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Abstract

Next generation sequencing has made it possible to perform differential gene expression studies in non-model

organisms. For these studies, the need for a reference genome is circumvented by performing de novo assembly on

the RNA-seq data. However, transcriptome assembly produces a multitude of contigs, which must be clustered into

genes prior to differential gene expression detection. Here we present Corset, a method that hierarchically clusters

contigs using shared reads and expression, then summarizes read counts to clusters, ready for statistical testing.

Using a range of metrics, we demonstrate that Corset out-performs alternative methods. Corset is available from

https://code.google.com/p/corset-project/.

Background
Next-generation sequencing of RNA, RNA-seq, is a

powerful technology for studying various aspects of the

transcriptome; it has a broad range of applications,

including gene discovery, detection of alternative splicing

events, differential expression analysis, fusion detection

and identification of variants such as SNPs and post-

transcriptional editing [1,2]. One of the advantages of

RNA-seq over older technology, such as microarrays,

is that it enables the transcriptome-wide analysis of

non-model organisms because a reference genome and

annotation are not required for generating and analyzing

the data. When no reference genome is available, the tran-

scriptome is de novo assembled directly from RNA-seq

reads [3]. Several programs exist for de novo transcriptome

assembly: Oases [4] and Trans-abyss [5], which extend the

Velvet [6] and Abyss [7] genomic assemblers, respectively,

as well as purpose built transcriptome assemblers such

as Trinity [8]. These programs are capable of assembling

millions of short reads into transcript sequences - called

contigs.

One common and biologically important application

of RNA-seq is identifying genes that are differentially

expressed between two or more conditions [9]. However,

performing a differential expression analysis on a de novo

assembled transcriptome is challenging because multiple

contigs per gene are reported. Multiple contigs, with

shared sequence, arise because transcriptome assemblers

differentiate between isoforms of the same gene, and

report each separately. Furthermore, they often report

contigs that are not truly representative of different

isoforms but arise from artifacts such as sequencing

errors, repeats, variation in coverage or genetic variation

within a diploid individual or pooled population. As a

result, transcriptome assemblers often report fragmented

versions of a transcript, or repeated contigs that differ only

by a SNP or indel. Surprisingly, simulations have shown

that even the assembly of data without any sequencing

errors, SNPs or alternative splicing can generate multiple

contigs per gene [10]. Hence, the number of contigs

produced by a de novo assembly is typically large; for

example, assemblies with 80 million reads can produce

hundreds of thousands of contigs [11].

The inevitably long list of contigs generated by de novo

transcriptome assembly causes several issues for differential

expression analysis: i) reads cannot be aligned unambigu-

ously to duplicated sequences and determining the origin

of ambiguously aligned reads is error prone; ii) the statis-

tical power of the test for differential expression is reduced

as reads must be allocated amongst a greater number of

contigs, thus reducing the average counts per contig; iii),

the adjustment for multiple testing is more severe; and iv),

once differentially expressed contigs have been identified,

interpretation is difficult, as many genes will be present in

the list multiple times. Performing a differential expression

analysis on genes, rather than contigs, would overcome
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these difficulties. However, the procedure for estimating

gene-level expression from a set of de novo assembled

contigs is not straightforward and has not been thoroughly

examined in the literature.

Several steps are involved in identifying differentially

expressed genes from a de novo assembled transcriptome

(Figure 1): RNA-seq reads are first assembled, reads are

next mapped back to contigs, contigs are then clustered

into genes, after which the expression level for each gene

cluster is summarized, and statistical testing is performed

to detect differential expression.

Several studies have compared individual steps in this

analysis pipeline. For example, the relative merits of

different de novo assemblers and steps prior to assembly,

such as quality control, have been examined [12–15]. Simi-

larly, the choice of method for performing count-based

statistical testing for differential expression has been

evaluated [16,17]. However, few studies have compared

or even suggested a path for obtaining gene-level counts

from transcriptome assemblies [18,19] and only a single

automated pipeline has thus far been implemented to

address this need [20]; it is provided by Trinity to run

RSEM [21] followed by edgeR [22] or DESeq [23]. This

pipeline is inflexible, however, to the choice of assembler.

In this paper we present Corset, a method and software

for obtaining gene-level counts from any de novo tran-

scriptome assembly. Corset takes a set of reads that have

been multi-mapped (multiple alignments per read are

reported) to the de novo assembled transcriptome and

hierarchically clusters the contigs based on the proportion

of shared reads and expression patterns. Expression

patterns allow for discrimination between genes that

share sequence, such as paralogues, if the expression

levels between groups are different. Using the mapped

reads, Corset then outputs gene-level counts. The gene-

level counts can then easily be tested for differential

expression using count-based frameworks such as edgeR

and DESeq. We demonstrate that Corset consistently

performs well compared to alternative clustering methods

on a range of metrics. Moreover, as it is an assembler-

independent method, it allows contigs and transcripts

from various sources to be combined. It is also simpler to

use, with the clustering and counting steps encompassed

in a single run of the software.

Results and discussion

Corset clusters contigs and counts reads

The first step in performing a gene-level differential ex-

pression analysis for a non-model organism is to assemble

the contigs, which can be performed using a variety of

software. As previously outlined, this process produces

multiple sequences or contigs per gene. Consequently, the

next step is to group, or cluster, the contigs into genes to

facilitate downstream differential expression analysis. This

clustering step is the first step of Corset.

Corset requires that, after transcriptome assembly, reads

are mapped back to the contigs allowing reads to map to

multiple contigs (multi-mapping). These multi-mapped

reads are then used as a proxy for detecting sequence

similarity between contigs, as well as providing informa-

tion about the expression level of the contigs. Corset also

uses the read information to filter out contigs with a low

number of mapped read (less than 10 reads by default).

Corset’s approach is in contrast to other tools used for

clustering contigs as the majority of other tools only use

the sequence information from the assembly.

Corset works by clustering contigs based on shared

reads, but separates contigs when different expression

Figure 1 The pipeline for performing a count-based gene-level

differential expression analysis on non-model organisms.

Cleaned RNA-seq reads are first de novo assembled into contig

sequences. Reads are mapped back to the transcriptome and the

association between contigs and genes must be established (clustering

of contigs). Then the abundance of each gene is estimated. Finally,

statistical testing is performed on the count data to determine which

genes are differentially expressed. Corset performs the clustering and

counting (dashed box) in a single step.
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patterns between samples are observed. This is imple-

mented using an agglomerative hierarchical clustering

algorithm. The distance between any two contigs is

defined in relation to the number of reads that are shared

between contigs, such that a lower proportion of shared

reads results in a larger distance (see Materials and

methods). Genes that share sequence, such as paralogues,

are likely to have small distances, as many reads are

shared. As we do not want these contigs to be clustered,

Corset performs a test to detect whether the relative

expression levels between the pair of contigs is constant

across conditional groups (or experimental groups). If the

relative expression between the two contigs is not con-

stant, the distance between the two contigs is set to the

maximum. This is incorporated into the algorithm as a

likelihood ratio test where the null hypothesis assumes

that the ratio between counts from the two contigs are

equal across conditional groups, whereas the alternative

hypothesis allows this ratio to vary with conditional group.

The count data for this contig ratio test are modeled as

Poisson distributed and a P-value threshold of approxi-

mately <10-5 is applied by default (see Materials and

methods for a detailed description and justification of

thresholds).

The contig ratio test that separates contigs with shared

sequence but differing expression ratios is one of the novel

features of the Corset clustering algorithm. Although this

feature can be switched off - for example, to ensure differ-

entially spliced isoforms are clustered together - we find it

is effective in separating contigs from different genes

(Additional file 1: Figure S7). For example, Figure 2 shows

the human ATP5J and GABPA genes, which reside on

opposite strands but have overlapping UTRs. The assem-

bly of human primary lung fibroblast data produced eight

contigs for this region (see Materials and methods). While

there are contigs for each of the genes separately (contigs

1 to 3, and 8) the use of a non-stranded protocol results in

contigs with the two genes assembled together (contigs 4

to 6). When the contig ratio test is not implemented, all

these contigs are assigned to the same cluster and no

significant differential expression is detected between the

knock-down and wild-type conditions (false discovery rate

(FDR) = 0.053). However, examining the contig count

ratios between pairs of contigs tells a different story

(Figure 2B). The count ratios of contig 3 and contig 2

are constant across samples, implying they should be in the

same cluster. By contrast, the contig ratio between contig 3

and contig 4 is significantly different across conditions and

so Corset splits them into different clusters. When tests for

all pairwise combinations are performed, these eight contigs

are separated into four different clusters and statistical

testing for differential expression reveals cluster a and

d are significantly differentially expressed in opposite

directions (FDR = 10-11 and 10-7, respectively).

Once Corset is applied to the full dataset the contig

groupings that are representative of genes are reported

and will be referred to henceforth as clusters. Corset also

reports the number of read counts associated with each

cluster. All the reads are uniquely assigned to a cluster

(see Materials and methods); hence, each read is only

counted once, even though the reads were originally

multi-mapped to contigs. The read counts table can be

supplied to count-based differential expression programs

for statistical testing.

Testing Corset on model organism datasets

We tested the performance of Corset against other cluster-

ing and counting methods using three RNA-seq datasets:

chicken male and female embryonic tissue [24], human

primary lung fibroblasts, with and without a small inter-

fering RNA (siRNA) knock down of HOXA1 [25], and

yeast grown under batch and chemostat conditions [26].

We selected three model organisms in order to compare

our de novo differential gene expression (DGE) results

against a genome-based analysis (referred to herein as the

truth dataset). In the chicken dataset we tested for DGE

between males and females. The homology between

chicken genes, which is around 90% on the sex chro-

mosomes [24], offered a challenging test for clustering

algorithms. The human dataset was selected because

human is one of the best annotated species and the

yeast was used to assess whether clustering is beneficial

for organisms with minimal splicing. Each dataset was

assembled using Trinity and Oases, which have different

underlying assembly strategies, to ensure that the results

were consistent. Overall, six different assemblies were

used as a starting point for the evaluation of Corset.

Corset clustering results in a good balance between

precision and recall

We were initially interested in comparing the clustering

produced by Corset with other available methods. Both

Trinity and Oases provide some clustering information

with their output, which is based on the partitioning of

the de Bruijn graphs during the assembly (referred to as

components and locus, respectively). Standalone tools

based on sequence similarity are also frequently used

[27,28], with CD-HIT-EST a popular choice [29,30].

We evaluated Corset’s clustering against CD-HIT-EST

and the assemblers’ own clustering. For chicken, over

300,000 contigs were assembled while for human, over

100,000 contigs were assembled (Table 1). A large number

of clusters were reported by Trinity and CD-HIT-EST -

for example, over 200,000 clusters on the chicken dataset.

By default, Corset removes contigs with a very low num-

ber of reads supporting them, to give fewer clusters in all

cases (Additional file 1: Table S1). This makes the cluster

list more manageable, without compromising sensitivity
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to detect differential expression. Oases also gave fewer

clusters than CD-HIT-EST, but it grouped many unrelated

contigs together, with the largest clusters containing many

thousands of contigs (Table 1).

Clustering was evaluated using precision (True positives/

(True positives + False positives)) and recall (True posi-

tives/(True positives + False negatives)) for each of the

six de novo assemblies. Positives and negatives were

calculated by taking all pairwise combinations of con-

tigs and evaluating if the contigs were correctly placed

in the same cluster (true positives), correctly separated

into different clusters (true negatives), incorrectly placed in

the same cluster (false positives) or incorrectly separated

(false negatives) [31]. Truth information was derived using

the appropriate reference genome annotation (see Materials

and methods). Contigs filtered out by Corset due to a low

number of mapped reads were also filtered out for the as-

sessment of competing methods.

We found that CD-HIT-EST was generally high in

precision but poorer in recall. In contrast, Oases’ cluster-

ing performed well in recall but had a precision around

zero in all cases. Conceptually, this again indicates that

Oases groups many unrelated contigs into the same clus-

ter (over-clustering). The clustering from Trinity showed

a better balance between precision and recall. Corset out-

performed both CD-HIT-EST in recall and the assembler’s

clustering in precision in all cases (Figure 3), indicating

that it provides a good balance between precision and

recall. In addition, in two out of the six assemblies, Corset

was the most precise (chicken-Oases and yeast-Oases).

Clustering performance is influenced by not only the

choice of clustering algorithms but also the choice of

assembler and the quality of the RNA-seq dataset. We

briefly investigated how certain aspects of the assembly

quality affect clustering recall and precision. We found

that recall decreases with greater fragmentation of genes

in the assembly. Contigs from a common gene that share

no sequence are unlikely to be clustered together by any

algorithm, whereas contigs that are almost fully redundant

should always be clustered together. The majority of genes

fall into one of these two extremes (Additional file 1:

Figure S2B). The assemblers’ clustering and Corset behaved

as expected, giving close to perfect recall for genes with

fully overlapping contig sequence and zero recall when

the contigs were disjointed. However, CD-HIT-EST failed

to achieve good recall even for genes with no fragmenta-

tion (Additional file 1: Figure S4). The fraction of fully

disjointed contigs appears to dictate an upper bound

on the best possible recall that can be achieved by any

clustering algorithm.

We found that poor clustering precision, whereby contigs

from different genes are grouped together, happens

when genes share sequence, such as paralogues, a com-

mon domain, overlapping UTRs or repeats. In some cases,

this can also result in a chimeric contig being erroneously

assembled (for example, Figure 2). It has previously been

Figure 2 Corset uses expression information to tease apart contigs from different genes. (A) Assembled contigs from a region of the

human genome containing the two genes ATP5J and GABPA. Trinity assembles 8 contigs (bottom track), which are grouped into one cluster if the

contig ratio test is not applied. Including this test allows corset to separate this region into four clusters (boxes). Notably, contigs 4 to 6 are false

chimeras, caused by the overlapping UTRs of ATP5J and GABPA. These genes are differentially expressed, as shown by base-level coverage, averaged

over replicates (top track). (B) When clustering, Corset checks for equal expression ratios between conditions when calculating distances between pairs

of contigs: here we consider pairs contigs 2 and 3 (top) and contigs 3 and 4 (bottom). The ratio of the number of reads aligning to each contig is

plotted for each sample (dots). It can be seen that contig 2 and contig 3 have the same expression ratio across groups and so are clustered together

while contig 3 and contig 4 have different expression ratios between conditions and so are split. This feature helps Corset separate contigs that share

sequence but are from different genes.
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Figure 3 A comparison of the performance of different clustering approaches. For the assembler’s own clustering (Trinity or Oases), CD-HIT-EST

and Corset we show the precision against the recall. The precision is the ratio of true positives over true positives plus false positives and the recall is

the ratio of true positives over true positives plus false negatives. We show the results for six different assemblies: (A) chicken data assembled with

Trinity; (B) chicken data assembled with Oases; (C) human data assembled with Trinity; (D) human data assembled with Oases; (E) yeast data

assembled with Trinity; and (F) yeast data assembled with Oases. The X indicates perfect clustering.

Table 1 Statistics on the number of clusters for various clustering options compared to Corset

Chicken Human Yeast

Trinity Oases Trinity Oases Trinity Oases

Contigs 335,377 540,933 107,389 239,426 7,353 27,013

Trinity Clusters (Max.) 230,924 (302) 73,258 (91) 6,690 (45)

Oases Clusters (Max.) 87,639 (93,103) 55,746 (16,881) 3,140 (5,987)

CD-HIT-EST Clusters (Max.) 282,285 (81) 202,636 (116) 90,115 (29) 96,965 (74) 7,117 (8) 5,586 (39)

Corset Clusters (Max.) 91,653 (290) 67,826 (208) 43,663 (90) 38,476 (59) 3,796 (45) 4,324 (65)

Shown are the number of contigs (bold), number of clusters and the maximum number of contigs in a cluster (in parentheses). Corset removes contigs that have

less than 10 reads mapping to them by default, and hence has the least number of clusters in 5 out of 6 assemblies. This makes the final list of clusters more

manageable, with no detriment to the final DGE results. Oases grossly over-clusters as shown by the maximum contigs in a cluster.
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illustrated that there is a high rate of false chimeras in de

novo transcriptome assemblies [32] and we also observed

a high rate of false chimeras in our assemblies, around 5

to 15% of contigs for chicken and human, and 40% of

contigs for yeast (Additional file 1: Figure S3). Oases’

clustering precision on genes that share sequence or

have chimeric contigs was consistently worse than that

of Corset and CD-HIT-EST. Trinity was marginally

worse than Corset. For genes that had no shared se-

quence, perfect clustering precision was seen for Corset

and CD-HIT-EST (Additional file 1: Figure S5).

These results indicate that clustering performance is

influenced by the underlying assembly quality (which in

turn depends on the dataset), but that Corset clustering

is robust over a range of assembly qualities.

The effect of clustering on differential gene expression

results

Poor precision is akin to over-clustering, making some

differentially expressed genes impossible to detect because

contigs with different relative expressions are combined.

Moreover, the functional annotation of clusters becomes

ambiguous. Poor recall, however, is akin to under-

clustering. It extends the total length of the list of clusters,

which has several consequences: it is inconvenient for

follow-on studies (such as gene ontology), leads to greater

multiple testing corrections and increases statistical uncer-

tainty. To assess the extent of these effects on differential

expression results, we performed a gene-level differential

expression analysis using each of the clustering options.

The remaining steps in the pipeline, including count-based

abundance estimation, were identical in each case (see

Materials and methods) and testing for DGE was per-

formed using edgeR. Significantly differentially expressed

clusters were compared to genes tested for differential

expression using a genome-based mapping approach. A

cluster was deemed to be a true positive if it matched a

differentially expressed gene from the genome-based ana-

lysis. Regardless of the statistical test used to generate true

differentially expressed genes from the genome based ana-

lysis, Cuffdiff 2 [25] (Figure 4) or edgeR (Additional file 1:

Figure S10), we found similar results in the comparison of

Corset to other contig clustering options.

We looked at three different measures to assess the

impact of clustering on DGE results. Firstly, we examined

the cumulative number of unique true positive clusters as

a function of the total number of clusters (Figure 4). A

unique true positive refers to only counting the top ranked

cluster when there is more than one cluster assigned to

a gene. In four cases Corset performed better than the

alternatives (chicken-Trinity, chicken-Oases, human-Oases,

yeast-Oases) and in the remaining two cases it performed

equally well (human-Trinity, yeast-Trinity). This metric

penalized for reporting multiple clusters for a given gene

(that is, poor recall). It was also informative to examine an

alternative version of this metric that does not penalize in

this way: the number of unique true positives as a function

of the number of unique false positives (Figure 5). In this

instance, clustering algorithms with better precision do

better than the assembler’s clustering, which performed

better in recall. As a final assessment of clustering we

looked at the correlation in fold change between differen-

tially expressed genes from the truth analysis, and those

from the de novo assembly (Table 2). Corset was consist-

ently the most concordant with the genome-based truth

analysis.

The DGE results also illustrate the general importance

of clustering contigs into genes; the differential expression

analysis on contigs with no clustering resulted in a much

longer list for the same number of unique true positives

compared to clustering (Figure 4). This was even the case

for the Oases assembly from yeast, an organism with little

alternative splicing (Figure 4F), highlighting the import-

ance of removing redundancy from the assembly, even for

genomes where minimal alternative splicing is expected.

By all metrics, Corset was the best or close to best method

available. This indicates that the balance between preci-

sion and recall that Corset achieves translates into more

accurate DGE results.

Corset allows multiple transcriptomes to be combined

An ideal clustering tool would allow transcriptomes gen-

erated from different sources to be combined because

multiple transcripts from the same gene will be clustered

together regardless of their origin. However, this is only

possible for clustering that is independent of the de novo

assembler. While several publications have used CD-HIT-

EST for combining multiple transcriptome assemblies

[12,14,29], we have already shown that CD-HIT-EST is not

the most effective contig clustering tool. Corset, however,

provides a convenient method to cluster contigs generated

from different sources. Reads are first multi-mapped to

each transcriptome separately, and then all bam files are

processed together in one run of Corset.

Different assemblers have strengths and weaknesses

and it is often advantageous to combine the results from

several de novo assemblers. To demonstrate the utility of

Corset for this purpose we clustered together the Trinity

and Oases assemblies from the human dataset. This

combined dataset effectively doubled the number of con-

tigs. Corset was able to handle this level of redundancy to

give a combined transcriptome with fewer clusters, 37,741,

than either of the Trinity or Oases assemblies individually,

43,664 and 38,477, respectively. Furthermore, this com-

bined transcriptome contained contigs annotating approxi-

mately 200 additional genes not detected using either

constituent transcriptome alone. By contrast CD-HIT-EST

produced 115,980 clusters on the same combined dataset.
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Another application for combining transcriptomes is

when a partially assembled genome or annotation is

available. Supplementing de novo assembled data with

genome-based data has several advantages: i) it increases

the amount of known transcript sequence, for example,

because genes, or regions of genes in the annotation, that

have little or no read coverage are absent from the assem-

bly; ii) de novo assembled contigs can be easily annotated

if they cluster with a known gene; and iii) it allows discon-

nected fragments in the assembly to be clustered together

if a transcript from the reference annotation overlaps

both. We demonstrated this final benefit by combining

the Trinity transcriptome from the human RNA-seq

dataset with the human Ensembl version 73 annotation

using Corset. We randomly sampled 50%, 25%, 12% and

6% (approximately 100, 50, 25 and 12.5 thousand tran-

scripts) of the full Ensembl transcriptome to emulate a

partial annotation. A significant improvement in cluster-

ing recall is seen for Trinity contigs with no detriment to

clustering precision (Figure 6A).

Finally, we extended this idea to the use of a reference

annotation from a related species [33]. The human RNA-

seq reads were mapped independently to the Trinity

assembly and Ensembl version 73 transcript sequences for
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Figure 4 The effect of clustering on differential gene expression rankings. The cumulative number of unique true positive differentially

expressed clusters against the number of top ranked clusters in the de novo analysis is shown. A unique true positive refers to only counting the

first instance of a gene that appears multiple times in the ranked list. Corset performed the same or better than CD-HIT-EST and the assembler’s

own clustering, in all cases: (A) chicken data assembled with Trinity; (B) chicken data assembled with Oases; (C) human data assembled with

Trinity; (D) human data assembled with Oases; (E) yeast data assembled with Trinity; and (F) yeast data assembled with Oases. For comparison,

we also show the results of no clustering, where the analysis was performed at the level of contigs rather than clusters.
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chimp, orangutan, macaque, marmoset and bushbaby, with

lower mapping stringency used for the related species

(see Materials and methods). Our results demonstrate

that an improvement in clustering recall is obtained

even using annotation from a related species, again

without loss of precision (Figure 6B). The effectiveness

of this strategy will depend on the divergence between

species, which in this example ranged from approximately

6 million years ago (My; chimp), 15 My (orangutan), 32

My (macaque), 46 My (marmoset) to 68 My (bushbaby)

[34]. In addition, the improvement will also depend on the

completeness of the annotation (these species had half to

one-third as many transcripts as the human Ensembl

annotation).

Corset summarizes reads into gene-level counts

As previously mentioned, Corset not only clusters contigs

but also produces expression levels for each cluster, in the

form of read counts that can be directly used by DGE ana-

lysis software. This feature is provided as a convenience

because it replaces the two-step process of clustering con-

tigs and estimating abundances with a single step.

We compared the performance of the counting aspect

of our software against three other pipelines for gene-level
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Figure 5 The effect of clustering on differential gene expression receiver operating characteristic (ROC) curves. The unique true positive

differentially expressed clusters against unique false positive clusters in the de novo analysis is shown. A unique positive refers to only counting

the first instance of a gene that appears multiple times in the ranked list. Corset performed similarly to or better than CD-HIT-EST and the assembler’s

own clustering, in all cases: (A) chicken data assembled with Trinity; (B) chicken data assembled with Oases; (C) human data assembled with Trinity;

(D) human data assembled with Oases; (E) yeast data assembled with Trinity; and (F) yeast data assembled with Oases. For comparison, we also show

the results of no clustering, where the analysis was performed at the level of contigs rather than clusters.
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count estimations: (1) RSEM [21]; (2) selecting the longest

contig from each cluster as a representative sequence and

mapping to that; and (3) mapping each read to all contigs,

allowing only a single alignment, then aggregating the

counts within a cluster (see Materials and methods). In

each case, the Corset clustering was used. We found that,

in general, all counting methods produced similar re-

sults to Corset; the Pearson correlation between counts

produced by Corset and other methods was consist-

ently high (Additional file 1: Table S2). Despite RSEM

and Corset reporting identical counts for up to 95% of

clusters (Additional file 1: Table S3), we found a significant

difference in counts for a small number of clusters. In these

clusters RSEM tended to report fewer counts (Additional

file 1: Figure S11A). Furthermore, for these clusters

Corset counts exhibited less variability between biological

replicates (Additional file 1: Table S4 and Figure S11B),

suggesting that they were more precise. As a final assess-

ment of the discrepancy, we compared RSEM cluster-level

counts against a truth set where the truth was constructed

by running RSEM on reads mapped to the gene anno-

tation (Additional file 1: Figure S12A). This confirmed

that RSEM was underestimating the counts for a small

proportion of clusters, resulting in missing true differential

expression in the downstream analysis (Additional file 1:

Figure S12B).

Hence, we found no evidence that there was a disadvan-

tage in using the counts produced by Corset over other

programs, such as RSEM, for gene-level analysis. On the

contrary, we found subtle hints that simple count-based

abundance estimation methods may be more robust for

detecting differential expression on de novo assembled

transcriptomes than methods that attempt to infer abun-

dance at the transcript level first. However, we reiterate

that all counting methods gave similar results.

Conclusions

Recently, there has been a focus on the potential for using

RNA-seq to analyze the transcriptomes of non-model or-

ganisms, with a number of studies exploring various steps

in the analysis pipeline, such as the effect of cleaning reads

[13], digital normalization [35], different assemblers [12]

and post-assembly improvements [36]. However, in many

applications of RNA-seq the outcome of interest is not the

transcriptome itself, but the detection of differentially

expressed genes between samples. To this end, there are

few tools or even guidelines on how to progress from

the assembled transcriptome to a list of differentially

expressed genes. This study presents a novel algorithm,

Corset, for clustering de novo assembled contigs and

generating gene-level counts. This study is also the first to
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Figure 6 Supplementing a de novo assembly with additional transcriptomes. Supplementing a de novo assembly with contigs from either

(A) a partial annotation or (B) related species improves clustering recall of the de novo assembled contigs. We show the recall and precision,

calculated for Trinity contigs. (A) We randomly sampled transcripts from the human annotation from Ensembl at 100%, 50%, 25%, 12.5% and 6%

of all transcripts to emulate a partial annotation, mapped the human RNA-seq reads to each set and clustered the reads together with those mapped

to the Trinity assembly using Corset. (B) We mapped human RNA-seq reads onto the Ensembl annotation for chimp, orangutan, macaque, marmoset

and bushbaby, then clustered the reads together with those mapped to the Trinity assembly using Corset. 'None' in both plots indicates the Trinity

assembly on its own.

Table 2 Pearson correlation in gene-level log2 fold

changes

Chicken Human Yeast

Trinity Oases Trinity Oases Trinity Oases

No clustering 0.720 0.734 0.884 0.835 0.968 0.958

Trinity 0.820 0.933 0.934

Oases 0.447 0.888 0.760

CD-HIT-EST 0.751 0.756 0.919 0.929 0.968 0.903

Corset 0.874 0.850 0.936 0.956 0.968 0.974

In previous validation results, we assessed clustering by examining the ranking

of true positives. Here we assess how well the fold change between

experimental conditions is recovered. For each contig matching a gene with

true differential expression, we compared its cluster-level log2 fold change

against its true gene-level log2 fold change. The Pearson correlation between

these quantities is shown. We assessed each clustering method in this way

and found corset clustering gave the highest correlation in all cases. The

highest Pearson correlation for each assembly is displayed in bold.
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compare various pipelines for DGE analysis of de novo

assembled transciptomes, demonstrating that it is advan-

tageous to perform a gene-level rather than transcript-

level analysis, even on species such as yeast, with minimal

alternative splicing.

However, performing a gene-level analysis requires the

de novo contigs to be clustered into genes. Prior to the

algorithm presented here, clustering options were limited

to either the assembler’s own groupings or a sequence-

based clustering tool. Furthermore, it was not clear how

well these methods performed in the context of a de novo

assembled transcriptome; specifically, their ability to deal

with issues such as the fragmentation of genes, erroneous

chimeras and repeats, all of which may lead to the

miss-clustering of contigs.

Our method, Corset, makes use of both the sequence

similarity and expression data available to cluster contigs.

The use of expression data means Corset has the power to

separate paralogues and contigs with erroneous chimeras

into different clusters. A possible consequence of separat-

ing contigs based on relative expression is that differen-

tially spliced isoforms of a gene may be split into separate

clusters. For gene-level differential expression analysis, we

see no disadvantage in this; either or both isoform clusters

should be detected as differentially expressed. However,

this option can be turned off should the user want to

ensure isoforms are clustered together. Overall, we found

the clustering provided by Corset performed better than

alternative approaches in several metrics we examined.

Similarly, the expression data provided as counts by

Corset gave results equal to, and sometimes marginally

more accurate than, all alternative estimates.

Thus, Corset provides new methods in a single software

tool that effectively replaces the often ambiguous, cumber-

some, multi-step process required to go from a de novo

assembled transcriptome to gene-level counts. Corset is

easy to run as no indexing or sorting of the bam files is

required and it can process single-end, paired-end or

mixed reads. Finally, Corset provides a convenient way to

merge the results from different de novo assemblies, refer-

ence annotations or genome-guided assemblies. We believe

these features will be of great benefit to RNA-seq analysis

in non-model organisms.

Materials and methods

Datasets

We performed differential gene expression analysis using

publicly available RNA-seq data from three model organ-

isms: chicken, human and yeast. All datasets consisted of

100-bp paired-end reads from an Illumina HiSeq 2000.

For each dataset we trimmed the reads [37] and then

performed three analyses: two on de novo transcriptomes

assembled using Oases and Trinity and one genome-based

analysis - the 'truth' - which was used for comparison. The

chicken dataset from Ayers et al. [24], Short Read Archive

(SRA) accession number SRA055442, consisted of approxi-

mately 1.2 billion reads. For the de novo analyses we used

only one lane of this data (approximately 320 million reads)

because the full dataset was computationally too large

to assemble. However, all the data were used for the

genome-based 'truth' analysis. This dataset consists of

eight samples - male and female blastoderms, and male

and female day 4.5 gonad tissue, in duplicate. The data-

set published by Trapnell et al. [25], Gene Expression

Omnibus accession GSE37704, is from human primary

lung fibroblasts with an siRNA knock-down of HOXA1.

The dataset contains three replicates of the knockdown

and three controls with more than 231 million reads in

total. Finally, we included a yeast dataset, SRA accession

numbers SRR453566 to SRR453571, published in Nookaew

et al. [26]. The dataset consists of approximately 36 million

reads. Three replicates were grown under batch conditions

and three under chemostat conditions.

Genome-based 'truth' analysis

To gauge the performance of different clustering and

abundance estimation algorithms, we derived a 'truth' set

using genome-based analysis.

To determine the correspondence between de novo

assembled contigs and reference annotation genes, we

aligned the assembled contigs against the annotation

using BLAT [38] (minimum length of 200 bases and

minimum identity of 98%). Chimeric contigs were treated

as having an unknown origin. We identified chimeric con-

tigs as those that matched two or more truth genes (as

above) with an overlap between the genes of less than 100

bases. For other cases where a contig aligned to multiple

genes, it was assigned to the gene with the longest align-

ment length. When comparing the differentially expressed

'truth' genes to de novo clusters, we assigned a cluster to

the same 'truth' gene as the majority of its contigs. Any

contig or cluster that could not be found in the 'truth' set

was excluded from the results shown. Contigs that were

removed by Corset due to a low number of reads mapping

were also excluded.

To calculate 'true' differential expression, reads were

first mapped using TopHat v2.0.6 [39] to either the

hg19, galGal3 or sacCer3 versions of the human, chicken

and yeast genomes, respectively. In all cases we provided

the gene annotation (RefSeq for human, Ensembl (v.70)

for chicken and Saccharomyces Genome Database for

yeast) to TopHat to support splice site detection. These

same gene annotations were processed by 'gffread –merge'

to give locus level annotations. Cuffdiff 2.1.1 was run to

detect differential gene expression (with the -u option).

We used 'significant' locus in 'gene_exp.diff' as true posi-

tives. As an alternative to cuffdiff 2 we also defined truth

using a genome based edgeR analysis (results shown in
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Additional file 1: Figure S10). EdgeR was run in the same

way as for the de novo assembly (see 'Statistical testing'

below).

De novo assembly

Oases 0.2.06 (with Velvet version 1.2.07) was used to

assemble the human and yeast data with kmer lengths of

19, 23, 27 and 31. For the chicken dataset we used kmer

lengths of 31, 41, 51, 61 and 71. The chicken Trinity

assembly was created using Trinity-r2012-10-05 and the

human and yeast assemblies using Trinity-r2013-02-25.

Default parameters were used in all cases, with a minimum

contig length of 200 bases. Additional file 1: Figures S1, S2

and S3 show the assembly quality.

Mapping

Reads were mapped to the de novo assemblies as paired-

end alignments using bowtie [40]. For single-mapping,

where only one alignment was allowed, we used the

bowtie option –best. For multi-mapped alignment, we

used the option –all. When mapping to related species

we used the bowtie settings, --all -m 6 -n 3 -e 1000 -X

1000, to allow for a great number of mismatches. For

the human dataset, this resulted in between 30% (bush-

baby) and 70% (chimp) of read pairs mapping, compared

to about 75% for the Trinity assembly.

Clustering

We clustered the transcriptomes using CD-HIT-EST

with default parameters. For the assembler clustering,

we extracted the clusters from the contig names in the

assembly fasta file. For example, for Trinity, the contig

'comp1_c2_seq3' belonged to the cluster 'comp1_c2'. For

Oases, 'Locus_1_Transcript_3/10_Confidence_0.000_-

Length_268' belonged to cluster 'Locus_1'. To obtain

the Corset clustering we multi-mapped the reads to the

transcriptome and executed Corset with the experimental

groups included as a parameter (-g option). For the differ-

ential expression results presented in Figures 4 and 5 and

Table 2, we estimated the counts using the 'single-map-

ping then summation' method described below.

Abundance estimation analysis

The four methods described below were compared to

assess which gave the best DGE results. In all cases the

clustering was identical and was generated using Corset

with the experimental groups passed through the -g

options and using the -m 0 option (so that all contigs

were reported). The statistical testing was performed

using edgeR.

RSEM

Multi-mapped bam files were converted to the format re-

quired by RSEM using the command, 'convert-sam-for-rsem'.

The transcriptome was prepared using 'rsem-prepare-

reference –no-polyA –no-bowtie –transcript-to-gene-map'

with Corset clustering passed as a parameter. The gene

abundance was estimated using 'rsem-calculate-expres-

sion –bam –paired-end' and the 'expected_counts' were

extracted from the '.genes.results' files.

Representative contig method

The longest contig was selected to represent each cluster.

Reads were single-mapped back to these contigs. The

number of reads mapping to each representative contig

was counted using the samtools idxstats command. Be-

cause these count data were per read, we divided by

two to get the counts per fragment.

Single-mapping then summation

We single-mapped reads to all contigs and counted the

number overlapping each using samtools idxstats [41].

To obtain gene-level counts, we summed the counts for all

contigs within a cluster. Because these count data were per

read, we divided by two to get the counts per fragment.

Corset

We multi-mapped the reads to the transcriptome and

executed Corset with the options described above.

Statistical testing

The cluster-level count data were processed using

edgeR. For the chicken data, we modeled the data with

four conditional groups (two sex and two time-points) as

in Ayers at al. [24], but tested for a difference between

males and females from the later time-point only. The

other datasets had two conditional groups each (with

three replicates for a total of six samples) and the statis-

tical testing was performed for differences between these

groups. We used the edgeR GLM framework in all cases

with tagwise dispersion estimation [42]. The statistical

testing was performed in the same way for all de novo as-

semblies. Statistical testing for the 'truth' genome-based

analysis was done using Cuffdiff 2 (Figures 4 and 5) and

edgeR (Additional file 1: Figure S10). While these gave a

slightly different list of significant truth genes, the results

comparing Corset to alternative clustering methods were

similar.

The Corset algorithm

Our software accepts a set of multi-mapped read align-

ments in bam format (one or more files per sample) as

input. The algorithm then proceeds in the following

way:

1. Each read alignment is parsed and the read and contig

IDs are extracted. For each read we store the set of

contigs that it maps to.
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2. Contigs with 10 or fewer reads are filtered out. This

step is not essential to the algorithm, but has the effect

of reducing the final total number of clusters as well as

the average number of contigs per clusters, which can

simplify the subsequent steps in the analysis.

3. The read data are parsed and super clusters are

formed. Each super cluster contains all contigs that

share one or more reads with another contig in the

same super cluster.

4. Then for each super cluster we perform agglomerative

hierarchical clustering similar to the algorithm in [43],

but with distance and linkage described below.

Hierarchical clustering is used rather than other

clustering approaches because it is computationally

tractable.

4.1 We create a distance matrix using the metric:

distance ¼
1−

Rab

min Ra;Rbð Þ
; contig ratio the same

1; contig ratio different

8
<
:

where, Ra is the total number of reads that map to

contig a across all samples, and Rab is the total number

of reads that map to both contig a and contig b, across

all samples. The distance is therefore bounded between

zero and one, with zero indicating a pair of redundant

contigs and one indicating no similarity. 'Contig ratio'

refers to the expression of contigs a and b being propor-

tional to each other as measured across conditional

groups. We make the assumption that this is true when

two contigs originate from the same gene, and there is no

alternative splicing. Alternatively, if the contigs do not

come from the same gene or if there is alternative splicing,

then their expression is not necessarily proportional, as

can happen if one contig is differentially expressed. We

test these scenarios using the 'contig ratio test', which pro-

ceeds in the following way. Let raij be the number of reads

that map to contig a under condition i, for the jth repli-

cate. We then approximate the number of reads that map

to contig a, under condition i as:

Xai ¼ 1þ
X

j

raij þ 0:5rabij
� �

The shared reads term, rabij, is used here to avoid

double counting of reads. One is added as an offset to

ensure that X > 0.

The contig-wise counts are then modeled as Poisson

distributed. Note that we used a Poisson model for

computational speed:

Xai e Pois μai ¼ f iμbið Þ

Xbi e Pois μbið Þ;

where μai is the mean count for contig a under condition

i and f is a proportionality constant. Define fi = μai/ μbi as

the true measure of proportional expression between

contig a and b under condition i. We want to test the

null hypothesis, H0: fi = fi’ = f, that the proportionality

constant is independent of condition, against the alter-

native, H1: fi ≠ fi’.

Estimates of the proportionality constants for condition

i are obtained from the contig-wise counts, that is:

f̂ i ¼
Xai

Xbi

and the common proportionality constant is estimated by:

f̂ ¼

X
i
XaiX
i
Xbi

We can test the null hypothesis using a likelihood ratio

test with test statistic:

D ¼ −2 lnl0− lnl1ð Þ;

which is approximately chi-square distributed on

nconditions - 1 degrees of freedom under the null hypoth-

esis. Here nconditions is the total number of conditions, l0 is

the likelihood under the null hypothesis and l1 is the likeli-

hood under the alternative hypothesis.

Any pair of contigs for which the null hypothesis is

rejected is defined as having a 'contig ratio difference'

and will have its distance increased to the maximum

value of 1. We found it convenient in terms of computa-

tion time to set a threshold on D that is equivalent to a

P-value threshold of 10-5. The relationship between

threshold and number of conditions is parameterized as

Dthreshold = 15 + 2.5 × nconditions. This relationship is only

approximate and is valid when nconditions < 10. This

approximation should not affect the clustering, as we

found the DGE results to be robust over a wide range of

P-values (Additional file 1: Figure S7).

4.2 The hierarchical clustering proceeds by merging the

two contigs with the smallest distance together. The

number of reads that align to this new cluster is then

updated, using the linkage criterion below, and the

distance matrix is recalculated (as in step 3). Note

that the linkage used by Corset differs from standard

linkage approaches, such as single linkage, because it

relies on information outside the distance matrix:

Ra’ ¼ Ra þ Rb–Rab

Ra’c ¼ Rac þ Rbc−Rabc

where contigs a and b are those being merged into

cluster a’. Rabc is the number of reads mapping to all of

contigs a, b, and c.
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4.3 Steps 4.1 and 4.2 are iteratively repeated until either

all the contigs have been grouped into a single

cluster or the current minimum distance increases

over the distance threshold. The clustering and

number of reads per cluster is then output. Reads

that align to multiple clusters are randomly assigned

to one of the groups they align to. This accounted

for only 1 to 5% of the 100-bp paired-end reads in

our tests.

Our results were robust against the choice of distance

threshold. The default value of 0.3 was chosen empirically

because it was subtly better for DGE results (Additional

file 1: Figure S9), but did not give significantly different re-

sults from any threshold between 0.1 and 0.9 (Additional

file 1: Figures S8 and S9). The robustness with respect to

threshold can be explain by most contigs pairs having a

distance close to either 0 or 1 (for example, Additional

file 1: Figure S2B).

The default P-value threshold for the likelihood ratio

test, 10-5, was selected to account for the high level of

multiple testing. This value was designed around the

number of genes expected in a typical annotation. Again,

we found that our results were robust against the choice of

this parameter over a wide range, 10-3 to 10-8 (Additional

file 1: Figure S7).

Our software is open source and is available as a C++

source code tar ball from [44]. It has been compiled and

tested on Linux x86 and Mac OS X 10.7 operating sys-

tems. The duration of time needed for the code to

complete varied from 5 minutes to 5 hours using one

core of an Intel Xeon E7-8837 and was generally faster

than the alternative pipelines. Memory consumption

was less than 60 GB in the worst case, where over

200 GB of bam files were parsed by the program. The

memory requirements were higher than other cluster-

ing and abundance estimation tools, but considerably

less than the requirements for de novo assembly of the

datasets we tested.

Additional file

Additional file 1: Supplementary figures and tables.
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