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Abstract. Collision-intractable hashing is an important cryptographic primitive
with numerous applications including efficient integrity checking for transmit-
ted and stored data, and software. In several of these applications, it is important
that in addition to detecting corruption of the data we also localize the corrup-
tions. This motivates us to introduce and investigate the new notion of corruption-
localizing hashing, defined as a natural extension of collision-intractable hashing.
Our main contribution is in formally defining corruption-localizing hash schemes
and designing two such schemes, one starting from any collision-intractable hash
function, and the other starting from any collision-intractable keyed hash func-
tion. Both schemes have attractive efficiency properties in three important met-
rics: localization factor, tag length and localization running time, capturing the
quality of localization, and performance in terms of storage and time complexity,
respectively. The closest previous results, when modified to satisfy our formal
definitions, only achieve similar properties in the case of a single corruption.

1 Introduction

A collision-intractable hash function is a fundamental cryptographic primitive, that
maps arbitrarily long inputs to fixed-length outputs, with the required property that
it is computationally infeasible to obtain two inputs that are mapped to the same out-
put. One popular application of such functions is in the authentication and integrity
protection of communicated data (i.e., as building blocks in the construction of digital
signatures and message authentication codes). Other popular and more direct applica-
tions include practical scenarios that demand reliability of downloaded software files
and/or protection of stored data against malicious viruses, as we now detail.

Software Reliability. Downloading software is a frequent need for computer users and
checking the reliability of such software has become a task of crucial importance. One
routinely used technique consists of accompanying software files with a short tag, com-
puted as the output returned by a collision-intractable hash function on input the file
itself. Later, the same function is used to detect whether the file has changed (assum-
ing that no modification was done to the tag), and thus detect whether the software
file was corrupted. An important example of the success of this technique is Tripwire
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[12], a widely available and recommended integrity checking program for the UNIX
environment. However, with this approach even if one byte error (beyond the error-
correction/detection capability of transmission protocols such as TCP) occurs in the
transmission, the user has to download the whole file again. This is a waste of band-
width and time. Alternatively, it would be desired to use a new kind of tag for which
one can determine which blocks are corrupted and only retransmit those.

Virus Detection. Some of the most successful modern techniques attempting to solve the
problem of virus detection fall into the general paradigm of integrity checking; see, e.g.
[20,21] (in addition to other well-known paradigms, such as virus signature detection,
which we do not deal with here). As before, tags computed using cryptographic hash
functions detect any undesired changes in a given file or, more generally, file system
(see, e.g., [5]) due to viruses. A taxonomy of virus strategies for changing files is given
in [20]. With respect to that terminology, in the rest of the paper we consider the so-
called ‘rewriting infection strategies’, where any single virus is allowed to rewrite up
to a given number of consecutive blocks in a file (or, similarly, of consecutive files in
a file system). In the context of virus defense, in the so-called ‘virus diagnostics’ [20]
phase, it would be desirable to focus this phase on the localized area in the file rather
than the entire file (we stress that this phase is usually both very resource-expensive and
failure-prone, especially as the paradigm of integrity checking is typically used when
not much information is available about the attacking virus).

In both above scenarios, in addition to detecting that after the data was detected to
be corrupted, some potentially expensive procedure is required to deal with the corrup-
tion. For instance, in the case of software file download, the download procedure needs
to be repeated from scratch; and in the case of stored data integrity, the impact of the
corruption needs to be carefully analyzed so to potentially recover the data, sometimes
triggering an expensive, human-driven, virus diagnostics procedure. Thus, in these sce-
narios, in addition to detecting that the data was corrupted, it would be of interest to
obtain some information about the location of such corruptions (i.e., a relatively small
area that includes all corrupted data blocks). For our two scenarios, such information
would immediately imply savings in communication complexity (as only part of the
download procedure is repeated), and reduce human resource costs (as the virus diag-
nostic phase will just focus on the infected data). This motivates us to formally define
and investigate a new notion for cryptographic hashing, called corruption-localizing
hashing, that naturally extends cryptographic hashing to achieve such goals.

Our contribution. Extending a concept put forward in [8], we formally define and
investigate corruption-localizing hashing schemes (consisting of a hashing algorithm
and a localization algorithm), defined as a natural generalization of collision-intractable
hashing functions. With our formal definition of corruption-localizing hashing we de-
fine three important metrics: localization factor, tag length and localization running
time, to capture the effectiveness of the localization, and efficiency of the system in
terms of storage and time complexity, respectively. Localization factor is the ratio of
the size of the area that is output by the localization algorithm to the size of corrupted
area, where the former is required to contain the latter. We observe that simple tech-
niques imply corruption-localizing hashing schemes with linear localization factor, or
with small localization factor but with either a large localization running time or a large
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Localization Storage Original
Scheme factor complexity Hash Function Remark Constraint
Trivial1 O(n/v) O(1)
Trivial2 1 nσ cr

[8] O(1) O(σ log n) cr |S| < n/4

HS O(nc) O(σ log n) cr for some c < 1 |S| < n/4

HS O(nd) O(σ log2 n) cr for any 0 < d < 1 |S| < n/2(v + 1)
KHS O(v3) O(σv2λ logv n) cr-keyed |S| < n/2(v + 1)

Fig. 1. Asymptotical performance of 2 trivial schemes detailed at the end of Section 2, of a pre-
vious result from [8] for a single corruption, of 2 instantiations of our first scheme HS, and of
our second scheme KHS for v corruptions. The term ‘cr’ (resp., ‘cr-keyed’) is an abbreviation
for ‘collision-resistant’ (resp., ‘collision-resistant, keyed’). Also, n denotes the file length, λ a
security parameter that can be set = O(log1+ε n), for some ε > 0, σ the output length of the
(atomic) collision-resistant (keyed) hash function, and |S| denotes the size of the largest corrup-
tion returned by the adversary. The value v for HS in the table is assumed to be constant; the
general case can be found in Theorem 1.

tag length. We then target the construction of hashing schemes that achieve sub-linear
localization without significantly increasing tag length or running time. Our main re-
sults are two schemes with provable corruption-localization whose properties are de-
tailed in Figure 1, where HS is presented for constant v and the general case is stated
in Theorem 1. Note that our schemes significantly improve the localization of v ≥ 1
corruptions, at the cost of only slightly increasing storage complexity and running time
of a conventional collision-resistant hash function. For instance, when v is constant,
our first scheme, based on any collision-intractable hash function, achieves sub-linear
localization factor and logarithmic tag length. Moreover, our second scheme, based
on any collision-intractable keyed hash function, has constant localization factor and
poly-logarithmic tag length. Using our schemes, in the software downloading scenario
above, one can first obtain the (maybe corrupted) file and its tag (authentic), then use
the latter to localize the corrupted parts and finally request retransmission of the lo-
calized parts only. Here, the tag used by our schemes is short and thus its authenticity
can be guaranteed with small redundancy by standard error-correcting techniques (or,
in certain applications, using a low-capacity channel).

Previous work. The concept of localization is clearly not new, and can be consid-
ered as intermediate between the two concepts of detection and correction, which are
well studied, for instance, in the coding theory and watermarking literatures. In general
terms, localization is expected to provide better benefits and demand more resources
than detection and provide worse benefits and demand less resources than correction,
where, depending on applications and on benefit/resource tradeoffs, one concept may
be preferable over the other two. Moreover, our paper differs crucially from research in
both fields of coding theory and watermarking in that it specifically targets constructions
based on cryptographic hash functions, and their applications. This difference translates
in different construction techniques, security properties (as the collision-intractability
and corruption-localization of cryptographic hash functions and the correction property
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in coding theory are substantially different properties), and adversary models (typically,
in coding theory one considers arbitrary changes which can be modeled as unbounded
adversaries, while we only consider polynomial-time bounded adversaries). By defini-
tion, the collision-intractability property of cryptographic hash functions already pro-
vides a computational version of the detection property but falls short of providing
non-trivial localization, which we target here.

We also note that several aspects in the mentioned example applications have also
been studied from various angles. A first example is from [10] which studied the secu-
rity of software download in mobile e-commerce. This paper and follow-up ones mainly
focus on software-based security and risks involved in this procedure. A second exam-
ple is from [4], which introduced a theoretical model for checking the correctness of
memories. This paper and follow-up ones do not target constructions based on crypto-
graphic hash functions, and the constructions exhibit similar differences and tradeoffs
with our paper, as for the previously mentioned detection and correction concepts. A
third example, apparently the closest line of research to the one from our paper, is from
(non-adaptive) combinatorial group testing [9]. In this area, the goal is to devise com-
binatorial tests to efficiently find which objects out of a pool are defective. Note that
testing whether a collision-resistant hash function maps two messages to the same tag
could be considered a combinatorial test, and thus the technique from this area might
be applicable to our problem. However, one main crucial difference here is that com-
binatorial group testing refers to same-size objects, while in this paper we recognize
that practical corruptions may have very different sizes. Thus, even the best approaches
from this area (exactly finding w defective objects out of a pool of n using O(w2 log n)
storage) do not scale well as a single corruption, as defined in our model, may imply
w = ω(

√
n) and thus super-linear storage, which is worse than the Trivial2 construction

in Figure 1. Other important differences include the following: this area implements the
above correction concept, while our paper focuses on localization; moreover, our paper
works out the exact security analysis of the hashing functions, while the combinatorial
group testing area only focuses on combinatorial aspects.

Overall, the closest previous result to ours appeared in [8], which informally intro-
duced a notion equivalent to corruption-localization hashing, for the case of a single
corruption. One of their schemes satisfies our formal definition in the case of a single
corruption, and is a special case of our first scheme. We stress that the extension to
multiple corruptions is quite non-trivial both with respect to the formal definition (see
Section 2) and with respect to the constructions and proofs (see Sections 3, 4).

2 Definitions and Model

We assume familiarity with families of (conventional and keyed) cryptographic hash
functions and pseudo-random function families. Here, we present our new notions and
formal definitions of corruption-localizing hash schemes.

Corruption-Localizing Hashing: Notations. We assume that the input x to a (keyed)
hash function consists of a number of atomic blocks (e.g., a bit or a byte or a line); let
x[i] denote the i-th block of x; i is called index of x[i]; let x[i, j] denote the sequence of
consecutive blocks x[i], x[i + 1], . . . , x[j − 1], x[j], also called a segment. In general,
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for S = {i1, · · · , it} ⊆ {0, · · · , n − 1}, define x[S] = x[i1]x[i2] · · ·x[it]. A sequence
of segments (x[i1, j1], · · · , x[ik, jk]) is also called a segment list. We define a left cyclic
shift operator L for x by L(x) = x[1]x[2] · · ·x[n− 1]x[0]. Iteratively applying L, we
have Li(x) = x[i] · · ·x[n− 1]x[0] · · ·x[i− 1] for any i ≥ 0. For a set S, |S| denotes
the number of elements in it. For any (possibly probabilistic) algorithm A, an oracle
algorithm is denoted as AO , where O is an (oracle) function, and the notation a ←
A(x, y, z, . . .) denotes the random process that runs algorithm A on input x, y, z, . . .,
and denotes the resulting output as a.

Corruption-Localizing Hashing: Formal Model. Our generalization of collision-
intractable hash functions into hash schemes and keyed hash schemes is in having,
in addition to the hashing algorithm, a second algorithm, called the localizer, which,
given a corrupted input x′ and the hash value (also called tag) for the original input x,
returns some indices of input blocks. If strings x and x′ are a message (or file) x and its
corrupted version x′, then the localizer’s output are indices of all corrupted segments
of the input file. This improves over conventional hashing which typically reveals that
a corruption happened, but does not offer any further information about which input
blocks it happened at. To measure the quality of the localization, we introduce a param-
eter, called localization factor, that determines the accuracy of localizer and is defined
(roughly speaking) as the ratio of the size of the localizer output to the size of the actual
corrupted blocks. (Note that since the file size is measured in terms of the number of
blocks, we only need to consider the number of blocks.)

In this model, we only consider a replacement attack: given input x, adversary re-
places up to v segments of x by new ones while each replaced segment preserves its
original length (i.e., containing the same number of blocks). Our model allows each
segment to contain arbitrary and unknown number of blocks. This adversary model
well captures the applications described in the introduction. For instance, when a soft-
ware file is downloaded over the Internet some packets (regarding the payload in one
packet as one block) get noisy or even lost. In rewriting infections by viruses, some lines
in an executable might be replaced by malicious commands. Our objective for localiza-
tion is to output a small set T of indices that contains the corrupted blocks. Then, in
case of software download, we only need to request retransmission of blocks in T . We
will be mainly interested in partially corrupted files, for which a localization solution
for the applications mentioned in the introduction is of much more interest. Thus, when
designing our schemes, we assume a (sufficiently large) upper bound β on the size of
the maximum corruption segment.

Before describing the model, we define the difference between x and its corrupted
version x′. We generally consider the case where x′ is corrupted from x by v segments
(instead of blocks). Given as input two n-block strings x and x′, we define a function
Diffv as follow. For S ⊂ {0, · · · , n− 1}, let S = {0, · · · , n− 1}\S.

Diffv[x, x′] = min
∑v

i=1 |Si|, where each Si ⊂ {0, · · · , n− 1} is a segment, and the
minimum is over all possible {Si}vi=1 such that x[∪v

i=1Si] = x′[∪v
i=1Si].

Here Si ⊆ {0, · · · , n−1} and thus it might be empty, and x[∪v
i=1Si] and x′[∪v

i=1Si]
are strings x and x′, respectively, with segments Si, i = 1, · · · , v removed.
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Intuitively, Diffv[x, x′] is the minimal total size of v segments that an adversary can
modify in order to change x to x′. For example, let v = 2, n = 11, x = 00000000000,
and x′ = 10100000100, and assume x′ is the corrupted version of string x. We note the
minimal size of two segments in x that one can modify in order to change x to x′ is 4:
S1 = {0, 1, 2}, S2 = {8} and Diff2[x, x′] = 4. Generally, we say Si ⊂ {0, · · · , n −
1}, i = 1, · · · , v achieve Diffv[x, x′], if

∑v
i=1 |Si| = Diffv[x, x′] and x[∪v

i=1Si] =
x′[∪v

i=1Si]. Note Diffv[x, x′] can always be computed in time O(nv−1) by searching
for the rightmost element of segment Si and verifying if x[∪v

i=1Si] = x′[∪v
i=1Si]. On

the other hand, Diffv[x, x′] is mainly required in the definition of the security experiment
below but need not be calculated in our corruption-localization algorithms. So we do
not require an efficient algorithm for computing Diffv[x, x′].

We then define a hash scheme as a pair HS = (CLH, LOC), where CLH is an algo-
rithm that, on input an n-block string x (and, implicitly, a security parameter) returns a
string tag, and LOC is an algorithm that, on input an n-block string x′ and a string tag,
returns a set of indices T ⊆ {0, · · · , n− 1}. Similarly, we define a keyed hash scheme
as a pair (CLKH, KLOC), where CLKH is an algorithm that, on input an n-block string x
(and, implicitly, security parameter λ), a λ-bit string k, returns a string tag, and KLOC

is an algorithm that, on input an n-block string x′, a λ-bit string k, and a string tag,
returns a set of indices T ⊆ {0, . . . , n− 1}.

We now formally define the corruption-localization properties of hash schemes and
keyed hash schemes, using three additional parameters: v, the number of corrupted
segments, β the upper bound on the number of corrupted blocks in the largest corruption
segment, and α the lower bound on the ratio of the number of blocks T that is the output
of the localizing algorithm to Diffv[x, x′].

Definition 1. Let HS = (CLH, LOC) be a hash scheme and KHS = (CLKH, KLOC) be
a keyed hash scheme.

For any t, ε, α, β, v ≥ 0, the hash scheme HS is said (t, ε, α, β, v)-corruption-
localizing if for any algorithm A running in time t and returning corruption segments

of size ≤ β, the probability that experiment HExpHS,A,hash(α, v) (defined below)
returns 1 is at most ε.

For any t, q, ε, α, β, v ≥ 0, the keyed hash scheme KHS is said (t, q, ε, α, β, v)-
corruption-localizing if for any oracle algorithm A running in time t, making at most
q oracle queries, and returning corruption segments of size ≤ β, the probability that

experiment KExpKHS,A,keyh(α, v) (defined below) returns 1 is at most ε.

HExpHS,A,hash(α, v)
1. (x, x′)← A(α, v)
2. tag ← CLH(x)
3. T ← LOC(v, x′, tag)
4. if x[T ] 	= x′[T ] then return: 1
5. if |T | > α ·Diffv[x, x′] then

return: 1 else return: 0.

KExpKHS,A,keyh(α, v)
1. k ← {0, 1}λ
2. (x, x′)← ACLKHk(·)(α, v)
3. tag ← CLKHk(x)
4. T ← KLOC(k, v, x′, tag)
5. if x[T ] 	= x′[T ] then return: 1
6. if |T | > α · Diffv[x, x′] then

return: 1 else return: 0.
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In both above experiments, the adversary is successful if it either prevents effective
localization (i.e., one of the modified blocks is not included in T ), or forces the scheme
to exceed the expected localization factor (i.e., |T | > α ·Diffv[x, x′]).
Corruption-Localizing Hashing: metrics of interest. We use the following three main
metrics of interest to evaluate and compare corruption-localizing hash schemes and
keyed hash schemes.

First, the parameter α in the above definition is called localization factor. Note that
a collision-resistant hash function implies a trivial corruption-localizing hash scheme
with localization factor at least α = n/v. This is by simply defining the algorithm
Loc to return all blocks {0, . . . , n − 1}, where n is the length of the input to the hash
function CLH. (This is scheme Trivial1 in Figure 1.) Clearly, we target better schemes
with localization factor o(n/v) or even constant.

A second metric of interest is the output length of the hash function, also called
tag length. Note that a corruption-localizing hash scheme with localization factor 1 and
efficient localizer running time can be simply constructed as follows: the tag is obtained
by calculating the hash of each block in the input message individually (if a block is
not small such as a long line); the localizer returns the indices where the hashes differ.
(This is scheme Trivial2 in Figure 1.) Clearly, such a scheme is not interesting since the
tag length is linear in n. Instead, we target schemes where the tag length is logarithmic
or poly-logarithmic in n.

A third metric of interest is the localizer’s running time as a function of n, where
n is the length of the input to the function CLH (or CLKH). Our schemes only slightly
decrease the efficiency of the atomic collision-resistant hash function used.

3 A Corruption-Localizing Hashing Scheme

In this section we design a corruption-localizing hash scheme based on any collision-
resistant hash function. Our scheme can be instantiated so that it localizes up to v
corruptions in an n-block file, while satisfying a non-trivial localization factor, very
efficient storage complexity and only slightly super-linear runtime complexity. For in-
stance, when v is constant (as a function of n), it has localization factor O(nc), for
some c < 1, and O(log n) storage complexity, or localization factor O(nd), for any
0 < d < 1, and O(log2 n) storage complexity. (See Theorem 1 and related remarks
for formal and detailed statements.) In the rest of the section, we start with an informal
description and a concrete example for the scheme, and then conclude with the formal
description and a sketch of proof of its properties.

AN INFORMAL DESCRIPTION. At a very high level, our hash algorithm goes as follows.
A collection of block segments from the n-block file x are joined to create several
segment lists, and the collision resistant hash function hλ is applied to compute a hash
tag for each segment list. The localizer, on input a file x′ with up to v corruptions,
computes a hash tag on input the same segment lists from file x′, and eliminates all
segment lists for which the obtained tag matches the tag returned by the hash algorithm.
The remaining blocks are returned as the area localizing the v corruptions. The hard part
in the above high level description is choosing block segments and segment lists in such
a way to achieve desired values for the localization, storage and running time metrics.
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Here, our approach can be considered a non-trivial extension of the scheme from [8]
that provides non-trivial localization for a single corruption (i.e., v = 1). We start by
briefly recalling the mentioned scheme, and, in particular, by highlighting some of the
properties that will be useful to describe our scheme.

A single-corruption scheme. The scheme in [8] follows the above paradigm in the
case v = 1 and localizes any single corrupted segment S (of up to n/4 blocks) with
localization factor 2, using O(log n) storage and running in O(n log n) time. There,
n = 2w for some positive integer w. Now, assume that S satisfies 2w−i0−1 < |S| ≤
2w−i0 , and let i = i0 − 1. The n-block file x is split into 2i consecutive segments, each
containing 2w−i blocks. Then, the 2i segments are grouped into 2 segment lists such
that the �-th segment is assigned to segment list �mod2. Thus, each of the 2 segment
lists contains 2i−1 segments. So far, the idea is that if, for some i, one of the 2 segment
lists contains the entire corruption, then the localization is restricted to the segment
list containing the entire corruption. However, it may happen that the corruption lies
in one intersection of the two segment lists, in which case the above 2 tests do not
help. To take care of this situation, the same process is repeated for a cyclic shift by
2w−i−1 blocks of file x. Then, the corruption will intersect at most 3 out of 4 segment
lists, and the remaining one can be considered “corruption-free”. This already provides
some localization, but further hash tags are needed to achieve an interesting localization
factor. In particular, because the corruption size and thus the value i0 are not known,
the above process is repeated for i = 1, . . . , w − 1 from the hash algorithm, and until
such i0 is found from the localizer.

Our multiple-corruption scheme. The natural approach of using the same scheme for
v ≥ 2 fails because an attacker can carefully place 2 corruptions so that one intersects
both segment lists generated from file x and the other one intersects both segment lists
generated from the cyclic shift of file x. This is simple to realize for any specific i, and
can be realized so that the intersections happen for all i = 1, . . . , w, by enforcing the
intersections when i = 1. We avoid this problem by increasing the number of segment
lists. Specifically, we write n = zw for some positive integers z, w satisfying z > v
(where parameter z has to be carefully chosen), and repeat the same process by using z
segment lists rather than 2, for all i = 1, . . . , w.

However, not any value for z would work: because each corrupted segment can in-
tersect up to 3 segment lists (2 generated from file x and 1 from the cyclic shift of x,
or viceversa), it turns out that, for instance, choosing z ≤ 3v/2 would still allow for
one (less obvious) placement of the v corruptions by the attacker so that no segment
lists can be considered “corruption-free”. Moreover, choosing any z > 3v/2 may result
in a less desirable localization factor. We deal with these problems by increasing the
number of cyclic shifts, denoted as y, of the original file x: more precisely, we repeat
the process for each file obtained by shifting x by n/y blocks.

We can show that these two modifications suffice to maintain efficiency in storage
and time complexity, to achieve effective localization (or else the collision-resistance
of the original hash function is contradicted) and to achieve a non-trivial localization
factor. To prove the latter claim, we show that: (1) over all cyclic shifts, v corruptions
intersect with at most ≤ v(y + 1) segment lists in total; (2) hence, there exists one
cyclic shift of x, for which these v corruptions intersect at most 
v(y + 1)/y� segment
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lists; (3) for each i = 1, . . . , w − 1, the set Ti of blocks that have not been declared
“corruption-free” satisfies |Ti| ≤ n ·νi for some ν < 1 and 0 ≤ i ≤ i0, where i0 is such
that |Sa| ≤ zw−i0/y for all corrupted segments Sa and |Sa| > zw−i0−1/y for some
corrupted segment Sa. Here, we note that fact (3) is proved using facts (1) and (2) and
implies that the final output Tw−1 from the localizer is a “good enough” localization of
the v corruptions.

A CONCRETE EXAMPLE. We discuss (and depict in Figure 2) a concrete example of our
scheme, starting with a file x = x[0] · · ·x[63], containing n = zw = 43 = 64 blocks,
with the parameter settings z = 4, w = 3. Our scheme consists of tag algorithm CLH1

(see left side of Figure 2) and localization algorithm LOC1 (see right side of Figure 2).

Fig. 2. The HS scheme for n = zw = 64, z = 4, w = 3, y = 2

Hash Algorithm. The algorithm CLH1 consists of w − 1 = 2 stages and can be con-
sidered as a sequence of computations of hash tags based on the following equations,
for different values of �, i:

tag�,i,0 = hλ(	), tag�,i,1 = hλ(�), tag�,i,2 = hλ(•), tag�,i,3 = hλ(◦), (1)

where 	, �, •, ◦ are 4 classes of segments, that are differently obtained from x at each
application of these equations.
Stage one. x is split into z1 = 4 segments of equal size n/z1 = zw−1 = 16 (row 1 in
the figure). That is, (0, · · · , 63) = 	|| � || • ||◦, and the equations in (1) are applied for
� = 0, i = 1. Now, set parameter y as = 2. Next, left cyclic shift x by 1/y segment size
(see row 2). That is, shift zw−1/y = 8 blocks. The result is Lzw−1/y(x) = L8(x) =
(8, 9, · · · , 63, 0, · · · , 7). Again split L8(x) into z1 = 4 blocks 	|| � || • ||◦ and apply
the equations in (1) for � = 1, i = 1. In this example, y = 2. If y ≥ 3, we need to
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further consider L�2w−i/y(x) for � ≤ y − 1 similarly. In this scenario, cases � = 0, 1
are similarly as above.
Stage two. Here, x is split into z2 = 16 segments of each size n/z2 = 64/16 = 4
(see row 3). Then assign all segments into 4 classes 	, �, • and ◦. 	 contains segments
0, 4, 8, ..., 48; � contains segments 1, 5, 9, ..., 49; • contains segments 2, 6, 10, ..., 50; ◦
contains segments 3, 7, 11, ..., 51. Then we apply the equations in (1) for � = 0, i = 2.
Next, as in Stage one, we cyclicly shift x by zw−2/y = 4/2 = 2 blocks (see row 4).
That is, we compute Lzw−2/y(x) = L2(x) = (2, 3, · · · , 63, 0, 1). We similarly classify
L2(x) into classes 	, �, • and ◦ and apply the equations in (1) for � = 1, i = 2.

Localization Algorithm. Suppose x is corrupted in a file x′ by changing blocks 7, 8.
We compute a set T ⊆ {0, · · · , 63} that contains 7, 8 but |T | is not large. There are two
stages. Initially, set T0 = {0, · · · , 63}.
Stage one. Similarly as for x, split x′ into 	|| � || • ||◦ and compute tag′0,1,j , j =
0, · · · , 3. Then since tag′0,1,j = tag0,1,j, j = 1, 2, 3, it follows that �, •, ◦ are all
uncorrupted (see row 1); otherwise, hλ is not collision-resistant. Then we can update
T0 = T0\{16, · · · , 63} = {0, · · · , 15}. By verifying tag′0,1,0 	= tag0,1,0, we know 	
contains a corruption. Then we consider a shift L8(x′) of x′, i.e., (8, · · · , 63, 0, · · · , 7)
(see row 2). Let T1 = T0. Compute tag′1,1,j, j = 0, · · · , 3. Since tag′1,1,j = tag1,1,j

for j = 1, 2, then T1 = T1\{24, · · · , 55} = {0, · · · , 15} remains unchanged.
Stage two. Consider row 3 in Figure 2. Split x′ into z2 = 16 segments. Set T2 = T1.
Compute tag′0,2,j , j = 0, · · · , 3. Since tag′0,2,j = tag0,2,j , we can update T2 = T2 −
{0, · · · , 3} − {16, · · · , 19} − {32, · · · , 25} − {48, · · · , 51} = {4, · · · , 15}. Similarly,
from tag′0,2,3 = tag0,2,3, we can update T2 to T2 = {4, · · · , 11}. Next, consider
a shift L2(x′) of x′ (see row 4 in Figure 2). Compute tag′1,2,j , j = 0, · · · , 3. Since
tag′1,2,j = tag1,2,j for j = 0, 2, 3, we can update T2 by removing indices not in �.
The result is T2 = {4, · · · , 11} − {2, · · · , 5} − {10, · · · , 17} = {6, 7, 8, 9}. So the
localization factor here is α = 2.

FORMAL DESCRIPTION AND PROOFS. Our formal presentation (in Fig. 3) is a gener-
alization of the above concrete example, where the classes 	|| � || • ||◦ are replaced by
symbol S�,i,j . The scheme’s properties are formally described in the following theorem.

Theorem 1. Let z, y, v, λ, w be positive integers such that y | z, v < yz(y + 1)−1,
n = zw, and let β = n/2y. Assume H = {Hλ}λ∈N is a (t, ε)-collision-resistant
family of hash functions from {0, 1}p1(λ) → {0, 1}σ. Then there exists a (t′, ε′, β, v)-
corruption-localizing hash scheme HS, where ε′ = ε and t′ = t+O(tn(H)·yz logz n),
where tn(H) is the running time of functions from Hλ on inputs of length n. Moreover,
HS has localization factor α = 
v(y + 1)/y�−1zy · nlogz�v(y+1)/y�, tag length τ =
3 logn + σzy logz n + |desc(H)|, and runtime complexity ρ = O(tn(H) · zy logz n),
where |desc(H)| is an upper bound on the description size of functions from Hλ.

Remarks and parameter instantiations. The condition n = zw is for simplicity only
and can be removed by a standard padding. When v is constant, we can always choose
constants z, y such that v < yz(y + 1)−1. It follows that in this setting it always holds
that α = O(nc), for some constant c < 1. So our scheme does provide a non-trivial
localization (in terms of file size n): α sublinear, τ logarithmic and ρ almost linear.
Moreover, by setting y = v + 1 and z = log n, we have α = v−1(v + 1) logn ×
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The algorithm CLH1: On input x, |x| = n, and parameters (z, y), do the following:
- Randomly choose hλ from Hλ

- For i = 1, . . . , w − 1, and � = 0, . . . , y − 1,
set s = � · zw−i/y and compute x�,i = Ls(x)
split x�,i into segments B�,i,0‖ · · · ‖B�,i,zi−1 of equal length
for j = 0, . . . , z − 1,

compute segment list S�,i,j = (B�,i,j‖B�,i,j+z‖ · · · ‖B�,i,j+zi−z)
compute tag�,i,j = hλ(S�,i,j)

- Output: tag = {tag�,i,j | � ∈ {0, . . . , y − 1}, i ∈ {1, . . . , w − 1}, j ∈ {0, . . . , z − 1} } ∪
{n, z, y, desc(hλ)}.

The algorithm LOC1: On input x′, |x′| = n, tag, and parameters (z, y), do the following:
- Let tag = {tag�,i,j | � ∈ {0, . . . , y − 1}, i ∈ {1, . . . , w − 1}, j ∈ {0, . . . , z − 1} } ∪

{n, z, y, desc(hλ)}.
- Set T0 = {0, . . . , n − 1}.
- For i = 1, . . . , w − 1,

set Ti = Ti−1

for � = 0, . . . , y − 1, and j = 0, . . . , z − 1,
compute B′

�,i,j , S
′
�,i,j from x′ as done for B�,i,j , S�,i,j from x in CLH1

let I�,i,j be the set of indices for B′
�,i,j

i.e., I�,i,j = {� · zw−iy−1 + j · zw−i, . . . , � · zw−iy−1 + j · zw−i + zw−i − 1}
if hλ(S′

�,i,j) = tag�,i,j then update Ti = Ti\ ∪zi−1−1
t=0 I�,i,j+zt.

- Output: Tw−1.

Fig. 3. The Corruption-Localizing Hash Scheme HS

nlog log−1 n×log v. By simple calculation, we have that for any 0 < c < 1, α = O(nc),
τ = O(log2 n) and ρ = O(n log2 n). That is, for any 0 < c < 1, HS localizes any v
corruptions up to a sub-linear factor O(nc) with only poly-logarithmic tag length and
slightly super-linear running time, where v can be up to c′ log n, for c′ < c. Finally, by
setting y = z = 2 and v = 1, we obtain α = 4, τ = (3 + 4σ) log n and ρ = 4nσ log n;
i.e., HS localizes a single corruption up to a small constant factor with logarithmic tag
length and slightly super-linear running time. Note that one scheme in [8] considered
this special case and has a result essentially matching ours.

Proof idea of Theorem 1. As ρ and τ can be checked by calculation, and effective
localization can be seen to directly follow from the collision-intractability of the original
hash function, here we only focus on justifying the localization factor α. Obviously, Ti

is related to the size of each corrupted segment Sa. Let i0 be such that each |Sa| ≤
nz−i0/y but some |Sa| ≥ nz−i0−1/y. If we are able to show that |Ti| ≤ n ·νi for some
ν < 1 and all 0 ≤ i ≤ i0, then we have that |Tw−1| ≤ |Ti0 | ≤ n · νi0 and thus

|Tw−1| ≤ nz−i0−1/y · zy(zν)i0 ≤ zy
∑

a

|Sa| · zi0 logz(zν) ≤ zy
∑

a

|Sa| · nlogz(zν),

which is a sub-linear factor in n since zν < z. So we need to show an upper bound of
|Ti| can decrease with i by some factor ν < 1 for i ≤ i0. We demonstrate the technical
idea for this using the example in Fig. 2. Here, the corrupted segment is S1 = {7, 8}.



500 G. Di Crescenzo, S. Jiang, and R. Safavi-Naini

Then, it holds that i0 = 2. Consider row 1 and 2 in Fig. 2. Since S1 has a size 2
and segment size is zw−1, the event that S1 is intersecting with two neighboring seg-
ments can occur in at most one of x and L8(x). In our example, in L8(x), S1 intersects
with two segments {	, ◦}. So in x and L8(x), there are at most 3 segments in total
intersecting with S1 (in general, these are at most v(y + 1)). So one of x and L8(x)
contains at most 
3/2� = 1 corrupted segments (in general, these are 
v(y + 1)/y�).
In our example, x contains 1 corrupted segment. So |T1| = n/z = 16 (in general,
|T1| = 
v(y + 1)/y� · n/z). Now we only consider Stage two (row 3 and 4 in Fig. 2).
Again, since S1 has size 2 and segment size is zw−2 = 4, the event that S1 is inter-
secting with two neighboring segments can occur in at most one of x and L2(x). The
remaining part in this stage is to follow the idea in stage one. We obtain that |T2| = 4 (in
general, T2 = 
v(y+1)/y�·|T1|/z = (
v(y+1)/y�/z)2 ·n, where 
v(y+1)/y�/z < 1
by assumption). The formal proof carefully generalizes the idea in this description.

4 A Corruption-Localizing Keyed Hashing Scheme

In this section we propose a corruption-localizing keyed hash scheme starting from any
collision-resistant keyed hash function. Our scheme improves the previous (not keyed)
scheme on the localization factor for an arbitrary number of corruptions, and on the
range of the number of corruptions for which it provides non-trivial localization. In
particular, for a constant number of corruptions, it provides essentially optimal (up to
a constant factor) localization, at the expense of small storage complexity and only
a small increase in running time. (See Theorem 2 and related remarks for the formal
statement.) In the rest of the section, we start with an informal description, then give a
concrete example, the formal description and a sketch of proof of its properties.

AN INFORMAL DESCRIPTION. By using keyed hash functions in our previous scheme,
we do obtain a corruption-localizing keyed hash scheme. The following construction,
however, makes a more intelligent use of the randomness in the key resulting in signif-
icant improvements both on the localization factor and on the range for the number of
corruptions, with only a slightly worse performance in storage and time complexity.

At a very high level, our keyed hash algorithm goes as the hash algorithm of scheme
HS, with the following differences. The new algorithm uses the secret key shared with
the localizer (and unknown to the attacker) as an input to a pseudo-random function
that generates pseudo-random values. These latter values are used as colours associated
with each block segment of each cyclic shift of file x (including the file x itself). Then,
segment lists are created so that each segment list contains all block segments of a given
colour. In other words, the generation of segment lists from the block segments is done
(pseudo-)randomly and in a way that it can be done by both the hash algorithm and the
localizer, but not by the attacker (as the key is unknown to the attacker and the hash tags
are further encrypted using a different portion of the key).

The reason for this pseudo-random generation of segment lists is that the determinis-
tic generation done in scheme HS allowed the attacker to place the corruptions in a way
to maximize the number of intersections with segment lists. This resulted in a localiza-
tion factor still polynomial in n (even though the polynomial could be made as small
as desired at moderate losses in terms of storage and time complexity). Instead, the
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Fig. 4. The CLKH scheme for n = zw = 64, z = 4, w = 3. (Note: L12(x) and L3(x) are not
shown in the figure.)

pseudo-random generation of the segment lists makes it much harder for the attacker
to place corruptions so to intersect a large number of segment lists, and is crucial to
achieve constant localization factor (except with negligible probability).

A CONCRETE EXAMPLE. In Fig. 4 we illustrate an example for scheme KHS analogous
to the one in the previous section for scheme HS. We again use file x = x[0] · · ·x[63],
but we now consider v = 3 and n = (v + 1)w = 43 = 64 and w = 3. As before,
segments are somehow assigned to classes 	, •, �, ◦, and analogues of the equations in
(1) are used to compute hash tags, the differences being here that the hash functions used
are keyed functions, the assignment of the segments to the classes is probabilistic, and
the tags are further encrypted using a key available to the localizer. Specifically, scheme
HS can be regarded as assigning the classes to the segments periodically while the
current scheme assigns a class to each segment randomly (see left part of Fig. 4). Now,
let x′ be the corrupted version of x, where blocks 7, 8, 40 are changed. The localization
algorithm (see right part of Fig. 4) returns T2 = {6, 7, 8, 9, 40}, thus resulting in a
localization factor α = 5/3 = 1.67.

FORMAL DESCRIPTION. The formal presentation of our keyed hash scheme can be
found in Fig. 5. The properties of this scheme are shown in the following theorem.

Theorem 2. Let λ, v, w be positive integers such that v ≥ 2 and n = (v + 1)w, and
define β = n/2(v + 1), and δ a function negligible in λ. Assume H = {Hλ}λ∈N is a
(th, εh)-collision-resistant family of keyed hash functions from {0, 1}λ×{0, 1}p1(λ) →
{0, 1}σ and F = {fk}|k|∈N is a (tf , εf )-pseudo-random family of functions. Then the
scheme in Fig. 5 is a (t′, ε′, β, v)-corruption-localizing keyed hash scheme KHS, where
ε′ ≤ εh + εf + δ and t′ ≤ tf + th + O(tn(H) · (v + 1)2 logv+1 n), where tn(H) is
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The algorithm CLKH: On input k, x, |x| = n, do the following:
- Randomly choose hλ from Hλ

- Write k as k = k1|k2|k3, randomly choose nonces μ1, μ2, and let psr1, psr2 be sufficiently
long number of pseudo-random bits obtained as psri = fki(μi), for i = 1, 2;

- For i = 1, . . . , w − 1, and � = 0, . . . , v,
compute x�,i and B�,i,0, . . . , B�,i,(v+1)i−1 as done in CLH1

(in the case of x = y = v + 1)
for z = 1, . . . , λ,

for each j = 0, . . . , (v + 1)i − 1
randomly choose colour c�,i,j,z ∈ {C0, . . . , Cv} and assign it to B�,i,j ,

(using fresh pseudorandom bits from psr1)
for c ∈ {C0, . . . , Cv},

let S�,i,c,z be the set of segments B�,i,j (j ∈ {0, · · · , (v + 1)i − 1})
with assigned color c�,i,j,z = c

compute tag�,i,c,z = hλ(k3; S�,i,c,z) ⊕ psr2

- Output: tag = {n, s, μ1, μ2, desc(hλ), tag�,i,c,z | � ∈ {0, . . . , v}, i ∈ {1, . . . , w−1}, c ∈
{C0, . . . , Cv}, z ∈ {1, . . . , λ }}.

The algorithm KLOC: On input k, v, x′, tag, where k = k1|k2|k3, and tag =
{n, s, μ1, μ2, desc(hλ), tag�,i,c | � ∈ {0, . . . , v}, i ∈ {1, . . . , w− 1}, c ∈ {C0, . . . , Cv}, z ∈
{1, . . . , λ } }, do the following:
- Set T0 = {0, . . . , n − 1} and compute psr1, psr2 as in CLKH;
- For i = 1, . . . , w − 1,

set Ti = Ti−1

for � = 0, . . . , v, c = C0, . . . , Cv , and z = 1, . . . , λ,
compute S′

�,i,c,z from x′ as done for S�,i,c,z from x in CLKH above
let I�,i,c,z be the set of indices from all segments in S′

�,i,c,z

if psr2 ⊕ hλ(k3; S
′
�,i,c,z) = tag�,i,c,z then set Ti = Ti \ I�,i,c,z

- Output: Tw−1.

Fig. 5. The Corruption-Localizing Keyed Hash Scheme KHS

the running time of any keyed hash function from Hλ on inputs of n blocks. Moreover,
KHS has localization factor α = (v + 1)2v, storage complexity τ = O(log n + σ(v +
1)2λ logv+1 n+|desc(H)|), and runtime complexity ρ = O(tf +tn(H)·v2λ logv+1 n),
where |desc(H)| is an upper bound on the description size of any hash function from
Hλ and λ = O(log1+ε n) for any ε > 0.

Remarks and proof idea. We note that if v = O(1), scheme KHS can localize v cor-
ruptions with a constant localization factor and polylogarithmic (in n) storage complex-
ity. We also note that an active adversary could observe which blocks are being re-sent
and then infer the coloring and build more efficient attacks. However, the honest parties
share a key and can thus encrypt their communication and pad it to the upper bound on
the localization factor so to not even release how many blocks are being resent.

Now we outline the proof idea for Theorem 2. As ρ and τ can be checked by cal-
culation, we only need to consider localization factor α. Obviously, Ti is related to the
size of each corrupted segment Sa. Let i0 be such that each |Sa| ≤ nz−i0−1 but some
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|Sa| ≥ n(v + 1)−i0−2. If we are able to show that |Ti| ≤ vn · (v +1)−i for 0 ≤ i ≤ i0,
then |Tw−1| ≤ |Ti0 | ≤ vn(v+1)−i0 ≤ n(v+1)−i0−2 ·v(v+1)2 ≤ (v+1)2v

∑
a |Sa|,

constant localization factor (v +1)2v. So we focus on proving |Ti| ≤ vn · (v +1)−i for
i ≤ i0. Instead of a rigorous proof, we demonstrate the technical idea using the example
in Figure 4, where the corrupted segments are S1 = {7, 8} and S2 = {40}. Consider
Row one and Row two in Figure 4. As in the proof idea for the HS scheme, one of
L4i(x) for i = 0, 1, 2, 3 has at most 
v(y + 1)/y� = 
2(v + 2)/(v + 1)� = 2 corrupted
segments. In our example, x has 2 corrupted segments SB1, SB3 (see Row one). If
there is coloring z such that SB1, SB3 are assigned to the same color and SB2, SB0 are
assigned to other color(s), then SB2 and SB4 are uncorrupted and can be removed from
T1. This occurs with probability 1/4 · (3/4)2. Since we have λ coloring experiments,
this event won’t occur only with negligible probability. In our Row one, SB1, SB3 are
assigned to color 	; while SB2 is assigned to color � and SB4 is assigned to color ◦.
Therefore, |T1| ≤ 2(v + 1)w−1 ≤ vn · (v + 1)−1. So it holds for i = 1. In iteration
two, x is divided into (v + 1)2 = 16 segments. Again similar to the proof idea in HS
scheme, there is i such that Li(x) has at most 
v(y + 1)/y� = 
2(v + 2)/(v + 1)� = 2
corrupted segments. In our example, L1(x) in row 5 has this property. T1 intersects
with L1(x) at most 2(v + 1) + 2 = 10 segments. In our example, it is 10 segments
exactly. By our assumption, among these 10 segments, two are corrupted and the re-
maining are uncorrupted. In our example, SB2 and SB10 are corrupted. If in some
experiment we can color these two with one color and the remaining 8 to other colors,
then T2 ⊆ SB2 ∪ SB10 and thus |T2| ≤ 2(v + 1)w−2 ≤ vn · (v + 1)−2. The conclu-
sion holds again. Such a coloring occurs with probability 1/4 · (3/4)8. Since there are
λ colorings, this desired coloring does not occur with exponentially small probability
only. The formal proof of the theorem carefully generalizes the idea in this description.
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