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Abstract

We consider the problem of optimizing an un-
known (typically non-convex) function with a
bounded norm in some Reproducing Kernel
Hilbert Space (RKHS), based on noisy bandit
feedback. We consider a novel variant of this
problem in which the point evaluations are
not only corrupted by random noise, but also
adversarial corruptions. We introduce an algo-
rithm Fast-Slow GP-UCB based on Gaus-
sian process methods, randomized selection
between two instances labeled “fast” (but non-
robust) and “slow” (but robust), enlarged con-
fidence bounds, and the principle of optimism
under uncertainty. We present a novel theoret-
ical analysis upper bounding the cumulative
regret in terms of the corruption level, the
time horizon, and the underlying kernel, and
we argue that certain dependencies cannot be
improved. We observe that distinct algorith-
mic ideas are required depending on whether
one is required to perform well in both the
corrupted and non-corrupted settings, and
whether the corruption level is known or not.

1 Introduction

Bandit optimization problems on large or continuous
domains have far-reaching applications in modern ma-
chine learning and data science, including robotics
[Lizotte et al., 2007], hyperparameter tuning [Snoek
et al., 2012], recommender systems [Vanchinathan et al.,
2014], environmental monitoring [Srinivas et al., 2010],
and more. To make such problems tractable, one needs
to exploit correlations between the rewards of “similar”
actions. In the kernelized multi-armed bandit (MAB)
problem, this is done by utilizing smoothness in the
form of a low function norm in some Reproducing
Kernel Hilbert Space (RKHS), permitting the applica-
tion of Gaussian process (GP) methods [Srinivas et al.,
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2010,Chowdhury and Gopalan, 2017]. See [Rasmussen
and Williams, 2006, Ch. 6] for an introduction to the
connections between GPs and RKHS functions.

Key theoretical developments for the RKHS optimiza-
tion problem have included both upper and lower
bounds on the performance, measured via some no-
tion of regret [Srinivas et al., 2010, Chowdhury and
Gopalan, 2017,Scarlett et al., 2017]. The vast majority
of these results have focused only on zero-mean addi-
tive noise in the point evaluations, and as a result, it
is unclear to what extent the performance degrades
under adversarial corruptions. Such considerations are
of significant interest under erratic or unpredictable
sources of corruption, and particularly arise when the
samples may be perturbed by a malicious adversary.
As we argue in Section 2, prominent algorithms such
as GP-UCB [Srinivas et al., 2010] can be quite brittle
in the face of such corruptions.

In this paper, we study the optimization of RKHS
functions with both random noise and adversarial cor-
ruptions. We propose a novel algorithm and regret
analysis building on recently-proposed techniques for
the finite-arm stochastic MAB setting [Lykouris et al.,
2018]. Specifically, we present a randomized algorithm
Fast-Slow GP-UCB based on randomly choosing
between a “fast” non-robust instance, and a “slow” ro-
bust instance. We bound the cumulative regret of
Fast-Slow GP-UCB in terms of the adversarial cor-
ruption level, time horizon, and underlying kernel.

The kernelized setting comes with highly non-trivial
additional challenges compared to the finite-arm set-
ting, primarily due to the infinite action space and
correlations between their associated function values.
In particular, while correlations are undoubtedly benefi-
cial in the non-corrupted setting (taking a given action
permits learning something about similar actions), this
benefit can lead to a hindrance in the corrupted set-
ting: An adversary that corrupts a given sample can
potentially damage our belief regarding many nearby
function values. Moving beyond independent arms was
posed as a open problem in [Gupta et al., 2019, Sec. 5.3].

Related work on GP optimization. Numerous
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GP-based bandit optimization algorithms have been
proposed in recent years [Srinivas et al., 2010,Hennig
and Schuler, 2012,Hernández-Lobato et al., 2014,Bo-
gunovic et al., 2016b,Wang and Jegelka, 2017,Shekhar
and Javidi, 2018,Ru et al., 2017]. Beyond the stan-
dard setting, several important extensions have been
considered, including multi-fidelity [Bogunovic et al.,
2016b,Kandasamy et al., 2017,Song et al., 2019], con-
textual and time-varying settings [Krause and Ong,
2011,Valko et al., 2013,Bogunovic et al., 2016a], safety
requirements [Sui et al., 2015], high-dimensional set-
tings [Djolonga et al., 2013,Kandasamy et al., 2015,Rol-
land et al., 2018], and many more.

Certain types of corruption-tolerant GP-based opti-
mization algorithms have been explored previously,
with the defining features including (i) whether the
corruption applies to the input (i.e., action) or the out-
put (i.e., reward function), (ii) whether all samples are
corrupted, or only a final reported point is corrupted,
and (iii) whether the corruptions are random or adver-
sarial. The case of random input noise on all samples
was studied in [Beland and Nair, 2017,Nogueira et al.,
2016,Dai Nguyen et al., 2017]. Perhaps closer to our
work is [Martinez-Cantin et al., 2018], considering func-
tion outliers; however, no specific corruption model was
adopted, and no theoretical regret bounds were given.

In [Bogunovic et al., 2018a], bounds on the simple regret
are given for the case that the final reported input is
adversarially perturbed, whereas the selected inputs
are only subject to random output noise. This makes
it desirable to seek broad peaks, which bears some
similarity to the input noise viewpoint [Beland and Nair,
2017,Nogueira et al., 2016,Dai Nguyen et al., 2017] and
level-set estimation [Gotovos et al., 2013, Bogunovic
et al., 2016b]. Our goal of attaining small cumulative
regret under input perturbations requires very different
techniques from these previous works. Another distinct
notion of robustness is considered in [Bogunovic et al.,
2018b], in which some experiments in a batch may fail
to produce an outcome. None of the preceding works
provide regret bounds in the case of non-stochastic
corrupted observations.

Related work on corrupted bandits. Adversari-
ally corrupted observations have recently been consid-
ered in the finite-arm stochastic MAB problem under
various corruption models [Lykouris et al., 2018,Gupta
et al., 2019, Kapoor et al., 2019]. As mentioned
above, [Lykouris et al., 2018] adopted a “fast-slow” al-
gorithmic approach; this led to regret bounds of the
form RT = O(KC · Rnon-c

T ), where Rnon-c
T is a stan-

dard regret bound for the non-corrupted MAB setting.
In [Gupta et al., 2019], this bound was improved to
O(KC + Rnon-c

T ) using an epoch-based approach in
which the estimates of the arms’ means are reset after

each epoch, and the previous epoch guides which arms
are selected in the next one.

Our algorithmic approach is based on that of [Lyk-
ouris et al., 2018]; however, the bulk of the theoretical
analysis requires novel ideas. In particular, our need
to handle an infinite action space with correlated re-
wards between actions poses considerable challenges, as
discussed above. In more detail, we note the following:

• Even when studying the case of a known corruption
level (which is done as a stepping stone towards
our main results), it is non-trivial to characterize
the effect of the corruptions (see Lemma 2 below);

• Characterizing that certain suboptimal points are
never sampled after a certain time requires signifi-
cant technical effort (see Lemmas 7 and 8 below);

• We adopt a UCB-style approach (Alg. 2) comple-
mentary to the elimination-style approach of [Lyk-
ouris et al., 2018], and the former kind may be of
independent interest even in the finite-arm setting.

In a parallel independent work [Li et al., 2019], cumu-
lative regret bounds were given for stochastic linear
bandits, which are a special case of the GP setting
(with a linear kernel). The algorithm of [Li et al., 2019]
is in fact more akin to that of [Gupta et al., 2019],
which is potentially preferable due the latter attaining
better bounds in the finite-arm setting. However, the
algorithm and results of [Li et al., 2019] crucially rely
on the notion of gaps between the function values of
corner points in the domain, and the idea of exploiting
these gaps for linear bandits has no apparent gener-
alization to the GP setting with general kernels. In
addition, even when we specialize to the linear kernel,
neither our results nor those of [Li et al., 2019] imply
each other, and the two both have benefits not provided
by the other; see Appendix K for details.

Outline. We introduce the corruption-tolerant ker-
nelized MAB problem in Section 2, and then present
algorithms for three settings with increasing difficulty:
Known corruption level (Section 3), simultaneous hand-
ing of no corruption and a known corruption level (Sec-
tion 4), and unknown corruption level (Section 5).

2 Problem Statement

We consider the problem of sequentially maximizing
a fixed unknown function f : D ! [�B0, B0], where
D ⇢ R

d is a compact set and B0 > 0. We assume
that D is endowed with a kernel function k(·, ·) de-
fined on D ⇥D, and the kernel is normalized to sat-
isfy k(x,x0)  1 for all x,x0 2 D. We also assume
that f has a bounded norm in the corresponding Re-
producing Kernel Hilbert Space (RKHS) Hk(D), i.e.,
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kfkk  B. This assumption permits the construc-
tion of confidence bounds via Gaussian process (GP)
methods (see Lemma 1 below).

In the non-corrupted setting, at every time step t, we
choose xt 2 D, and observe a noisy function value
yt = f(xt) + ✏t. In this work, we consider the cor-
rupted setting, where we only observe an adversarially
corrupted sample ỹt. Formally, for each t = 1, . . . , T :

• Based on the previous decisions and corresponding
corrupted observations {(xi, ỹi)}

t�1
i=1, the player

selects a probability distribution Φt(·) over D.

• Based on the knowledge of the true function f ,1

the previous decisions and corresponding obser-
vations {(xi, yi)}

t�1
i=1, and the player’s distribu-

tion Φt(·), the adversary chooses the corruptions
ct(·) : D ! [�B0, B0].

• The agent draws xt 2 D at random from Φt, and
observes the noisy and corrupted observation:

ỹt = yt + ct(xt), (1)

where yt is the noisy non-corrupted observation:
yt = f(xt) + ✏t, where ✏t ⇠ N (0,�2) with inde-
pendence between times t.

Note that the adversary is allowed to be adaptive,
i.e., the corruptions ct(·) may depend on the agent’s
previously selected points and corresponding stochastic
observations, as well as the distribution Φt(·) of the
player’s next choice, but not its specific realization xt.

We say that the problem instance is C-corrupted (i.e.,
the corruption level is C) if

TX

t=1

max
x2D

|ct(x)|  C. (2)

Clearly, when C = 0, we recover the standard non-
corrupted setting. We measure the performance using
the cumulative regret, which is also typically used in
the non-corrupted bandit setting [Srinivas et al., 2010]:

RT =

TX

t=1

�
f(x⇤)� f(xt)

�
, (3)

where x⇤ = argmax
x2D f(x). As noted in [Lykouris

et al., 2018], one could alternatively define the cu-
mulative regret with respect to the corrupted values
{f(x) + ct(x)}; the two notions coincide to within at
most 2C, and such a difference will be negligible in our
regret bound anyway. In Appendix C, we outline how
our results can be adapted for simple regret (i.e., the
regret of a point reported at the end of T rounds).

1While knowing f may appear to make the adversary
overly strong, the defense mechanism in [Lykouris et al.,
2018] for the finite-arm setting also implicitly allows the
adversary to know the reward distributions.

2.1 Standard (non-corrupted) setting

In the non-corrupted setting, existing algorithms use
Gaussian likelihood models for the observations and
zero-mean GP priors for modeling the uncertainty in
f . Posterior updates are performed according to a
“fictitious” model in which the noise variables ✏t = yt�
f(xt) are drawn independently across t from N (0,�),
where � is a hyperparameter that may differ from the
true noise variance �2. Given a sequence of inputs
{x1, . . . ,xt} and their noisy observations {y1, . . . , yt},
the posterior distribution under this GP(0, k) prior is
also Gaussian, with the mean and variance

µt(x) = kt(x)
T
�
Kt + �It

��1
yt, (4)

�2
t (x) = k(x,x)� kt(x)

T
�
Kt + �It

��1
kt(x), (5)

where kt(x) =
⇥
k(xi,x)

⇤t

i=1
, and Kt =

⇥
k(xt,xt0)

⇤

t,t0

is the kernel matrix. Common kernels include the
linear, squared exponential (SE) and Matérn kernels.

The main quantity that characterizes the regret bounds
in the non-corrupted setting [Srinivas et al., 2010,
Chowdhury and Gopalan, 2017] is the maximum infor-
mation gain, defined at time t as

�t = max
x1,...,xt

1

2
ln det(It + ��1Kt). (6)

For compact and convex domains, �t is sublinear in
t for various classes of kernels, e.g., O((ln t)d+1) for
the SE kernel, and O(t(d+1)d/((d+1)d+2⌫) ln t)) for the
Matérn kernel with ⌫ > 1 [Srinivas et al., 2010].

The following well-known result of [Abbasi-Yadkori,
2013] provides confidence bounds around the unknown
function in the non-corrupted setting.

Lemma 1. Fix f 2 Hk(D) with kfkk  B, and con-
sider the sampling model yt = f(xt) + ✏t, with indepen-
dent noise ✏t ⇠ N (0,�2). Under the choice

�t = B + ���1/2
p

2(�t�1 + ln(1/�)), (7)

the following holds with probability at least 1� �:

|µt�1(x)� f(x)|  �t�t�1(x), 8x 2 D, 8t � 1, (8)

where µt�1(·) and �t�1(·) are given in (4) and (5).

This lemma follows directly from [Abbasi-Yadkori, 2013,
Theorem 3.11] (and [Abbasi-Yadkori, 2013, Remark
3.13]) and the definition (6) of �t.

Lack of robustness against adversarial corrup-
tions. In the noisy non-corrupted setting, several al-
gorithms have been developed and analyzed. A partic-
ularly well-known example is GP-UCB, which selects
xt 2 argmax

x2D ucbt�1(x) := µt�1(x) + �t�t�1(x).
GP-UCB achieves sublinear cumulative regret with
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f(x*) = 1.15
f(x

0
) = 0.72

lcb( � )

ucb( � )

Figure 1: (Left) Function f , its global maximizer x
∗, a local maximizer x0, and the corruption region. (Middle)

GP-UCB eliminates the optimal region (and x
∗) early on due to the corruptions, and continues sampling points in the

suboptimal region around x0. (Right) Our corruption-aware algorithm (see Algorithm 1) does not eliminate the optimal
region, and after the corruption budget is exhausted, it identifies the true maximizer x

∗.

high probability [Srinivas et al., 2010,Chowdhury and
Gopalan, 2017], for a suitably chosen �t (e.g., as in (7)).
Despite this success in the non-corrupted setting, these
algorithms can fail under adversarial corruptions.

An illustrative example is provided in Figure 1. Obser-
vations that correspond to the points sampled in the
shaded region around the global maximizer x⇤ are cor-
rupted by the value �f(x⇤)/3, up to a total corruption
budget (C = 3.5). In Figure 1 (Middle), the points
selected by GP-UCB for t = 50 time steps are shown.
GP-UCB eliminates the global maximizer early on due
to corruptions, and later on, it only selects points from
the suboptimal region and consequently suffers linear
cumulative regret. In the subsequent sections, we de-
sign algorithms that are robust to corruptions, and are
able to identify the true maximizer after the corruption
budget C is exhausted (see Figure 1 (Right)).

3 Known Corruption Setting

We first consider the case that the total corrup-
tion C in (2) is known. Given a sequence of in-
puts {x1, . . . ,xt} and their corrupted observations
{ỹ1, . . . , ỹt} (with ỹi = yi + ci(xi)), we form a pos-
terior mean according to a GP(0, k(x,x0)) prior and
N (0,�) sampling noise as follows:

µ̃t(x) = kt(x)
T (Kt + �I)�1ỹt, (9)

where ỹt = [ỹ1, . . . , ỹt]. Note that this matches the
posterior mean formed in the non-corrupted setting,
simply replacing yt by ỹt. In addition, we form the
same posterior standard deviation �t�1(x) as in the
non-corrupted setting. The role of the parameter � is
discussed in Appendix I.

The following lemma provides an upper bound on the
difference between the non-corrupted and corrupted
posterior means, and is proved using the definitions of
µt and µ̃t along with RKHS function properties. All
proofs can be found in the supplementary material.

Lemma 2. For any x 2 D and t � 1, we have
|µt�1(x) � µ̃t�1(x)|  C��1/2�t�1(x), where µt�1(·)
and �t�1(·) are given in (4) and (5), and µ̃t�1(·) is
given in (9), with � > 0.

Algorithm 1 Gaussian Process UCB algorithm with
known total corruption C

Input: Prior GP(0, k), parameters �, �, B, {�t}t�1,
and total corruption C

1: for t = 1, 2, . . . , T do
2: Set

xt = argmax
x2D

µ̃t�1(x) + �
(A1)
t �t�1(x), (13)

where �
(A1)
t = �t + ��1/2C

3: Observe ỹt obtained via ỹt = f(xt)+ ✏t+ ct(xt)
4: Update µ̃t and �t according to (9) and (5) by

including (xt, ỹt)

5: end for

By combining Lemmas 1 and 2, we obtain the following.

Lemma 3. Fix f 2 Hk(D) with kfkk  B. Under the

choice �
(A1)
t = �t + ��1/2C with �t given in (7) and

� > 0, we have with probability at least 1� � that

|µ̃t�1(x)� f(x)|  �
(A1)
t �t�1(x), 8x 2 D, 8t � 1,

(10)
where µ̃t�1 and �t�1 are given in (9) and (5).

In Algorithm 1 (A1), we present an upper confi-
dence bound based algorithm with enlarged confidence
bounds in accordance with Lemma 3. We explicitly
define these confidence bounds as follows:

ucb
(A1)
t (x) = µ̃t(x) + �

(A1)
t+1 �t(x), (11)

lcb
(A1)
t (x) = µ̃t(x)� �

(A1)
t+1 �t(x). (12)

Once the validity of these confidence bounds is estab-
lished via (10), one can use standard analysis tech-
niques [Srinivas et al., 2010] to bound the cumulative
regret. This is formally stated in the following.

Lemma 4. Under the choice of �
(A1)
t in Lemma 3 and

� = 1, conditioned on the event (10), the cumulative
regret incurred by Algorithm 1 satisfies RT = O

��
B +

C +
p

ln(1/�)
�p

�TT + �T
p
T
�
.

The main theorem of this section is now obtained via
a direct combination of Lemmas 3 and 4.
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Theorem 5. In the C-corrupted setting, Algorithm 1

with � = 1 and �
(A1)
t set as in Lemma 3, attains,

with probability at least 1� �, cumulative regret RT =
O
��
B + C +

p

ln(1/�)
�p

�TT + �T
p
T
�
.

Note that when C = 0, this result recovers known non-
corrupted cumulative regret bounds (cf. [Chowdhury
and Gopalan, 2017, Theorem 3]). More generally, we
can decompose the obtained regret bound into two
terms: RT behaves as

O
⇣

C
p

�TT
| {z }

due to corruption

+
�
B +

p

ln(1/�)
�p

�TT + �T
p
T

| {z }

non-corrupted regret bound

⌘

.

(14)
The obtained regret bound can be made more explicit
by substituting the bound on �T for particular kernels
[Srinivas et al., 2010], e.g., for the SE kernel we obtain
RT = O

�
(C + B)

p

T (log T )d+1 + (log T )d+1
p
T
�
. In

Appendix J, we argue that the linear dependence on
C is unavoidable for any algorithm, and discuss cases
where the dependence on T is near-optimal. However,
we do not necessarily claim that the joint dependence
on C and T is optimal; this is left for future work.

4 Known-or-Zero Corruption Setting

In the previous section, we assumed that the upper
bound C on the total corruption is known and the
problem is C-corrupted. In this section, we also assume
that C is known, but we consider a scenario in which the
problem may be either C-corrupted or non-corrupted
(i.e., the standard setting). Our goal is to develop an
algorithm that has a similar guarantee to the previous
section in the corrupted case, while also attaining a
similar guarantee to GP-UCB [Srinivas et al., 2010]
in the non-corrupted case, and thus obtaining strong
guarantees in the two settings simultaneously. Theorem
5 fails to achieve this goal, since the regret depends on
C even if the problem is non-corrupted.

Our algorithm Fast-Slow GP-UCB is described in
Algorithm 2. It makes use of two instances labeled F
(fast; Line 6) and S (slow; Line 8). The S instance is
played with probability 1/C, while the rest of the time
F is played. The intuition is that F shrinks the confi-
dence bounds faster but is not robust to corruptions,
while S is slower but robust to corruptions. We formal-
ize this intuition below in Lemma 6 and (20)–(21).

The instances use the following confidence bounds de-

pending on an exploration parameter �
(A)
tA+1 and an

additional parameter ↵ > 1 whose role is discussed in
Appendix I and after Lemma 8 below:

ucb
(A)
tA (x;↵) = µ̃

(A)
tA (x) + ↵�

(A)
tA+1�

(A)
tA (x) (15)

lcb
(A)
tA (x;↵) = µ̃

(A)
tA (x)� ↵�

(A)
tA+1�

(A)
tA (x), (16)

Algorithm 2 Fast-Slow GP-UCB algorithm

Input: Prior GP(0, k), parameters �, �, B, ↵,

{�
(F )
t }t�1, {�

(S)
t }t�1, and total corruption C

1: Initialize: tS , tF := 1, isValid = True
2: for t = 1, 2, . . . , T do
3: if isValid is True then
4: Sample instance At: At = S with probabil-

ity min{1, C�1}. Otherwise, At = F .
5: if At = F then

6: xt  argmax
x2D minA2{F,S} ucb

(A)

tA�1(x; 1)

7: else
8: xt  argmax

x2D ucb
(S)
tS�1(x;↵)

9: Observe: ỹt = f(xt) + ct(xt) + ✏t
10: Set: tAt

 tAt
+ 1

11: Update: µ̃(At)(·), �(At)(·) to time tAt
by

including (xt, ỹt)

12: if minx
�
ucb

(F )

tF�1(x; 1)� lcb
(S)

tS�1(x; 1)
 
< 0

then
13: isValid False
14: else
15: Use all the collected data {xi, ỹi}

t
i=1 to com-

pute µ̃t�1(·) and �t�1(·)
16: Choose next point, observe and update ac-

cording to Algorithm 1

where tA is the number of times an instance A 2 {F, S}
has been selected at a given time instant. We also
make use of the following intersected confidence bounds,
which have the convenient feature of being monotone:

ucb
(A)

tA�1(x;↵) = min
t0
A
tA

ucb
(A)
t0
A
�1(x;↵), (17)

lcb
(A)

tA�1(x;↵) = max
t0
A
tA

lcb
(A)
t0
A
�1(x;↵). (18)

In Fast-Slow GP-UCB, we check if the following
condition (Line 12) holds:

min
x2D

n

ucb
(F )

tF�1(x; 1)� lcb
(S)

tS�1(x; 1)
o

< 0. (19)

In the non-corrupted setting, under the high-probability
event in Lemma 1 (for both F and S), this condition
never holds. Hence, when it does hold, we have detected
that the problem is C-corrupted.In such a case, the
algorithm permanently switches to running Algorithm 1
with C as the input. Note that we can check the
condition in (19) by using a global optimizer to find

a minimizer of g(x) := ucb
(F )

tF�1(x; 1) � lcb
(S)

tS�1(x; 1),
and checking whether its value is smaller than 0.

Finally, the inner minimization over A 2 {F, S} in the
F instance, together with the validity of the condi-
tion (19), ensures that F does not select a point that
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is already “ruled out” by the robust instance S. We
make this statement precise in Lemma 7 below.

4.1 Analysis

First, we provide a high-probability bound on the total
corruption that is observed by the S instance. Specifi-
cally, we show that because it is sampled with probabil-
ity 1/C, the total corruption observed by S is constant
with high probability, i.e., it is upper bounded by a
value not depending on T .

Lemma 6. The S instance in Fast-Slow GP-

UCB observes, with probability at least 1 � �, a to-
tal corruption

PT
t=1 |ct(xt)|1{At = S} of at most

3 +B0 ln(1/�).

We now fix a constant � 2 (0, 1) and condition on three
high-probability events:

1. If �
(F )
tF = B+���1/2

q

2
�
�tF�1 + ln

�
5
�

��
and the

setting is non-corrupted, the following holds with
probability at least 1� �

5 :

lcb
(F )
tF�1(x; 1)  f(x)  ucb

(F )
tF�1(x; 1), (20)

for all x 2 D and tF � 1. This claim follows
from Lemma 1 by setting the corresponding failure
probability to �

5 .

2. If �
(S)
tS = B + ���1/2

q

2
�
�tS�1 + ln

�
5
�

��
+

��1/2(3 +B0 ln
�
5
�

�
), then the following holds in

both the non-corrupted and corrupted settings
with probability at least 1� 2�

5 :

lcb
(S)
tS�1(x; 1)  f(x)  ucb

(S)
tS�1(x; 1), (21)

for all x 2 D and tS � 1. This follows from
Lemmas 3 and 6 (using 3 + B0 ln

�
5
�

�
in place

of C in Lemma 3), by setting the corresponding
failure probabilities to �

5 in both. Taking the
union bound over these two events establishes
the claim. Note that (21) corresponds to ↵ = 1,
but directly implies an analogous condition for all
↵ > 1 (since increasing ↵ widens the confidence
region (15)–(16)).

3. If the condition in (19) is detected at any time
instant, then Algorithm 2 permanently switches to
running Algorithm 1. If Algorithm 1 is run with

�
(A1)
t = B+ ���1/2

q

2
�
�t�1 + ln

�
5
�

��
+��1/2C,

then with probability at least 1� �
5 :

lcb
(A1)
t�1 (x)  f(x)  ucb

(A1)
t�1 (x), (22)

for all x 2 D and t � 1, under the definitions in
(11). This is by Lemma 3 with �

5 in place of �.

By the union bound, (20)–(22) all hold with probability
at least 1� 4�

5 . In addition, by the definitions in (17),

these properties remain true when ucb(A) and lcb(A)

are replaced by ucb
(A)

and lcb
(A)

.

The confidence bounds of F are only valid in the non-
corrupted case, and hence, in the case of corruptions
we rely on the confidence bounds of S. Specifically,
we show that F never queries a point that is strictly
suboptimal according to the confidence bounds of S.

Lemma 7. Suppose that (20) and (21) hold. For any
time t � 1, if At = F in Fast-Slow GP-UCB, then
the selected point xt /2 StS , where

StS = {x 2 D : 9x0 2 D,

lcb
(S)

tS�1(x
0; 1) > ucb

(S)

tS�1(x; 1)} (23)

represents the set of strictly suboptimal points according
to the intersected S-confidence bounds.

By the monotonicity of lcb
(S)

tS�1 and ucb
(S)

tS�1, the set
StS is non-shrinking in t. The proof shows that F
always favors x0 from (23) over x 2 StS , i.e., x0 has

a higher value of minA2{F,S} ucb
(A)

tA�1(·; 1) (see Line
6 of Algorithm 2). To show this, we upper bound

minA2{F,S} ucb
(A)

tA�1(x; 1) in terms of lcb
(S)

tS�1 via (23),

and lower bound minA2{F,S} ucb
(A)

tA�1(x; 1) in terms of

lcb
(S)

tS�1 via the confidence bounds and condition (19).

The next lemma characterizes the number of queries
made by the S instance before a suboptimal point
becomes “eliminated”, i.e., the time after which the
point belongs to StS .

Lemma 8. Suppose that the S instance is run with

�
(S)
tS corresponding to (21) and ↵ = 2. Then, con-

ditioned on the high-probability confidence bounds in
(21), for any given suboptimal point x 2 D such that
f(x⇤)� f(x) � ∆0 > 0, it holds that x 2 StS after

tS = min

⇢

⌧ :

q

16↵2(�(S)
⌧

)2�⌧

⌧
 ∆0

10

�

. (24)

This lemma’s proof is perhaps the trickiest, and cru-
cially relies on the fact that ↵ > 1. We show that by
the time given in (24), we have encountered a round i
in which a ∆0

10 -optimal point xi is queried with the con-

fidence width also being at most ∆0

10 . This means that
xi is much closer to optimal than the ∆0-suboptimal
point x in the lemma statement. Using the fact that
xi had a higher UCB score than x, we can also deduce
that the posterior standard deviation at x was not
too large. Since replacing ↵ = 2 by ↵ = 1 (as done
in the definition of StS in (23)) halves the confidence
width, we can combine the above findings to deduce
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that the confidence bounds indeed rule out x at time
i < tS , and hence also for all subsequent times due to
the monotonicity of the confidence bounds.

Finally, we state the main theorem of this section,
whose proof combines the preceding lemmas.

Theorem 9. For any f 2 Hk(D) with kfkk  B, let
� 2 (0, 1), and consider Fast-Slow GP-UCB run
with ↵ = 2, � = 1,

�
(F )
tF = B + �

q

2
�
�tF�1 + ln

�
5
�

��
, (25)

�
(S)
tS = B + �

q

2
�
�tS�1 + ln

�
5
�

��
+ (3 +B0 ln

�
5
�

�
),

(26)

and �
(A1)
t set in Algorithm 1 as �

(A1)
t = B +

�
q

2
�
�t�1 + ln

�
5
�

��
+ C. Then, after T rounds, with

probability at least 1� � the cumulative regret satisfies

RT = O

✓⇣

B +B0 ln(
1
�
) +

q

ln( 1
�
)
⌘p

T�T + �T
p
T

◆

(27)
in the non-corrupted case and

RT = O

✓

(1 + C) ln(T
�
)
⇣⇣

B +B0 ln(
1
�
) +

q

ln( 1
�
)
⌘

⇥
p

�TT + �T
p
T
⌘◆

(28)

in the corrupted case.

The non-corrupted case is straightforward to prove,
essentially applying standard arguments separately to
F and S. The corrupted case requires more effort.
Lemma 8 characterizes the time after which points
with a given regret are no longer sampled by S, which
permits bounding the cumulative regret incurred by S.
By Lemma 7, the points in StS are also not sampled
by F , and on average F is played at most C times
more frequently than S. Converting this average to a
high-probability bound using basic concentration, this
factor of C becomes C ln( 5T

�
), and we obtain (28).

Using the notation Õ(·) to hide logarithmic factors, the
bound obtained in the non-corrupted case simplifies
to RT = Õ

�
(B + B0)

p
T�T + �T

p
T
�
, and unlike the

result from Theorem 5, it does not depend on C. The
obtained bound is only a constant factor away from
the standard non-corrupted one (cf. (14)), while at
the same time our algorithm achieves RT = Õ

�
C(B +

B0)
p
T�T + C�T

p
T
�

in the C-corrupted case. As
before, we can make the results obtained in this theorem
more explicit by substituting the bounds for �T for
various kernels of interest [Srinivas et al., 2010].

5 Unknown Corruption Setting

In this section, we assume that the total corruption C
defined in (2) is unknown to the algorithm. Despite
this additional challenge, most of the details are similar
to the known-or-zero setting, so to avoid repetition, we
omit some details and focus on the key differences.

Algorithm. Our corruption-agnostic algorithm is
shown in Algorithm 3. We again take inspiration from
the finite-arm counterpart [Lykouris et al., 2018], con-
sidering layers ` = 1, . . . , dlog2 T e that are sampled
with probability 2�` (with any remaining probability
going to layer 1). The idea is that any layer with 2` � C
is robust, for the same reason that the S instance is
robust in Fast-Slow GP-UCB (Algorithm 2).

Each instance ` makes use of confidence bounds defined
as follows for some parameters �

(`)
t`

to be chosen later:

ucb
(`)
t`

(x;↵) = µ̃t`(x) + ↵�
(`)
t`+1�t`(x) (29)

lcb
(`)
t`

(x;↵) = µ̃t`(x)� ↵�
(`)
t`+1�t`(x), (30)

where t` denotes the number of times instance ` has
been selected by time t, and ↵ > 1. Similarly to the
Section 4, we define intersected confidence bounds:

ucb
(`)

t`�1(x;↵) = min
t0
`
t`

ucb
(`)
t0
`
�1(x;↵) (31)

lcb
(`)

t`�1(x;↵) = max
t0
`
t`

lcb
(`)
t0
`
�1(x;↵). (32)

Each instance ` selects a point according to

argmax
x2M

(`)
t

ucb
(`)
t`�1(x;↵), where M

(`)
t represents a

set of potential maximizers at time t, i.e., a set of points
that could still be the global maximizer according to
the confidence bounds. More formally, these sets are
defined recursively as follows:2

M
(`)
t :=

n

x 2 D : ucb
(`)

t`�1(x; 1) � max
x

02D
lcb

(`)

t`�1(x
0; 1)

o

for ` = dlog2 T e, (33)

M
(`)
t := M

(`+1)
t \

n

x 2 D :

ucb
(`)

t`�1(x; 1) � max
x

02D
lcb

(`)

t`�1(x
0; 1)

o

for ` < dlog2 T e.
(34)

Two key properties of these sets are: (i) M
(`)
t ✓M

(`)
t0

for every t > t0 and ` 2 {1, . . . , dlog2 T e} due to the

monotonicity of the confidence bounds; and (ii) M
(1)
t ✓

M
(2)
t · · · ✓M

(dlog2 Te)
t for every t. The latter property

2Note that a given set M
(`)
t

may be non-convex, making
the constraint x ∈ D in the UCB rule non-trivial to enforce
in practice (e.g., one may use a discretization argument).
Our focus is on the theory, in which we assume that the
acquisition function can be optimized exactly.
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Algorithm 3 Fast-Slow GP-UCB algorithm with
Unknown Corruption Level C

Input: Prior GP(0, k), parameters �, �, B, ↵,

{�
(`)
t`

}t�1 for all ` 2 {1, . . . , dlog2 T e}
Initialize: For all ` 2 {1, . . . , dlog2 T e}, set M

(`)
1 = D

for t = 1, 2, . . . , T do
Sample instance ` 2 {1, . . . , dlog2 T e} w.p. 2�`.

With remaining prob., sample ` = 1.

if M
(`)
t 6= ; then

xt  argmax
x2M

(`)
t

ucb
(`)
t`�1(x;↵)

Observe ỹt = f(xt) + ct(xt) + ✏t
Update µ̃(`)(·), �(`)(·) by including (xt, ỹt)
t`  t` + 1

M
(`)
t+1  {x 2 D : ucb

(`)

t`�1(x; 1) �
maxx02D lcb

(`)

t`�1(x
0; 1)}

M
(i)
t+1  M

(`)
t+1 \M

(i)
t for i 2 {1, . . . , `� 1}

M
(i)
t+1  M

(i)
t for i 2 {`+ 1, . . . , dlog T e}

else
` argmini2{`+1,...,dlog2 Te}{M

(i)
t 6= ;}

xt  argmax
x2M

(`)
t

ucb
(`)
t`�1(x;↵)

Observe: ỹt = f(xt) + ct(xt) + ✏t

M
(i)
t+1  M

(i)
t for every i 2 {1, . . . , dlog2 T e}

implies that once a point is eliminated at some layer `,

it is also eliminated from all M
(1)
t , . . . ,M

(`�1)
t , while

the former property ensures that it remains eliminated
for all subsequent time steps {t+ 1, . . . , T}.

Similarly to Fast-Slow GP-UCB, each layer uses

ucb
(`)
t`�1(x;↵) with ↵ strictly larger than 1 (e.g., ↵ = 2

suffices) in its acquisition function, while replacing ↵

by 1 in the confidence bounds when constructing the
set of potential maximizers. This is done to permit the
application of Lemma 8; the intuition behind doing so
is discussed in Appendix I and following Lemma 8.

In the case that M
(`)
t corresponding to the selected

` at time t is empty, the algorithm finds the lowest
layer i for which M (i) 6= ;, and selects the point that
maximizes that layer’s upper confidence bound. In this
case, the algorithm makes no changes to the confidence
bounds or the sets of potential maximizers.

Regret bound. With Fast-Slow GP-UCB and its
theoretical analysis in place, we can also obtain a near-
identical regret bound in the case of unknown C. We
only provide a brief outline here, with further details
in the supplementary material.

We let the robust layer `⇤ = dlog2 Ce play the role of F
and eliminate suboptimal points. Since 2�`⇤ � 1

2C , the
regret incurred in the lower layers is at most a factor
2C higher than that of layer `⇤ on average, and this

leads to a similar analysis to that used in the proof of
Theorem 9. Our final main result is stated as follows.

Theorem 10. For any f 2 Hk(D) with kfkk  B,
and any � 2 (0, 1), under the parameters

�
(`)
t`

= B + �

s

2

✓

�t`�1 + ln

✓
4(1 + log2 T )

�

◆◆

+ 3 +B0 ln

✓
4(1 + log2 T )

�

◆

, (35)

we have that for any unknown corruption level C > 0,
the cumulative regret of Algorithm 3 satisfies

RT = O

✓

(1 + C) ln(T
�
)

⇥
⇣⇣

B+B0 ln(
log T
�

)+
q

ln( log T
�

)
⌘p

�TT+�T
p
T
⌘◆

(36)

with probability at least 1� �.

This has the same form as (28), with �
log T in place of

� (since there are dlog2 T e layers).

6 Conclusion

We have introduced the kernelized MAB problem with
adversarially corrupted samples. We provided novel
algorithms based on enlarged confidence bounds and
randomly-selected fast/slow instances that are prov-
ably robust against such corruptions, with the regret
bounds being linear in the corruption level. To our
knowledge, we are the first to handle this form of adver-
sarial corruption in any bandit problem with an infinite
action space and correlated rewards, which are two key
notions that significantly complicate the analysis.

An immediate direction for further research is to bet-
ter understand the joint dependence on the corrup-
tion level C and time horizon T . The linear O(C)
dependence is unavoidable (see Appendix J), and the
O(B
p
�TT + �T

p
T ) dependence matches well-known

bounds for the non-corrupted setting [Srinivas et al.,
2010,Chowdhury and Gopalan, 2017] (in some cases
having near-matching lower bounds [Scarlett et al.,
2017]), but it is unclear whether the product of these
two terms is unavoidable.
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