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Cortical actin networks induce 

spatio-temporal confinement 
of phospholipids in the plasma 

membrane – a minimally invasive 

investigation by STED-FCS
Débora M. Andrade1,3,*, Mathias P. Clausen1,2,4,*, Jan Keller1, Veronika Mueller1, 

Congying Wu5, James E. Bear5,6, Stefan W. Hell1, B. Christoffer Lagerholm2,4 & 

Christian Eggeling1,2

Important discoveries in the last decades have changed our view of the plasma membrane 

organisation. Specifically, the cortical cytoskeleton has emerged as a key modulator of the lateral 
diffusion of membrane proteins. Cytoskeleton-dependent compartmentalised lipid diffusion has 
been proposed, but this concept remains controversial because this phenomenon has thus far only 

been observed with artefact-prone probes in combination with a single technique: single particle 

tracking. In this paper, we report the first direct observation of compartmentalised phospholipid 
diffusion in the plasma membrane of living cells using a minimally invasive, fluorescent dye labelled 
lipid analogue. These observations were made using optical STED nanoscopy in combination with 

fluorescence correlation spectroscopy (STED-FCS), a technique which allows the study of membrane 
dynamics on a sub-millisecond time-scale and with a spatial resolution of down to 40 nm. Specifically, 
we find that compartmentalised phospholipid diffusion depends on the cortical actin cytoskeleton, 
and that this constrained diffusion is directly dependent on the F-actin branching nucleator Arp2/3. 
These findings provide solid evidence that the Arp2/3-dependent cortical actin cytoskeleton 
plays a pivotal role in the dynamic organisation of the plasma membrane, potentially regulating 

fundamental cellular processes.

�e conceptualisation of the Singer-Nicholson �uid mosaic model for biological membranes1 is a mile-
stone in membrane research. Nevertheless, novel methods for probing membrane dynamics have brought 
a wealth of insight that contradicts this model. Particularly, the assumption that proteins and lipids 
undergo Brownian di�usion in the plasma membrane has been shown to be largely inaccurate2–8. On the 

1Department of Nanobiophotonics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen 

37077, Germany. 2MRC Human Immunology Unit and Wolfson Imaging Centre Oxford, Weatherall Institute of 

Molecular Medicine, University of Oxford, Headley Way, Oxford OX3 9DS, UK. 3Centre for Neural Circuits and 

Behaviour, University of Oxford, Mansfield Road, Oxford OX1 3SR, UK. 4MEMPHYS - Center for Biomembrane 

Physics, University of Southern Denmark, Campusvej 55, Odense M,DK-5230, Denmark. 5Department of Cell & 

Developmental Biology, and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill 

NC 27599, USA. 6Howard Hughes Medical Institute, University of North Carolina, Chapel Hill NC 27599, USA. 
*These authors contributed equally to this work. Correspondence and requests for materials should be addressed 

to C.E. (email: christian.eggeling@rdm.ox.ac.uk) or B.C.L. (email: christoffer.lagerholm@imm.ox.ac.uk) or D.M.A. 
(email: debora.andrade@cncb.ox.ac.uk)

Received: 13 May 2015

Accepted: 20 May 2015

Published: 29 June 2015

OPEN

mailto:christian.eggeling@rdm.ox.ac.uk
mailto:christoffer.lagerholm@imm.ox.ac.uk
mailto:debora.andrade@cncb.ox.ac.uk


www.nature.com/scientificreports/

2Scientific RepoRts | 5:11454 | DOi: 10.1038/srep11454

contrary, di�erent methods have shown that the lateral motion of membrane molecules is constrained by 
di�erent mechanisms. Generally, such constraints have been attributed to di�erent membrane-organising 
principles; 1) interactions with transient self-assemblies of speci�c lipids and lipid-anchored proteins, the 
so-called “lipid ra�s”7,9,10, 2) direct or indirect interactions with actin-cytoskeleton associated barriers or 
anchors (such as cytoskeleton-anchored proteins)3,4,6,11–15, or 3) membrane curvature16,17. Concerning the 
second point, it has been shown by di�erent methods that a variety of membrane proteins are constrained 
by the actin cytoskeleton12,14,15. In addition, SPT experiments have suggested that even phospholipid 
di�usion in the plasma membrane is constrained, presumably also by the cortical actin cytoskeleton2,18. 
In view of these �ndings, the “picket-fence” model was proposed3. �is model hypothesises that direct 
anchoring of transmembrane proteins (the pickets) to cortical cytoskeletal �laments (the fences) directly 
beneath the plasma membrane create restrictive barriers, and that these barriers indirectly constrain 
the di�usion of other membrane proteins and of lipids (Fig. 1a). Speci�cally, these barriers create com-
partments within the plasma membrane in which molecules can di�use freely, while crossing from one 
compartment to the next is constrained, resulting in compartmentalised or “hop”-di�usion. �e premise 
of compartmentalisation of membrane proteins and lipids is a very attractive proposition because it may 
be associated with for example localised signalling3. In this context, di�usion of integral membrane pro-
teins within compartments was shown to enhance the interaction probability of less abundant proteins, 
thereby potentially triggering important cellular events14,15.

�e picket-fence model for compartmentalisation of phospholipids in the plasma membrane has 
encountered several obstacles for its full acceptance8,19,20. Principally, compartmentalised phospholipid 
di�usion has thus far only been observed by SPT experiments in which gold particles2 and quantum 
dots (QDs)18 were employed in order to access the sub-millisecond temporal resolution regime that is 
required. However, these probes are very artefact-prone due to their prominent size, and due to the dif-
�culty in validating the probe valence for the target molecules (Fig. 1b). �us, it cannot be ruled out that 
these probes do neither a�ect the native target molecule mobility by steric hindrance nor induce target 
molecule oligomerisation2,20. In addition, the validity of SPT reports on compartmentalised di�usion was 
drawn into question by a study showing that the irregularity of plasma membrane topography can induce 
an arti�cial observation of compartmentalised di�usion by this technique21.

In order to resolve the dilemma regarding actin cytoskeleton-modulated lipid compartmentalised di�u-
sion, we have applied stimulated emission depletion �uorescence correlation spectroscopy (STED-FCS)5,22,23 
to probe the di�usion of a phospholipid analogue, labelled with a small and potentially less invasive 
organic dye, in the plasma membrane of living cells (Fig. 1b). STED-FCS allows for a systematic probing 
of molecular di�usion for observation spot sizes ranging from a di�raction-limited 240 nm down to below 
40 nm, a range that is comparable in size to the postulated actin cytoskeleton-mediated compartments2–4. 

Figure 1. Detecting compartmentalised di�usion with a small lipid probe. (a) Schematic showing 

branched actin networks (magenta) and associated membrane achors (orange), which partially con�ne 

two-dimensional di�usion of molecules. As exemplarily shown by single-molecule di�usion tracks (blue), 

molecules are assumed to di�use freely within compartments, and in the event of hitting the compartment 

boundaries, transposition to the adjacent compartment occurs with a certain hopping probability Phop. (b) 

Schematic of lipid probes used in SPT and in STED-FCS, put in perspective (from le� to right): gold particle 

(yellow, ~40 nm in diameter) linked to a lipid (orange: chains, light red: head group) by Fab antibody 

fragment (green), and QD (red, ~20 nm in diameter) linked to two lipids via streptavidin (blue), as o�en 

used in SPT; and a �uorescent lipid analogue (dark red: organic dye, ~1 nm in diameter), as used in STED-

FCS. Possible oligomerisation induced by SPT probes is illustrated for the QD. �e membrane bilayer is 

shown in orange and the actin cytoskeleton in grey.
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In the current experiments, we have used the phospholipid di-palmitoyl-phosphoethanolamine (DPPE) 
labelled with the �uorescent dye Atto647N at the head group. �e label has been shown to change some 
of the lipids characteristics, such as changed its preference from more ordered to more disordered mem-
brane environments23–25. However, the Atto647N dye modi�cation has been found, by STED-FCS, to have 
no interfering e�ect upon the di�usion dynamics and lipid-lipid interactions in living cells5,23. Previous 
STED-FCS investigations in live PtK2 and HeLa cells have further shown that di�usion of this DPPE ana-
logue is mainly free and hardly hindered by transient interactions with other membrane molecules such 
as slow-moving or cytoskeleton-anchored proteins or by membrane curvature5,23,24. For these reasons, 
we believe that this lipid analogue is a very good candidate for delineating the e�ect on phospholipid 
di�usion due to cortical cytoskeleton-dependent membrane partition from that due to other hindrances.

Here, the experimental studies were conducted in two adherent cell types: 1) NRK �broblasts, and 
2) Ink4a/Arf (− /− ) mouse embryo �broblasts (IA32 MEFs)26. �ese cell types were selected because 
previous work using SPT in combination with either gold particles or QDs as lipid labels has suggested 
that phospholipid di�usion in these cell types is compartmentalised2,18. Both of these cell types further-
more contain very distinct actin-rich regions either in-between a distinct stress-�bre network supporting 
strong adhesion sites to the cover glass surface (NRK), or in the form of prominent lamellipodia followed 
by large, thin lamella (IA32)26. �e current studies show for the �rst time that STED-FCS enables the 
observation of compartmentalised lipid di�usion, and furthermore that even minimally invasive phos-
pholipid probes are spatially constrained within compartments of the plasma membrane.

Results
Resolving Compartmentalised Diffusion. To demonstrate the applicability of STED-FCS for 
detecting compartmentalised di�usion, we �rst simulated di�usion within a heterogeneous lattice with a 
characteristic average compartment length, L, in silico. Molecules were assumed to di�use freely within 
compartments with a di�usion coe�cient Dfree, while transposing compartment boundaries was possible 
with a certain “hopping probability”, Phop. �e simulated trajectories were transformed into intensity 
traces, which were auto-correlated to generate in silico FCS curves for di�erent observation spots. �ese 
curves were then �tted using standard STED-FCS analysis, which determines the average apparent dif-
fusion coe�cient, Dapp, of the molecules as a function of the observation spot diameter, d23 (Fig. 2). �e 
resulting dependence of the apparent di�usion coe�cient, Dapp, on the diameter, d, of the observation 
spot reveals the spatial constraints of molecular di�usion4,23.

In these simulations, free di�usion (Phop =  1) is characterized by a Dapp that is independent of d, whereas 
compartmentalised di�usion (Phop <  1) is highlighted by a decrease of Dapp with increasing d. Measurements 
at small observation spots primarily probe the free di�usion within the compartments (Dapp = Dfree), while 
measurements at observation spots that are comparable to or larger than the compartments themselves 
result in a reduced apparent di�usion coe�cient, Dapp < Dfree, because the compartment barriers slow 
down the molecular transits through the observation spot. Speci�cally for Phop « 1, i.e. strong con�nement, 
compartmentalised di�usion can be clearly distinguished from free di�usion using STED-FCS (Fig. 2).

Compartmentalised Diffusion of Lipids Observed by STED-FCS in NRK and IA32 Cells.  
Experimental STED-FCS measurements (Fig. S1) were conducted in NRK �broblasts and IA32 MEFs. 
In both cell types, we principally measured di�usion at thin peripheral areas of the cells (within 2–5 µ m 
from the cell edge), resulting in combined measurements of both apical and basal membranes (Fig. S2a). 
�ese measurements resulted in a clear pattern of compartmentalised di�usion as indicated by a signi�cant 
decrease of Dapp(d) at large observation diameters (Fig. 3). �e experimentally observed dependencies of 
Dapp on d were �t using Monte Carlo simulations to a model of free di�usion constrained by a heteroge-
neous lattice. �e �tting parameters that best described the data were for NRK cells, Dfree  =  0.8 (± 0.03)
µm2/s, Phop  =  0.1 (± 0.01) and L  =  80 (± 8)nm, and for IA32 cells, Dfree  =  0.8 (±0.02)µ m2/s, Phop  =  0.1 
(±0.01) and L  = 150 (±12)nm.

Pharmacological Modulation of the Arp2/3 Complex Specifically Impacts Lipid 
Compartmentalised Diffusion. In order to assess the underlying molecular mechanisms for the 
observed pattern of compartmentalised di�usion, we systematically performed STED-FCS experiments 
on NRK and IA32 cells where the 1) actin cytoskeleton was modulated, 2) membrane cholesterol was 
depleted, or 3) myosin II activity was inhibited (Fig. 4).

Actin cytoskeleton modulation was achieved by treating cells with either latrunculin B (LatB) or 
CK-66627,28. LatB treatment globally inhibits the polymerization of all F-actin networks, whereas CK-666 
speci�cally inhibits the actin nucleator Arp2/329 and consequently reduces the cytoskeleton branching. �e 
di�usion of the DPPE analogue following LatB treatment was faster at d = 240 nm  in both cell types, mark-
edly in NRK cells (Fig. 4a,b), but weak compartmentalised di�usion was still observed as was determined 
by comparing the measurements of Dapp from STED-FCS measurements at d =  240 nm and d ≈  40 nm with 
an unpaired Student t-test (NRK P =  0.06; IA32 P =  0.06) (Fig. 4a,b and Table S1). �e di�usion of DPPE 
in cells treated with CK-666 was remarkably faster at d = 240 nm in both cell types, and compartmentalised 
di�usion was no longer observed (NRK P =  0.87; IA32 P =  0.42) (Fig. 4a,b and Table S1).
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Conversely, blebbistatin inhibition of myosin II had no e�ect on DPPE di�usion in neither NRK nor 
IA32 cells (Fig. 4c,d and Table S1). �is result suggests that the observed compartmentalised di�usion 
was independent of myosin-based contractility. Similarly, cholesterol depletion using cholesterol oxidase 
(COase) also had no e�ect on DPPE di�usion (Fig. 4c,d and Table S1), indicating that compartmental-
isation of DPPE was independent of cholesterol-mediated interactions. �is strongly suggests that the 
observed compartmentalised di�usion of DPPE is dependent on the cortical actin cytoskeleton and is 
speci�cally modulated by Arp2/3-dependent cortical actin networks.

To assess the generality of the observed actin cytoskeleton modulation of lipid di�usion, we also 
performed STED-FCS measurements closer to the cell body of NRK cells. Unlike IA32 cells, NRK cells 
feature relatively large cell bodies, where STED-FCS speci�cally probes the basal plasma membrane 
(Fig. S2b). �ese measurements resulted in the observation of faster and slightly less compartmentalised 
di�usion, as compared to the measurements near the cell edge, which combine e�ects of di�usion in 
the basal and apical plasma membranes (Fig. 5a,b and Table S1). �is can be explained either by a less 
branched F-actin network beneath the cell body, as compared to the cell edge, or by a less branched 
F-actin network in the basal plasma membrane, as compared to the apical membrane30.

While compartmentalised di�usion of DPPE was clearly observed in IA32 and NRK cells, our pre-
vious STED-FCS measurements in PtK2 cells using the same �uorescent DPPE analogue was indicative 
of free di�usion5,23. Following CK-666 treatment, we now however also con�rmed for PtK2 cells that 
di�usion of DPPE was signi�cantly faster than in untreated cells, revealing that lipid di�usion in this 
cell type is also compartmentalised by Arp2/3-dependent cortical actin networks (Fig.  5c). �is then 
suggests that: either the compartment size, L, in unperturbed PtK2 is smaller than the accessible spatial 
sampling range of STED-FCS, or that the compartment strength, Phop, is weaker than that seen here 
in the case of NRK cells and IA32 MEFs. Application of our simulation model to the case of PtK2 
cells, we now �nd that a combination of these factors can explain the previous observation of apparent 
free di�usion of DPPE in PtK2 cells, as our simulation model shows that compartmentalised di�usion 
with Dfree =  0.7 µ m2/s is perceived as free di�usion (for d >  40 nm) with Dapp =  0.4 µ m2/s if, for example, 
L =  25 nm and Phop =  0.25 (Fig. S3).

Validation of the Role of the Arp2/3 Complex in Lipid Compartmentalisation in Arp2/3 
Depleted MEFs. In order to validate the e�ects of Arp2/3 depletion, we also performed experiments 
in IA32 MEFs that had been additionally depleted of p34Arc and Arp2, two essential subunits of the 
Arp2/3 complex (IA32 2xKD)26. �ese cells are characterized by the absence of lamellipodia and, as 
demonstrated by electon microscopy, a much sparser actin network in the lamella that culminates in 
frequent �lopodia at the cell edge26. STED-FCS measurements in these cells were as before acquired 
in thinner regions at the periphery of the cells. �e resulting dependence of Dapp(d) in these cells is 

Figure 2. STED-FCS simulation of compartmentalised di�usion. (a) In STED-FCS, the apparent di�usion 

coe�cient Dapp is determined for di�erent sizes of the observation spot (given by the diameter d), as formed 

by varying the STED laser power (red: STED light, green: e�ective observation or �uorescence area). (b) In 

silico STED-FCS experiments: Simulations show characteristic dependencies of Dapp on the diameter d of the 

observation area, assuming a model for compartmentalised di�usion as depicted in Fig. 1a with Dfree = 0.8µm2/s. 

As d is increased, Dapp decreases. Characteristic compartment size of length L, free di�usion coe�cient Dfree, 

and hopping probability Phop de�ne the di�usion model. �ese simulations (using Dfree = 0.8µm2/s and Phop 

and L as given) show that only strong con�nement (small Phop) renders clear patterns of compartmentalised 

di�usion whereas weaker con�nement (for example, Phop =  0.5) closely resembles free di�usion.
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compatible with free di�usion (P =  0.15) (Fig. 6 and Table S1). �is result corroborates the pivotal role 
of Arp2/3 in restricting lipid di�usion in the plasma membrane. For small observation areas, we also 
observed that DPPE di�usion was slower in IA32 2xKD MEFs than in either WT or CK-666 treated 
IA32 MEFs. We speculate that the reason for this could be related to increased membrane curvature as 
a consequence of less sub-membranous cortical actin mechanical support – a speculation supported by 
the phenotypic observation that the IA32 2xKD MEFs have a defective cell volume response to osmotic 
stress challenges31. Unfortunately, no suitable methods to probe the relation between hindered di�usion 
and membrane curvature in live cells exist so far.

Discussion
In this work, STED-FCS facilitated a minimally invasive observation of �uorescent phospholipid analogue  
di�usion in the plasma membrane of living cells. Our data showed a clear decrease of the apparent 
di�usion coe�cient with increasing observation spot sizes, suggesting that phospholipids undergo com-
partmentalised di�usion in the plasma membrane. �e con�nement strength was observed to be sim-
ilar in both investigated cell types such that on average one out of ten collisions with the con�nement 
barrier resulted in the escape of the lipid probe from con�nement regions of size L, i.e. Phop =  0.1. L 
was found to be about two-fold smaller in NRK cells (L =  80 nm) than in IA32 MEFs (L =  150 nm). �e 
unhindered free di�usion coe�cient within the con�nement regions was in both cases the same of about 
D =  0.8 µ m2/s. Applying the Sa�man-Delbruck model32 to these observations, this then suggests that the 
viscosity of the plasma membrane within the con�nement regions was identical in both cell types.

Using a combination of pharmacological treatments, we showed that this temporal con�nement was 
dependent on the actin cytoskeleton, but not on the plasma membrane cholesterol content. Recent stud-
ies have shown that the actin cytoskeleton is not a single structure but is composed of distinctly di�erent 
sub-structures28. Most relevant to this work is the cortical actin cytoskeleton which is the actin network 
immediately below the plasma membrane, and which directly couples to the membrane via a variety of 
actin binding proteins and cytoplasmic domains of certain membrane proteins33. Unfortunately, de�ni-
tive �uorescence imaging of the cortical cytoskeleton was currently not possible in cells under physiolog-
ical conditions due to limited axial resolution. However, our results revealed with unprecedented detail 
that the cortical actin e�ectively constrained phospholipid di�usion thus causing compartmentalised 
di�usion in the plasma membrane.

Figure 3. Experimental observation of lipid compartmentalised di�usion by STED-FCS. Dapp(d) 

dependencies (blue) for DPPE-Atto647N di�usion in NRK (a) and IA32 cells (b). Clear compartmentalised 

di�usion patterns are observed. **P <  0.01 (unpaired t test). Error bars are s.e.m. In a, n =  32 cells; in b, 

n =  33 cells. In a and b, r =  10 (n stands for the number of cells, from r samples). Fitting of the experimental 

data using Monte-Carlo simulations (orange dotted lines) resulted for NRK cells, Dfree =  0.8 ( ± 0.03) µ m2/s, 

Phop =  0.1 ( ± 0.01) and L =  80 ( ± 8) nm, and for IA32 cells, Dfree =  0.8 ( ± 0.02) µ m2/s, Phop =  0.1 ( ± 0.01) and 

L =  150 ( ± 12) nm. Insets: Representative Voronoi lattices (red) relative to the correspondent compartment sizes 

as well as simulated di�usion trajectories (blue) correspondent to the �tted parameters. Scale bars: 250 nm.
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Unlike other cytoskeletal structures, the composition of the cell cortex is poorly understood34. 
Enhancing the knowledge about this important structure, this study de�nitively pinpoints that the Arp2/3 
complex as a component of the cortical actin networks thus also con�rming previous studies31,35,36. 
Arp2/3 is already an acknowledged critical component in the generation of dense, highly branched 
F-actin networks at the leading edge of lamellipodia and/or at adhesion sites26,37, and orchestrates numer-
ous tasks performed by the actin cytoskeleton29. Recent studies using the Arp2/3 inhibitor CK-666 and 
Arp2/3-depleted mammalian cells have also revealed new roles of Arp2/3-branched actin network in a 
variety of cellular processes including matrix sensing, cytoplasmic streaming, spindle positioning and 
cell-cell junction regulation26,29,31,36,38–40. �is study adds further functions to the Arp2/3 complex by pro-
viding conclusive experimental evidence that the Arp2/3 complex also regulates cortical actin meshwork 
branching and that this directly a�ects phospholipid di�usion within the plasma membrane.

�e pattern of compartmentalised di�usion observed in our studies is in partial agreement with the 
original gold probe-based SPT studies by Kusumi and co-workers that �rst suggested that the di�usion 
of lipids in the plasma membrane of NRK cells is restricted by the actin cytoskeleton2. In particular, 
the molecular origin of the compartmentalisation is in both instances directly dependent on the actin 
cytoskeleton but is independent of cholesterol content. However, our results in NRK cells show a much 
slower apparent di�usion coe�cient within compartments (0.8 µ m2/s compared to 5.4 µ m2/s) and about 
2-fold faster long-term di�usion coe�cients (0.31 µ m2/s compared to 0.17 µ m2/s). �is indicates that the 
plasma membrane compartmentalisation in our STED-FCS studies in NRK cells with a smaller and thus 
potentially less invasive probe (Atto647N label) is much weaker than it was suggested in the previous 

Figure 4. Investigation of molecular mechanisms underlying compartmentalised lipid di�usion via 

STED-FCS: Pharmacological treatments. Dapp(d) dependencies: (a,b) Cytoskeleton depletion in NRK  

(a) and IA32 (b) cells, respectively: treatment with Latrunculin B and CK-666 as labelled, (c,d) Cholesterol 

depletion and myosin II inhibition in NRK (c) and IA32 (d) cells, respectively: treatment with Cholesterol 

Oxidase and Blebbistatin as labelled. (e,f) Summary of NRK and IA32 data, respectively, showing values 

of Dapp for confocal (d =  240 nm, �lled columns) and STED recordings (d ~ 40 nm, open columns) – the 

increase in Dapp from 240 to 40 nm indicates the extent of compartmentalised di�usion. Error bars are 

s.e.m. Symbols on top of the columns represent results of the statistical test (**P <  0.01, *P <  0.05, NS not 

signi�cant; two-tailed unpaired t test): for d ~ 40 nm comparison with the value representing d =  240 nm in 

the same experiment, and for d =  240 nm comparison with the respective value for d =  240 nm in the control 

(untreated) experiment. n stands for the number of cells, from r samples.
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SPT studies with a much larger and thus potentially more invasive gold probe. Additionally, our results 
for the long-term di�usion coe�cient are in much closer agreement with previous SPT measurements 
using a comparably minimally invasive dye labelled Cy3-DOPE lipid2 but for which compartmentalised 
di�usion could not be detected due to limited temporal sampling.

�e observed discrepancy between our STED-FCS study and previous SPT studies could be explained 
by the di�erences in the lipid probes. For example, gold probes and also related QD probes are linked 
to lipids via biomolecules that can attach several lipids at the same time. Oligomerised structures are 
likely to be signi�cantly more sensitive to di�usion barriers, which explains the small long-term di�usion 
coe�cient observed with SPT in combination with gold probes and QDs18, as compared to our studies 
with Atto647N-DPPE or those with Cy3-DOPE2. Conversely, the very fast short-term di�usion coe�cient 
reported by Kusumi and co-workers is similar to that measured in arti�cial lipid membranes3. However, it 
is unlikely that lipids should di�use at the same coe�cient in free standing membranes (lipid vesicles) as 
within sub-compartments of the plasma membrane, considering the potential steric e�ects caused by pro-
tein crowding on lipid di�usion in the plasma membrane as well as the potential friction e�ects induced by 
the glycocalyx on the apical plasma membrane of cells. �e presented data in NRK cells further cannot be 
satisfactorily described by the current simulation model if Dfree is �xed to 5.4 µ m2/s. STED-FCS measure-
ments at even smaller observation spots (d <  40 nm) would help to de�ne Dfree more precisely (Figure S4).

We also observed a discrepancy in the mean compartment size in NRK cells whereby our results were 
3-fold smaller (L =  80 nm) as compared to previous measurements by SPT (L =  230 nm). �is di�erence 
could be partly explained by the fact that the spatial precision in the SPT measurements is limited by 
the localisation error such that the size of the compartments will be arti�cially larger as has been pro-
posed previously41. �is e�ect is also likely signi�cant because the typical reported localisation errors of 
10–20 nm are in many cases of similar length scales to the measured displacements of single molecules 
at the short time scales where the con�ned di�usion is observed. In contrast, the spatial precision in the 
STED-FCS measurements stems from the precision by which the observation areas can be determined. 
�is precision is always much smaller than the measured observation areas. �us, we are inclined to 
believe that the accuracy of our measurements of the size of the con�ning compartments is better due 
to much better spatial precision. However, this discrepancy has to be fully validated, preferably by a 
comparative study of both methods and using identical cell types and lipid analogues.

Figure 5. STED-FCS of lipid di�usion in di�erent parts of the cell and in PtK2 cells. (a) Dapp(d) 

dependencies in NRK cells: di�usion near the cell edge (lamellipodia) and under the cell body (as labelled). 

(b) Values of Dapp for confocal (d =  240 nm, �lled columns) and STED recordings (d ~ 40 nm, open columns) 

for di�usion probed near the cell edge (control, blue) and under the cell body (purple) – the increase in Dapp 

from 240 to 40 nm indicates the extent of compartmentalised di�usion. Compartmentalised di�usion is more 

pronounced near the cell edge. (c) Results from measurements on PtK2 cells: Experimental di�usion coe�cient 

of the �uorescent DPPE analogue in the plasma membrane of untreated and CK-666-treated PtK2 cells 

(d =  240 nm). We have previously shown5,23 that di�usion of this DPPE analogue in PtK2 cells is apparently 

free, therefore the measurements corresponding to d =  240 nm are expected to e�ectively represent the range 

(d =  40 nm to d =  240 nm). Error bars are s.e.m. Symbols on top of the columns represent results of the statistical 

test (**P <  0.01, *P <  0.05, NS not signi�cant; two-tailed unpaired t test): for d ~ 40 nm comparison with the 

value representing d =  240 nm in the same experiment, and for d =  240 nm comparison with the respective value 

for d =  240 nm in the control experiment. Here, n stands for the number of cells, from r samples.



www.nature.com/scientificreports/

8Scientific RepoRts | 5:11454 | DOi: 10.1038/srep11454

It has also been suggested that membrane curvature can explain the previously reported hop-di�usion21, 
although this has never been demonstrated to a�ect STED-FCS experiments. However, to be detecta-
ble by STED-FCS the con�nement has to be strong, and thus the membrane curvature would have 
to be unnaturally prominent. �e reported STED-FCS measurements are also the average of multiple 
measurements in multiple cells where each measurement is obtained by random, unbiased position-
ing of the observation spot on the plasma membrane such that hypothetical extreme curvature e�ects 
are likely averaged out. Nevertheless, we cannot completely rule out possible curvature e�ects, includ-
ing indirect e�ects that might originate from changes in curvature in response to our pharmacological 
treatments of the actin cytoskeleton. Unfortunately, such e�ects cannot currently be measured. �us, 
cortical actin-assisted compartmentalisation provides the most accurate model to describe the general 
constraints that limit lipid di�usion in the absence of speci�c molecular interactions.

In summary, we have shown in this work that the cortical actin cytoskeleton directly in�uenced phos-
pholipid di�usion in the plasma membrane of cells. Furthermore, we have for the �rst time shown that the 
Arp2/3 complex is directly involved in this process. Following our observations in three unrelated cell types 
(NRK, IA32 MEFs, and PtK2), we are compelled to infer that plasma membrane compartmentalisation by the 
actin cytoskeleton is a fundamental cellular process, generic to most cells. �e determination of the precise 
structural and molecular mechanisms by which the cytoskeleton performs lipid compartmentalisation (for 
example, by steric e�ects caused by trans-membrane proteins anchored to cortical actin �laments2, possibly 
accompanied by changes in membrane order42), as well as the mechanisms by which it may be implied in fun-
damental processes such as cell signalling, are exciting open questions that emerge from the still evolving pic-
ture of the plasma membrane organisation. Further, we conclude that models for membrane organisation that 
do not acknowledge the symbiosis between the plasma membrane and the cytoskeleton are oversimpli�ed12.

Methods
STED-FCS nanoscopy. �e STED nanoscope was based on a home-built confocal microscope setup 
equipped with a 640 nm laser (≈ 100 ps pulse width, LDH-D-C-640, PicoQuant) for excitation with a 
repetition rate of 45 MHz of the �uorescent label. �e STED beam was provided by a Titanium:Sapphire laser 
system (Chameleon, Coherent Inc.) operating at 780 nm with a repetition rate of 90 MHz. �e time interval 
between the pulses of both lasers was adjusted using a home-built electronic delay unit, where the STED 
pulses served as the trigger master. �e STED laser pulses were stretched from 200 fs to a pulse length 
of approximately 180 ps using four 30 cm optical SF6 glass rods and a 125 m long polarisation maintaining 
single-mode �bre (OZ Optics). Fluorescence excitation and collection was realized using an oil immer-
sion objective (APON 60x, NA =  1.49, Olympus). �e laser beams were spatially overlaid and the �u-
orescence light �ltered by appropriate (dichroic) �lters (AHF Analysentechnik, Tübingen, Germany). 
�e doughnut-shaped focal spot of the STED beam featuring a central intensity zero was produced by 
introducing a phase-modifying plate (RPC Photonics) into the beam path, imprinting on the wave front a 

Figure 6. Comparing compartmentalisation in Arp2/3 knock-down cells. (a) Dapp(d) dependencies in IA32 

MEFs and IA32 2xKD MEFs (Arp 2/3 knock-down), respectively. (b) Values of Dapp for confocal (d =  240 nm, 

�lled columns) and STED recordings (d ~ 40 nm, open columns) in IA32 MEFs (control, dark blue) and 

IA32 2xKD MEFs (IA32 2xKD, light blue) – the increase in Dapp from 240 to 40 nm indicates the extent of 

compartmentalised di�usion. Error bars are s.e.m. Symbols on top of the columns represent results of the 

statistical test (**P <  0.01, *P <  0.05, NS not signi�cant; two-tailed unpaired t test): for d ~ 40 nm comparison 

with the value representing d =  240 nm in the same experiment, and for d =  240 nm comparison with the 

respective value for d =  240 nm in the control experiment. n stands for the number of cells, from r samples.
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helical phase ramp exp(iϕ) with 0 ≤  ϕ  ≤  2π . A λ /4-plate ensured circular polarisation of the STED and 
excitation beams. �e �uorescence was coupled into a multi-mode �bre splitter (Fiber Optic Network 
Technology) with an aperture size corresponding to 1.4x the magni�ed excitation spot. �e 50:50 split 
�uorescence signal was then detected by two single-photon counting modules (avalanche photo diode 
SPCM-AQR-13-FC, Perkin Elmer Optoelectronics) and the recorded �uorescence counts were further 
processed by a hardware correlator card (Flex02-01D, Correlator.com). �e focal intensity distribution 
of the excitation and STED light were measured by scanning a scattering gold bead of 80 nm in diame-
ter (gold colloid, En.GC80, BBinternational) using a non-confocal detector (MP 963 Photon Counting 
Module, Perkin Elmer). �e applied laser powers P were measured directly at the sample plane. Together 
with the full-width-at-half-maximum FWHM of the focal laser intensity distribution, they allow for 
the calculation of the time-averaged intensity I =  P/[π (FWHM/2)2] of the di�raction-limited excitation 
light (usually ~14 kW/cm2 stemming from P =  7µ W) and a time-averaged maximum intensity 
I =  1/2 P/[π (FWHM/2)2] at the doughnut-crest of the STED laser (~105 MW/cm2 stemming from 
P =  98 mW for the highest STED power). Calibration of the diameter d(PSTED) of the e�ective �uores-
cence observation spots formed by a certain STED power PSTED was performed by STED-FCS measure-
ments of �uorescent lipid analogues in supported lipid bilayers (SLBs), for that such lipid bilayers provide 
a two-dimensional free di�using system of molecules, labelled with the same �uorophore used in our cel-
lular experiments. �e confocal FWHM being determined by �uorescent beads (d(PSTED =  0)≈ 240 nm), 
the other e�ective diameters d(PSTED≠0) can be calculated using the relation:

( = )
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where tD stands for the average transient times through the observation spot as determined by FCS for 
each given PSTED. �e relation above stems from the fact that for absolute two-dimensional free di�usion, 
the transit time scales proportionally with the size of the observation area.

STED-FCS analysis. �e general theoretical background for STED-FCS analysis has been described 
in detail5,23. Correlation data were recorded with lipid concentrations resulting in a temporal average 
of particle number N ≈  0.5–2 �uorescent particles in the observation spot for the highest STED power 
and N ≈  10–30 �uorescent particles for confocal recording. We �tted all correlation data with a model 
for two-dimensional di�usion, resulting in di�erent values of the average transit time tD through the 
observation spot. Each individual measurement resulted in a transit time tD. �e correspondent apparent 
di�usion coe�cient Dapp =  d2/(8 tD ln(2)) was calculated based on the knowledge of the diameter d of the 
observation spot, provided by the calibration of the system.

For comparison of the mean Dapp between data representing FWHM =  40 nm and FWHM =  240 nm 
in the same experiment, as well as for comparison of the mean Dapp between data representing 
FWHM =  240 nm and control experiment (FWHM =  240 nm data), we used unpaired student’s t-test.

Supported Lipid Bilayers (SLBs). Supported lipid bilayers (SLBs) were used to calibrate the 
STED-FCS setup. �e SLBs were prepared based on the following procedure: �e lipid DOPC 
(1,2-dioleoyl-sn-glycero-3-phosphocholine, Avanti) and the �uorescent lipid analogue (DPPE-Atto647N, 
Atto-Tec) were mixed in organic solvents (Chloroform/MeOH 1:1) at a lipid concentration of ~1 mg/
ml. �e ratio of labelled lipids per non-labelled ones was approximately 1:10,000. 50 µ l of such solution 
were dropped onto a piranha-cleaned (Femto-RF, Diener Electronic) standard microscope cover glass 
(diameter 22 mm, no. 1.5 thickness) and spin-coated at 60 Hz for about one minute. �e cover glass was 
then placed in a microscopy chamber and subsequently the dry thin lipid �lm was rehydrated with 500 µ l 
bu�er solution (150 mM NaCl, 10 mM HEPES). Such bilayers were stable for several hours.

STED-FCS cellular measurements. IA32, NRK, IA32 2xKD and PtK2 cells were seeded on stand-
ard glass coverslips (diameter 18 mm, no. 1.5 thickness) to a con�uence of about 60% and grown at 
37 °C in a water-saturated atmosphere of 5% CO2 in air. Incorporation of the �uorescent lipid analogues 
(DPPE-Atto647N) into the (presumably outer lea�et of the) plasma membrane of the cells was accom-
plished via BSA coupling, as in detail outlined before [Refs. 5, 23].

We assessed the dynamics of DPPE-Atto647N by placing the focused co-centred excitation and STED 
beams on random positions at the plasma membrane. On the lamellipodium or very close to the edge 
of the cells, we probed lipid di�usion concurrently in both the apical and basal membranes. �at hap-
pens because the e�ective observation volume is decreased only laterally by the STED beam, remaining 
approximately 700 nm long in the axial direction (for excitation wavelength of 640 nm), thus encom-
passing both membranes when they are close enough (Fig. S2). Especially, in the cell body of NRK cells, 
the measurements were taken at the basal membrane, since the bulky cell body of these cells features a 
separation between apical and basal membranes (~2 to 7 µ m) which ensures STED-FCS experiments to 
probe only the basal membrane (Fig. S2).

Measurements were taken at room temperature and completed before any signi�cant morphological 
changes in the cell could occur. �e duration of all measurements were 10 s; a correlation time longer 
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than two orders of magnitude times the typical transient time of the labelled lipids through the confocal 
observation area. For each FWHM (or STED power) the average and standard deviation of the apparent 
di�usion coe�cient was calculated in the following way. First, an average value was determined from 
5-8 measurement on di�erent positions of a single cell. �e averaged values obtained from n individual 
cells (from r > 4 di�erent sample preparations) were then averaged so that the correspondent error bars 
re�ect mostly the variance among cells. We performed experiments in cells with passage number less 
than 20 and in samples where cells presented normal morphology. Our cells are once per year tested for 
mycoplasma.

As detailed previously5,23, we ensured a non-detectable (at least by STED-FCS) in�uence of the dye 
label on the di�usion dynamics, and that the observation times were given by the transit times through 
the observation spot and not shortened due to photobleaching (by measuring at low enough excitation 
intensities), and that biasing e�ects by the excitation or STED light due to photobleaching, heating or 
other (non-linear) e�ects and di�usion of non-integrated lipids (or dye tags) could be excluded.

Drug treatments. Cholesterol Oxidase. �e cells were treated with 1 U/ml Streptomyces spec. COase 
(Sigma-Aldrich) in HEPES bu�ered DMEM (HDMEM) (and washed a�erwards in HDMEM) for 30 min 
under culture conditions. Treatment was performed before the insertion of the �uorescent lipid ana-
logues into the plasma membrane.

Blebbistatin. Treatment with 15 µ M Blebbistatin (EMD Millipore) in HDMEM (and washed a�erwards 
in HDMEM) for 2 h under culture conditions.

Latrunculin B. Treatment with 1 µ M (100 nM) Latrunculin B (Sigma-Aldrich) in HDMEM (and washed 
a�erwards in HDMEM) for 15 min under culture conditions was performed for IA32 cells (NRK cells). 
NRK cells were found to be more sensitive to this drug treatment than IA32 cells, in a way that for these 
cells reduction of Latrunculin B concentration to 100 nM produced similar results to 1 µ M. Treatment 
was performed before the insertion of the �uorescent lipid analogues into the plasma membrane.

CK-666. Treatment with 100 µ M CK-666 (EMD Millipore) in HDMEM (and washed a�erwards in 
HDMEM) for 4 h under culture conditions. Treatment was performed before the insertion of the �uo-
rescent lipid analogues into the plasma membrane. In addition, insertion of �uorescent lipid analogues 
and STED-FCS measurements were carried out in 100 µ M CK-666 in HDMEM.

Monte Carlo simulations for STED-FCS measurements. Monte Carlo simulations were performed 
using custom written routines in Matlab. In these simulations, we generated �uorescence time traces of 
2-dimensional di�usion of �uorescent molecules through an observation spot with a Gaussian-shaped 
�uorescence detection pro�le. �e area explored by di�usion comprised randomly sized compartments. 
Within a compartment the molecules were assumed to di�use freely while crossing from one compart-
ment to another was only possible with a given “hopping probability” Phop. �is was implemented in 
the following way: If free di�usion with di�usion constant Dfree would have led the lipid to cross the 
compartment boundary, the e�ective transposition would have taken place in only a fraction of such 
cases (being de�ned by Phop) while in all other cases the molecule would remain di�using in the original 
compartment. �e simulation area was a circle of 3 µ m diameter and the compartmentalisation of this 
area was implemented as a Voronoi mesh on a uniform random distribution of seed points. We de�ned 
the square root of the average compartment area as the average compartment size or length L. �e aver-
age compartment size, the hopping probability and the free di�usion coe�cient completely described 
our simulation model. In most cases a simulation placed 100 independent molecules in the simulation 
area and took a time span of 200 s with 20 µ s time steps.

�e simulated �uorescence time traces were auto-correlated and the correlation curves were �tted 
to the aforementioned two-dimensional di�usion model. �e transient time tD was converted to an 
apparent di�usion coe�cient using Dapp =  d2/(8 tD ln(2)) with diameter d of the observation spot given 
as the FWHM.

Fitting of the measured D(d) dependence was achieved by performing repeated simulations on iter-
atively �ner spaced parameter grids based on the minimisation of the squared distance of the mean 
apparent di�usion coe�cients to the measured values. A�er reaching an approximate accuracy of 
1 ×  10−10 cm2/s in Dfree, 0.01 in Phop and 5 nm in L, the program stopped running the iterations and dis-
played the most pertinent set of �tted parameters achieved.

Con�dence intervals on the best model parameters were calculated by applying the Bootstrap 
method43 assuming that the errors of the measured apparent diffusion coefficients (error bars in 
Fig. 2) are independently and normally distributed. Hereby, synthetic data values were constructed 
randomly from the measurement errors and obtained for each best parameter value. From this set of 
parameter values a symmetric interval containing 70% of these possible values could be extracted. It is 
displayed as error values in the main text. Additionally a negative correlation between Phop and L was 
observed with the axis of largest error being the ratio of both.
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