
ANRV278-NE29-07 ARI 7 March 2006 10:13

R
E V I E W

S

I
N

A
D V A

N
C

E

Cortical Algorithms for
Perceptual Grouping
Pieter R. Roelfsema
The Netherlands Ophthalmic Research Institute, Meibergdreef 47, 1105 BA
Amsterdam, The Netherlands; and Department of Experimental Neurophysiology,
Center for Neurogenomics and Cognitive Research, Vrije Universiteit, de Boelelaan
1085, 1081 HV Amsterdam, The Netherlands; email: p.roelfsema@nin.knaw.nl

Annu. Rev. Neurosci.
2006. 29:203–27

The Annual Review of
Neuroscience is online at
neuro.annualreviews.org

doi: 10.1146/
annurev.neuro.29.051605.112939

Copyright c© 2006 by
Annual Reviews. All rights
reserved

0147-006X/06/0721-
0203$20.00

Key Words

visual cortex, binding, visual attention, contour grouping,
contextual modulation, grandmother cell

Abstract
A fundamental task of vision is to group the image elements that
belong to one object and to segregate them from other objects and
the background. This review provides a conceptual framework of
how perceptual grouping may be implemented in the visual cor-
tex. According to this framework, two mechanisms are responsi-
ble for perceptual grouping: base-grouping and incremental group-
ing. Base-groupings are coded by single neurons tuned to multiple
features, like the combination of a color and an orientation. They
are computed rapidly because they reflect the selectivity of feedfor-
ward connections. However, not all conceivable feature combina-
tions are coded by dedicated neurons. Therefore, a second, flexible
form of grouping is required called incremental grouping. Incre-
mental grouping enhances the responses of neurons coding features
that are bound in perception, but it takes more time than does base-
grouping because it relies also on horizontal and feedback connec-
tions. The modulation of neuronal response strength during incre-
mental grouping has a correlate in psychology because attention is
directed to those features that are labeled by the enhanced neuronal
response.
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INTRODUCTION

We live in a complex visual world. The typ-
ical visual scene that hits the retina is com-
posed of large numbers of image elements that
vary in luminance, color, shape, and motion.
Our visual system’s task is to impose struc-
ture on all this information: It must group to-
gether image elements that belong to a sin-
gle object and segregate them from elements
that belong to different objects and the back-
ground. In most instances, we immediately
know where one object ends and another be-
gins. Only occasionally do we experience dif-
ficulty in segmenting a scene (one example
is given in Figure 1A). The effortlessness of
image segmentation could mean either that
this task is easy or that the efficiency of our
visual system prevents a full appreciation of
the computational complexity. Computer sci-
ence supports the latter view. The complex-
ity of image segmentation was fully realized
only when computer scientists tried to de-

velop algorithms for grouping and segmenta-
tion (Marr 1982) and, in spite of the striking
developments in this field, the best computer
algorithms are still no match for the human
visual system (Barrett & Myers 2003).

Human vision uses many cues for image
segmentation. One the one hand, it uses low-
level grouping cues described by the Gestalt
psychologists many years ago (Wertheimer
1923, Koffka 1935; reviewed by Rock &
Palmer 1990). For instance, the Gestalt rule
of similarity states that similar elements tend
to be bound as an object in perception. On
the other hand, human vision uses high-level
grouping cues. In Figure 1A we group the
legs of the bird with the rest of the animal,
because we know from our previous visual ex-
perience that this is where the legs should
be. This grouping is not supported by low-
level cues, suggesting that the legs, with their
different color and texture, should rather be
segregated from the rest of the animal. Fa-
miliarity with the shape of objects has a pro-
found influence on image segmentation (e.g.,
Peterson et al. 1991, Ullman 1996, Vecera &
Farah 1997).

The neuronal mechanisms for grouping
and segmentation are, at best, partially un-
derstood. A satisfactory theory must explain
how subjects combine different cues to con-
verge on the correct segmentation of an im-
age (Palmer 1992). This is not easy because
image elements interact in complex ways
in perception. Some of these complexities
are illustrated in Figure 2. The first exam-
ple illustrates the Gestalt law of proximity
(Figure 2A). On the left side of this figure,
the blue dot forms a perceptual group with
the yellow dot but not with the red dot. This
grouping occurs because the blue and the yel-
low dots are close to each other and the red dot
is farther away. By contrast, on the right side
of the figure, the blue dot is grouped with the
red dot rather than with the yellow dot even
though the distances remain the same. The
reason for this grouping is that the blue dot
is close to a black dot, which in turn groups
with the other black dots, which then group
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with the red dot on the other side. These local
groupings are combined in our perception, re-
sulting in the blue dot being grouped with the
red dot. This example demonstrates the tran-
sitivity of perceptual grouping: If A is grouped
with B, and B with C, then A is also grouped
with C.

Transitivity implies that grouping image
elements depends on the context of the scene
provided by other elements located at nearby
or remote locations. Figure 2B illustrates the
role of context through the Gestalt law of con-
nectedness. On the left hand side, the two red
dots are positioned on the same object, but on
the right hand side, they are not. These two
images differ at a location far from the two
red dots. Connectedness is a transitive prop-
erty, and the grouping of connected image el-
ements can therefore depend on long chains
of more local groupings (see also Minsky &
Papert 1990). The third example, illustrated
in Figure 2C, shows both transitivity and con-
text sensitivity for the Gestalt law of similar-
ity. Nearby line elements in this figure are
grouped together when they have a similar
orientation. However, the law does not nec-
essarily apply to image elements that are far-
ther apart. Line elements at locations 1 and
2, for example, have the same orientation
but do not group because they are separated
by boundaries where the orientation changes
abruptly. In contrast, line elements at loca-
tions 2 and 3 have an orthogonal orientation,
but they are grouped because the orientation
changes gradually at intermediate locations,
which allows transitive grouping. Taken to-
gether, these examples demonstrate that our
visual system evaluates features across many
image locations to arrive at a correct global
segmentation of the image (see also the re-
view by Albright & Stoner 2002).

Here, I review the cortical mechanisms
responsible for perceptual grouping in the
context of an incremental grouping theory
(Roelfsema et al. 2000). The theory proposes
a distinction between two types of grouping:
base-grouping and incremental grouping (see
also Ullman 1984). Base grouping relies on

Figure 1
Difficult perceptual grouping task. (A) The bird is hard to see on a
background that has a similar texture and color (photograph made by Dr.
David Jefferies, and reproduced with permission). (B) Incremental
grouping. The region occupied by the bird is shown at a higher luminance
to illustrate how the enhanced neuronal responses label image elements
that are grouped perceptually in areas of the visual cortex.

Incremental
grouping: grouping
by labeling neurons
with an enhanced
activity

Base grouping:
grouping by neurons
tuned to feature
conjunctions

RF: receptive field

neurons that are tuned to feature conjunc-
tions. These groupings are rapidly computed
after the presentation of a new visual image
by a cascade of feedforward connections that
shape the neurons’ receptive field (RF) prop-
erties in lower and higher areas of the visual
cortex (purple in Figure 3A,C ) (Felleman &
Van Essen 1991). The feedforward processing
phase roughly corresponds to what is often
referred to in psychology as preattentive pro-
cessing (Treisman & Gelade 1980). Incremen-
tal grouping, by comparison, requires recur-
rent processing: the exchange of information
between neurons in the same area by horizon-
tal connections (yellow in Figure 3A,C ), and
between neurons in higher and lower areas by
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FEEDFORWARD AND RECURRENT
PROCESSING

It is possible to distinguish between feedforward and recurrent
processing on the basis of the following criteria: (a) feedfor-
ward connections drive the neurons’ responses and determine
the location and spatial extent of the classical receptive field.
Modulatory influences on a neuron’s response by information
outside the RF can be attributed to recurrent loops through
the same and higher visual areas (see Figure 3C ). (b) A neu-
ron’s initial response is dominated by feedforward connections
that provide the shortest route from the retina to the neuron.
Effects mediated by horizontal and feedback connections are
associated with additional synaptic delays. (c) In the macaque
monkey a new stimulus arrives in the highest areas of visual
cortex within ∼120 ms (Nowak & Bullier 1997, Lamme &
Roelfsema 2000). Tasks that take more time suggest recurrent
processing.

feedforward and feedback connections (green
in Figure 3A,C ) (see Feedforward and Recur-
rent Processing). This time-consuming, at-
tentive process labels a population of neurons
that encodes the features to be grouped per-
ceptually by enhancing the strength of their
responses (highlighted region in Figure 1B ).
Incremental grouping is transitive, and it is
therefore sensitive to the context set by other
elements in the display. This review begins
by focusing on grouping of contour elements.
Later sections generalize the ideas to other
feature domains and then return to the dis-
tinction between preattentive and attentive
processing.

BASE-GROUPING: GROUPING
BY SINGLE NEURONS

Images projected onto the retina are initially
parceled into tiny fragments represented by
neurons with small RFs. The information is
relayed through the lateral geniculate nucleus
(LGN) to the visual cortex, which has the
difficult task of putting the objects back to-
gether again. Over 30 years of research has
provided important insight into how object

a

b

c

1

2

3

Figure 2
Context sensitivity of perceptual grouping. (A)
Grouping by proximity. In the left image, the
nearby blue and yellow circles are grouped
together. In the right image, the blue dot is close
to a string of black dots that, in turn, is close to the
red dot. Grouping by proximity is a transitive
process, and now the blue and red dots belong to
the same perceptual group. (B ) Grouping by
connectedness. In the left image, the two red dots
are located on a single, connected object, and in
the right image they are not. This example
illustrates that one can influence grouping by
changing the stimulus at remote locations.
(C ) Grouping by similarity. Nearby image
elements with a similar orientation are grouped in
perception, whereas boundaries form at positions
where the orientation changes abruptly. Image
locations with similar orientations (locations 1 and
2) do not group if there is a boundary between
them. In contrast, separate image locations with
dissimilar orientations (locations 2 and 3) are
grouped if the orientation changes gradually at
intervening locations (modeled after Nothdurft
1992).
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Figure 3
Connections
between neurons in
the visual cortex.
(A) Schematic
representation of
feedforward
connections (purple),
horizontal
connections (yellow),
and feedback
connections (green)
between areas of the
visual cortex. (B) In
higher areas the size
of the RFs increases
and tuning becomes
more complex.
(C) Left: When a new
image is presented,
neuronal responses
are initially
dominated by the
feedforward
connections (purple).
Middle: Horizontal
(yellow) and feedback
connections (green)
take effect after a
delay. Right: As time
progresses longer
recurrent routes start
to influence the
neuronal responses.

representations are gradually reconstructed
from lower to higher regions of the visual cor-
tex (Felleman & Van Essen 1991, Kobatake
& Tanaka 1994) (Figure 3). Neurons in the
primary visual cortex (area V1) have small
RFs that are tuned to simple features, such
as the orientation of a contour (Figure 3B ).
Orientation tuning is a simple form of per-
ceptual grouping because the detection of an
oriented contour implies a set of smaller el-
ements aligned in a specific oriented con-
figuration. In addition, many neurons in V1

are tuned to combinations of features, such
as colors, orientations, disparities, and mo-
tion directions (Leventhal et al. 1995, Sincich
& Horton 2005). A neuron tuned to a red
and vertical bar encodes a conjunction, i.e.,
a grouping of these features. Therefore, the
distinction between a feature (unique and not
divisible into smaller elements) and a conjunc-
tion (a combination of two or more features)
is blurred at the neuronal level—a fact that has
not been appreciated by many psychological
theories (e.g., Treisman & Gelade 1980). It is
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BIASED COMPETITION

The biased competition model, proposed by Desimone &
Duncan (1995), suggests that different objects in the visual
field compete for representation in the visual cortex. The com-
petition is particularly strong in higher areas, where multiple
objects are likely to fall into one RF. These inhibitory interac-
tions occur on a fast timescale so that the competition already
has an effect during the initial feedforward processing phase
(Knierim & Van Essen 1992, Miller et al. 1993). The biased
competition model proposes that bottom-up saliency as well
as top-down factors that reflect the stimulus’ behavioral rel-
evance influence the outcome of the competition (for recent
reviews of experimental evidence, see Kastner & Ungerleider
2000, Reynolds & Chelazzi 2004). The incremental group-
ing theory is compatible with biased competition between the
features that belong to different objects. However, it also pro-
poses excitatory interactions between neurons that code fea-
tures of the same object that thereby tend to be coselected for
perception and action.

convenient to use the term base-grouping for
a feature conjunction that is coded by a single
neuron, although it is just another word for
the neuron’s tuning.

The complexity of tuning (and thus of
the base-groupings) increases in higher vi-
sual areas where RFs are larger. Many neu-
rons in area V4 are selective for the shape and
curvature of contour elements (Pasupathy &
Connor 2001). In the inferotemporal cortex
(area IT) the complexity of tuning increases
further. Figure 4A illustrates a neuron that
was recorded by Brincat & Connor (2004) in
area IT of a monkey. They presented a large
set of simple objects to the monkey and sys-
tematically investigated how the neuron’s re-
sponse depended on the object’s contour ele-
ments. The tuning of the example cell could
be explained by the relative position of four
contour elements. The neuron was excited by
two of the elements (A or B) and responded
strongly to stimuli with three of the elements
(A, B, and C all present); a fourth contour el-
ement (D) had a suppressive effect. Thus, the
tuning could be described as the sum of terms

for the individual elements together with an
interaction term. Joint tuning to multiple con-
tour elements was observed in the large ma-
jority of IT neurons (Brincat & Connor 2004,
see also Kobatake & Tanaka 1994). A sim-
ple feedforward model can explain this tun-
ing; V4 provides information about the indi-
vidual contour elements that are integrated
into shapes at the level of area IT (insert in
Figure 4A ). In such a simple model, tun-
ing of V4 would depend on the input it re-
ceives from area V2, which in turn would de-
pend on the input it receives from area V1
(e.g., Fukushima 1988, Riesenhuber & Poggio
1999).

In such a model, the selectivity of feedfor-
ward connection is responsible for the tun-
ing of the neurons. Feedforward connections
provide the shortest route from the retina to
a cortical neuron, and in such a model, tun-
ing is therefore observed from the first spike
onward (van Rullen et al. 1998). Consistent
with this idea, many V1 neurons are tuned to
orientation during their initial visual response
(Celebrini et al. 1993). The initial neuronal
responses in higher visual areas are also se-
lective for complex shapes (Oram & Perrett
1992, 1994; Sugase et al. 1999). This is di-
rect support for the feedforward model be-
cause computational schemes that implicate
horizontal and feedback connections are as-
sociated with additional synaptic and axonal
propagation delays and do not give rise to the
tuning of initial neuronal responses. Although
base-grouping is fast (Lamme & Roelfsema
2000), the feedforward sweep can be curtailed
by other objects in the scene. Competitive in-
teractions that occur between the representa-
tions of different objects reduce the depth of
processing and thereby decrease the number
of computed base-groupings at higher levels
in the visual hierarchy (as originally proposed
by the biased competition model of Desimone
& Duncan 1995; see Biased Competition).

The complexity of tuning increases even
further in areas beyond area IT. Highly spe-
cific neurons have been observed in the me-
dial temporal lobe of humans who were fitted
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Figure 4
Base-grouping in the temporal lobe. (A) Left: Responses of an IT neuron to a large set of stimuli.
Background gray levels indicate response strength. A simple equation based on four contour elements
(A, B, C, and D) accounted for a large fraction of the variability in response strength. Inset: Simple
feedforward model that could implement this equation. Right: Comparison of observed (black bars) and
predicted response magnitude (red bars) for four of the stimuli (red stars on the left). From Brincat &
Connor (2004). (B) Neuron that responds to pictures of Bill Clinton. The cell does not respond to a large
variety of other pictures (only three of them are shown here). Adapted from Kreiman et al. (2002).
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with electrodes to investigate the source of
their epilepsy. Figure 4B shows an example
of a cell in the amygdala that responded reli-
ably and selectively to pictures of Bill Clinton
but not to other pictures (Kreiman et al. 2002;
see Quiroga et al. 2005 for more examples).
The existence of these highly selective neu-
rons was predicted by Barlow (1972) who
called them “cardinal cells” (their nickname
is grandmother cells). It is useful to have car-
dinal cells in an associative neuronal network
because knowledge about the object or in-
dividual can be retrieved irrespective of the
low-level features. However, there are limi-
tations to using cardinal cells to achieve per-
ceptual grouping (Singer & Gray 1995, von
der Malsburg 1999). There are more feature
conjunctions possible than neurons available
in the brain. Moreover, many groupings never
occur in a lifetime, and it is unrealistic to ex-
pect that there would be a neuron waiting for
them.

DISTRIBUTED
REPRESENTATIONS AND THE
BINDING PROBLEM

Any single object always activates a pattern,
or what Hebb (1949) called an assembly of
neurons distributed across cortical areas. Dis-
tributed representations have several virtues.
For example, they can represent the features
of an object at a level of detail that is difficult
to achieve with one or a few cardinal cells. A
set of neurons in early visual areas can col-
lectively represent the contour elements of an
object in detail, while neurons in higher ar-
eas code aspects of its global shape. Moreover,
a distributed representation would allow new
objects to be represented as new patterns of
activity across existing neurons.

A limitation of distributed representations
is the binding problem, which is the tendency
to confuse features that belong to different
objects (Treisman & Schmidt 1982, von der
Malsburg 1999). Imagine the simple problem
of the simultaneous appearance of two ob-
jects composed of a number of contour ele-

ments. The objects activate two sets of neu-
rons in early and higher visual areas, but this
representation does not reveal which contour
elements belong together as part of a sin-
gle object. Similar problems can occur with
the integration of features from different
domains, like colors, motions, and shapes.
The assembly code signals which features are
present in the display, but it does not reveal
which features belong to the same object (see
also Treisman & Gelade 1980).

The binding problem can be solved by la-
beling neurons that encode the features of one
object in a manner that distinguishes them
from the neurons representing features of
other objects. Two neurophysiologically plau-
sible labels have been proposed. The first
is synchrony. According to the binding-by-
synchrony theory, neurons that respond to
features that belong to the same object fire
their action potentials at approximately the
same time (von der Malsburg 1981). This
theory initially received much support (re-
viewed by Singer & Gray 1995). However,
recent studies that measured neuronal syn-
chrony in monkeys that carried out perceptual
grouping tasks observed no direct relationship
between synchrony and perceptual grouping
(Lamme & Spekreijse 1998, Thiele & Stoner
2003, Palanca & DeAngelis 2005). In some in-
stances, grouping is even associated with a re-
duction in synchrony (Roelfsema et al. 2004),
which suggests that synchrony is not the uni-
versal code for binding.

The incremental grouping theory, pro-
posed here, claims that neurons encoding the
features of one object enhance their firing rate
compared with neurons encoding the features
of other objects (Figure 1B ). For ease of de-
scription, the theory refers to this differen-
tial activity as a response enhancement, al-
though these effects are usually observed on
a background of inhibitory interactions be-
tween the representations of different objects
(see Biased Competition). The theory pro-
poses that the enhancement of neuronal re-
sponses spreads across the network of hor-
izontal and interareal connections that link
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the neurons representing features of the same
object (Figure 3C ). These recurrent connec-
tions form chains of varying lengths so that
the effects of short chains become evident at
an earlier point in time than do the effects of
longer chains. The next section reviews the
interactions between neighboring contour el-
ements that form local groupings. This sets
the stage for the following section on a form
of incremental contour grouping that is se-
rial and time-consuming because it requires
the combination of many local groupings in a
transitive way.

THE LOCAL ASSOCIATION
FIELD

A powerful tool to study contour grouping
was introduced with the so-called pathfinder
displays (Field et al. 1993). These displays
contain Gabor patches (or contour elements),
some of which are aligned colinearly to form
a path (Figure 5A ). Human observers ef-
ficiently detect the presence of such a path
if the elements are close together and well
aligned. The performance of observers de-
creases if the elements are not aligned (e.g.,
when the elements are rotated by 90◦). On
the basis of these results, Field et al. (1993)
proposed that oriented elements interact with
each other through a “local association field”:
Colinearly aligned contour elements mutually
excite each other and increase each other’s
saliency, whereas noncolinear elements in-
hibit each other (Ullman 1992). The local
association field (shown in Figure 5B ) for-
malizes the Gestalt rule of good continu-
ation, which states that well-aligned con-
tour elements tend to be grouped together
(Wertheimer 1923, Koffka 1935; see also
Kellman & Shipley 1991).

Several studies have demonstrated that in-
teractions between the neuronal representa-
tions of contour elements take place accord-
ing to the local association field, even at the
level of the primary visual cortex (area V1)
(Kapadia et al. 1995, Polat et al. 1998, Bauer &
Heinze 2002). Figure 5C shows the response

Recurrent
connection:
horizontal or
feedback connection
that is modulatory

of a V1 neuron that was monitored in a mon-
key by Kapadia et al. (1995). The response of
this neuron to the appearance of a short line
in its RF was augmented when a colinear line
segment was placed outside the neuron’s RF.
The flanking line did not affect the neuron’s
activity when it was presented alone. As shown
in Figure 5C, the colinear line elements had
stronger effects when a background texture
was added that consisted of line elements with
a random orientation. In this case, the neu-
ron’s response increased further with the ad-
dition of more colinear elements. These ef-
fects, which are observed in a large fraction of
neurons in area V1 (Polat et al. 1998, Kapadia
et al. 2000), indicate that neurons represent
the local grouping of colinearly aligned con-
tour elements by enhancing their response.

One important feature of these and other
studies is that neuronal responses can be in-
fluenced only by information outside the RF
when the cell is driven by a stimulus inside the
RF (Maffei & Fiorentini 1976, Allman et al.
1985, Nelson & Frost 1985, Knierim & Van
Essen 1992, Kapadia et al. 1995, Zipser et al.
1996). These contextual effects are gated by
appropriate RF stimulation.

Neuroanatomy

Under the assumption that feedforward con-
nections from the LGN determine the RF of
a V1 neuron, the local association field, which
is a zone outside the RF, must be the result of
recurrent processing. These recurrent effects
can be mediated by horizontal connections
within area V1, by feedback from higher visual
areas, or by both (see Figure 3C ). The topol-
ogy of horizontal connections in area V1 can
account for the shape of the local association
field. This is illustrated in Figure5D with data
from a study by Bosking et al. (1997) in the
visual cortex of the tree shrew. In this study,
the layout of orientation columns in area V1
was first established with optical imaging and
then a tracer was injected to investigate the
termination pattern of the horizontal connec-
tions. Connections originating from a cortical
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column with a particular orientation prefer-
ence predominantly terminated in columns of
neurons tuned to the same orientation (see
also Gilbert & Wiesel 1989, Malach et al.
1993). This termination pattern may be re-
sponsible for the tendency of similar elements
to group together: the Gestalt law of group-
ing by similarity. Moreover, most connections
were made along the direction of the corti-
cal representation of the preferred orientation
(thick gray line in Figure 5D). Thus, horizon-
tal connections tended to interconnect neu-
rons that were tuned to colinear line elements,
i.e., elements in each other’s good continua-
tion, in accordance with the shape of the local
association field (this effect is less pronounced
in the macaque monkey; see Angelucci et al.
2002). This remarkable convergence of re-
sults strongly suggests that the Gestalt laws of
good continuation and similarity are caused
by the selectivity of horizontal connections
(Schmidt et al. 1997).

These findings do not, however, exclude a
role for feedback connections in shaping the
local association field. Neurons in areas V2,
V4, and IT that encode the shape of an elon-
gated curve could feed back to V1 to raise the
responses evoked by contour elements that
are part of the curve. For example, Li et al.
(2004) demonstrated that the degree of col-
inear facilitation in area V1 depends on the

behavioral task. Because horizontal connec-
tions would not be affected by the monkey’s
task, feedback connections from higher visual
areas may also play a role in shaping the lo-
cal association field. Future studies could ex-
plore the relative involvement of horizontal
and feedback connections in producing these
effects.

SERIAL CONTOUR GROUPING

One feature of the pathfinder task is that it
can be solved very efficiently; observers can
rapidly distinguish between the presence and
the absence of a string of colinearly aligned
elements, which suggests that these group-
ings are formed in parallel. Not all contour
grouping tasks can be solved in parallel, how-
ever. Figure 6A shows a curve-tracing task
that was introduced by Jolicoeur et al. (1986).
In this task, observers had to maintain gaze on
a central fixation marker (red in Figure 6A )
and determine whether a second dot (shown in
green) appeared on the same or on a different
curve. The observers’ reaction time increased
approximately linearly with the distance be-
tween the dots, if they fell on the same curve
(Figure 6B ), demonstrating that this group-
ing task requires serial processing.

Why do curve-tracing tasks require se-
rial processing, whereas pathfinder tasks can

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Figure 5
Local grouping of contour elements. (A) Pathfinder display. The string of colinearly aligned Gabor
elements pops out (yellow arrows). (B) Local association field: Neurons with RFs that are well aligned
mutually excite each other (green arrows), whereas neurons that respond to contour elements that are
unlikely to belong to a single continuous curve inhibit each other (red arrows). From Hess & Field (1999).
(C) Colinear facilitation in area V1. The RF of a V1 neuron is shown as a green rectangle. The cell gave a
moderate response to a single contour element (stimulus 1). The response was enhanced by a colinear
flanker (stimulus 2). The flanker did not evoke a response if presented alone (stimulus 3). The effect of
colinear flankers was particularly pronounced if a background of randomly orientated contour elements
was added (stimulus 4 and 5). Adapted from Kapadia et al. (1995). (D) Anatomy of horizontal connections
in area V1 of the tree shrew. A tracer was injected at the red dot, and synaptic boutons were plotted. The
distribution of labeled boutons was elongated along an axis that corresponds to the preferred orientation
of the injection site (gray line). The inset shows a schematic representation of the RF at the location of
tracer injection (red) and the RFs of cells at densely labeled cortical locations (gray) that have a similar
orientation preference as the neurons at the injection site. Green dashed line indicates the vertical
meridian (VM), which, in tree shrew, runs at a distance of ∼1 mm from the V1/V2 border (Bosking et al.
2000). Adapted from Bosking et al. (1997).
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be performed in parallel? Figure 6C illus-
trates the critical difference between these two
tasks (R. Houtkamp & P. Roelfsema, submit-
ted manuscript). A parallel process that is sen-
sitive to the local degree of colinearity can de-
termine that the two elements indicated by
arrows belong to a path. Indeed, configura-
tions of a few colinear contour elements can
be detected either as base-groupings in higher
visual areas (e.g., Gigus & Malik 1991) or by
local recurrent interactions in lower areas, as
discussed above (Figure 3C, left and middle
panel). However, when the task is to indicate
whether the elements are on the same path in
the presence of an equally colinear distractor
path, many local groupings must be combined
in a transitive way. This extra step apparently
requires serial processing.

NEUROPHYSIOLOGY

To gain insight into the neurophysiological
mechanisms underlying serial contour group-
ing, Roelfsema et al. (1998) trained mon-
keys to perform the curve-tracing task illus-
trated in Figure 7A. The monkeys had to
report which of two circles was connected
to a fixation marker by a target curve (T in
Figure 7A ) while they ignored a distractor
curve (D). Neuronal activity was recorded

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Figure 6
Serial contour grouping. (A) Curve-tracing task.
Subjects fixated the central red dot and indicated
whether a second green dot was presented on the
same curve or on a different curve. Only one of
the green dots was presented on a given trial. (B)
Reaction time on trials where both dots fell on the
same curve increased linearly with the distance
between the dots measured along the curve.
Average reaction time on trials during which the
dots fell on different curves is shown on the right
(open square). From Jolicoeur et al. (1986). (C)
Pathfinder display with two curves. A parallel
process can segregate colinear elements from
background elements, but the segregation of one
curve from another one requires serial processing.
From R. Houtkamp & P. Roelfsema, submitted
manuscript.

214 Roelfsema



ANRV278-NE29-07 ARI 7 March 2006 10:13

in area V1 using chronically implanted elec-
trodes that pick up the activity of multiple
neurons in the vicinity of the electrode tip.
Figure 7A shows the RFs of five of these mul-
tiunit recording sites relative to four stimuli.
Neuronal responses were compared between
complementary stimuli that differed only in
their connection to the fixation point so that
the target and distractor curves are switched
(stimulus I is complementary to II, and III to
IV). The RFs of neurons with an enhanced re-
sponse are shown in yellow. Note that, at each
of the recording sites, the neuronal responses
evoked by the target curve were stronger than
those evoked by the distractor curve. Thus, all
contour elements of the target curve were la-
beled with an enhanced response, an outcome
that is consistent with the idea that the label
for incremental grouping is an enhancement
of neuronal firing rates.

In Figure 7, the contour element in the
RF of the V1 neurons is held constant, and the
difference between complementary stimuli is
far from the RF. This finding suggests that
the modulation of neuronal activity is caused
by recurrent processing. Moreover, the en-
hancement of responses does not occur dur-
ing the initial transient response but later in
time (Figure 7B ). There appears to be a clear
temporal separation between an early feed-
forward processing phase and a later recur-
rent processing phase, when the neurons are
informed about whether their RF is on the
target or distractor curve. The modulation of
the neuronal responses in the recurrent phase
is a reliable signal. Across the whole popula-
tion of V1 neurons, the target curve evokes
a 20%–50% stronger response than does the
distractor curve. The delayed modulation of
the response of some of the V1 neurons is
so strong that it can be used to infer on sin-
gle trials whether the RF is on the target
or distractor curve. Moreover, these neurons
change their activity if the monkey groups the
wrong contour elements together so that they
give insight in the monkey’s interpretation
(Roelfsema & Spekreijse 2001). A different
population of V1 neurons does not discrimi-

A VERIDICAL AND AN INTERPRETATION
NETWORK

In the curve-tracing task, neurons at ∼60% of the V1 record-
ing sites reflect the attention shifts associated with recur-
rent processing (A-sites), and the other 40% do not (N-sites)
(Roelfsema et al. 2004). This suggests that neurons at N-sites
are sensitive only to information in their RF, whereas neurons
at A-sites are also sensitive to the effects of recurrent con-
nections. Neurons at A- and N-sites also differ in how they
correlate with other cells. The firing rates of neurons at A-
sites with nonoverlapping RFs are correlated with an average
correlation coefficient of 0.4, which is further evidence that
these neurons are linked by recurrent connections. In contrast,
the average correlation coefficient between the firing rates of
neurons at N-sites is only 0.02 (Roelfsema et al. 2004).

One tentative conclusion is that two networks coexist in
area V1 (see also Figure1B ). The first is a veridical network
formed by neurons at N-sites that reliably represent the stim-
ulus. The second is a labeling network of neurons at A-sites
that take part in incremental grouping. Such a division of la-
bor would have clear advantages. Labeling need not change
the perception of low-level features that are always coded re-
liably at N-sites. At the same time, the labeling operation can
be isolated from changes in firing rates induced by variations
in low-level features. Labeled image elements can always be
identified by comparing the activity of neurons at N- and A-
sites if they have a similar tuning to low-level features.

nate between the target and distractor curve.
These neurons may always convey a reliable
representation of the low-level features in the
stimulus, irrespective of task demands (see A
Veridical and an Interpretation Network).

Algorithms

To understand the selectivity of the labeling
process, it is useful to consider a simple algo-
rithm, illustrated in Figure 8. It uses a single
retinotopic area of neurons that receive feed-
forward connections from the retina, as well
as horizontal connections from their nearest
neighbors that can propagate an enhancement
of the response. Suppose that the task is to
group all squares connected to the red square.
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Figure 7
Neuronal activity in area V1 during serial contour grouping. (A) Four stimuli that contain a target curve
(T) that was connected to the fixation point and a distractor curve (D) that was not. The monkey had to
make an eye movement to the larger red circle at the end of the target curve. Neuronal responses were
compared between complementary stimuli, which differed in their connection with the fixation point.
Stimulus I is complementary to II, and III to IV. RFs are shown in yellow (gray) if the strength of the
response was stronger (weaker) than that evoked by the complementary stimulus. (B) Time course of the
responses at one of the recording sites. The initial transient response did not differ between
complementary stimuli, but the sustained response was strongest if the RF fell on the target curve.

In the model, neurons with a red or black
square in their RF are activated by feedfor-
ward connections (gray circles in Figure 8B );
the other neurons have only spontaneous ac-
tivity. The algorithm requires that neurons are

sensitive to the horizontal input only if they
also receive input from feedforward connec-
tions. This type of gating is in accordance with
neurophysiological data, as discussed above.
Gating subdivides the connections into two
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Figure 8
Algorithm for incremental grouping of connected image regions. (A) The task is to identify all squares
that are connected to the red one. (B) Feedforward connections activate a subset of neurons in a
retinotopic area (grey circles). Neurons also receive recurrent connections from their nearest neighbors;
connections between active neurons are enabled (thick lines); the others are disabled (thin lines). If the
input changes, different connections are enabled so that neurons that respond to connected squares are
linked. (C) An enhanced response propagates gradually through the network of enabled connections
(interaction skeleton) to make the incremental groupings explicit.

classes. The first class has an inactive neuron
on one or both sides and is disabled (thin lines
in Figure 8B,C ). The second class is enabled
because there is an active neuron on both sides
(thick lines). I refer to this class as the “interac-
tion skeleton.” The interaction skeleton links
the neurons that respond to squares that are
connected to each other in the image.

Neurons in other cortical areas do not
have access to the pattern of enabled con-

Interaction
skeleton: set of
enabled connections

Enabled
connection:
recurrent connection
between two active
neurons

nections. To make the groupings explicit and
accessible to these other areas, an enhanced
response must spread starting at the represen-
tation of the red square until it reaches all neu-
rons that represent other, connected squares
(Figure 8C ). The algorithm illustrates many
of the key features of incremental group-
ing. First, it is serial because the amount of
time that the label takes to reach a particular
square increases linearly with its distance from
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the red square. The delay corresponds to the
number of synapses that must be crossed. Sec-
ond, the algorithm is transitive. When the in-
teraction skeleton connects square 1 to square
to 2 and it connects square 2 to square 3,
then square 1 and square 3 are also connected.
Third, it is sensitive to small changes in the
input, as can be seen by comparing the two
stimuli of Figure 8B that differ in the po-
sition of a single square. The shifted square
activates a different cell and therefore enables
a slightly different set of horizontal connec-
tions. One can see that the resulting change
in the set of neurons linked by the interaction
skeleton is much larger. The algorithm there-
fore naturally combines many local groupings
in a transitive way to obtain a correct global
grouping.

The model of Figure 8 groups adjacent
squares, but it is not sensitive to other group-
ing cues. It will not, for example, handle stim-
uli in which one curve intersects another one
(see, e.g., Figure 7A ). It is possible to ac-
commodate other grouping cues, however,
without fundamentally changing the model.
The inclusion of orientation-selective neu-
rons that are connected according to the
local association field would make it sen-
sitive to colinearity (Grossberg & Raizada
2000) and promote grouping of contour el-
ements on both sides of an intersection.
Another limitation of the simple algorithm
of Figure 8 is that it uses a single spatial
scale. The processing time increases when
the same image is presented at higher mag-
nification. This effect is not observed in the
performance of human observers (e.g., if we
move closer to Figure 6A ), where reaction
time is approximately constant across dif-
ferent magnifications ( Jolicoeur & Ingleton
1991). To account for this scale invariance,
the model of Figure 8 must be extended to
include neurons at higher levels in the corti-
cal hierarchy that have larger RFs (Edelman
1987, Roelfsema et al. 2000). At these higher
levels, the horizontal connections link neu-
rons with RFs that are farther apart, and this
linking would allow the labeling of contour

elements to occur at higher speeds. If we go
back to a low image magnification, however,
the distance between the target and distractor
curves decreases so that both curves fall in the
same RF in higher areas, and this prohibits the
selective labeling of one of the curves. In these
situations, the response enhancement has to
be propagated in lower areas with smaller RFs,
at the cost of a reduced grouping speed.

GENERALIZATION TO OTHER
FEATURE DOMAINS

So far, this review has focused on the mech-
anisms responsible for the grouping of con-
tour elements into spatially extended objects.
One important question is whether these ideas
generalize to other feature domains and to
other tasks that require perceptual grouping.
Texture segregation provides one good exam-
ple. In this task, a figure is segregated from
a background on the basis of differences in a
low-level feature, such as motion, orientation,
or color (Figure 2C ) (see e.g., Beck 1966,
Julesz 1981). Image elements of the figure are
grouped on the basis of the Gestalt law of sim-
ilarity, while they are segregated from a dis-
similar background.

Previous studies that explored the neuro-
physiological correlates of texture segregation
showed that neurons in area V1 enhance their
response when the RF lies within the figure
compared with when it lies on the background
(Lamme 1995, Zipser et al. 1996). The modu-
lation of neuronal responses by figure-ground
segregation has been observed for figures that
were defined by various features, including
orientation, motion, color, and depth. The
figural response enhancement does not occur
during the initial transient response in area
V1 but instead at an additional delay, which
suggests the involvement of recurrent con-
nections. The response enhancement occurs
first at the boundary between the figure and
the background, and it then propagates to-
ward the interior of the figure until all figural
elements are labeled by an enhanced response
(Lamme et al. 1999). These results indicate
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that incremental grouping also occurs in
texture segregation and that the proposed
mechanisms generalize to perceptual group-
ing on the basis of a large variety of visual cues.

Binding Features and Locations

Many tasks require grouping of features that
are represented in different areas of the visual
cortex. Although much remains to be learned
about interareal interactions, I briefly indi-
cate how studies on spatial cuing and visual
search in monkeys fit into the present scheme.
The typical search task used in monkeys first
presents a shape or color cue. Then a search
array appears, and the monkey indicates the
location of a matching item in the array. Thus,
the target object is cued by a feature, and
the monkey reports the object’s location. The
logic is reversed in many spatial cuing tasks.
In this case, the monkey is first presented with
a spatial cue, then an array of two or more ob-
jects appears and the animal must report a fea-
ture of the object at the cued location. Search
and cuing tasks require the monkey to link the
features of a target object to its location in the
presence of distractors.

The incremental grouping theory pro-
poses that the binding of features across dif-
ferent brain areas occurs by the enabling of
interareal connections (for previous models
that proposed similar ideas, see, e.g., Phaf
et al. 1990, van der Velde & de Kamps 2001,
Hamker 2005). Figure 9 illustrates this idea
with a highly simplified model that consists
of three types of visual cortical areas: (a) two
early visual areas (EV) where neurons are
tuned to colors and shapes at a specific po-
sition; (b) two areas where neurons are tuned
to the same features but have larger RFs (TI,
translational invariance); and (c) an area of
cortex that represents the location of salient
and behaviorally relevant items, irrespective
of their features, as a saliency map (Koch &
Ullman 1985). Gray circles in Figure 9 repre-
sent neurons that are activated by feedforward
connections. The model uses recurrent con-
nections between neurons that are tuned to

the same shape, color (grouping law of simi-
larity), or location (grouping law of proxim-
ity). If only recurrent connections between ac-
tive cells are enabled (thick lines), then this
produces a selective linkage of neurons that
respond to features of the same object. A
switch in the color of the two objects acti-
vates different neurons, and changes the set
of enabled connections, so that neurons that
represent features of the same object are also
linked for this stimulus (compare the two net-
works in Figure 9).

Now suppose that the task is a visual search
and that the model has been cued to look for a
red item. To implement the search, the model
would first enhance the activity of neurons in
TI that code red. This response enhancement
then propagates through the enabled connec-
tions to neurons in EV and SaM. The neurons
in SaM that enhance their response represent
the location of the red object, and the search
task is thereby solved. Conversely, if the task
were to report the color of an object at a cued
location, the model would first enhance the
response of neurons in SaM that represent this
location. The response enhancement would
then spread in the opposite direction, through
EV, to neurons in TI that code the target ob-
ject’s color.

Results from neurophysiological studies
in monkeys are consistent with the key as-
pects of this scheme. During visual search,
for example, neurons in area IT that code
the object that the monkey is looking for in a
translational invariant way enhance their re-
sponse (Chelazzi et al. 1993). A similar re-
sponse enhancement is observed in early vi-
sual areas (Motter 1994, Chelazzi et al. 2001,
Roelfsema et al. 2003), as well as in areas of
the parietal and frontal cortex, which act as
saliency maps during visual search (Schall &
Hanes 1993, Gottlieb et al. 1998, Schall &
Thompson 1999). Similarly, the neuronal cor-
relates of spatial cuing have been observed in
many cortical areas. The representations of
cued objects are enhanced in early visual ar-
eas (Treue & Maunsell 1996, Luck et al. 1997),
in area IT (Moran & Desimone 1985), as well
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Figure 9
Incremental grouping of features represented in different areas of the visual cortex. Neurons in the two
early visual areas (EV) are tuned to color and shape and have small RFs; neurons in two higher areas are
tuned to the same features but have larger RFs (TI, translational invariance); and neurons in an area that
functions as a saliency map (SaM) are tuned to the spatial location of objects irrespective of their features.
Neurons tuned to the same location, shape, or color are linked with recurrent connections. Out of 384
connections, only 10 are enabled (thick lines; note that three enabled connections between cells with
coinciding RFs are represented by a single curve). A few disabled connections are shown as thin lines. If
the colors of the objects are switched, the pattern of active cells in EV changes, and this change enables a
different set of connections. Note that for both images the interaction skeleton links neurons that
respond to features of the same object.

as in areas of the parietal and frontal cortex
(Everling et al. 2002, Bisley & Goldberg
2003). Thus, if the task requires the mon-
key to link features to locations, this linkage is
achieved by labeling the respective neuronal
representations with an enhanced response.

Another aspect of the model of Figure 9
that is supported by neurophysiological data
is the gating of recurrent connections by feed-
forward activation. A recent study by Bichot
et al. (2005), for example, investigated the
neuronal correlates of visual search in area V4.
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When the monkeys searched for a particular
target item, the V4 neurons with a matching
feature preference enhanced their response.
The response enhancement occurred only for
neurons that were activated by the stimu-
lus, which suggests that the effects of feed-
back connections, which transmit informa-
tion about the target feature to area V4, are
gated by the feedforward activation. An equiv-
alent form of gating occurs in spatial cuing
tasks. Neurons in early visual areas with a
RF at the cued location enhance their re-
sponse, but only if they are driven by the stim-
ulus (McAdams & Maunsell 1999, Treue &
Martı́nez Trujillo 1999). These findings con-
cur with the idea that only a subset of the
recurrent connections is enabled: those con-
nections that link neurons that are activated
by bottom-up (see also Moore & Armstrong
2003).

Taken together, the mechanisms that bind
features represented in different cortical areas
appear to be analogous to those involved in
the grouping of image elements represented
within a single retinotopic area. A single visual
object is represented by an assembly of neu-
rons that is linked by an interaction skeleton
consisting of enabled connections. When the
object becomes relevant for behavior, an en-
hanced response propagates through the in-
teraction skeleton to make additional, incre-
mental groupings explicit.

THE ROLE OF ATTENTION IN
PERCEPTUAL GROUPING

The incremental grouping theory is a neu-
rophysiological theory, and some caution is
required when translating it into psycholog-
ical terms. It is nevertheless useful to make
contact with the large body of experimental
work on the psychology of perceptual group-
ing and the role of attention therein. Base-
grouping maps onto preattentive process-
ing because it occurs rapidly and in parallel
across the visual scene (Lamme & Roelfsema
2000, Hochstein & Ahissar 2002) (Figure 3C,

THE FEATURE INTEGRATION THEORY

In 1980, Treisman & Gelade proposed the feature integration
theory (FIT). This theory claims that feature conjunctions
are formed by an attentional spotlight that binds all the fea-
tures at one location. The data reviewed here demonstrate
that grouped features are labeled by an enhanced response in
the visual cortex. These findings are consistent with the FIT
because the response enhancements are correlates of visual
attention (Reynolds & Desimone 1999, Kastner & Unger-
leider 2000). Nevertheless, the incremental grouping theory
also incorporates a number of significant deviations from the
FIT:

� Many complex feature conjunctions are established with-
out attention as base groupings.

� The FIT uses a spotlight of attention to group features at
one location in space. In the incremental grouping theory,
attention can also group spatially separate image elements.
Attention is object-based, and it can even be directed se-
lectively to one of two overlapping objects (Duncan 1984),
which is impossible with a spotlight.

The FIT proposes that Gestalt cues are evaluated preat-
tentively. In the incremental grouping theory, the enabling
of recurrent connections also occurs in parallel during the
feedforward sweep. However, to make the groupings explicit,
an enhanced response must spread through the network of
enabled connections, and this spread corresponds to a time-
consuming spread of attention.

left). The fast extraction of elaborate fea-
ture conjunctions by the feedforward sweep
may explain, for example, why subjects can
rapidly determine whether a complex visual
scene contains an animal (Thorpe et al. 1996,
Fabre-Thorpe et al. 2001). As a result of the
feedforward sweep, a subset of the recurrent
connections is enabled, but they take effect
only in the subsequent attentive-processing
phase.

Recurrent interactions initially occur at a
local scale (Figure 3C, middle), and this suf-
fices for some tasks such as the pathfinder
task. However, tasks that require the evalu-
ation of transitive chains of groupings require
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more time because the response enhancement
must be propagated across multiple synapses
(Figure 3C, right). Houtkamp et al. (2003)
obtained direct evidence for a role of at-
tention in Gestalt grouping. The spatial
distribution of attention was investigated in
subjects that had to trace a target curve con-
nected to a fixation point. They found that
the subjects initially direct their attention to
the first segments of the target curve and
that attention then gradually spreads across
the entire curve until all contour elements
are attended. The close correspondence with
the neurophysiological data in monkeys sug-
gests that the spread of attention is a cor-
relate of the spread of an enhanced firing
rate in the visual cortex. Thus, image ele-
ments that are grouped incrementally are la-
beled by attention. Additional support for this
conclusion comes from studies demonstrating
that Gestalt grouping does not occur under
conditions of inattentional blindness (Mack
& Rock 1998) or when attention is directed
to other items in the display (Ben-Av et al.
1992). The idea that features are grouped by
attention is in line with the feature integra-
tion theory of Treisman & Gelade (1980).
However, the present incremental grouping
theory also incorporates significant deviations
from that theory (see The Feature Integration
Theory).

FUTURE RESEARCH
DIRECTIONS

The incremental grouping theory assigns spe-
cific roles to feedforward, horizontal, and
feedback connections that can be tested in fu-
ture experiments. A promising approach has
been taken by studies that combine the ac-
tivation or inactivation of neurons in one
area with the recording of neuronal activ-
ity in another (Vanduffel et al. 1997, Hupé
et al. 1998, Galuske et al. 2003, Moore &
Armstrong 2003). These methods give direct
insight into how cortical neurons influence
other neurons in lower or higher cortical ar-
eas. These techniques could be used during
perceptual grouping tasks so that the effects of
activation and inactivation can also be mon-
itored at the behavioral level (e.g., Moore &
Fallah 2001). Another important avenue for
future research is to assess how recurrent con-
nections are gated by feedforward activation.
Gating of recurrent connections ensures the
selective linkage of neurons that represent fea-
tures of the same object. This gating is an
essential ingredient of perceptual grouping
theories that combine computational, neuro-
physiological, and psychological insights into
one single theoretical framework (Grossberg
& Mingolla 1985, van der Velde & de Kamps
2001, Hamker 2005).
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