.

however, costly and time-consuming. Inspired by recent

deformation-based methods, such as FoldingNet [50] and

AtlasNet [14], which feed a pre-defined 2D grid appended

with a global feature vector to a network to reconstruct 3D

shapes, we propose symmetric deformer shown in Fig. 4,

which reconstruct A and B in a deformation-like fashion to

achieve the unsupervised learning of P.

We link the matrix P with the deformation module based

on the aforementioned intuition, i.e., it is more easily and

meaningfully to transform two aligned point clouds to each

other than a misaligned pair. Specifically, we first permute

the input point clouds using the learned P approximate to a

permutation matrix, i.e.,

Â = PTA, B̂ = PB. (5)

The resulting Â (resp. B̂) is approximately aligned with

B (resp. A). Then, we deform Â to B and B̂ to A, by re-

spectively utilizing their overall shape information encoded

in the learned global feature vectors va and vb. Techni-

cally, we concatenate va (resp. vb) to each point of B̂ (resp.

Â) and pass the extended points to a network consisting of

MLP layers, leading to reconstructed point clouds Ã (resp.

B̃). See Sec.4.5 for the experimental validation towards the

effectiveness and the deformation behavior of this module.

3.5. Unsupervised Loss Function

To train the proposed CorrNet3D end-to-end, we pro-

mote Ã and B̃ to be close to A and B, respectively, which

is achieved by

Lrec

(
Ã, B̃

)
=

∥∥∥A− Ã

∥∥∥
2

F
+
∥∥∥B− B̃

∥∥∥
2

F
. (6)

Benefiting from the alignment operation involved in Cor-

rNet3D, we are allowed to use such a point-to-point re-

construction loss, which is easier to optimize than the

commonly-used CD loss, thus producing better perfor-

mance. See the ablation study.

In addition to the reconstruction loss, we also propose

another two terms to regularize the learning of the corre-

spondence matrix P. The first regularization term is defined

as

Lperm(P) =
∥∥∥PPT − In

∥∥∥
2

F
, (7)

where I is the identity matrix of size n×n. Such a term en-

courages P to be close to a permutation matrix to eliminate

one-to-many correspondence. Second, we utilize the local

geometry similarity between the input point cloud and per-

muted one to promote the learning of P, i.e., neighbouring

points in A (resp. B) should also be neighbours in B̂ (resp.

Â), which is mathematically expressed as

Lmfd(P) = (8)

n∑

i=1

⎛
⎝ ∑

k∈Ωa
i

‖piB− pkB‖22
‖ai − ak‖22

+
∑

s∈Ωb
i

‖piA− psA‖22
‖bi − bs‖22

⎞
⎠ ,

where pi (resp. pi)is the i-th row (resp. column) of P, and

Ωa
i (resp. Ωb

i ) is the index set of k nearest neighbours of

point ai (resp. bi).

Finally, the overall loss function for training CorrNet3D

is written as

L
(
Ã, B̃,P

)
= (9)

Lrec

(
Ã, B̃

)
+ λ1Lperm (P) + λ2Lmfd (P) ,

where λ1 and λ2 > 0 are the parameters to balance the three

terms. See Sec. 4.5 for the experimental validation towards

such an unsupervised loss function.

3.6. Pseudo Clustering for Large-scale Point Clouds

As the size of predicted P depends on that of the input

point cloud, directly inferring the correspondence of large-

scale point clouds may cause a memory issue. To this end,

we propose pseudo clustering, a simple yet effective ap-

proach. Specifically, during inference, we first apply a typi-

cal sampling method such as farthest point sampling (FPS)

on input point clouds to sample a fewer number of points

called key points, which are thought of as cluster centers

and fed into CorrNet3D, leading to the correspondence of

the key points. Then the nearest neighboring points of each

key point are found and sorted according to their Euclidean

distances to center, and the correspondence of the neigh-

bouring points of two corresponded key points are finally

determined if two neighbouring points have the same rank

in their own cluster. Such a pseudo clustering enables us to

easily apply CorrNet3D to large-scale point clouds.

It is also worth pointing out that such a simple strat-

egy would degrade the performance of our method when

directly applied on large-scale point clouds under the con-

dition with sufficient memory to some extent; however, the

experiment shows CorrNet3D can still predict more accu-

rate correspondence than the method even trained with 3D

meshes, demonstrating the strong ability of our CorrNet3D.

6056



4. Experiments

In this section, we conducted extensive experiments and

comparisons on real scanned non-rigid shapes and synthetic

non-rigid and rigid shapes to demonstrate superiority of

CorrNet3D in both supervised‡ and unsupervised scenarios.

4.1. Experiment Setting

Datasets. For non-rigid shape correspondence, we

adopted Surreal [13] as the training dataset, consisting of

230K samples, which were randomly grouped into 115K

training pairs. We conducted the test on the SHREC

dataset [9], which has 430 pairs of non-rigid shapes. For

rigid shape correspondence, we adopted the training and

test dataset splits of the Surreal dataset [13], which contain

230K and 200 samples, respectively, and we randomly ro-

tated and translated the samples to generate 230K pairs and

200 pairs for training and testing, respectively. Note that we

chose these datasets in order to keep the same settings as the

compared methods, including DeepGFM [9], DCP [47] and

RPMNet [51], for fair comparisons. For all the above train-

ing data, each point cloud contains 1024 points. The Surreal

and SHREC datasets are both synthetic 3D meshes and we

randomly picked 1024 vertices to form the point clouds.

Metrics. To fairly and quantitatively compare differ-

ent methods, we define the corresponding percentage (Corr

(%)) to measure correspondence accuracy, i.e.,

Corr =
1

n

∥∥∥P̂⊙Pgt

∥∥∥
1
, (10)

where ⊙ is the Hadamard product of matrices, ‖ · ‖1 is

the ℓ1 norm of a matrix, and Pgt encodes the ground-truth

correspondence. Moreover, for a comprehensive compari-

son, we computed the corresponding percentage of different

methods under various tolerant errors defined as r/distmax,

where distmax := max{‖ai−aj‖2, ∀i, j}, and r stands for

the tolerant radius. It is worth pointing out that the above

quantitative evaluation criteria are similar to those used for

3D mesh-based shape correspondence [28, 23] which adopt

the geodesic distance as the tolerant error requiring connec-

tivity information. But such information is not available for

point clouds, we directly compute the Euclidean distance.

Implementation details. For the parameters in Eq. (9),

we empirically set λ1 = 0.1 and λ2 = 0.01. The shared

symmetric deformer consists of a 3-layer MLP. We imple-

mented it with the PyTorch framework [29] on GeForce

RTX 2080Ti.We trained the models with Adam [21] opti-

mizer with the learning rate equal to 1e-4 and the batch size

equal to 10 for 300 epochs.
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Figure 5. Quantitative comparisons of different methods for non-

rigid shape correspondence.
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Figure 6. Visual comparisons of different methods for non-rigid

shape correspondence in the form of point clouds. Both lines and

colors are used for illustrating the correspondence. (a) Ground-

truth. (b) F3D. (c) CorrNet3D. (d) S-CorrNet3D.

4.2. Evaluation on Non-rigid Shapes

In this scenario, we compared CorrNet3D and super-

vised CorrNet3D (S-CorrNet3D) with unsupervised F3D§

[25] and supervised DeepGFM [9] taking 3D meshes as in-

put.

Fig. 5 shows the quantitative comparisons of different

methods, where it can be observed that S-CorrNet3D al-

ways produces the best performance, and both CorrNet3D

and S-CorrNet3D consistently outperform F3D and Deep-

GFM. Especially, the performance advantage of our meth-

ods over DeepGFM is more obvious with the tolerant error

increasing. Fig. 6 shows visual comparisons of F3D, Cor-

rNet3D and S-CorrNet3D on point clouds, where the pre-

dicted correspondence is visualized with colors and lines.

From Fig. 6, we can see that CorrNet3D and S-CorrNet3D

produce more accurate correspondence than F3D, espe-

‡The supervised CorrNet3D (S-CorrNet3D) is achieved by removing

the symmtric deformation module and training the remaining modules via

minimizing the Euclidean distance between the predicted correspondence

(i.e., P) and the ground-truth one.
§We obtained the unsupervised F3D by modifying the supervised

FlowNet3D [25], i.e., we only replaced the loss function with the Chamfer

Distance.
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Figure 7. Visual comparisons of different methods on non-rigid

shapes in the form of 3D meshes. Each mesh contains 5200 ver-

tices. We render the two corresponded points of the two shapes in

the same color. (a) and (d) show the ground-truth correspondence.

(b) and (c) show the results of CorrNet3D and DeepGFM, respec-

tively. Note that CorrNet3D takes only 1024 vertices as input and

DeepGFM takes 3D meshes as input. We compute the correspon-

dence of the remaining points is obtained via a pseudo clustering

strategy.

( )a ( )b ( )c ( )d ( )e ( )f

Figure 8. Visual comparisons of different methods for rigid shape

correspondence. (a) and (f) show the ground-truth correspon-

dence. (b),(c),(d) and (e) show the results of DCP, RPMNet, Corr-

Net3D and S-CorrNet3D, respectively.

cially at feet, hands and the right leg. Fig. 7 shows the visual

comparisons of CorrNet3D and DeepGFM on 3D meshes,

which further demonstrates our method’s advantage. That

is, the predicted correspondence by our CorrNet3D is closer

to the ground-truth one. However, DeepGFM results in

patchy distributed wrong correspondence, although it uti-

lizes additional connectivity information and ground-truth

correspondence as supervision.

4.3. Evaluation on Rigid Shapes

In this scenario, we compared our CorrNet3D and S-

CorrNet3D with DCP [47] and RPMNet [51]. Notice both

DCP and RPMNet require ground-truth rigid transforma-
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Figure 9. Quantitative comparisons of different methods for rigid

shape correspondence.

tion as supervision during training¶.

Fig. 9 reports the quantitative comparisons of differ-

ent methods, where it can be seen that CorrNet3D and

S-CorrNet3D consistently outperform DCP an RPMNet.

Interestingly but not surprisingly, the unsupervised Corr-

Net3D performs even better than the other three supervised

methods. The reason is that the freedom and searching

space for the model in the supervised manner will be lim-

ited by the training dataset, making it harder to adapt the

trained model to data with large transformation. Fig. 8 visu-

ally compares the results of different methods, where it can

be observed that DCP even fails to obtain correct matching,

and RPMNet cannot predict correct matching for hands and

the body part. In contrast, S-CorrNet3D and CorrNet3D are

able to generate more accurate matching results, which are

closer to ground-truth ones.

4.4. Evaluation on Real Scanned Data

We also examined the robustness of CorrNet3D on a real

scanned dataset, i.e., 8iVFB [10], including the dynamic

point cloud sequences of human motion with serious de-

formation. The test point clouds contain 1024 points each

randomly picked from the original ones. As illustrated in

Fig. 10, where the two corresponding points of two shapes

predicted by CorrNet3D are visualized with the same color,

we can observe CorrNet3D trained on the synthetic dataset

still produces impressive performance on real data even

with serious deformation, demonstrating the CorrNet3D’s

strong ability.

4.5. Ablation Study

In this section, we conducted extensive ablation studies

for a comprehensive understanding towards our CorrNet3D.

We carried out experiments on non-rigid Surreal dataset in

the unsupervised scenario.

¶As DCP and RPMNet are able to generate soft correspondence by

transformer and Sinkhorn, respectively, We output the soft correspondence

matrix and set each row’s max value as 1, and others as 0 to get a binary

correspondence matrix for comparison.
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Figure 10. Visual results of CorrNet3D on 8iVFB [10] - a real

scanned dataset.

Figure 11. Comparisons between our DeSmooth and the Sinkhorn

layer in terms of accuracy (a) and efficiency (b).

Table 1. Validation of the effectiveness and behavior of the sym-

metric deformer. Here the tolerance error is equal to 20%.

Module (a) Fully (b) Deformer (c) Deformer (d) Deformer

connected (w/o va,vb) (not shared) (shared)

Corr(%) 26.21 25.24 95.97 95.61

DeSmooth module. We compared our DeSmooth with

the Sinkhorn layer. Specifically, we replaced the DeSmooth

module of CorrNet3D with the Sinkhorn layer, while keep

all the remaining settings the same. As shown in Fig. 11, it

can be observed that under the same tolerant error, the ac-

curacy of our DeSmooth is on par with that of the Sinkhorn

layer, while our DeSmooth improves the efficiency up to

8×.

Deformation module. The results listed in Table 1 val-

idate the effectiveness of our symmetric deformer design

and its deformation-like behavior. That is, The correspon-

dence accuracy of the other two settings, i.e., (a) replacing

the symmetric deformer of CorrNet3D with fully connected

(FC) layers and (b) training CorrNet3D without (w/o) feed-

ing global features into the symmetric deformer (i.e., the ab-

sence of the shape information), decreases significantly. We

also compared the symmetric deformer w/ and w/o shared

parameters As listed in Table 1, comparable performance

is achieved under these two settings, but the deformer w/

shared parameters is more memory-efficient as the number

of parameters reduces by half.

Loss function. In Table 2, we compared the perfor-

mance of CorrNet3D when trained with different loss func-

tions. The effectiveness of the regularization terms can be

validated by comparing the 2nd and 4th columns, and the

advantage of our Euclidean distance-based reconstruction

loss over the Chamfer Distance can be demonstrated by

comparing the 3rd and 4th columns.

Failure cases. Here we present two failure cases, which

occur for computing non-rigid shape correspondence on

Table 2. Validation of the effectiveness of loss setting in Eq. (9),

Lreg = λ1Lperm + λ2Lmfd. The tolerance error is 20%.

Loss Lrec CD + Lreg Lrec + Lreg

Corr(%) 31.49 25.74 95.61

( )a ( )b ( )c ( )d ( )e

Figure 12. Visualization of two failure cases of non-rigid shape

correspondence. (a) and (e) show the ground-truth correspon-

dence. (b) and (e) show the results by F3D. (c) and (e) show the re-

sults by CorrNet3D. (d) and (e) show the results by S-CorrNet3D.

The corresponding points are shown as the same color. Note that

the two unsupervised methods F3D and CorrNet3D fail, while the

supervised S-CorrNet3D can obtain correct results.

highly symmetric and distorted shapes. As show in Fig. 12,

we can see that the two unsupervised methods i.e., F3D

and CorrNet3D, both generate wrong correspondence es-

pecially in the hands and feet. However, the supervised S-

CorrNet3D can successfully obtain the correct correspon-

dence. In future, solving such issues without using heavy

annotations or simple data augmentation is a promising di-

rection.

5. Conclusions

We have presented the first unsupervised and end-to-end

learning framework named CorrNet3D for building dense

correspondence between 3D shapes in the form of point

clouds. Unlike existing works, we addressed this chal-

lenging problem from the deformation-like reconstruction

perspective. Note that CorrNet3D is a flexible framework

in that it can be simplified to work in a supervised man-

ner when annotated data are available. We demonstrated

the significant advantages of our methods over state-of-

the-art ones by conducting extensive experiments on real

scanned and synthetic data including rigid and non-rigid

shapes in both unsupervised (CorrNet3D) and supervised

(S-CorrNet3d) scenarios, as well as comprehensive abla-

tion studies. We believe our methods will bring benefits

to other tasks, such as point cloud sequence compression

which needs correspondence for eliminating the inter-frame

redundancy, and deep learning-based point cloud sequence

analysis, which usually has to align points from different

frames for feature aggregation.
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