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Cortical Classification with Rhythm 
Entropy for Error Processing in 
Cocktail Party Environment Based 
on Scalp EEG Recording
Yin Tian, Wei Xu & Li Yang

Using single-trial cortical signals calculated by weighted minimum norm solution estimation (WMNE), 
the present study explored a feature extraction method based on rhythm entropy to classify the scalp 
electroencephalography (EEG) signals of error response from that of correct response during performing 
auditory-track tasks in cocktail party environment. The classification rate achieved 89.7% with single-
trial (≈700 ms) when using support vector machine(SVM) with the leave-one-out-cross-validation 
(LOOCV). And high discriminative regions mainly distributed at the medial frontal cortex (MFC), the left 
supplementary motor area (lSMA) and the right supplementary motor area (rSMA). The mean entropy 
value for error trials was significantly lower than that for correct trials in the discriminative cortices. By 
time-varying network analysis, different information flows changed among these discriminative regions 
with time, i.e. error processing showed a left-bias information flow, and correct processing presented 
a right-bias information flow. These findings revealed that the rhythm information based on single 
cortical signals could be well used to describe characteristics of error-related EEG signals and further 
provided a novel application about auditory attention for brain computer interfaces (BCIs).

In everyday life, the �ood of sensory information were regulated by attention system into a manageable stream, 
and attention orienting played a primary role in complex visual environment by �nding relevant information and 
�ltering out irrelevant information to bias the target selection and processing1. Typically, two mechanisms were 
thought to be included in the process: endogenous orienting (goal-driven, top-down), directed the attention to 
the information related locations in space, and exogenous orienting (stimulus-driven, bottom-up), re�exively 
triggered by prominent and behaviorally relevant stimuli2. Classic research on attention orienting was involved 
by the analysis of the cocktail party phenomenon coined by Cherry in 19533.

�e cocktail party e�ect was the phenomenon that people can focus their auditory attention on a stimulus 
while �ltering out other stimuli, similar with a partygoer being able to concentrate on a single conversation in 
a noisy room, namely, the process re�ected the in�uence of top-down attention. It might also describe a similar 
phenomenon that occurs when one can immediately detect words of importance originating from unattended 
stimuli, for instance hearing one’s name in another conversation, which referred to the bottom-up controlled 
attention4–6.

A lot of researches was conducted to investigate dynamic changes in cortical activity during tracking the 
dynamic speech stimulus4,5, and the �ndings suggested that attentional orienting modulated the neural responses 
to one of speakers’ voices. If a listener successfully tracked one speaker in a multi-speakers’ environment, the 
neural responses showed highly correlated with the attended speaker4,7–9. And the neural generator of this e�ect 
was localized in the le� hemisphere10. However, when people were absent-minded, they o�en failed to keep track 
of the goals that needed to be noticed; that is, the wrong execution was mostly due to the lack of attention to the 
target stimulus.

Over the last decade, a lot of researches focused on the theories of attention orienting11. In contrast, little 
is known about the connection of attention with BCIs. Several recent studies have investigated the impact of 
attention on BCIs. A typical example was to utilize attentional modulation of steady-state visual evoked potential 
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(SSVEP) to implement an online BCI system, and the results showed the SSVEP amplitude could be enhanced 
by attention, thus improving the speed and accuracy of the BCI system12. Another work researched SSVEP under 
strong attention and poor attention of �ash conditions, the results indicated that the SSVEP was modulated by 
attention and the e�ect of modulations was related to the frequency of �ash stimulation13. Further, the simultane-
ously presented tactile and visual stimuli were used to investigate the in�uence of attention shi� on SSVEP. �e 
signi�cant attention switching was observed within both types of stimuli and between di�erent stimuli. Similarly, 
the unattended experiments were also investigated in the BCI studies. For instance, the error-related negative 
(ERN) potential re�ected an error-monitoring process of the brain and could be detected in scalp EEG record-
ings14,15. �e ERN arose a�er an erroneous response and the maximum peak was localized at the medial frontal 
regions14,16. Recently, researchers found that the ERN potential was used in BCI for adjusting command outputs 
of BCI systems when subjects observed incorrect outputs from BCI systems, thus facilitating the development of 
BCI systems with improved accuracy17.

Although BCI studies regarding attention have been conducted, some shortcomings still existed. Firstly, meth-
ods, which were used to select feature from the EEG signals, were not related to the cognitive functions. For exam-
ple, information entropy described the generating rate of new information of nonlinear dynamical systems and 
it has been shown as an e�ective measure to select EEG signals features18. However, information entropy ignored 
the association between EEG activities and subjects’ cognitive states. Consequently, a similar order state of EEG 
signal sequence could be found among di�erent cognitive states, which hampered the applications in clinical 
areas19. Secondly, the BCI performance was limited by the measurement manners of EEG. Compared with the 
intracranial EEG, which was directly recorded from the cortex surface, the scalp EEG could be easily a�ected by 
the e�ect of volume conduction and reference electrodes20–22, causing an imprecise measurement of physiological 
signi�cance. Although the intracranial EEG described more precise temporal and spatial information than that 
of the scalp EEG, it was invasive and only feasible for a very limited number of subjects21,23. �irdly, the regional 
EEG parameters could not adequately re�ect the cognitive process. Multiple brain regions were involved in the 
cognitive processing and re�ected by the EEG activities24. Recently, network analysis methods have attracted 
wide-spread attention in neuroscience and it proved to be an e�cient way to measure the connections between 
regions in the cognitive functions25,26.

In the present study, the cocktail party experiment paradigm, which was closer to the real environment, was 
used to research the error-related attention. In order to overcome the drawbacks of previous studies on the scalp 
EEG, the weight minimum norm (WMN) method was used to estimate cortical activities with single-trial. �en, 
we adopted a feature extraction method, rhythm entropy, to classify the error-related auditory processing from 
correct auditory processing based on single cortical signals. Rhythm entropy (RhEn) was developed by com-
bining the information entropy with the power of EEG rhythm, which was an important feature for cognitive 
research based on spontaneous EEG27. Finally, adaptive directed transfer function (ADTF), one of the most 
frequently used methods for assessing the dynamic causality relationship among various brain regions28,29, was 
applied to calculate the time-varying connectivity patterns in the di�erent conditions.

Result
Reaction Time (RT). As shown in Fig. 1, mean RTs for correct response were shorter than those for error 
response (paired t-test: t = −7.2, p < 0.05, d = −0.66).

Brain regions with high discriminative power. For visual representation, the cortical spatial distribu-
tion was reconstructed according to the R2 value on each dipole. �ree brain regions, i.e. medial frontal cortex 
(MFC), le� supplementary motor area (lSMA) and right supplementary motor area (rSMA), exhibited greater 
correlation than others (Fig. 2A and Table 1), got high discriminative power for identifying error response trials 
from correct response trials during tracking the cued speaker.

Figure 1. Mean (with SD) reaction time (RT) of subjects.
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Classification accuracy. �e SVM with LOOCV achieved an average accuracy of 89.7%(SD ± 3.6%). A 
good generalization performance of SVM classi�er were observed (Table 2 and Fig. 2B), i.e. SP: 89.6% ± 4.9%, SE: 
89.8% ± 5.2%, AUC: 94.0% ± 5.2%.

Figure 2. �e discriminative sources and ROC curve. (A) �e projection of mean R2 values of 20 subjects on 
cortical regions; (B) Mean ROC curve for 20 subjects.

Brain region L/R BA
Number of 
dipoles Mean R2

MNI Coordinates

x y z

Medial frontal cortex (MFC)

    Medial superior frontal gyrus
L BA8 6 0.360 −8 40 54

R BA8 7 0.350 8 50 48

    Middle frontal gyrus
L N/A 7 0.363 −25 9 56

R BA6 6 0.346 44 0 56

    Superior frontal gyrus
L BA8 12 0.384 −14 38 56

R BA9 13 0.347 22 56 36

Anterior Cingulum Cortex L BA32 2 0.328 −4 30 22

Le� supplementary motor area (lSMA)

    Postcentral Gyrus L BA4 5 0.350 −44 −16 54

    Precentral Gyrus L BA4 6 0.326 −38 −22 46

Supplementary motor area L BA6 6 0.324 −10 24 60

    Insula L N/A 3 0.323 −34 −12 16

    Inferior parietal lobule L BA2 3 0.355 −58 −26 50

Right supplementary motor area (rSMA)

    Precentral Gyrus R N/A 1 0.341 48 −8 52

    Postcentral Gyrus R BA3 5 0.341 56 −14 54

Supplementary motor area R BA6 5 0.325 4 6 56

Superior temporal gyrus R BA40 1 0.345 66 −20 14

Table 1. Brain regions with high discriminative power.
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Relationship between RT and rhythm entropy (RhEn). RhEn of the MFC induced by error processing 
(i.e. error trials) was signi�cant positively correlated with RT. RhEn of the lSMA and rSMA induced by error pro-
cessing were non-signi�cantly correlated with RT, respectively (Fig. 3A). No correlations were observed during 
correct response between RT and RhEn of each discriminative brain region (Fig. 3B). More detailed information 
was also shown in Table 3.

Information flow between the discriminative regions. To investigate time characteristics of two 
response types, i.e. correct and error, time-varying networks were conducted. Here, signi�cant discriminative 
regions, i.e. the medial frontal cortex (MFC), le� supplementary motor area (lSMA) and right supplementary 
motor area (rSMA), were utilized to serve as network nodes. For time series of networks was estimated by cortical 
signals within three discriminative regions, which calculated by the averaged scalp ERPs (Fig. 4). Results of the 
time-varying network analysis were illustrated in Fig. 5A and B.

�e error time-varying networks showed the le�-bias information �ows between the lSMA and the MFC (i.e. 
lSMA → MFC and MFC → lSMA, Fig. 5A). �en, right information �ow between rSMA and MFC appeared, 
while the correct time-varying networks showed the right-bias information �ow between the rSMA and the MFC 
(Fig. 5B).

Relationship between RT and information flow. Information flows between the network nodes 
changed with time varying. During error processing, the weaker DTF values of information flow between 
the medial frontal cortex and the left supplementary motor area, i.e. MFC → lSMA and lSMA → MFC, of 
time-varying networks at 430 ms were related to longer error RT (Fig. 5C), respectively. �e pure �ow between 
the MFC and the lSMA showed an information �ow from MFC to lSMA, positively being correlated with error 
RTs. During correct processing, the stronger DTF values from the MFC to the right SMA, i.e. MFC → rSMA 
and rSMA → MFC, of time-varying networks at 200 ms were related to longer correct RT (Fig. 5D), respectively. 
�e pure �ow between the MFC and rSMA showed an information �ow from MFC to rSMA, negatively being 
correlated with correct RTs.

Disscussion
Based on the scalp EEG recording, the present study utilized the RhEn of cortical signal with single-trial, cal-
culated by weighted minimum norm solution estimation (WMNE), to identify two response types (correct vs. 
error) di�erences at the cortical level during performing the auditory-tracked tasks in multi-speakers’ environ-
ment. We found that: 1) An averaged accuracy achieved 89.7% and discriminative cortex di�erences mainly dis-
tributed in the medial frontal cortex (MFC), the le� SMA, and the right SMA; 2) �e mean RhEn for error trials 
was signi�cantly lower than that for correct trials in the discriminative cortices. In addition, the larger RhEn for 
error trials was related to longer RT. 3) Time-varying networks analysis based on discriminative regions and aver-
aged cortical source waveforms further revealed that error-related networks represented the le�-bias information 
�ow and the correct-related networks represented the right bias information �ow.

Subject CA SP SE AUC

1 0.893 0.857 0.929 0.952

2 0.893 0.929 0.857 0.967

3 0.833 0.800 0.867 0.804

4 0.889 0.833 0.944 0.965

5 0.933 0.933 0.933 0.931

6 0.882 0.941 0.824 0.891

7 0.921 0.895 0.947 0.922

8 0.906 0.938 0.875 0.972

9 0.969 0.941 0.987 0.981

10 0.933 0.892 0.975 0.998

11 0.900 0.933 0.867 0.929

12 0.893 0.857 0.929 0.965

13 0.886 0.909 0.864 0.934

14 0.857 0.809 0.905 0.981

15 0.923 0.896 0.950 0.884

16 0.821 0.857 0.786 0.996

17 0.933 0.980 0.887 0.998

18 0.885 0.923 0.846 0.846

19 0.923 0.932 0.914 0.953

20 0.864 0.864 0.864 0.935

Mean 0.897 0.896 0.898 0.940

Table 2. Classi�cation results of SVM classi�er. Note: CA represents classi�cation accuracy, SP represents 
speci�city, SE represents sensitivity and AUC represents area under ROC curve.
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RhEn of discriminative cortices and RT. Our classi�ed method successfully extracted reliable di�erences 
between correct and error response with the mean classi�cation rate of 89.7%(with SD: ±3.6%), which was supe-
rior to previous related works5,7,30,31 that this method was non-invasive cortical dynamical signal with single trials 
of short-time duration (~700 ms EEG data).

Figure 3. �e correlations between RhEn in discriminative regions and RT. (A) In error trials; (B) In correct 
trials; (C) Normalized mean entropy (with SD) of subjects. lSMA: le� supplementary motor area; MFC: medial 
frontal cortex; rSMA: right supplementary motor area.

Correlation Err. (RT vs. En.) Cor. (RT vs. En.) Err. Cor. Paired t-test

Brain region r p r p ME. ME. t p

MFC 0.550 0.018* −0.305 0.219 0.200 0.800 −3.141 0.005*

lSMA 0.260 0.298 −0.242 0.334 0.373 0.443 −0.404 0.691

rSMA 0.252 0.313 −0.338 0.170 0.566 0.554 0.085 0.933

MFC + lSMA 0.490 0.039* −0.408 0.093 0.275 0.645 −2.481 0.023*

MFC + rSMA 0.435 0.071 −0.411 0.090 0.322 0.718 −2.647 0.016*

lSMA + rSMA 0.270 0.278 −0.302 0.224 0.449 0.487 −0.261 0.797

MFC + lSMA + rSMA 0.411 0.091 −0.392 0.108 0.339 0.625 −2.115 0.048*

Table 3. Correlation Analysis between RT and entropy and Pair t-test between error response and correct 
response in discriminative regions. Note: Err. represents error response, Cor. represents correct response, En. is 
the entropy value and ME. represents normalized mean entropy of all subjects.
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Previous study found that the medial frontal cortex played a crucial role in producing error-related poten-
tial4,32–34. Activation of the MFC re�ected error-related processing35. As shown in Fig. 2A, we also found that the 
discriminative cortical regions between correct processing and error processing being obtained via R2 values, i.e. 
the relationship between rhythm entropies and class tags, and SVM mainly focused on the medial frontal cortex, 
revealing that the MFC was an important brain area in monitoring function between the correct and error pro-
cessing in multi-speaker environment.

Entropy was a powerful tool to quantify complexity in nonlinear dynamics of neural activities. �e irregularity 
and unpredictability of brain activity induced by attentional selection were regarded as neural complexity related 
to brain functions and information processing between neurons36. Previous studies have found that the lower 
entropy meant worse behavior performance19,37. We also found that RT for error trials signi�cantly longer than 
that for correct trials (Fig. 1), indicating that increased uncertainty induced by unsuccessfully focusing attention 
to the cued speaker. And the mean RhEn signi�cantly lower for error trials in MFC than that for correct trials 
(Fig. 3C and Table 3), suggesting that if a listener successful focused attention on a cued speaker with correct tri-
als, the integration of segregated neuronal groups and incoming stimuli with ongoing performance induced high 
complexity of cortical dynamics. While if a listener did not attend a cued speaker (i.e. error trials), the decoupling 
and isolation of the underlying system from external factors may lead to the lower RhEn values, consistent with 
the previous theory con�rmed by representational mathematical models36,38.

In addition, the larger RhEn values following with longer RT in error trials (Fig. 3A and Table 3) represented 
the increased irregularity and unpredictability, while there existed a trend that smaller RhEn values were related 
to the longer RT in correct trials (Fig. 3B and Table 3) indicated that the decreased coupling between internal 
system and external factors may result in the low complexity. �erefore, the lower RhEn values at the MFC in 
error trials during auditory processing suggested that the decoupling and segregation between the MFC and the 
dorsolateral prefrontal cortex, i.e. the le� and the right SMA were involved in abnormal attentional control and 
consequently in wrong cognitive performance as well.

Previous studied found that the posterior central gyrus might be involved in the generation of processes that 
activated the error related potential39 and le� dorsal lateral frontal cortex was selectively active during error 
trials40. Our �ndings suggested that the contribution of the le� SMA and MFC to high classi�cation rate may be 
related to wrong responses. And the right SMA may mainly be relevant to correct response types due to previous 
�ndings that activation was observed in the right SMA in correct trials35,41.�e right-bias information �ow may 
provide an evidence to support the idea during correct response (Fig. 5B).

Information flow via time-varying networks. As described above, converging evidence revealed that 
le� SMA was closely correlated with error related potential39,40. Our results of time-varying networks displayed 
information �ow between the MFC and the le� SMA in error trials (Fig. 5A). Previous �ndings suggested that 
the error-processing system consisted of a monitoring system for detecting errors and an optimized behavior 
compensation system42. When perceiving an error existing because of failure to attend the cued speaker, the le� 
SMA �rstly sent information to the MFC, and at the same time, a feedback was received from the MFC. In the 
process of error handing, the MFC acted as a �lter to match stimuli (i.e. error or correct feedback) and reactions43, 
and then information was sent to the right SMA. In correct trials, a right-bias information �ow between the MFC 
and the right SMA was existed (Fig. 5B). During the period from 320 ms to 540 ms, similar time-varying network 
connectivity patterns were observed in both correct and error trials, implying the underlying coordination of the 
MFC and bilateral SMA to control cognitive performance.

Moreover, during the error time-varying network at 430 ms (Fig. 5C), the smaller ADTF values of both MFC 
→ lSMA and lSMA → MFC were related to the longer RT (Fig. 5C, le� and middle panels). �e pure �ow showed 
MFC → lSMA was positively correlated with RT (Fig. 5C, right panel). During the correct time-varying network 
at 200 ms (Fig. 5D), the bigger ADTF values of both MFC → rSMA and rSMA → MFC were related to the longer 

Figure 4. Grand average ERP waveforms at anterior electrodes. �e red line represents the ERPs of error trials 
and blue line represents the ERPs of correct trials. Grey rectangles represent the chosen time windows, which 
extracted for the time period beginning auditory stimulus o�set and lasting until 700 ms a�er auditory stimulus 
o�set.
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RT (Fig. 5D, le� and middle panels). �e pure �ow showed MFC → rSMA was negatively correlated with RT 
(Fig. 5D, right panel). �ese �ndings suggested that the coupling with MFC and lSMA was weaken leading to 
increased RT in error trials. And the coupling with MFC and rSMA was strengthened resulting in shorter RT in 
correct trials.

BCI Application. In the present study, cortical activities could provide more precise spatial physiology infor-
mation compared to scalp EEG21; Compared to traditional entropy methods such as approximate entropy, RhEn 
has an ability to incorporate individual’s cognitive state27. As shown in Table 2 and Fig. 2B, a short time duration 
(~700 ms) was enough to distinguish individual’s error states using the present method, which allowed the pos-
sibility of near real-time EEG processing. Using time-varying network analysis, time-varying network at 430 ms 
was related to error processing in wrong response and time-varying network at 200 ms was related to correct 
processing in right response (Fig. 5), which both were earlier than individual’s RT. �ese �ndings suggested a 
possible role for improving BCIs performance in the future. It was noted that for test samples, the time cost of 
one trial calculation was about 3 s under the MATLAB platform. Here, the most time-consuming part was the 
minimum norm solution estimation which taken about 0.9 s for each calculation. In the future BCI application, 
the e�ciency of operation could be improved by using faster programming language and optimized algorithms.

Figure 5. Time-varying networks and the correlations between information �ow and RT. (A) Time-varying 
networks in error trials; (B) Time-varying networks in correct trials; (C) Time-varying network at 430 ms in 
error trials; (D) Time-varying network at 200 ms in correct trials.
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Conclusion
�e present study was the �rst to utilize a feature extraction method, rhythm entropy coming from single cortical 
EEG signals with short-time duration(~700 ms) which were converted via WMNE from scalp EEG recordings 
during auditory processing in multi-speakers’ environment, to investigate error processing. �ree brain areas, i.e. 
MFC, le� SMA and right SMA, got high classi�cation rate re�ecting cortical discriminative source distribution 
between error processing and correct processing. Time-varying networks further revealed that information �ows 
changed between these brain areas with time, i.e. time-varying network at 430 ms was related to error processing 
in wrong trials and at 200 ms was related to correct processing in right trials. Taken together, these �ndings sug-
gested that the reduced cognitive performance on auditory error response was associated with impaired cortical 
information processing, as indicated by the lower complexity of the EEG.

Material and Methods
Participants. Twenty subjects (mean ± standard deviation (SD) age, 22 ± 3.5 years; all males; right-handed) 
took part in the experiment. None of them reported any history of hearing impairment or neurological prob-
lems. Informed consent was signed prior to the study, and subjects also received a monetary compensation 
a�er experiments. All experiments were approved by the ethical committee of Chongqing university of Posts 
and Telecommunications. All experimental methods were conducted in accordance with the ethical guidelines 
determined by the National Ministry of Health, Labour and Welfare and the Declaration of Helsinki (BMJ 1991; 
302:1194).

Stimuli and Design. �e experiment design was similar with the previous study4. A sentence contained in 
the form [ready “call sign” go to “color” “number” point now]. For example, ready “skylark” go to “blue” “four” 
point now. Here, 60 unique sentences were combined by two call signs (sparrow or skylark), three colors (red, 
blue or green) and three numbers (two, �ve or seven). All sentences were read by using Chinese.

Before the experiment, subjects �rstly listened to each of speakers alone and were able to report the color and 
number with at least 100% accuracy. In the experiment, a �xation cross (0.5° × 0.5°) at the center of the monitor 
were displayed throughout the entire block of trials. Each trial began with the �xation cross �ashing for 50 ms. 
A�er a 700 ms delay, a cue was presented for 50 ms. �e cue was de�ned as a call sign that tracked by listeners. 
A�er a short (100–300 ms) SOA, two di�erent sentences spoken by a male and a female speaker were simultane-
ous presented about 2 s: one to the le� ear, and the other to the right ear. Subjects were required to attend to one 
sentence, which the call sign was cued, and responded to the point where the call sign bird would go. �e point 
(i.e. color-number combination) was �xed and shown visually on a monitor during each trial block.

Scalp EEG recording and preprocessing. EEG was recorded using a 64-channel NeuroScan system 
(Quik-Cap, band pass: 0.05–100 Hz, sampling rate: 1000 Hz, impedances <5kΩ) at the scalp. �e EEG analysis 
procedure was shown in Fig. 6. To monitor ocular movements and eye blinks, EOG signals were simultaneously 
recorded from four surface electrodes, one pair placed over the higher and lower eyelid and the other pair placed 
1 cm lateral to the outer corner of the le� and right orbit. Cz was used as the reference during recording online. 
�en, the EEG recordings were divided into epochs (200 ms pre- to 4500 ms post-stimulus onset). Trials with 
blinks and eye movement were rejected o�ine and an artifact criterion of ±75 µV was used at all the other scalp 
sites to reject trials with excessive electromyography (EMGs) or other noise transients. EEG recordings were 
�ltered with a band-pass of 0.1–30 Hz. �e data were re-referenced by reference electrode standardization tech-
nique44 (REST, www.neuro.uestc.edu.cn/rest) (Fig. 6A). EEG epoching was then extracted for the time period 
beginning auditory stimulus o�set and lasting until 700 ms a�er auditory stimulus o�set, and performed the next 
analysis (Fig. 6B). �en, single-trial EEG epochs were sorted according to response types, i.e. correct-related and 
error-related, and were averaged from each subject to compute the ERPs (Fig. 6C).

Network nodes definition (discriminative pattern). Network nodes de�nition involved the following 
main steps (Fig. 6B): 1) cortical activities estimation; 2) Information Entropy; 3) R-square analysis; 4) SVM and 
5) Back projection.

Cortical activities estimation. �e conventional source localization procedure, weighted minimum norm esti-
mation (WMNE), was used to estimate the cortical activities. For single-trial EEG epochs, three frequency-bands, 
i.e. theta (4–8 HZ), alpha (8–13 HZ), beta (13–30 HZ), were separately extracted by the wavelet transformation. 
�en cortical activities were calculated by applying linear inverse operator W to the three frequency-band signals:

= xS(t) W (t) (1)

where x(t) represented the n-channels EEG data at time t and S(t) denoted corresponding cortical activities. W 
was obtained by:

λ= + −A ARA CW R ( ) (2)T T 2 1

Here, C and R referred to covariance matrices of the noise and sources, respectively. A was the gain matrix, 
calculated via the Brainstorm toolbox (http://neuroimage.usc.edu/brainstorm/), and the regularization parame-
ter, λ, was calculated by:

λ =
∗

trace ARA

trace C SNR

( )

( ) (3)

T

2

http://www.neuro.uestc.edu.cn/rest
http://neuroimage.usc.edu/brainstorm/
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A fixed value of 5 was used for the signal-to-noise ratio (SNR), which reflected the value in the evoked 
response experiments45.

Here, a 3-shell realistic head model was adopted for EEG source activities estimation, where the conductivities 
for the cortex, skull, and scalp were 1.0 Ω− 1 m− 1, 1/80 Ω− 1 m− 1, and 1.0 Ω− 1 m− 1respectively. �e solution space 
was restricted to the cortical grey matter, the hippocampus, and other possible source activity areas, consisting of 
15002 cubic mesh voxels with 10 mm inter-distance. �e lead �eld matrix was calculated by the boundary element 
method (BEM)46.

Rhythm Entropy. A�er acquiring the cortical activities S(t), the power of cortical activities in each trial was then 
calculated by the following equation:

Figure 6. EEG analysis procedure. (A) EEG preprocessing; (B) Network nodes de�nition; (C) Time series 
estimation; (D) Time-varying network analysis.
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where m was the number of sample points and the information entropy was measured as follow:

∑= −
=

Plog PiEn ( )
(5)i

i i
1

3
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where Pi (i = 1, 2, 3) represented the normalized power of poweri and was calculated via divided by the sum of 
three frequency-band powers, i.e. theta, alpha and beta:

=
∑ =

P
Power

Power (6)
i

i

i i1
3

R-square analysis. R2 analysis was a common criterion of separability in BCIs research47, and o�en used to indi-
cate correlation between features and class tags:

σ
=

−+ −R
EX EX( )

4 (7)X

2 1 1
2

2

where +X 1 presented feature vector of target and −X 1 represented feature vector of non-target. σX was the standard 
deviation. �e R2 value re�ected the di�erence in the power of the two classes, with the larger R2 value denoting 
the greater di�erence between two classes37. For determining the threshold for further SVM classi�cation, ten 
thresholds, i.e. from 0.1 times the maximum R2 value to the maximum R2 value and step length was set to 0.1, 
were selected to evaluate the performance of SVM classi�cation. �e �nal threshold was set to 0.6 times of the 
maximum R2 value among all dipoles because most of the subjects got the best classi�cation rate under this 
threshold in the present study48,49. �e dipoles with R2 value exceeding the threshold were chosen for further SVM 
classi�cation.

Support vector machine (SVM). In the experiment, the number of correct trials was greater than that of error 
trials (ACC > 80%, i.e. correct trials > 96, error trials < 24). For each subject, the number of error trials was at 
least 20 to ensure the training sample size. Correct trials were randomly selected to make it consistent with the 
amount of error trials.

SVM was developed by Vapnik based on statistics learning theory (SLT). As its excellent generalization per-
formance, SVM has been applied in a wide variety of issues. SVM had the feature of empirical risk minimization 
(ERM) and global optimum solution50. We trained a SVM classi�er with radial basis kernel function to extract 
highly discriminative brain regions. �e goal of a SVM classi�er with RBF kernel was to �nd a decision function 
= ′∅ +w x bf(x) ( )  by solving the following optimization problem51:

∑ε

ε

|| || +

. . ′∅ + ≥ −

ε =

w C

y w x b

min
1

2

s t ( ( ) ) 1 (8)

w i

N

i

i i i

,

2

1

where w was the normal of the hyperplane; the function ∅ mapped the vector xi in a higher dimensional space52; 

εi was a measure of the misclassi�cation errors for non-separable cases; and C traded o� the empirical risk and 
model complexity, and was set by grid search algorithm53. Here, C ranged from 10−8 to 108 and the step length was 
set to 100.8.

If the SVM classi�er could re�ect the relationship between features and the class labels very well, the classi�er 
was considered that it could predict the classes of new samples with good performance. �erefore, classi�cation 
accuracy (CA), sensitivity (SE), speci�city (SP) and area under ROC curve (AUC) were utilized to evaluate the 
classi�cation performance of SVM classi�er54. At the same time, leave-one-out cross-validation (LOOCV) was 
applied to evaluate the generalization performance of SVM for a small sample size.

�e percentage of the number of samples predicted correctly in the test set over the total samples, CA, was 
calculated as follows:

=
+

+ + +

TP TN

TP TN FP FN
CA

(9)

where true positive (TP) was the number of positive samples correctly predicted and true negative (TN) was 
the number of negative samples correctly predicted. False positive (FP) denoted the number of positive samples 
incorrectly predicted and false negative (FN) denoted the number of negative samples incorrectly predicted.

SE and SP were calculated by the following formula, respectively:

=
+

TP

TP FN
SE

(10)
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=
+

TN

TN FP
SP

(11)

SE referred to the ratio of correctly classi�ed positive samples to the total population of positive samples, 
whereas SP was the ratio of correctly classi�ed negative samples to the total population of negative samples.

Back projection. Both R2 analysis and SVM classi�er were used to di�erentiate between correct-response related 
and error-response related brain regions (i.e. the positions of dipoles), each feature in�uenced the classi�cation 
via its R2 value. �e larger the R2 value was, the greater it a�ected the �nal discrimination. However, the correla-
tional vector R2 was in a dimension-reduced space. To determine the discriminative brain areas, R2 values were 
mapped back to the high-dimensional space (i.e. dipole space). �e correlational vector in the dimension-reduced 
subspace can be projected back to the original feature space according to the following formula:

= ∗Di Ui R (12)2

For a given dipole i, the correlational representation was Di and the identity matrix was Ui in current study. 
Finally, the correlations were reconverted into the MNI space to obtain the discriminative regions. A threshold 
was required to determine brain areas that had signi�cantly distinct characteristics between the correct- and 
error-response trials. For each dipole, a statistically meaningful threshold was derived by using 0.6 times of the 
maximum R2 value among all dipoles, because most of the subjects got the best classi�cation rate under this 
threshold in the present study.

Time series estimation. For averaged ERPs at scalp, cortical activities (i.e. cortical ERPs) were estimated 
via WMNE (details described in the above section “Cortical activities estimation”). �e time series in the discrim-
inative brain regions localized in the above session of “network nodes de�nition” (Fig. 6B), were computed via 
averaging cortical activities of the dipoles within sources respectively (Fig. 6C).

Time-varying network analysis. A�er obtaining discriminative sources (Fig. 6B) and time series in dis-
criminative sources (Fig. 6C), time-varying network analysis was performed (Fig. 6D).

ADTF calculation. �e multivariate adaptive autoregressive (MVAAR) model of source waves was computed 
by the following equation:

∑ ε= − +
=

X t w k t X t k t( ) ( , ) ( ) ( )
(13)k

p

1

where X(t) represented the cortical source wave over the entire time window, w(k, t) was the coe�cients matrix of 
the time-varying model, which calculated by the Kalman �lter algorithm, and ε t( ) represented the multivariate 
independent white noise. The symbol p denoted the MVAAR model order selected by Schwarz Bayesian 
Criterion28,55.

As mentioned above, the discriminative brain areas as the cortical sources (Fig. 6B) were applied in the 
time-varying network analysis. A�er obtaining the MVAAR model coe�cient (w(k, t)), H(f, t) was obtained from 
w(f, t), which  was then transformed by Eq. (13) into the frequency domain. �e Hij element of H(f, t) described 
the directional information �ow between the jth and the ith element at each time point t as: 

ε∗ =w f t X f t f t( , ) ( , ) ( , ) (14)

ε ε= ∗ = ∗−X f t w f t f t H f t f t( , ) ( , ) ( , ) ( , ) ( , ) (15)
1

where = ∑
π ∆

=
−w f t w t e( , ) ( )

k
p

k
j f tk

0

2 , wk was the matrix of the time-varying model coe�cients. X t( ) and ε t( ) were 
transformed into the frequency domain as X(f,t) and ε f t( , ), respectively.

De�ning the directed causal interrelation from the jth to the ith element, the normalized ADTF was described 
between (0, 1) as follows,

ι =
| |

∑ | |
f t

H f t

H f t
( , )

( , )

( , ) (16)
ij

ij

k
n

ik

2
2

2

To obtain the total information �ow from a single node, the integrated ADTF was calculated as the ratio of 
summation of ADTF values divided by the interested frequency bands [f1, f2]:

ι

ϑ =
∑

−
t

k t

f f
( )

( , )

2 1 (17)
ij

f
f

ij2 1
2 2

We chose average ADTF values over 4–30 Hz to acquire the �nal directional information �ow according to the 
range of three frequency bands.

Surrogate data testing. �e distribution of ADTF estimator under the null hypothesis of no causal interactions 
was not well determined, since the ADTF function had a highly nonlinear correlation with the time series where 
it derived. In view of this, the phases of the Fourier coe�cients were independently and randomly iterated to 
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produce a new surrogate data, which was a nonparametric statistical test28. �e spectral structure of the time 
series was retained in the process of iterating the phases of the Fourier coe�cients. �e shu�ing procedure was 
repeated 200 times for each model-derived time series of each subject to establish an empirical distribution of the 
ADTF value under the null hypothesis of no connectivity.

Correlation analysis. We performed Pearson correlation analysis to investigate the following relationships: 
1) RT and entropy values of discriminative regions; and 2) RT and ADTF values of information �ow between 
discriminative regions. All thresholds were set at p < 0.05. Here, ADTF value of information �ow was adjusted by 
dividing the weighted degree of network.
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