
Corruption of accuracy and efficiency of Markov chain
Monte Carlo simulation by inaccurate numerical
implementation of conceptual hydrologic models

G. Schoups,1 J. A. Vrugt,2,3,4 F. Fenicia,1,5 and N. C. van de Giesen1

Received 17 September 2009; revised 27 May 2010; accepted 10 June 2010; published 20 October 2010.

[1] Conceptual rainfall‐runoff models have traditionally been applied without payingmuch
attention to numerical errors induced by temporal integration of water balance dynamics.
Reliance on first‐order, explicit, fixed‐step integration methods leads to computationally
cheap simulation models that are easy to implement. Computational speed is especially
desirable for estimating parameter and predictive uncertainty using Markov chain
Monte Carlo (MCMC) methods. Confirming earlier work of Kavetski et al. (2003), we
show here that the computational speed of first‐order, explicit, fixed‐step integration
methods comes at a cost: for a case study with a spatially lumped conceptual rainfall‐
runoff model, it introduces artificial bimodality in the marginal posterior parameter
distributions, which is not present in numerically accurate implementations of the same
model. The resulting effects on MCMC simulation include (1) inconsistent estimates
of posterior parameter and predictive distributions, (2) poor performance and slow
convergence of the MCMC algorithm, and (3) unreliable convergence diagnosis using the
Gelman‐Rubin statistic. We studied several alternative numerical implementations to
remedy these problems, including various adaptive‐step finite difference schemes and an
operator splitting method. Our results show that adaptive‐step, second‐order methods,
based on either explicit finite differencing or operator splitting with analytical integration,
provide the best alternative for accurate and efficient MCMC simulation. Fixed‐step or
adaptive‐step implicit methods may also be used for increased accuracy, but they cannot
match the efficiency of adaptive‐step explicit finite differencing or operator splitting.
Of the latter two, explicit finite differencing is more generally applicable and is preferred
if the individual hydrologic flux laws cannot be integrated analytically, as the splitting
method then loses its advantage.
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1. Introduction

[2] Accurate assessment of the parameters and predictive
uncertainty of hydrologic models is an important aspect of
any hydrologicmodeling application. It provides insights into
the adequateness of the model, and indicates whether the data
contain enough information to identify the model parameters
[Vrugt et al., 2006]. For example, strong parameter correla-
tions may point to the need for additional data collection
aimed at reducing parameter uncertainty [Kuczera, 1983].

Accurate parameter uncertainty estimation is also crucial for
developing regionalization relationships between observable
basin characteristics and unobservable model parameters,
with the aim of extrapolation of hydrologic parameters to
ungauged basins [Wagener et al., 2007].
[3] A powerful and flexible method for estimating the

parameter uncertainty of dynamic models is based onMarkov
chain Monte Carlo (MCMC) sampling. These algorithms are
especially useful for the parameter inference of nonlinear
hydrologic models, for which analytical expressions of the
posterior parameter distributions are not available [Kuczera
and Parent, 1998; Bates and Campbell, 2001; Vrugt et al.,
2003; Engeland et al., 2005; Smith and Marshall, 2008].
Much research has focused on improving the efficiency and
convergence of MCMC samplers to efficiently sample from
high‐dimensional parameter distributions [ter Braak and
Vrugt, 2008; Vrugt et al., 2009; Kuczera et al., 2010]. How-
ever, much less attention has been paid to the effects on the
MCMC algorithmic performance of inaccurate numerical
implementation of the hydrologic models used in the analysis.
[4] Many existing conceptual hydrologic models use

relatively inaccurate explicit time integration of the water
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balance dynamics, which results in simple and fast models
[Singh and Woolhiser, 2002]. An underlying assumption
has been that numerical errors are small relative to other
model errors. However, work by Kavetski and coworkers
[Kavetski et al., 2003; Kavetski et al., 2006a; Kavetski and
Kuczera, 2007; Clark and Kavetski, 2010; Kavetski and
Clark, 2010] has drawn attention to the importance of
accurate numerical implementation of conceptual hydrologic
models. In particular, these studies have highlighted pro-
blems with numerical implementation of several popular
conceptual rainfall‐runoff models, caused by explicit fixed‐
step temporal integration of the water balance equations
[Kavetski et al., 2003] and threshold‐type flux‐storage
relationships [Kavetski and Kuczera, 2007]. The resulting
numerical errors may be significant and are responsible for
irregular parameter response surfaces with both microscale
(e.g., nonsmoothness) and macroscale (e.g., secondary
optima) features that often are removed when the same model
is implemented with a numerically accurate method. Such
deformations of the parameter response surface necessarily
affect parameter and predictive inference and sensitivity
analysis of the hydrologic model [Kavetski and Clark, 2010].
The need for formal and accurate numerical implementation
of models has also been recognized and adopted in the wider
environmental modeling literature [e.g., Parkhurst and
Appelo, 1999; Kavetski et al., 2001; Cox and Whitehead,
2005; Qu and Duffy, 2007].
[5] To the extent that inaccurate numerical implemen-

tation of hydrologic models induces changes in the para-
meter response surface, it may lead to errors in estimated
optimal parameter values and estimated parameter uncer-
tainty. Whereas gradient‐based methods clearly are affected
by poor numerical implementation of hydrologic models, e.g.,
causing premature convergence to a secondary optimum or
more generally creating problems with computing gradients
on nonsmooth surfaces [e.g., Kavetski et al., 2006a], the
effects on parameter and predictive inference using MCMC‐
based methods is less obvious and has not been studied in
detail. In a recent study, Kavetski and Clark, [2010] exten-
sively compared several numerical integration methods for a
range of hydrologic basins using various hydrologic model
structures. Although their focus was on improved numerical
methods for gradient‐based optimization and sensitivity
analysis, they also showed that marginal posterior parameter
distributions obtained by MCMC simulation may be signifi-
cantly affected by inaccurate numerical implementation
based on fixed‐step explicit, and even implicit, methods.
[6] In this paper, we expand on their work and specifi-

cally focus on the effect of inaccurate numerical integration
methods, typical of conceptual rainfall‐runoff models, on
the accuracy and efficiency of MCMC‐based estimation of
parameter and predictive uncertainty. We consider a single
rainfall‐runoff case study and apply a state‐of‐the‐artMCMC
algorithm [Vrugt et al., 2009] for parameter and predictive
inference of a simple spatially lumped hydrologic model.
This setup can be considered an optimistic scenario, in that
any effects on accuracy and efficiency observed in this case
will likely be amplified when less powerful MCMC algo-
rithms are used in combination with more complex models.
The paper is organized as follows. Section 2 briefly describes
the spatially lumped hydrologic model used in this study.
Sections 3 and 4 summarize the numerical integration methods
and the MCMC algorithm used, respectively. Results are

presented in section 5, followed by a discussion of the impli-
cations of our work (section 6) and conclusions (section 7).

2. Hydrologic Model

[7] We use a spatially lumped hydrologic model to sim-
ulate daily rainfall‐runoff processes. Our modeling approach
is derived from the FLEX model of Fenicia et al. [2007].
The model consists of an unsaturated zone water balance
equation, which is used to partition rainfall into evaporation,
runoff, and percolation. Runoff and percolation are then
each routed through a linear reservoir. The water balance for
the unsaturated zone is

Smax
dSr
dt

¼ Pe � Qf � Qe � Qs; ð1Þ

where Sr is relative storage ( = S/Smax), S is total storage (L),
Smax is maximum storage capacity (L), t is time (T), Pe is
effective rainfall rate (L/T), Qf is runoff (L/T), Qe is actual
evaporation rate (L/T), and Qs is percolation rate (L/T).
Effective rainfall consists of that part of the rainfall that is
not intercepted by vegetation. For the results in this paper,
we assume that interception is negligible, such that Pe is
equal to the recorded rainfall rate. The three remaining fluxes
in (1) are parameterized as single‐valued, monotonic func-
tions of relative storage:

Qf ¼ Pef Sr;�Fð Þ;

Qe ¼ Epf Sr;�Eð Þ;

Qs ¼ Qsmaxf Sr;�Sð Þ;

ð2Þ

where Ep is potential evaporation rate (L/T), Qsmax is maxi-
mum percolation rate (L/T), and aF, aE, and aS are process‐
specific parameters. The flux function f is assumed to take
the form

f Sr;�ð Þ ¼ 1� e��Sr

1� e��
: ð3Þ

This function is monotonically increasing from 0 to 1, as
Sr increases from 0 to 1. Large positive (negative) values
for a result in a fast (slow) increase to 1, whereas a → 0
gives a linear increase. The amount of water that percolates
downward, Qs, is routed through a linear reservoir, char-
acterized by a time constant KS (T), whereas runoff Qf is
routed through a linear reservoir with time constant KF (T).

3. Numerical Integration Methods

[8] As the routing reservoirs are linear, their water balances
are readily computed by analytical integration. However, the
unsaturated zone dynamics are nonlinear and need to be
computed numerically. We consider two general approaches:
one based on finite difference approximations (section 3.1)
and the other using operator splitting techniques (section 3.2).
Section 3.3 presents adaptive time stepping methods used in
this paper.

3.1. Finite Differencing

[9] The standard approach to numerical integration of
equation (1) is based on finite differencing [Butcher, 2008].
The simplest approach uses the explicit Euler method to

SCHOUPS ET AL.: NUMERICAL MODEL ERRORS IN MCMC SIMULATION W10530W10530

2 of 12



approximate the derivative on the left‐hand side. This leads
to fast and easily implementable code, which explains its
popularity in conceptual environmental models [Singh and
Woolhiser, 2002]. Disadvantages of the explicit Euler
method are its low accuracy and its conditional stability,
which may cause significant numerical errors, especially if
implemented with fixed time stepping. Alternatives are the
use of implicit integration methods, e.g., the implicit Euler
method used by Kavetski et al. [2006a], or more accurate
explicit methods, e.g., the second‐order accurate explicit
method with adaptive time stepping used by Kavetski et al.
[2003] to integrate the rainfall‐runoff model TOPMODEL.
[10] In this paper we consider the following finite dif-

ference approximation of equation (1):

Sr;t ¼ Sr;t0 þDt �g Sr;t*
� �þ 1� �ð Þg Sr;t0

� �� �
; ð4Þ

where Sr,t is relative storage at time t, with t = t0 + Dt and
time step Dt. Function g follows from equations (1)–(3) and
is given by g(Sr) = (Pe − Qf − Qe − Qe)/Smax. Depending on
the choice for � and Sr,t* , equation (4) reduces to several well‐
known numerical schemes (Table 1): (1) for � = 0 we obtain
the first‐order accurate, explicit Euler method (denoted as
E1), (2) setting � = 1 and Sr,t* = Sr,t results in the first‐order
accurate, implicit Euler method (I1), (3) � = 0.5 and Sr,t* =
Sr,t0 + Dtg(t0, Sr,t0) yields the second‐order accurate, explicit
trapezoidal rule (E2), and (4) setting � = 0.5 and Sr,t* = Sr,t
results in the second‐order accurate implicit trapezoidal
rule (I2). These methods are all standard and are discussed in
detail in any reference book on ordinary differential equations
[e.g., Butcher, 2008]. The two implicit methods (I1 and I2)
require solution of a nonlinear problem at each time step,
which is done here using Newton‐Raphson linearization with
bracketing and bisection [Press et al., 1990]. Tolerance for
nonlinear iterations is set to 10−8.

3.2. Operator Splitting

[11] An alternative approach to integrating ordinary dif-
ferential equations, such as the water balance equation in (1),
is based on operator splitting [McLachlan and Quispel,
2002]. The basic idea is to sequentially split the right‐hand‐
side fluxes in equation (1) into two or more parts that are
easier to integrate than the original problem (“divide and
conquer”). The solution of each subproblem then serves as
the initial condition for the next subproblem. The method has
a long history for solving flow and reactive transport
problems, by separately considering advective, dispersive,
and reactive terms [e.g., Steefel and MacQuarrie, 1996].

[12] The splitting technique has also been applied in
conceptual rainfall‐runoff models, although it is often not
recognized as such. A typical example is the sequential
computation of runoff, evaporation, and percolation pro-
cesses, as implemented in one form or another in, e.g., the
VIC model [Wood et al., 1992], the GR4J model [Perrin
et al., 2003], and the HYMOD model [Vrugt et al.,
2008]. Indeed, an obvious choice for splitting equation (1)
is to consider storage changes due to different hydrologic
processes (infiltration/runoff, evaporation, and percolation)
as three separate problems:

Smax
dSr
dt

¼ Pe � Qf ; Smax
dSr
dt

¼ �Qe; Smax
dSr
dt

¼ �Qs: ð5Þ

In order to find the approximate change in water storage over
time step Dt due to these three processes, we specify (1) the
computation sequence of these processes and (2) methods for
integrating each subproblem. Note that splitting the original
ordinary differential equation (ODE) introduces numerical
errors, i.e., splitting errors, in addition to any truncation
errors resulting from numerical solution of the various
subproblems [Csomos and Farago, 2008].
[13] Several splitting techniques may be used, as reviewed

byMcLachlan and Quispel [2002] and Csomos et al. [2005].
The most straightforward, but also least accurate, approach
uses sequential splitting. Applied to our case, equation (5), it
means that we compute overall change in storage during a
time step Dt as a sequence of three consecutive steps. One
possible sequence is

Smax
dSr
dt

¼ Pe � Qf ; Sr;t0����!
Dt

Sr;1;

Smax
dSr
dt

¼ �Qe; Sr;1����!Dt
Sr;2;

Smax
dSr
dt

¼ �Qs; Sr;2����!Dt
Sr;t;

ð6Þ

where the solution of each subproblem serves as the initial
condition for the next one. The splitting error caused by
sequential splitting is O(Dt2), and therefore this scheme is
first‐order accurate [Csomos et al., 2005]. Second‐order
accuracy can be achieved by considering more elaborate
splitting schemes. A popular example is the method proposed
by Strang [1968], which, applied to equations (1) and (6),
advances Sr,t0 to Sr,t in five consecutive steps:

Smax
dSr
dt

¼ Pe � Qf ; Sr;t0������!
Dt=2

Sr;1;

Smax
dSr
dt

¼ �Qe; Sr;1������!Dt=2
Sr;2;

Smax
dSr
dt

¼ �Qs; Sr;2������!Dt
Sr;3;

Smax
dSr
dt

¼ �Qe; Sr;3������!Dt=2
Sr;4;

Smax
dSr
dt

¼ Pe � Qf ; Sr;4������!Dt=2
Sr;t:

ð7Þ

[14] Another second‐order splitting scheme is called sym-
metrically weighted sequential (SWS) splitting, as discussed
by Csomos et al. [2005]. Applied to equation (1), it solves
the sequence in (6) twice, once using the order specified in (6),
i.e., infiltration/runoff → evaporation → percolation, and

Table 1. Overview of Numerical Integration Methods Used

Symbol Description Accuracy Time Step

S1 Sequential splitting with
explicit Euler

First order Fixed (daily)

S2 Symmetrically weighted
sequential splitting with
analytical integration

Second order Adaptive

E1 Explicit Euler First order Fixed (daily)
E2 Explicit trapezoidal rule Second order Adaptive
I1 Implicit Euler First order Fixed (daily)
I2 Implicit trapezoidal rule Second order Adaptive
REF Explicit Runge‐Kutta Fifth order Adaptive
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again using the reverse order, i.e., percolation ≥ evaporation ≥
infiltration/runoff. The overall solution after one time step
is then obtained as the average of the solutions from these
two sequences. Therefore, SWS splitting applied to our
problem requires six steps in each time step (three for each
sequence), whereas Strang splitting as in equation (7) only
requires five steps. However, as will be discussed in the next
section, SWS splitting has an important advantage when
implemented with adaptive time stepping, and is adopted here
instead of Strang splitting.
[15] Following our choice of finite difference methods in

section 3.1, we compare two splitting methods. The first one
uses sequential splitting as in (6), combined with the explicit
Euler method to compute each subproblem. This approach is
first‐order accurate and will be denoted by S1 (Table 1). The
second approach uses SWS splitting, combined with ana-
lytical integration of each subproblem in (6), resulting in a
second‐order accurate scheme (S2).With the exponential flux
law in (3), the individual ODEs in (6) can be written in the
general form dSr/dt = A + Be−aSr, yielding analytical solutions
for Sr shown in Table 2. These analytical expressions pro-
vide, in principle, error‐free solutions for the individual
ODEs in (6). However, as pointed out by Kavetski and
Kuczera [2007], implementation of such expressions may
introduce cancellation errors due to poor scaling of the
various exponential terms. The appendix details how the
analytical solutions in Table 2 were implemented to mini-
mize such problems.
[16] Note that the ordered sequences proposed in

equations (6) and (7) are just one possible strategy for splitting;
i.e., the three individual processes could be solved in a different
order. It is not our goal here to test all possible combinations.
However, for the case study discussed in this paper, prelimi-
nary tests with different sequences (in particular, replacing the
sequence infiltration/runoff→ evaporation→ percolationwith
either infiltration/runoff → percolation → evaporation or
percolation → evaporation → infiltration/runoff) suggested
negligible effect on the conclusions reached in this paper.

3.3. Adaptive Time Stepping

[17] Time steps Dt in the numerical schemes discussed
above (operator splitting and finite differencing) can be fixed,
e.g., by setting them equal to a fraction of the time scale of
the boundary forcing, or they can be changed automatically.
The advantage of adaptive time stepping is that a predefined
numerical accuracy can be achieved independent of the
changing dynamics of the simulated processes [Butcher,
2008]. Achieving this predefined accuracy translates into

taking small steps when flow is highly dynamic during and
after storm events, and allowing bigger steps when flow and
storage changes occur much more gradually, e.g., during
streamflow recession. Adaptive time stepping requires two
ingredients: first, a method to estimate the local numerical
errors incurred during an individual step Dt, and, second, a
method to adjust the time step.
[18] A standard method for evaluating local numerical

errors is by comparing the solution to a higher‐order, more
accurate solution [Butcher, 2008]. This is also the approach
adopted here: as shown in Table 1, each of the first‐order
methods (E1, I1, S1) has a second‐order equivalent (E2, I2,
S2), which we use to estimate the local numerical error "
of the corresponding first‐order method, " = |Sr

I − Sr
II|, where I

and II stand for first and second order, respectively. Hence,
for the second‐order finite difference methods (E2, I2),
error " corresponds to the local (Taylor series) truncation
error of the corresponding first‐order method (E1, I1):

" ¼ 0:5Dt g Sr;t0
� �� g Sr;t*

� ��� ��; ð8Þ

with Sr,t* as defined in (4). For the second‐order SWS
splitting method with analytical integration (S2), we obtain
" by comparing the solution not to S1 but to first‐order
sequential splitting with analytical integration. In this case,
error " estimates the local splitting error of the first‐order
method, as there are no truncation errors due to analytical
integration:

" ¼ S fð Þ
r;t � 0:5 S fð Þ

r;t þ S bð Þ
r;t

� ���� ���; ð9Þ

with Sr,t
( f ) and Sr,t

(b) referring to forward and backward
sequences in (6). Note here the advantage of SWS over
Strang splitting, as it requires no extra computational cost for
estimating splitting error ".
[19] The current time step is accepted when error " is less

than a specified tolerance value t. Otherwise, computation
of Sr,t is discarded and the simulation proceeds from Sr,t0
with a smaller time step. In either case, a new time step is
computed using the following method [Butcher, 2008]:

Dtnew ¼ 0:9Dtold
�

"

� �1= pþ1ð Þ
; ð10Þ

where Dtold is the previous time step, Dtnew is the new time
step, p is the order of the numerical scheme for which error
" is estimated (i.e., p = 1), and 0.9 acts as a safety factor.
Following Butcher [2008], we limit consecutive increases
and decreases in the time step by a factor of 2 or less. As
indicated in Table 1, in this paper adaptive time stepping is
used for the second‐order methods, whereas for the first‐
order methods a fixed daily time step is used, corresponding
to the daily time scale of the forcing data in the case study
(see section 5).
[20] We note that these adaptive ODE integration methods

are quite standard in the (numerical) literature and have also
been implemented in a range of environmental models,
including geochemical and biochemical models describing
kinetic reactions [Parkhurst and Appelo, 1999], water quality
modeling [Cox and Whitehead, 2005], river basin modeling

Table 2. Expressions for Coefficients A and B in the General
Ordinary Differential Equation dSr/dt = A + Be−aSr With Analytical
Solution Sr = (1/a)log[(eaSr,0 + B/A)ea ADt − (B/A)] When Integrated
From Sr,0 to Sr Over Time Step Dt

Process A B

Infiltration/runoff � Pee��F

Smax 1� e��Fð Þ
Pe

Smax 1� e��Fð Þ

Evaporation
�Ep

Smax 1� e��Eð Þ
Ep

Smax 1� e��Eð Þ

Percolation
�Qsmax

Smax 1� e��Sð Þ
Qsmax

Smax 1� e��Sð Þ
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[Qu and Duffy, 2007], and variably saturated groundwater
flow models [Kavetski et al., 2001].

4. MCMC Simulation

[21] Markov chain Monte Carlo (MCMC) simulation is
used to estimate the uncertainty of the hydrologic model
parameters � after observing data x. This is done by random
sampling from the posterior parameter density p(�) given by
the Bayes rule,

� �ð Þ / f xj�ð Þ�0 �ð Þ; ð11Þ

where p0(�) is the prior parameter density, reflecting uncer-
tainty about � before data x was available, and f(x|�) is a
probability density function (pdf) describing the likelihood of
the data x being generated by parameter set �, with the means
of this pdf typically simulated by a deterministic hydrologic
model (as in section 2). Many different MCMC algorithms
have been developed in the past decade to efficiently generate
samples from the posterior distribution, p(�). These algo-
rithms differ in their search and adaptation strategy, but
always implement the same two basic steps [Robert and
Casella, 2004]. First, a candidate point is generated in each
individual Markov chain by sampling from a specified pro-
posal density, q(�z|�i−1), which specifies the chance of pick-
ing a parameter set �z given the current parameter set �i−1 at
location i − 1 in the Markov chain. Second, the Metropolis‐
Hastings ratio in equation (12) is computed and used to accept
the proposal point with probability a [Hastings, 1970]:

� ¼ min 1;
� �zð Þq �z �i�1jð Þ
� �i�1ð Þq �i�1 �zjð Þ

	 

: ð12Þ

[22] By alternating between these two basic steps, a
Markov chain is generated which, under certain regularity
conditions, has an invariant distribution, p(�). In practice,
this means that if one looks at values of � in the Markov
chain that are sufficiently far from the starting value, the
successively generated parameter combinations will be dis-
tributed with stable frequencies stemming from p(�). For a
given choice of the proposal density, the efficiency of an
MCMC algorithm, i.e., the number of samples needed to
achieve convergence to the posterior density, depends on the
problem dimension, i.e., how many parameters are estimated
simultaneously, and on the complexity of the posterior dis-
tribution. High‐dimensional, asymmetric, and multimodal
posteriors are generally much more challenging to sample

from than low‐dimensional, symmetric, and unimodal
posteriors. Asymmetry may arise due to strong parameter
correlations, yielding elongated ridges of high density in
multidimensional parameter space and elongated density con-
tours along two‐dimensional projections of p(�). Both asym-
metry and multimodality are in general indicative of parameter
nonuniqueness. As shown by Kavetski et al. [2006a] and in
the next section, multimodality may also be an artifact of poor
numerical approximation of p(�).
[23] In this paper, we use the recently developed Dif-

feRential Evolution Adaptive Metropolis (DREAM) algo-
rithm [Vrugt et al., 2009] to generate samples from the
posterior distribution. This adaptive MCMC scheme evolves
multiple interacting chains simultaneously for global explo-
ration and automatically tunes the scale and orientation of
the proposal distribution during the search. The implemen-
tation used herein uses sampling from an archive of past
states. This approach is called DREAM_ZS and has three
main advantages, details of which will be given in a later
publication. Initial theory and applications can be found in
ter Braak and Vrugt [2008]. Parameter uncertainty estima-
tion with DREAM_ZS is combined with different numerical
methods from section 3 for integrating the water balance
model and computing the posterior density p(�). Numerical
integration methods characterized by large errors will pro-
duce inaccurate simulations of p(�), thereby potentially
affecting (1) the accuracy of estimated parameter uncertainty
and (2) the efficiency of the MCMC algorithm in converging
to the posterior density. Ideally, we are looking for numer-
ical integration methods that result in both accurate and
efficient estimation of parameter uncertainty.

5. Effect of Numerical Integration Scheme
on MCMC Performance

[24] We study effects of the numerical integration method
on MCMC performance by means of an example case study.
We force the hydrologic model described in section 2 with
3 years of daily rainfall and potential evaporation data from
the French Broad basin in North Carolina [Duan et al.,
2006]. The likelihood function f (x|�) in equation (11) is
based on the standard least squares model, i.e., assuming
model residuals to be Gaussian, independent, and identi-
cally distributed with mean zero and constant variance. The
procedure leads to posterior uncertainty estimation of seven
model parameters (Table 3). Uniform prior densities p0(�)
are assumed for all parameters, with prior parameter ranges
listed in Table 3. All MCMC trials with DREAM_ZS
reported herein consisted of 100,000 function evaluations
(model runs) of which 50% was used for burn‐in.
[25] We evaluate to what extent numerical implementa-

tion of the hydrologic model affects the inferred posterior
parameter and predictive distributions, convergence rate of
the MCMC algorithm, and computational efficiency of the
analysis. Posterior distributions obtained with the integration
methods listed in Table 1 are compared to those computed
using a numerically accurate implementation of the hydro-
logic model, based on a fifth‐order explicit Runge‐Kutta
method [Press et al., 1990] with adaptive time stepping using
equation (5) and a tolerance t equal to 10−8 (referred to as
reference or “REF”). First, we present results on parameter
and predictive uncertainty for the three first‐order methods
(E1, I1, and S1) using fixed daily time stepping. This is fol-

Table 3. Hydrologic Model Parameters With Prior Minimum and
Maximum Valuesa

Parameter Description Minimum Maximum

Smax Maximum storage capacity (mm) 0 5000
Qsmax Maximum percolation rate (mm/d) 0 100
aE Exponential parameter for

evaporation
0 100

aF Exponential parameter for fast runoff −100 100
KF Response time of fast runoff (days) 0 10
KS Response time of slow runoff (days) 0 500
s Residual standard deviation (mm) 0 1

aParameter aS is kept constant at a value of 1 × 10−6 (i.e., percolation rate
varies linearly with storage).
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lowed by a comparison to the three second‐order methods
(E2, I2, S2) using adaptive time stepping with various
tolerances.

5.1. First‐Order, Fixed‐Step Integration Methods:
Parameter Uncertainty

[26] Figure 1 shows marginal posterior parameter cumu-
lative distribution functions (cdf's) for all model parameters
using different numerical integration methods. Results in
Figure 1 show that accurate numerical implementation of
the hydrologic model (“REF”) yields well‐identified para-
meters with unimodal marginal posterior distributions. On
the other hand, the use of first‐order, fixed‐step explicit inte-
gration methods (S1 and E1) yields marginal posterior dis-
tributions that deviate significantly from the numerically
accurate ones. This is the case for at least four parameters,
namely Smax, Qsmax, aF , and KF. Note that three of these
parameters are directly connected to the correct simulation of
runoff (fast response), suggesting that parameter values are
compensating for numerical errors during peak flows. A
distinct feature of the marginal posterior cdf's of these para-
meters is that they display a plateau, especially Smax and aF,
which is indicative of a bimodal distribution. On the other
hand, the marginal posterior distribution for KS, a parameter
characterizing baseflow response, is unimodal for all numer-
ical methods, although S1 and E1 show clear deviations.
Interestingly, the corresponding distribution of log‐likelihood
values, also shown in Figure 1, reveals that S1 and E1 have
significantly lower log‐likelihood values compared to the
reference run. The opposite is true for the implicit Euler
method (I1): its log‐likelihood values are slightly higher than
the reference run, confirming findings of Kavetski et al.
[2006a] and Kavetski and Clark [2010]. More importantly,
the I1 method does not suffer from the problems encountered
with the explicit method, yielding unimodal marginal poste-
rior distributions that match those of the reference run. Again,
this confirms the results of Kavetski and Clark [2010],
although they also show some examples where the fixed‐step
implicit Euler method results in significantly different pos-
terior parameter distributions, compared to a numerically
accurate method.
[27] The results in Figure 1 suggest that the macroscale

features of the response surface have been altered when

using the explicit numerical integration methods, as indicated
by a change from unimodal to bimodal marginal parameter
cdf's. Note that this does not necessarily mean that the joint
posterior distribution became bimodal [see Kavetski and
Clark, 2010, Figure 9]. These changes are confirmed in
Figure 2, which shows a one‐dimensional profile of the
log‐likelihood response surface along a straight line through
the seven‐dimensional parameter space, connecting the two
marginal posterior modes identified using the S1 method.
The correct log‐likelihood profile corresponding to the ref-
erence run (shown in black) exhibits a clear peak near a value
of Smax = 100 mm. Both explicit methods (S1 and E1), on
the other hand, have significantly lower log‐likelihood
values at that point, and exhibit a second peak near Smax =
700 mm, which is however a bit lower than the first peak.
This means that if one were only interested in the posterior
mode, i.e., the parameter set with the highest log‐likelihood
value, the explicit methods would in principle yield a
numerically accurate answer, at least in this particular case
(for counterexamples, see Clark and Kavetski, [2010]).
However, if the entire posterior distribution is of interest, then

Figure 1. Marginal posterior cumulative distribution functions (cdf's) for hydrologic model parameters
using different numerical integration methods. Details on numerical methods are listed in Table 1.

Figure 2. Log‐likelihood profile for different numerical
methods. The profile is taken along a straight line through
seven‐dimensional parameter space and is projected on a
single parameter axis.
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the second peak near Smax = 700 mm becomes relevant as
well. Whether this will affect MCMC sampling of the pos-
terior distribution depends on the ratio of the posterior den-
sities between the two peaks, as indicated by equation (12)
and the relative width of both regions of attraction. For
example, with the S1 method, there are at least two regions of
attraction (Figure 2) with maximum log‐likelihood values of
respectively −237.7 and −241.2. These two values lie much
closer together than the corresponding values for the numer-
ically accurate implementation (Figure 2), where one peak
clearly dominates the other. In addition, with the S1 method,
the region of attraction associated with the lower log likeli-
hood is much wider than the one associated with the higher
log likelihood. This explains why most MCMC samples are
drawn from this lower log‐likelihood region (Figure 3), as the
chance of randomly drawing a parameter set near the peak of
the narrow high log‐likelihood region is quite small. Indeed,
the narrowness of the higher log‐likelihood region peak
compared to the lower log‐likelihood region creates a chal-
lenging response surface to sample from.

[28] This is clearly illustrated in Figure 3, which shows
trace plots for the parameter aF, as the MCMC chains evolve
toward the posterior distribution. In the reference run, chains
mix well, resulting in fast convergence to the limiting dis-
tribution. The same behavior is observed for the implicit
Euler scheme (I1). Trace plots for the two explicit schemes,
however, suggest the existence of two regions of attraction
for this parameter, approximately around aF = −2 and
aF = 2, with the former corresponding to posterior values
obtained with the reference run. These results possibly indi-
cate bimodality in the response surface, although it could also
be caused by the presence of a narrow, geometrically complex,
yet unimodal, ridge. In any case, it is clear that the MCMC
algorithm has difficulties converging on this problem, and is
hampered by slow mixing of the different Markov chains. In
the explicit Euler run (E1), the region around aF = −2 even
remains unsampled during the first 20,000 model runs, indi-
cating potential problems with declaring early convergence
to the wrong posterior distribution. Figure 3 also plots values
for the Gelman‐Rubin (GR) statistic [Gelman and Rubin,

Figure 3. (a–d) Trace plots and (e) Gelman‐Rubin convergence statistic for Markov chains of parameter
aF simulated with different numerical integration methods. Each MCMC run consists of three parallel
chains with a total of 100,000 model runs.
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1992], often used as an indicator of MCMC convergence.
This statistic compares parameter mean and variance within
and between individual chains, and a value smaller than 1.2
is typically used to declare convergence. Figure 3 suggests
that, in the case of complexmarginal posteriors for S1 and E1,
the GR statistic may not be a reliable convergence indicator,
confirming results reported by Woodward [2007] (available
at http://ftp.isds.duke.edu/pub/WorkingPapers/08‐05.html).
In addition, results in Figure 3 for method E1 show that
based on GR premature convergence would be declared early
in theMCMC run, when the numerically accurate mode of the
posterior has not been sampled yet. Repeated MCMC runs
with the E1 and S1 methods using the convergence criterion
GR < 1.05 confirmed this problem: depending on the random
initialization and evolution of the Markov chains, the runs
either prematurely converged to a marginal posterior dis-
tribution centered around Smax = 700 mm, or they did not
converge after 100,000 model runs due to poor mixing
between individual chains. These results illustrate that
numerical implementation of the hydrologic model can have a
significant effect on convergence behavior of the MCMC
algorithm.

5.2. First‐Order, Fixed‐Step Integration Methods:
Predictive Uncertainty

[29] Next, we studied the effects of inferred parameter
uncertainty on predictive streamflow distributions. Figure 4

shows predicted hydrographs using two different parameter
sets, namely the ones corresponding to the two posterior
modes inferred using the first‐order splitting method S1
(one being close to the numerically accurate parameter set,
and the other being an artifact of the numerical integration
method; see Figure 2). It is evident from this figure that
the two parameter sets yield quite similar hydrographs,
suggesting that, despite the large variation in parameter
sets contained in the posterior distribution inferred with
method S1 (Figure 1), predictive uncertainty may not be
that large.
[30] Figure 5 shows posterior predictive streamflow dis-

tributions due to parameter uncertainty for the different
numerical methods at specified times along the hydrograph
of Figure 4. Predictive distributions are quite narrow for all
methods, but they do not all overlap with the distributions
for the reference run. Predictive uncertainty is typically
somewhat larger with the explicit methods, due to the wider
posterior parameter distributions (Figure 1), but the effect is
not that pronounced, although the marginal cdf of the last
plot in Figure 5 shows a clear bimodal marginal predictive
streamflow distribution for both S1 and E1. Predictions with
the explicit methods (S1, E1) typically underestimate stream-
flow, whereas the implicit Euler method (I1) either under-
estimates or overestimates. Note that, even though the
I1 method outperformed the explicit methods and yielded
accurate estimates of parameter uncertainty (Figure 1), its
performance in estimating predictive uncertainty is fairly
similar to those of the explicit methods (Figure 4).

5.3. Second‐Order, Adaptive‐Step Integration Methods

[31] Results from the previous section indicate that first‐
order, fixed‐step integration methods may not be appropriate
for MCMC analysis of parameter and predictive uncertainty.
Here, we wish to investigate whether second‐order, adaptive‐
step integration methods can alleviate these problems. We
applied adaptive stepping using second‐order methods
(S2, E2, and I2) to estimate local numerical errors of the
first‐order methods as a basis for adjusting the time step, as
described in section 3. Hence, we expect to improve accuracy
and stability by using adaptive time stepping and a second‐
order method. Four different tolerances were used in
equation (10), namely, t = 10−1, 10−2, 10−3, and 10−4. We are
mainly interested in how parameter estimates, streamflow
predictions, and computational speed change as a function
of decreasing tolerance. Ideally, we are looking for methods
that are both accurate and efficient.

Figure 4. Predicted hydrographs using the S1 method with
two different parameter sets, corresponding to the two
modes shown in Figure 2.

Figure 5. Posterior streamflow cdf's due to parameter uncertainty using different numerical integration
methods. Each subplot corresponds to a particular time on the hydrograph in Figure 4; i.e., times are 8, 58,
157, and 315 days, respectively.
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[32] Average CPU time for the fastest numerical imple-
mentation ranged from 0.0028 s per hydrologic model run
(for the fixed‐step explicit Euler method) to 0.0176 s per
model run (for the adaptive‐step, second‐order implicit
method). Software implementation was based on MCMC
code written in MATLAB and the hydrologic model written
in FORTRAN. We note that implementation of the hydro-
logic model in FORTRAN yielded an order‐of‐magnitude
speedup compared to a MATLAB implementation of the
same model, due to the necessity of a for loop to account for
daily variations in rainfall and potential evaporation forcing
when the water balance equations are integrated over time.
[33] Results in Figure 6 clearly show the increase in

accuracy with decreasing tolerance, for both parameter esti-
mates and streamflow predictions. It does not take very small
tolerances to significantly decrease parameter and streamflow
errors (where errors are computed relative to results from the
reference run; i.e., a value of 0.1 corresponds to a 10% error
relative to the numerically accurate result). A tolerance value
of 0.1 already results in order‐of‐magnitude increases in
accuracy, compared to first‐order, fixed‐stepmethods, without
leading to a significant increase in computational cost. With
such a high tolerance value, there are few time step decreases,
and therefore the main reason for this significant increase in
accuracy is the use of second‐order integrationmethods. Note
that the decrease in parameter error is only moderate when

going from I1 to I2 with tolerance of 0.1, since I1 already gave
quite accurate parameter estimates (see Figure 1). The crucial
advantage of I2, however, is its control of numerical errors
within a specified tolerance. As tolerances decrease, accuracy
increases and computational cost goes up. Based on the
results in Figure 6, tolerances around 10−3−10−2 seem to
give the best trade‐off between accuracy and computational
speed for this case study with a single‐state conceptual
model. Note that the explicit finite difference and splitting
methods are quite similar in both accuracy and speed. The
implicit finite difference method, on the other hand, is at
least as accurate, and it is more accurate when it is used with
a first‐order, fixed‐step method, but its computational cost
is clearly higher than those of either the explicit or splitting
methods. The computational requirements of the implicit
methods are larger, since these require iterative solution of a
nonlinear problem at each time step. Explicit and splitting
methods implementedwith small tolerance values give highly
accurate solutions at a smaller computational cost. Hence,
unless there are other reasons for choosing the implicit
method (e.g., microscale smoothness requirements of the
response surface for gradient‐based optimization, as in the
work of Kavetski et al. [2006b]), we conclude that adaptive‐
step explicit and splitting methods work best for Monte Carlo
simulation.

6. Discussion

[34] Our results confirm insights by Kavetski et al.
[2003], who showed that irregular response surfaces in
conceptual rainfall‐runoff models may be an artifact of
inaccurate numerical implementation. In particular, the use
of first‐order, explicit, fixed‐step integration methods is
problematic, as it results in numerically inaccurate param-
eter uncertainty estimates (Figure 1). Although numerical
errors altered the shape of the response surface, they did not
significantly affect the location of the globally optimal
parameter set (Figure 2). However, the presence of multiple
local optima would make any optimization unnecessarily
challenging. As a test, we applied a global optimization
algorithm (SCE‐UA of Duan et al. [1993]) to our problem
with the aim of finding the global optimum (located near
Smax = 100 mm in Figure 2) when integrating the hydro-
logic model with the S1 method. The algorithm invariably
converged toward the secondary mode located near Smax =
700 mm. The particular shape of the response surface in this
case, i.e., a narrow peak near Smax = 100 mm, combined with
a much broader (but inferior) optimum near Smax = 700 mm,
apparently creates a very challenging optimization problem.
This underscores the need for accurate numerical imple-
mentation of the hydrologic model, even when interest is
only in the optimal parameter set as opposed to the entire
posterior distribution.
[35] Problems with the Gelman‐Rubin statistic in Figure 3

highlight the need for alternative convergence diagnostics
[e.g., Cowles and Carlin, 1996] when posterior distributions
deviate significantly from the normal case. Indeed, multi-
modality of the marginal or joint posterior parameter dis-
tributions may not be restricted to poorly implemented
models, but can also occur in cases with numerically accurate
models, e.g., when overparameterized models are used.
Therefore, it is recommended to always evaluate the robust-

Figure 6. Relation between tolerance in adaptive time‐
stepping method, computational cost, and accuracy of
parameter and streamflow estimates. Parameter and stream-
flow errors are averages expressed relative to parameter and
streamflow values obtained with the reference numerical
method (REF). CPU time per model run is relative to CPU
times obtained with the E1 method.
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ness of inferred parameter distributions, either by repeating
the MCMC analysis from different starting points or by
extending the length of the Markov chains to avoid pre-
mature convergence to a unimodal distribution.
[36] Convergence problems due to inaccurate numerical

implementation, as depicted in Figure 3, are likely to become
more severe for more complex models, with additional non-
linear reservoirs and parameters. When the model becomes
overparameterized, the model parameter response surface
may become more complex, potentially with multiple optima
(ill‐posedness); hence the inferred posterior distributions may
be especially sensitive to slight changes in the relative mag-
nitude of different peaks caused by numerical integration
errors. The size of the numerical errors will also depend on
the inherent flow dynamics of the basin. Using fixed‐step
explicit methods to simulate highly dynamic processes is
bound to result in greater errors. For example, in Figure 2 it
can be seen that numerical errors, as measured by differences
between log‐likelihood profiles for S1 and REF methods, are
greater for smaller values of Smax, as smaller storage capac-
ities result in more dynamic changes in the relative water
storage, Sr.
[37] Which numerical integration method to use as part of

an MCMC analysis is determined by the trade‐off between
accuracy and computational cost (Figure 6). In our case the
adaptive time stepping with either a second‐order explicit
scheme (E2) or a second‐order splitting method (S2) worked
best. These methods resulted in efficient and accurate esti-
mates of parameter and prediction uncertainty, even with
relatively large tolerances. The E2 method has the additional
advantage of not depending on analytical tractability of the
hydrologic flux laws, as is the case for the S2 method. The
latter also requires careful numerical implementation (see the
appendix), and may be harder to expand to model structures
with multiple interacting reservoirs with feedback. The fixed‐
step, implicit Euler method performed well, too, although it
is computationally more costly due to its reliance on non-
linear iterations at each time step. It may be preferred for
gradient‐based optimization of rainfall‐runoff models, as it
guarantees smoothness of the parameter response surface,
while providing accurate results [Kavetski et al., 2006b].
Monte Carlo methods, however, do not rely on continuous
derivatives of the response surface, hence microscale smooth-
ness is less of an issue, allowing one to use more efficient
adaptive‐step methods that preserve the macroscale features
of the response surface.
[38] Finally, our results can be compared to a two‐part

recent study by Clark and Kavetski [2010] and Kavetski and
Clark [2010]. They investigated the effects of various
numerical integration methods on model prediction, param-
eter sensitivity, inference, and optimization using a range of
hydrologic basins and various hydrologic model structures.
In terms of the effects of inaccurate numerical integration
using fixed‐step explicit methods on MCMC simulation,
Kavetski and Clark [2010] show that MCMC‐based posterior
parameter distributions inferred with fixed‐step explicit
methods may deviate significantly from those obtained with
numerically accurate methods. Our results for E1 and S1 in
Figure 1 confirm these findings. On the other hand, we find
that the fixed‐step implicit Euler method yields quite accurate
parameter uncertainty estimates (see I1 in Figure 1), whereas
Kavetski and Clark [2010] conclude that this is not always the

case.When the I1method is used, the log‐likelihood profile is
clearly affected (Figure 3), but whether this has significant
repercussions on inferred parameter uncertainty apparently is
case‐specific. Both implicit and explicit fixed‐step methods
introduce inaccuracies in streamflow predictions (Figure 5).
Adaptive time stepping methods are very effective for
avoiding such problems, as shown here and also by Kavetski
and Clark [2010], who also recommend the use of adaptive‐
step, second‐order explicit finite differencing.
[39] The general similarities of their results, which were

based on multiple model structures and multiple basins, vali-
date our results for a single basin and a single model structure,
and suggest that the conclusions reached in this paper have
more general applicability to conceptual hydrologic models.
Furthermore, as the setup in this paper can be considered an
optimistic scenario (i.e., use of a state‐of‐the‐art MCMC
algorithm combined with a simple spatially lumped hydro-
logic model), effects on accuracy and efficiency observed in
this case will likely be amplified when less powerful MCMC
algorithms are used in combination with more complex
conceptual hydrologic models.

7. Conclusions

[40] Our results show that accuracy and efficiency of
posterior parameter uncertainty estimation using MCMC
sampling not only depends on the design of the MCMC
algorithm itself, but also depends on the numerical scheme
used to integrate the underlying hydrologic model equations.
Using a conceptual rainfall‐runoff model as a case study, we
showed that numerical schemes based on fixed‐step explicit
time integration, representative of many ad hoc implemen-
tations of conceptual rainfall‐runoff models, dramatically
changed the macroscale features of the multidimensional
parameter response surface, confirming results first reported
by Kavetski et al. [2003]. This resulted in numerical artifacts,
such as bimodal marginal posterior parameter distributions,
that were not present in numerically accurate implementa-
tions of the same hydrologic model. Consequences for
MCMC performance include (1) numerically inaccurate
estimates of posterior parameter and predictive distributions,
(2) poor performance and slow convergence of the MCMC
algorithm, and (3) unreliable convergence diagnosis using the
Gelman‐Rubin statistic. The fact that we observed these
issues on a relatively small parameter inference problem
using a state‐of‐the‐art MCMC algorithm reinforces the
necessity of a proper, accurate numerical implementation of
hydrologic models.
[41] A fixed‐step implicit Euler scheme avoided these

numerical artifacts and resulted in numerically accurate
estimates of parameter and predictive uncertainty. However,
as this scheme does not include any error control, it does not
protect against potential problems in other cases. A more
robust alternative is provided by adaptive‐step, second‐order
integration methods, which were all shown here to remedy
numerical problems with fixed‐step explicit methods. With
adaptive‐step methods, the desired accuracy is prescribed
by the user‐specified tolerance. Therefore, computational
speed becomes the main criterion for choosing between dif-
ferent adaptive‐step methods. Our results show that adaptive‐
step, second‐order methods, based on either explicit finite
differencing or operator splitting with analytical integration,
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provide the best alternative for accurate and efficient MCMC
simulation. Explicit finite differencing is preferred if the
individual hydrologic flux laws cannot be integrated analyt-
ically or if the model structure consists of multiple, coupled,
nonlinear reservoirs, as the splitting method then loses its
advantage. Implicit methods may also be used for increased
accuracy, but they cannot match the efficiency of adaptive‐
step explicit finite differencing or operator splitting for inte-
grating spatially lumped conceptual hydrologic models.

Appendix

[42] This appendix shows how the analytical solutions in
Table 2 were implemented to minimize cancellation errors
due to the summation of exponentials of widely varying
magnitude. The solutions in Table 2 can be written in the
following general form:

Sr ¼ 1

�
log ev1 � ev2 þ ev3ð Þ; ðA1Þ

where v1, v2, and v3 take on different values depending on
the hydrologic process (Table 2). Poor scaling of the sum of
exponentials is minimized by rewriting (A1) as

Sr ¼ 1

�
cþ log ev1�c � ev2�c þ ev3�cð Þ½ � ðA2Þ

and by setting c equal to the largest vi (in absolute value),
with i = 1, 2, 3. Without this procedure, numerical imple-
mentation of the analytical solutions resulted in non-
negligible numerical errors.
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