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Abstract 

The  cerebral  cortex  is a  rich  and  diverse structure  that  is the  basis of 
intelligent behavior. One of the  deepest mysteries of the  function of cortex 
is  that  neural  processing  times  are  only  about  one  hundred  times  faster 
than  the  fastest response times for complex behavior. At the  very least, this 
would  seem  to  indicate  that  the  cortex  does  massive amounts  of parallel 
computation. 

This paper explores the  hypothesis that an  important part of the cortex 
can  be  modeled  as  a  connectionist  computer  that  is especially suited  for 
parallel  problem  solving.  The  connectionist  computer  uses  a  special 
representation, termed value unit encoding, that represents small subsets of 
parameters in a way that allows parallel access to many different  parameter 
values.  This  computer  can  be  thought  of as  computing  hierarchies  of 
sensorymotor  invariants.  The  neural  substrate  can  be  interpreted  as  a 
commitment  to data structures  and  algorithms that compute  invariants  fast 
enough to  explain  the  behavioral  response times. A detailed consideration 
of this  model  has  several  implications  for  the  underlying  anatomy  and 
physiology. 
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1. Introduction 

Tremendous progress could be  realized  in the neurosciences  by  the  introduction 
of information  processing  models  that  would  relate  biological  and  behavioral  data. 
Information processing models  (IPMs) have been successful in describing behavior at 
levels of abstraction  useful to  psychologists and  workers  in artificial  intelligence,  but 
have  been  much  less  successful  in  producing  models  that  are  directly  useful  to 
neuroscientists.  One  reason  for  this  is that  most  IPMs  are  based  on  a  conventional 
computer  and  animal  brains  do  not  compute  like  a  conventional  computer.  In  the 
animal  brain,  comparatively  slow  (millisecond)  neural  computing  elements  with 
complex,  parallel connections  form a structure which  is dramatically  different  from a 
highspeed (nanosecond),  predominantly serial machine.  Much of current research  in 
the  neurosciences  is  concerned  with  tracing  out  these  connections  and  with 
discovering single  unit  responses  to complex  stimuli.  However,  a  crucial  next  step  is 
to characterize  neural  function  at  the  more  abstract  level that  is  related  to  behavior. 

To  characterize  our  endeavor  it  might  help  to consider  a  complementary 
approach:  temporarily  sidestep  the  biological  issues  and  study  the  abstract 

. computational problems that  must  be  solved  [Marr  and  Poggio,  1976;  Brady,  1982; 
Marr,  1982].  The  objective of this  tack  is to  find  useful  abstract  descriptions  of the 
computations that are being performed without  reducing  them  to anatomy.  The level 
of formulation  is  in  terms  of symbolic constraints  and algorithms  for  solving  them. 
Subsequently,  this  class  of models  must  be  complemented  by  a  description  of how 
the  brain  implements the  solution  to  specific computational  problems.  This  paper  is 
aimed  at  this  descriptive  level. The  implementation  approach  may  be  thought of as 
one  of synthesis,  and  is  logically  at  the  boundary  between  biology  and  computer 
science.  Neurobiological  models  describe  the  anatomy  and  physiology  accurately 
while  postponing  the  problem  of computation.  Computational  models  stress  the 
abstract  nature  of  the  problems  that  must  be  solved,  postponing  the  problem  of 
implementation.  In the implementational approach,  one  must choose  a description of 
brain architecture that both  describes how the abstract problems  can be solved and is 
neurobiologically  plausible. 

One school of thought,  termed connectionist, holds  that the  essential  components 
of the  abstract level can be  described  in terms of the  synaptic contacts of networks of 
neurons.  In  other  words.  the  functionality  can  be  directly  and  usefully  related  to 
neural  interconnection  patterns.  Early  connectionist  models  [McCulloch  and  Pitts, 
1943;  Hebb,  1949;  Rosenblatt,  1958]  were  a  step  in  this  direction,  but  at  the  time 
those  ideas  were  formed. knowledge of the  brain  was much  less than  it  is  now, and 
the  abstract nature  of computation was less well understood. The major  attraction of 
connectionism  is that  it can stand the  crucial test of timing. That is, given that entire 
behavioral  responses  can  be  realized  in  a  few  hundred  milliseconds,  connectionist 
models  of neural  units  seem  to  be  the  only  way  to  achieve  these  response  times. 
Previous  papers  have suggested  how  a  particular  connectionist  theory  of the  brain 
can  be  used  to  produce  testable,  detailed  models  of interesting  behaviors  [Feldman 
and  Ballard,  1982;  Ballard,  1984;  Feldman,  1981; Hinton  et  al.,  1984].  The  purpose 
of this  paper  is  to  relate  these  ideas  more  closely  with  emergent  anatomical  and 
physiological  knowledge  of  the  cerebral  cortex. 
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2.  Overview 

Our  principal  hypothesis  is  that: 

A  major  function  of  the  cortex  is  to  compute  collections  of 
invariants at  different  levels  of  abstraction. 

An  invariant  is  a  description  of a  given  situation  in  terms of a  small  number  of 
parameters.  For example, rigid motion can be described by six parameters: a rotation 
(three)  about  an  instantaneous  center  (three).  The  usefulness  of  smallparameter 
descriptions  that  describe a  large  number of different situations pervades all aspects 
of perception and cognition.  We suggest that  the cortex has adopted  representations 
and  computational  strategies  that  make  the  computation  of  invariants  efficient. 

2.1  Representing  Possible  Invariants 

Any  particular representation of information will  have attendant  advantages  and 
disadvantages.  Yet  neurons  in different parts of the  brain seem to  be  representing 
information  in very specific  ways.  One way  to study these differences  is through  the 
single cell recording technique [Eccles,  1957]  that  allows  recording of individual cell 
responses  to  different stimuli.  Let  us compare single unit  recordings  from  neurons 
which  function as basic parts of the ocularmotor system  [Robinson,  1978]  with those-
from cortical  neurons in the visual  areas [Hubel and Wiesel,  1962].  Within the ocular 
motor system,  neurons with linear outputs are seen (Fig.  la);  that  is,  neurons whose 
firing rate is proportional  to  a  scalar parameter,  such  as  the  rate  of eye  rotation. 
These  neurons  are  part  of  the  servo system  controlling eye  position  and  can  be 
modeled  as  summation or  integration devices.  Their  output  has  two  important 
features.  First, a  larger value for their output  variable  means more  frequent pulses. 
Second,  the  variable  output  is onedimensional.  In  contrast,  in  the  visual  areas .of -
cortex  (and  indeed all of the cortex), most neurons seem to be using fundamentally 
different  encodings  of  their  output  (Fig.  1b,  c).  These  neurons  have  multi
dimensional receptive fields (RFs).l If the input stimulus is within  its receptive  field a 
neuron will  fire;  otherwise it is more or less quiescent. The degree of match between 
the stimulus and  receptive  field  determines its firing  rate. In the physiologist's  terms, 
the  first kind of neuron  uses frequency coding, and  the second kind of  neuron  uses 
spatial (place) coding. We have termed units using the  latter kind of encoding value 
units. As  first  suggested  by  Barlow  [1972],  the  value  unit  way  of  representing 
information seems to be a property of most cortical cells.  The characteristics  are the 
representation of a portion of a complex  stimulus that  is signaled if the cell is firing. 

Figure 1. 

Value  units are a general way  of representing different kinds of multi-dimensional 
variables and functions without requiring that  each unit have a large bandwidth. The 
most optimistic estimate of discriminable  signal  range  in  a  single  neural output  is 
about 1:1000,  and  this  is  insufficient  to  handle  multidimensional  variables.  Value 
units overcome  this limitation  on neural output  by breaking the  ranges of a variable 
up into intervals and  representing  each interval with  a separate unit. These  intervals 

 can be organized in many different ways.  One straightforward  way  is to  represent  a 
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Figure  1:  Different  encodings  as  indicated  by  neural  outputs. f = firing  rate;  v  = 
stimulus  value  (a)  Monotonic firing  rate  increases  with scalar  parameter indicative of 
a  variable  neuron.  (b)/(c)  One and  twodimensional  receptive  fields  indicative  of 
value  neurons.  Variable  neurons  are  typically  rapidfiring  (500  Hz)  whereas  cortical 
neurons  are  slow  firing  (50  Hz).  Thus  highly  schematized  plots  in  (b)  and  (c)  are 
representative  of  the  average  of  many  trials;  in  other  words,  the  poststimulus 
histogram. 
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variable  v  = (vI,  ...,  vk)  isotropically  by  allocating  a  unit  for  each  of Nk  discrete 

values.  These  values  are  the  center of intervals  of width  I:!v  = (I:!v1,  ...,  ~vk)'   The 

value  k  is  the  dimensionality of the  variable.  We  will  use  the  term  parameter  to 
denote  a  component  of  a  variable. 

Another  way of thinking  about  the  value/variable  distinction  is  to  compare  the 
value  unit  encoding  with  variable  representations  in  conventional,  Von  Neumann 
computers.  In  a  Von  Neumann  machine,  variables  only  access  one  value  at  any 
instant,  and  acquire  these  values by  assignment  statements.  For example,  x  : = 3;  y 
:= 4 assigns values 3 and  4 to x and  y, respectively. Since a sequential computer can 
only  access one  value  of a  variable  at  a  time,  the  notion  of unique  values  for  each 
variable  at  any  instant  is  particularly  appropriate.  However,  a  parallel  computer 
typically  requires  access  to  many  values  of a  variable  at  the  same  time,  and  thus 
requires  a different encoding scheme.  A value unit representation such  as an  array  of 
possible (x,y) values allows this  parallel  access.  This  difference  is shown  in  Figure 2a 
and  b. Two other examples  of value encodings are  also shown  in Figure 2. Figure 2c 
shows  a  highly  stylized  representation  of the  orientationsensitive  cortical  neurons 
found in  striate  cortex.  In  this  case the  variable  is threedimensional,  with  v  = (x,  y, 
(J). Each unit represents a specific value of (xO,  Yo, (JO) and  has an  associated (ax,  ~ y ,  

I:!(J) that may be  loosely thought of as its receptive  field. Figure 2d shows a value  unit 
representation  for unit  directions  in threedimensional space.  ln general,  the  intervals 
of  neighboring  value  units  will  be  overlapping. 

Figure 2. 

An  important advantage of the  value  unit  organization  is that complex  functions 
can  be  easily  constructed.  For  example,  suppose  one  neuron  is  sensitive  to  a  red 
surround  and  green  center  and  another  is  motion  sensitive.  In  this  hypothetical 
example,  it  is easy to see that by combining these  two neuronal  inputs at  a third, one 
could  construct  a  neuron  that  was sensitive  to  moving,  red  surround,  green  center 
input.  Similarly  one  can  combine  responses  to  edge and  movementsensitive 
neurons to construct more  complex  responses. This  strategy  can  be  used  in a general 
way to  construct arbitrary  functions.  Suppose  one  has  such  a  function  f{x,y).  Let  us 
allot neurons for each  interesting  value of x and  have a similar  set  for  the  interesting 
y values.  One  can  think  of these  different  values  as  very similar  to  just-noticeable
differences. Then these neurons can be used pairwise to construct the function as 
follows. The pairs of connections make synaptic connections with neurons 
representing appropriate values of f. We assume that both members of a pair of 
connections must be firing before the unit representing a specific value of f will fire. 
This type of input has been termed a conjunctive connection [Feldman and Ballard, 
1982] and could be realized by an appropriate spatio-ternporal summation behavior 
of multiple synapses. The main point, however, is that using this table look-up 

strategy, arbitrary functions, e.g., f(x,y) = ev'x0'IT lIy, are easily represented. 

The ability to represent multi-dimensional variables and functions is especially 
important in vision. At early levels of visual processing, the useful information about 
complicated stimuli is only implicit and is generally distributed over space. For 
example, in navigation, the information needed to characterize one's trajectory stems 



---.. 3x 
y ..-- 4 

a 
b  

t 

Y 

d 

Figure  2:  (a)  Von  Neumann  encoding  assigns  a  single  value  to  a  variable  at  any 
instant  (b)  In  contrast,  value  unit  encoding  allows many  values of the  same  variable 
to  be  accessed  simultaneously.  Two  more  examples  illustrating  the  discreteness  of 
value unit  encoding are shown  by (c) and  (d).  (c) Threedimensional xyorientation 
units  for  striate  neurons.  In  this  scheme  retinotopic  coordinates  and  orientation  are 
regarded  as a threedimensional space that is covered by the  receptive  fields of units. 
(Note  that  this  space  is actually  toroidal,  owing  to  the  periodicity  of 8.)  (d)  Two-
dimensional  units  for  indicating directions  in  space.  Directions  can  be  described  by 
coordinates on  the  unit  sphere. The  sphere  can  be  tesselated  (covered)  with  uniform 
intervals.  The  figure  shows  a  triangular  tesselation  based  on  subdividing  an 
icosahedron.  If one  imagines  the  figure  as  a  kind  of helmet.  then  the  units  can 
indicate  directions  in  space  with  respect  to  the  head. 
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from change measurements distributed over disparate parts of the retina. The value 
representation for cortical cells allows the requisite trajectory parameters to be 
computed by transforming the input through a succession of levels of abstraction, 
each level being represented by value units [Ballard and Kimball, 1983]. This 
organization solves the problem without directly interconnecting outputs from all 

combinations of disparate sensors. This strategy requires N2 connections between N 
sensors. Such a solution may be realized by insects, owing to their smaller numbers 
of retinal and cortical cells [Olberg 1981a; 1981b]. However, for animals with huge 
numbers of retinal and cortical cells, an easier solution is to introduce intermediate 
levels of value units. 

The value unit concept is reminiscent of the idea of a "grandmother cell." Thus it 
could suffer from one of the principal criticisms of grandmother cells: if the cell dies, 
the function is lost Networks of value units can be designed, however, that are 
impervious to such damage by: (1) distributing the function among small groups of 
local units; and (2) allowing for the recruitment [Feldman, 1981] of new, previously 
unallocated units. Since these notions are merely refinements to the useful idea of a 
value unit, we will keep referring to units as if they were represented by single 
neurons. 

How can one determine if the value unit encoding is being used? The basic 
requirement was described in Figures 1b and c, but can be elaborated as shown in 
Figure 3. To determine value unit encoding, the peak responses of the units must 
span the useful range of measured values. The "useful range" depends on the role of 
the variable, but may be deduced by various means. For example, orientation value 
units should span the range [0, 360°]. Thus, Figure 3a shows a variable that is not 
value encoded, whereas Figure 3b shows a value unit encoding of a variable. For our 
purposes, it is not necessary to have all the dimensions of a variable be value 
encoded. There are much stronger predictions made by the value unit encoding 
hypothesis, namely in the interconnection patterns that would appear between 
different cortical areas. These predictions require some development, and are 
discussed in Section 4. 

Figure 3. 

One must keep in mind that the value unit model is chosen as the simplest useful 
level of abstraction of the cortical neuron. Shaw [Shaw et al., 1982] has proposed that 
about thirty neurons are usefully considered as forming a functional unit. Abeles 
[1982] considers several interesting firing properties that arise from analyzing detailed 
recordings of interesting simultaneously-recorded units. One is that a neuron is far 
more likely to fire if its inputs are synchronized. Another very important idea is that 
neurons may be signaling probabilities [Hinton and Sejnowski, 1983]. The value unit 
model is not incompatible with these more detailed models, and is the simplest 
description that can illustrate important computational properties. 

The notion of the neuron as a functional unit dates from the very earliest 
anatomical studies [Golgi, 1879; Cajal, 1911]. By way of contrast, other investigators 
have suggested that patches of dendrites might act as functional units [Shepherd et 
al., 1985]. It could turn out that the value unit model is extendible to dendritic trees 
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Figure 3: Firing rate. f versus the value of a parameter. v, for neurons exhibiting 
different encodings. (a) Ensemble of neurons that are. variable-encoding exhibit 
monotonic behaviors. (b) In contrast. value encoded neurons exhibit response 
maxima that span the measurement space. 
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considered as separate units. For purposes of explanation, however, we will stick to 
the level of abstraction that considers a neuron as a unit. 

To summarize, neural responses can be used in two qualitatively different ways, 
which we· have termed value encoding and variable encoding. The brain may have 
both value and variable neurons or use combined strategies, but the gross 
organization of the cortex seems to exhibit value encoding. Table 1 shows the main 
points of difference. Conversions between these two kinds of representations are well 
within known synaptic properties. These two representations can be combined in a 
hybrid system with the value neurons computing complex functions and the variable 
neurons computing dynamic control signals. 

Table 1: Neurons with the hypothesized different 
encodings have fundamentally different characteristics. 

Value Encoding Variable Encoding 

multi-dimensional single-dimensional 
representation representation 

receptive-field response monotonic response 
with represented with represented 
parameter parameter 

peak responses peak responses 
span parameter may not span 
values parameter values 

2.2 Computing Specific Invariants 

To satisfy our criteria for a cortical model we must not only show how value 
units can represent information, but also how to compute using this representation. A 
strong argument for value units is the facility with which they support parallel 
computation. The reason for our emphasis on parallelism is that a growing amount of 
psychological data suggests that many complex behavioral responses require only a 
few hundred milliseconds (e.g., [Treisman and Gelade, 1980]). Parallel processing is 
indicated in these experiments since the response time is independent of the number 
of tokens that must be processed. ln addition to these experiments. an elementary 
analysis of the neural signal also suggests that sequential processing is unlikely. 

To illustrate how value units can solve problems in parallel, we will describe the 
solution to a very specific problem. Consider the simple map in Figure 4a, with four 
regions. The problem is to color the map so that no two adjacent countries have the 
same color. Each region may be colored with one of the colors shown. This problem 
is representative of a ubiquitous class of problems which can be posed as: "satisfy the 
largest set of compatible constraints" [Freuder, 1978; Hummel and Zucker, 1983; 
Prager, 1980; Rosenfeld et al., 1976; Ullman, 1979J. When this problem is translated 
to value unit notation, the color of each region is a separate value unit. If a particular 



color is compatible with the currently chosen value units representing neighboring 
colors, then that unit is likely to be chosen to represent its corresponding region's 
color. The constraints are represented as links between units. There are many 
different ways to do this. We choose to let connections between locally incompatible 
colors be inhibitory (lower confidences) and connections between compatible colors 
be excitatory (raise confidences). These links are shown in Figure 4b. For brevity, 
two symmetric links are drawn as a single double-ended link. 

Figure 4. 

Now we shall describe how networks of value units compute. One can think of 

the ith unit as having a small amount of information, (si, Wi), where si is the state and 

Wi = {wil ... Win} is the synaptic weight vector. In the underlying computational 

model [Hopfield, 1982] that we adopt, value units can be thought of as binary 
threshold units. Units start out in an initial state and converge to a stable final state. 
The state changes according to 

si := 1 if Pi ~  0, else si := 0 

where 

This algorithm is only guaranteed to find local minima, but a feature of certain 
constraint satisfaction problems is that a local minimum is sufficient for the task at 
hand. For example, if the map coloring example is started in an arbitrary state, it will, 
quickly converge to the state representing compatible colors, as shown in Figure 4. In 
this case, the negative weights = -2, and the positive weights = 1. 

An extension of this algorithm has been made by [Hinton and Sejnowski, 1983], 
building on the concept of "simulated annealing" developed by [Kirkpatrick et al., 
1983]. In this algorithm, the state is adjusted probabilistically according to 

si : = 1 with probability Pi 

where 

Pi/ T)Pi = 1 I (1 + e

ln this updating rule the parameter T plays the role of "temperature" (analogous to 
its role in a Boltzman distribution). The temperature is initially high, corresponding 
to equally probable state changes, and is gradually "cooled." The advantage of this 
algorithm is that it now finds a global minimum with a given probability. A drawback 
of the probabilistic version is that it may require too many iterations to be 
biologically plausible, but the discovery of this algorithm is very recent, and ways 
may be found to overcome this problem. Also, although the algorithm formally 
requires symmetric weights, computer simulations have shown that this condition 
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Figure 4: (a) A four-country map coloring problem: color the map with the colors 
shown (r = red, g = green, y = yellow) so that adjacent countries have different 
colors. (b) A value unit representation of the map coloring problem. A separate unit 
is allocated for each color of every country. Symmetric inhibitory connections are 
denoted by double-ended links terminating in small circles. Symmetric excitatory 
links are shown by double-ended links terminating in arrows. Other designs are 
possible. For example, one could use inhibitory connections between incompatible 
colors in neighboring countries. The particular design keeps inhibition local to 
individual countries. (c) A particular starting configuration where dark units are on 
and light units are off. (d) The correct solution achieved by iteration using the state 
modification rule described in the text. 
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might be able to be relaxed. Important details of this model are given in [Kirkpatrick 
et al., 1983; Geman and Geman, 1983; 1985; and Hinton et al., 1984]. In particular, 
the second of these papers addresses convergence properties. and the last provides a 
learning algorithm. Our own extension. elaborated in later examples, uses non
symmetric ternary weights (wijk) that model spatio-temporal summation (which we 

have called conjunctive connections). 

The points behind the map coloring problem are threefold. First. the problem is 
characteristic of other constraint satisfaction problems in that empirical tests show 
that larger-scale versions do not require more time. Maps with more countries and 
colors can still be colored without any increase in processing time if the constraints 
are appropriately organized. This controversial statement about problem scaling is 
currently based on empirical tests. Kirkpatrick et al. argue that convergence is based 
on how "frustrating" (incompatible) the constants are. We will take up this point 
again in the context of the specific examples in Section 5. The second point is that 
the kinds of constraints that _we used are extremely general and can characterize a 
broad range of perceptual and cognitive situations [Hinton et al., 1984; Feldman, 
1982; Ballard and Hayes, 1984]. In particular, problems in visual gestalt recognition 
can be described as trying to satisfy an appropriately weighted collection of local 
constraints [Ballard et al., 1983; Feldman, 1982]. The third lesson of constraint 
satisfaction is that local constraints can imply a global solution. 

There is a sense in which this problem can be thought of as an analogy to how 
more complicated problems are handled. If one interprets "map" as "cortical area," 
one sees how different local constraints might participate in a global computation. 
The requirement for a unique color for each region would be analogous to an inter
area cortical constraint. whereas the constraint between neighboring colors would 
correspond to an intra-area constraint between different cortical areas. However, to 
elaborate on this point: it would obviously be a big mistake to think that this kind of 
computation is all that the cortex does. Our view is that a large class of problems 
crossing many domains (e.g.. vision, motor control. portions of cognition) can be 
potentially solved in this fashion. 

It is far from established that the cortex actually uses its signals in a way 
suggested by the constraint satisfaction paradigm, although. as Terry Sejnowski 
suggests, the use of the post-stimulus histogram in data presentation implicitly 
appeals to an underlying statistical model. To go further, one might try to: (a) 
establish the role of a given neuron in a specific visual task; and (b) see if its firing 
rate increases or decreases markedly during the few-hundred-millisecond 
convergence period. With current techniques. this would be a very difficult 
experiment to do. Several experiments show that the response of cortical neurons is 
dependent on the task that the animal is engaged in (e.g., [Shaw et al., 1983]). but so 
far these are still not definitive in implicating the constraint satisfaction paradigm. 
On the other hand, there is no evidence to rule out the constraint satisfaction model. 
either. One problem is that very few alternative testable models have been proposed 
that meet the computational requirements. Holographic memory has been proposed. 
but this has the form of static memory and does not address the problem-solving 
issue. 
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"Iraditionally, the receptive field of a neuron has been defined with respect to a 
stimulus. This has the unfortunate effect of making it dependent on a particular 
experiment. In our model we define the receptive field as the response to all the 
neurons' inputs, some of which may be feedback connections from neurons in more 
abstract cortical areas. 
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3. A Review of. Cortical .Organization 

The value unit model has several implications for cortical organization, but in 
order to develop these implications, we first need to summarize several relevant 
cortical anatomical and physiological features. The summary deserves the following 
cautionary note. It represents an attempt by the author to highlight important 
neurobiological features that are relevant to the proposed model. As such, it may 
deter neuroscientists from appreciating the abstract computational components of the 
model which are aided but not vitally tied to the specific neurobiological associations. 
The other side of this is that commiting the model to a particular anatomical 
substrate makes it easier to understand its salient features. 

3.1 Cortical Columns: A Uniform Processing Architecture 

To a coarse approximation, the cortex can be regarded as a two-dimensional 
sheet, a few millimeters in thickness. Within this sheet the anatomy can be usefully 
thought of as bein-g organized into functional, overlapping columns of about 800 J.Lm 

in diameter [Mountcastle, 1978 (page 21)]. Metaphorically, one can think of tightly 
packed interpenetrating cylinders stacked axis-parallel, where the diameter of each is 
.3 mm and the length is a few millimeters. Szentagothai [1978a; 1978b] has done 
extensive work that also shows elaborate anatomical similarities in structure of 
cortical columns from area to area and many others have confirmed the columnar 
organization into interdigitated, repeated functional units [Goldman-Rakic and 
Schwartz, 1982: Kaas et al., 1981; Lund. 1981]. 

Superimposed on this organization is another organization dictated by the  
interconnections between the cortex and other parts of the brain. For this purpose,  
the sheet-like cortex may be thought of as approximately divided into three major  
layers. The uppermost layer (sublayers nand· III) contains neurons that are  
connected to other neurons in different parts of the cortex. The middle layer (layer  
IV) receives input from other parts of the brain. and the bottom layer (V and VI)  
contains neurons which handle cortical output to other parts of the brain.  

Our main interest is in the connection patterns between different neuronal units 
in functionally different cortical areas. Recent experiments strongly suggest that the 
axonal arborization is an important vehicle by which the neuron expresses functional 
diversity. For example, three-dimensional reconstructions of striate neurons stained 
with HRP show that the axons exhibit striking geometric orientation preferences 
[Gilbert and Wiesel, 1983]. As another example. Blasdel [Blasdel et al., 1983] has 
shown a case in striate cortex where the axonal butons from a neuron in layer (V . 
remain exactly within an occular dominance column. This is only one experiment, 
but its important implication is that the connections are an important way to achieve 
functional diversity. 

3.2 Functionally Different Cortical Areas 

The two-dimensional, six-layer structure holds for almost all of the cortex, but at 
. a lower level of detail the cortex can be differentiated into distinct areas. In fact, it 
has been known for a long time that the cortex itself can be divided into different 
cytoarchitectural regions [Brodmann, 1909], with the different regions almost always 



having different functional characteristics. These functional characteristics have been 
determined through a variety of techniques, including anatomical track-tracing, 
lesion studies, radioisotope labeling. and single electrode recordings (e.g., [Zeki, 
1978]). Figure 5 shows different areas for owl monkety cortex after Allman [Allman 
et al., 1982]. 

Figure 5. 

The figure shows predominantly visual areas and somatosensory areas. Other areas 
are in the process of being mapped. The visual areas are all retinotopic; that is. 
moving an electrode across the cortex in a visual area corresponds to traversing the 
visual field in a retinal coordinate frame. The different visual areas each exhibit 
geometric distortions of the visual field as hinted at by the different midline locations 
shown on the figure. A helpful method of identifying such fields is to stain callosal 
fibers connecting the two hemispheres. since companion visual areas are densely 
interconnected- at the regions corresponding to the midline in the visual field [Van 
Essen et al., 1982]. 

The first visual area, VI, seems to represent primary visual parameters such as 
disparity. orientation. luminance. change. and color. Other areas seem to represent 
more abstract features. For example. MT neurons have been found that are sensitive 
to changes in physical motion. 

The visual areas can be coarsely characterized as to whether they seem to be 
involved in stabilized vision or motion. For example. with reference to the owl 
monkey. DL and OM [Allman et al., 1982]. which have expanded foveal 
representations of the visual field. would seem to be carrying out computations 
important in stabilized vision. In contrast. MT and M. which are most responsive to 
moving random dot patterns. would seem to be carrying out computations important 
for motion. 

-Areas adjacent to the visual areas generally represent very abstract parameters. 
However. characteristics of the visually responsive neurons in superior temporal 
sulcus are that they are responsive to non-retinotopic stimuli [Gross et al., 1982]. For 
example. Sakata [Sakata et al., 1980] has identified neurons responsive to full-field 
rotations in parietal cortex. 

3.3 Abstraction Hierarchies 

Different cortical areas seem to represent information at different levels of 
abstraction [Van Essen and Maunsell, 1983]. As an example we consider the relation 
between intensity changes and optic flow. Optic flow is a retinotopic projection of 
the three-dimensional velocity field. Early in the visual areas neuron RFs are 
sensitive to some kind of motion. but there is a distinction between motion as 
reflected in time-varying intensities and motion as represented by optic flow: optic 
flow neurons respond to physical velocity changes and not to illumination changes. 

An important experiment is that of [Movshon, 1983]. which compared the 
response of neurons in VI and MT in the macaque. Given a checkerboard stimulus. 



Figure 5: The representation of the distinct sensory domains in the cerebral cortex of 
the owl monkey. Above is a ventromedial view of the right hemisphere; below is a 
dorsolateral view. 01, Dorsointennediate Visual Area; DL, Dorsolateral Crescent 
Visual Area; OM. Dorsomedial Visual Area; IT. inferotemporal Cortex; M. Medial 
Visual Area; MT, Middle Temporal Visual Area; PP. Posterior Parietal Cortex; VA. 
Ventral Anterior Visual Area; Vl', Ventral Posterior Visual Area; AI. First Auditory 
Area; AL. Anterolateral Auditory Area; CC. Corpus Callosum; ON. Optic Nerve, 
OTt Optic Tectum; PL. Posterolateral Auditory Areas; R. Rostral Auditory Area. 
From [Allman et al., 1982]. 
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neurons in VI responded optimally when the motion-was perpendicular to the 
intensity gradients of the checkers. Some neurons in MT responded when the motion 
of the checkerboard was aligned with their preferred direction. While the number of 
neurons tested in MT was small, the result hints that the representations that are 
arrived at by abstract mathematical analysis of the physical constraints may be 
directly implemented in the underlying neural structure. Furthermore, the neural 
responses are compatible with value unit criteria (Table 1). 

Anatomical evidence that cortical areas may represent information at different 
levels of abstraction comes from the consideration of cortico-cortical connection 
patterns [Maunsell and Van Essen, 1982]. [f area A is more abstract than area B, it 
will receive different connections to its layer [V and send connections to B's layers ll, 
Ill, and V, or 1I, HI, and VL Using this result and the connection patterns for the 
owl monkey [Allman et aI., 1982], one can construct the following hierarchy (Fig. 6). 
This hierarchy also can be partitioned into form (OL-OM) and motion (\1T-M) 
channels, following Maunsell and Van Essen's observations on the macaque. The 
difference between form and motion is that form requires the processing of 
distributed, spatial locations, whereas motion (in the case of a rigid body) can be 
summarized as a few feature values such as rotation and translation. Evidence for the 
form-feature distinction comes from a number of experiments (e.g., [Mishkin et al., 
1983]). These show that macaques with inferotemporal lesions perform poorly at 
feature recognition tasks whereas macaques with parietal lesions perform poorly at 
spatial location tasks. 

Figure 6. 

Much data exists to show that orderly abstraction hierarchies are also present within 
an individual area. For example, Hubel and Wiesel [1962: HLIbel et al.. 1978] 
described simple, complex, and hypercomplex neurons in striate cortex, and other 
functional experiments imply that the most abstract neurons in an area reside in the 
upper layers [Movshon, 1983: Pasternak et aI., 1981]. 

Although the definitive experiments have not been done, preliminary evidence 
from [Woolsey people] suggests that similar hierarchical organizations exist in motor 
and somatosensory areas. 

3.4 Spatio-Temporal Channels 

Another important feature of cortical structure is the retino-cortical pathways. 
The neurons in these pathways have markedly different spatio-temporal responses 
(for a review, see [Stone et al., 1979]). Neurons in these pathways can be broadly 
classified into three types: 

1)  X-cells, which have fine spatial 'resolution, but coarse temporal 
resolution: 

2)  Y-cells, which have coarse spatial resolution and fine temporal 
resolution: and 

3)  W-cells, which have relatively coarse resolution in both space and 
time. 



Figure 6: Organization of owl monkey cortical areas into a functional hierarchy using 
Maunsell and Van Essen's [1982] connection principles and data from Weller and 
Kaas [1982]. Arrows denote direction of hierarchy using either the feed forward or 
feedback principle. 
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The X-Y-W.system is involved in two distinct spatio-temporal channels that are 
distinguished by involving different subcortical nuclei and by different cortical 
afferents. The most studied pathway is from the retina through the lateral geniculate 
to striate cortex. In the cat, the X-Y-W systems have separate locales in both the 
LGN and cortex, and this result seems to be true also for monkeys. 

The other pathway is from the retina to the superior colliculous, to the inferior 
pulvinar, and then to cortex. The interesting results here are: (1) only the Y-W 
neurons seem to be involved in this pathway; and (2) the cortical afferents terminate 
in most retinotopic areas [Weller and Kaas, 1982]. These two channels are 
summarized in Figure 7. 

Figure 7. 

The discussion in this section has been focused on the cortex in order to describe 
findings that relate to connectionist models. The main points are: 

1)  The processing architecture is surprisingly uniform when the cortex 
is considered as a two-dimensional sheet of layered processing 
columns. 

2)  The two-dimensional sheet is divided into different functional 
areas; that is. areas wherein single unit recordings reveal different 
and characteristic responses. 

3)  Emergent evidence suggests that much of the functional diversity is 
realized through axonal connection patterns. 

4)  The different areas form a natural hierarchy which is revealed 
through the layered patterns of efferent and afferent connections. 

5)  The hierarchies can be thought of as further divided into channels. 
The principal channels are spatio-temporal channels and have 
direct anatomical correlates in terms of cell types. 
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figure T. Spauo-temocral cbannets. The two principal pathways ,t9, cortex: (1) the 
tectopulvinar relay system (Y-W only) and (2) the lateral geniculaterelay system (X
y -W). After Weller and Kaas [1982t. . 
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4. Value Unit Constraints on Cortical Organization 

One of the most interesting aspects of the value unit model is that it has huge 
consequences for cortical organization. This section shows how the value unit 
representation constrains the geometry of the cortical layout. 

4.1 Relating Function to Cortical Topography in Striate Cortex 

Let us first consider striate cortex. One of its main characteristics is an explicit 
representation of the visual environment. Recently, Marr [1978] and Barlow [1981] 
have articulated the notion of explicitness in cortical representations. An old puzzle 
was the huge ratio of cortical to retinal neurons, since in some sense the cortex 
cannot add to the information represented in the retina. Most data suggests that 
while the cortex does not expand retinal information, it does make implicit 
information explicit. The visual field is mapped onto it retinotopically. The entire 
visual field is represented, but the central...portion is magnified by having more 
cortical cells. Neurons in a certain area 'will only respond to inputs in a particular 
part of space, but within that cortical area several other parameters are represented. 
There are neurons sensitive to edge orientation [Hubel and Wiesel, 1962], scale (or 
"spatial frequency") [De Valois, 1977], and ocular dominance [Hubel and Wiesel, 
1962], as well as other parameters for a particular part of visual space. Tootell 
[Tootell et al., 1983] has shown that the representations of these different parameters 
occupy different but overlapping areas of cortical space. Since all values of this list of 
parameters may occur at a particular point in space (and its corresponding locale in 
the cortex), they must be represented somehow within that small cortical space. One 
way of doing this would be to have a neuron for discrete values of every parameter 
(e.g., each value for scale (spatial frequency), each value for orientation, etc.), and to 

a first approximation this seems to be the underlying representation. The major 
refinements are: (1) that neurons generally have multi-parameter responses, e.g., a 
neuron that is sensitive to orientation will generally be sensitive to certain values of 
velocity, as well as other parameters; and (2) neurons will have overlapping receptive 
fields. 

4.2 Primary and Secondary Indices 

The place-coded structure constrains the functional layout of striate cortex in 
ways that can be generalized. We argue that the problem is to represent multi
dimensional fundamental parameters in a two-dimensional architecture. This 
constraint usually means that two of the parameters can be regarded as the primary 
indices. Variations in these two parameters span the cortical area. In all the visual 
areas, the primary indices are retinal coordinates, and secondary indices are important 
visual parameters, such as orientation. colors, and motion. For each value of the 
primary indices, a complete set of secondary indices will be represented. Figure 8a 
shows a schematic of some of the parameters of striate cortex in the macaque using 
secondary indices of edge orientation and ocular dominance. This basic organization 
has been found for many other cortical areas. For example, the body is represented 
four different times in Brodman's areas 1, 2, 3a, and 3b [Kaas et al., 1981]. The 
primary indices are topographically related to the body surfaces and the secondary 
indices are related to tactile and joint sensory parameters. Sensory areas have been 
found where the primary indices are not space (e.g., auditory cortex, olfactory cortex) 
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but, in general, the correct non-spatial primary indices are difficult to deduce, since 
one must guess the correct parameterization. An area where the correct guesses may 
have been made is the frontal eye fields [Goldberg, 1982] which govern eye 
movement Here the primary indices seem to be: the magnitude and direction of the 
next eye movement represented as a vector. Secondary indices that have been 
discovered are the last eye movement, also represented in terms of a radius, 
direction. Figure 8b schematizes this organization, and Table 2 summarizes some 
current physiological findings in terms of the primary and secondary indices, drawing 
on data from [Maunsell and Van Essen, 1982; Tusa et al., 1979; Tusa and Palmer, 
1980; Burton and Robinson, 1981; Juliano et al., 1983]. 

Figure 8. 

Although the primary indices for the somatosensory areas are listed as being 
body-topographic, this classification is becoming more tentative. Recent evidence 
[Burton and Robinson, 1981: Juliano et al., 1983] shows that the body parts are 
multiply represented. This may be due to the fact that body topography is a 
secondary index in these areas, and that there exists a primary index with a broader 
classification. One suggestion is that a body pan is organized by broad kinds of tasks 
in which it participates. Thus when a finger is used alone it might be in one locale, 
whereas when it is used with digits from the opposite hand, it may be in another 
locale (but both would be regarded as being within a task-indexed cortical area). 

Many neurons, for example frontal eye field neurons, have large overlapping 
RFs, and this brings up an important point. The indices are defined by the 
parameter value that gives the maximum response. The neurons may have large RF 
widths that are related to their inputs and are, of course, totally unrelated to the 
width of their cortical columns. 
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Figure 8: (a) Schematic of organization of striate cortex. Primary indices are X and 
Y; two of the secondary indices are occular dominance and orientation. (b) 
Schematic organization of frontal eye fields (after [Goldberg, 1982]). Primary indices 
are next eye movement R, <1>. Secondary indices are last eye movement r, 8. 
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Table 2.  

MONKEY (macaque)  

Area Primary Indices Secondary Indices 

VI space (retinal) spatial frequency, color, 
orientation, ocular 
dominance 

V2 space (retinal) motion, .disparity 

V3 space (retinal) 

V3A space (retinal) 

V4 space (retinal) color 

MT space (retinal) motion 

FEF t:. space (next eye movemt.) t:. space (last eye movemt.) 

I, 3b body surface cutaneous parameters 

3a,2 topological space joint & muscle parameters 

CAT 

Area Primary Secondary 

17 space (retinal) spatial frequency, ocular 
dominance, orientation 

18 space (retinal) motion 

19 space (retinal) 

The primary/secondary index dichotomy is meant to be a useful distinction to aid in 
the interpretation of the possible function of cortical areas. An important refinement 
that this distinction does not address is the details of the packing of secondary 
indices. Two recent models for striate cortex [Dow and Bauer, 1983: Cynader et al., 
1983] directly address this issue, as does work by Tootell [Tootell et al., 1983]. 
Livingstone and Hubel [1984], Hubel and Wiesel [1963], and Singer [1981]. 

4.3 Space Limitations Require Different Functional Areas 

We term a regular organization of neurons in the cortex, like those in VI. a 
parameter net. Its characteristics are that all values of a small set of parameters must 
be represented within a certain area. One important question is: why should these 
parameters be clustered in this fashion [Cowey, 1981]? Our answer is that. in any 
given area, a severe packing constraint follows from the fact that neurons have multi
modal responses. Such responses are exemplified by orientation-sensitive neurons 
which will also respond to motion, spatial frequency, and other stimulus variations. A 
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consequence of this property is. that only about 5-15 scalar parameters can be 
represented in a given cortical area. This is because the number of units required 
grows exponentially with the number of parameters. [f N is the number of just 
.noticeable differences in each scalar parameter and k is the dimensionality of the unit 
(number of parameters), the total number of units required is Nk. Thus we refer to 

this severe packing constraint as the Nk problem. 

Overlapping the receptive fields can alleviate the NK problem, but not to a 
significant extent. The main benefit of overlapping, multi-dimensional units is that in 
an architecture where units are expensive and connections are relatively cheap, these 
units can allow for the representation of a given signal resolution with less units. 
Basically, one can intersect the RF of overlapping units through spatio-temporal 
summation, as shown in Figure 9. Hinton (1981] has shown that the savings is a 
factor of 1I0k-1 where 0 is the diameter of the receptive field, in units of desired 
maximum resolution, and k is the dimension of the stimulus. 

The overlapping RF encoding scheme has an accompanying disadvantage. It 
cannot signal closely spaced stimuli simultaneously without error, as shown in Figure 
9. Thus the price paid for the encoding economy is some loss in parallelism. 

Figure 9. 

It is informative to plot the number of units required as a function of Nand k, as 
shown in Figure 10. The different curves correspond to different values of O. These 
curves support the assertion that the dimensionality k that can be represented in any 
cortical region must be on the order of 5-15, even given the overlapping field 
strategy. Thus a consequence of overlapping: explicit representations and the number 
of neurons available is a fundamental limitation on the number of parameters that 
can be represented in a given cortical area. If this is the case, then a natural 
consequence of having more parameters is to have more cortical areas. This may be 
one of the reasons for the several visual areas seen in the cat and primate cortex. 
Extensive data from electrophysiological recordings reveals that neurons in the 
different visual areas have different responses. Figure 11 shows data from Allman et 
al. [1982] for different cortical regions in the owl monkey. While all the visual areas 
have some neurons that respond to almost any given stimulus, certain areas have 
large portions of their neurons dedicated to particular subsets of visual parameters. 
Intriguingly, these parameters are similar to parameters that have been shown to be 
computable by parallel algorithms: color, edge orientation, disparity, surface 
orientation, and optic flow [Brady, 1982; Marr, 1982; Ballard et al., 1983]. 

Since low-dimensional spaces are an economical representation, one might 
wonder why minimal dimensions are not used. The answer is that low-dimensional 
spaces have special representational problems termed "illusory conjunctions." These 
are described in Sections 5 and 6. 

Figure 10. 

Figure 11. 
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Figure 9: (a) Non-overlapping encoding for a parameter space with N = 3 and k = 2. 

In general, the total units required by this scheme is proportional to N"'. (b) A coarse 
coding of this space uses three arrays of units (one unit from each array shown), 
where each unit has a diameter 0 =3. The diameter is defined in terms of the high 
resolution units. The simultaneous firing of all three units denotes input in area 

indicated. In general, the total units required by this scheme is N"'/D"'-l. (c) 
Developing the example in (b) further to show how closely spaced stimuli can lead to 
errors: stimuli at the shaded positions produce two errors denoted by Xs. 
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Figure 10: The fundamental restriction on the dimensionality of a conical area. The 
graph shows the total number of units T required as a function of different values of 

k,Nand 0 where T = Nk/Ok-l. Since the number of units in an area must be less 

than 1010, the dimensionality of an area must be less than 15. 
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Figure 11: Functional specificity in visual areas OL. MT. OM. and M in the owl 
monkey. (Refer to Fig. 5 for the locus of these areas.) The strength of the functional 
attribute is indicated by the size of the black squares. From [Allman et al., 1982]. 
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4.4 Effects of Changing Indexing Schemes on Anatomical Connections 

If different cortical areas use value units but with different parameters, It IS 
.natural to ask how they are interconnected. A major consequence of the value unit 
hypothesis is interconnections between the different areas should show up as 
distinctive patterns that can be revealed by current histochemical staining techniques. 
Basically, retrograde staining between areas with different primary indices should 
produce distinctive spot-like or band-like patterns. Furthermore, these patterns 
should be related to functional organization. Evidence for such bands has been 
demonstrated in retrograde horse-radish peroxidase (HRP) staining [Gilbert, 1982; 
Montero, 1981; Curcio and Harting, 1978]. To repeat the important point, such 
patterns would arise from interconnections between areas with different primary 
indices. The different visual areas do not meet this condition, being indexed by space 
in every case, In fact, experiments by Montero [1981] on retinotopic areas in the cat 
strongly suggest that they are connected on a point-to-point basis. 

To develop the argument for connections between areas where the primary index 
changes, we first consider an abstract example. Figure 12 shows a case of two 
representations which differ only in that the order of indices have been reversed. In 
Figure 12a the primary indices are (x.y): in Figure 12b the primary indices are (a,f3). 
Now consider the connections from area B to area A. In particular, consider all 
connections that synapse in the shaded box in A. This box contains units which have 
all values of a and f3 and a particular value of x and y. Where are these 
corresponding units represented in area B? One quickly sees that the global pattern 
of area A must be repeated for every column of different values of (a,f3) in B. Thus 
retrograde staining from A to B would reveal these neurons as spots of stained cell 
bodies. Since the connections between the two areas are symmetrical, retrograde 
staining from B to A would reveal the same kind of pattern. An interesting feature of 
this organization is the insensitivity of the demonstration to the size of the site. 
Suppose, rather than a single cortical column, one considered several adjacent 
columns. Analysis shows that the spots in B are now larger but that the overall 
pattern is unchanged. 

Figure 12. 

Even when the indices change and are not a,f3 but instead f{a,f3),g(a,f3), the same 
kind of patterns can occur. This analysis is derived from the interconnections 
between two different cortical areas. To expand on this point, consider the example 
of computing a global visual parameter with value units, say egomotion parameters, 
from a retinotopic map such as optic flow. Figure 12c and d show representative 
connections for the subset of value units that have zero rotation. TIlUS, wherever the 
primary indices in the two areas are different, the connections between areas should 
form a characteristic pattern indicative of a one-to-many mapping. Thus this model 
can explain the patchy areas of label in retrograde staining experiments [Gilbert, 
1982; Goldman-Rakic and Schwanz, 1982; Curcio and Haning, 1978; Montero, 
1981]. 

To understand our intercortical connection hypothesis it may help to compare it 
with the intracortical explanation advanced by Mitchison and Crick [1982] to explain 
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Figure 12: Two examples showing how connection patterns can change between 
retinotopic (A, A') and non-retinotopic areas (B, B'). The upper two figures show 
how connection patterns can change in a hypothetical situation where the primary 
and secondary indices are interchanged in two different areas. In Area A the primary 
indices are (X,Y) and the secondary indices are (a,f3), and in Area B the primary 
indices are (a,f3) and the secondary indices are (X,Y). The shaded areas are examples 
of those that would be connected on a point-to-point basis. The second example 
shows a subset of the connections in a situation where the retinotopic area A' 
represents optic flow as indicated by direction vectors and the non-retinotopic area 
represents rigid motion parameters for translation (U. V, W) and rotation. The 
primary indices are assumed to be U/W, V/W. Next we show a subset of the 
connections from A' to B' that represent values of rotation equal to zero. The three 
rotation parameters are not specified in the figure, but it is assumed that a rotation 
value of zero is at the center of each of the areas with different primary indices. Both 
of these examples are meant to be representative of the kinds of transformations that 
occur when the primary indices of different areas are different. The patterns may not 
be as regular as depicted here, but in general will be "point-to-many." 
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.,  Rockland and .Lund's [1982] tree shrew data. In the tree shrew, extra-cellular 
retrograde HRP transport from a striate cortex injection site produced patchy 
labeling within the striate area. Mitchison and Crick hypothesized that the patchy 
labeling arises from the orientation, of long axons that connect neurons of similar, 
orientation selectivity. In our terminology, the primary indices do not change in this 
case, but the- particular secondary index that is labeled happens to depend on 
parameter values in a specific geometric direction. In short, the tree shrew data can 
be explained by connections between related parameters within the cortical area, but 
the same kinds of patterns could be produced as a consequence of changing indexing 
schemes in different cortical areas. 

4.5 Developmental Constraints on Cortical Structure 

The synopsis of the description of cortical representation of parameters was: a) 
that the cortical areas were arranged in patches, using primary and secondary indices 
for groups of 5-15 parameters; and b) interconnections between patches that had 
different primary indices should reveal characteristic spots or bands, whereas 
interconnections between patches with the same primary indices would be oneto-
one.  That  this  organization  should  hold  for  the  entire  cortex  has  been  argued  by 
extrapolating  current experimental  evidence.  These arguments  become  weaker  as the 
representation  becomes  more  abstract.  That  is,  numerical  or  topological  parameter 
organizations  are  naturally  represented  with certain  primary  indices  in  the  cortex.  In 
many  computations  one  can  imagine,  connections  are  needed  to  nearby  values 
(speaking  numerically).  Matters  are  greatly  simplified  in  a  representation  where  the 
nearby  numerical  quantity  is also an  anatomical  neighbor.  This  advantage  lessens as 
the  parameters  become  more  abstract.  rn  dealing  with  sets, one  might  expect  to  be 
able  to  shuffle  the  order  of neurons  (while  preserving  connections)  without  result. 
However,  these  are  not  the  only  constraints  on  conical  organization. 

Another  source of constraints  is developmental:  the brain  has to  connect itself up 
correctly  in  the  first  place.  Experiments  by  [Rakic,  1974; 1981; GoldrnanRakic  and 
Schwartz,  1982]  have  revealed  an  elegant  pattern  of cortical  growth  that  produces 
interleaved connections  between  different  areas.  Interleaved  connections  may  be 
achieved by  the  temporal phasing of growth  [Rakic,  1981].  For  example,  connections 
from area A to cortical area  B may  initially  be  dense,  but are spread apart by cortical 
growth. Another  set of connections to  B starting at  a later time can  use the  first set of 
connections  as  guides  to  fit  in  between  them  in  a  uniform  fashion.  Thus  the 
parameters of secondary  indices may  be  naturally  placed at the ends of appropriately 
interleaved  connections  to  areas  which  use  them. 

To  conclude  Section  4,  we  summarize  the  main  points: 

1)   The  cortical  architecture  can  be  thought  of  as  composed  of 
functional  areas,  each  representing  a  multidimensional  parameter 
space. 

2)   Our hypothesis  is that  these  parameters  project  onto  the  cortex  in 
such a way that two dimensions are  isomorphic  to the cortical  sheet 
and  the  rest are  interleaved.  The  former  are termed primary  indices 
and  the  latter  are  termed  secondary  indices. 
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3) .. Constraints onunit value architecture suggest that only 5 to 15 
.parameters can be completely represented in any given cortical 
area. 

4)  Savings in units can be achieved with overlapping RFs but only 
with the sacrifice of parallel computing capability. 

5)  Connections between cortical areas with different primary indices 
are primarily one-to-many. 

6)  Value unit concept is compatible with current ideas about cortical 
growth whereby connections from different regions are temporally 
sequenced. 
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5. Computing with,Cortlco-Cortical Connections 

The introductory section describes how value units can be used for a general 
class of computation; The map coloring example faithfully represents the abstract 
nature of the computation but is removed from general perceptual and cognitive 
problems. This section closes this gap by discussing two examples, from shape and 
motion perception, respectively. 

The fundamental issue for value unit encoding is the Nk problem described in 
Section 4.3. Given this limitation, how can one represent information in a way that 
captures sufficient diversity? The answer is that there are many different strategies 
for decomposing high-dimensional structures into networks of value units, each of 
low dimensionality. However, two of these are the most important: hierarchies and 
subspaces. 

Hierarchies split higher-dimensional spaces into more abstract and less abstract 
parts. As an example, consider some enumeration of tasks T, e.g., hammering, 
sawing, etc., with objects 0 that the tasks are applied to, e.g., nails, wood, etc. Here 
our notion is that a task is a more abstract concept than the object of the task. One 
could have units for each combination, i.e., T x 0, but a more economical 
decomposition is to have separate networks for T and 0 with constraints between 
them. 

Subspaces are a mathematical concept that logically includes the above example, 
but we (somewhat arbitrarily) use the term for decompositions at the same level of 
abstraction. The idea is simple: if a value unit representation is infeasible for some 

dimension k, i.e., Nk exceeds 1010, then split the space into m subspaces, each of 
lesser dimensions k1 ... such thatkm, 

m 

~  Nki « 1010  

i= 1  

The first question that occurs is that of when the subspaces uniquely represent the 
original data. (This is very similar to the reconstruction from projections problem in 
computed tomography, except that now the units are either on or off.) 
Unfortunately, the answer depends on the number of high-dimensional units that 

. would be on. If this number is n, then the number of subspaces of dimension k: (= 
kl = k2 = km) that are required to unambiguously represent the high-dimensional 

data has been shown to be bounded by [Kempennan, 1982]: 

1 + n«k div m) - 1) 

where div denotes integer division. This result requires the number of subspaces to  
grow as the complexity of the information, What this means is that, in general, some  
trade-off will have to be made. The subspaces can be chosen to unambiguously  
represent a certain number of concepts; after that point some ambiguity will be  

. introduced into the representation. This ambiguity is dealt with in the next section.  
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The remaining parts of this section illustrate specific solutions to the Nk problem 
that use hierarchies and subspaces. 

It is very .important to understand the claim made by the following examples. 
Since these examples illustrate technical details of the value unit approach, they may 
also inadvertently overemphasize particular constraints compared to competing 
parameterizations cast in terms of conventional computing models. Better constraints 
may be found; the main point that these examples illustrate is that in order to be cast 
in terms of the value unit model, the constraints have to be expressed in terms of sets 
of relations, each involving only a small number of terms. 

5.1 Shape Perception 

One way of recognizing a familiar rigid shape relates visual features in a retinal 
coordinate frame to those of a stored prototype. The stored prototype is economically 
described with respect to an intrinsic frame which is related to some special features 
of the prototype itself (Figure 13a, b). To relate the retinotopic and intrinsic data, a 
coordinate transformation between the two frames must be computed. By choosing 
the visual features. appropriately, this coordinate transformation can be easily 
computed if the correspondence between a prototype feature and retinotopic feature 
is known. We have shown that the correct transformation can be computed even 
when this correspondence is not known in advance: all possible correspondences 
compute transformation values, and the correct value is selected as the consensus 
among the different values computed. 

One extremely plausible use of cortico-cortical connections is for computing 
these kinds of coordinate transformations. The key to this computation is to 
represent possible transformation parameters as explicit value units [Ballard. 1981; 
Hinton. 1981]. Once this is done, any transformation x ' = Tx, where x ', x are data 
in two different coordinate frames and T is the transformation between them, can be 
captured as a relation between an explicit x: unit and explicit transform unit and an 
explicit x unit [Hinton, 1981]. Figure Be shows this relationship diagrammatically. 

Figure 13. 

The diagram shows conjunctive connections (described in Section 2.1) to a 
representative transform unit Thus, a T unit will only receive input if both the x ' 
unit and the x unit are on. To make this more specific, consider the domain of two
dimensional polygonal shapes such as that shown in Figure 13a and b. Let each edge 
segment of the polygon x be described by four parameters: horizontal-position, 
vertical-position, length, and orientation. The components of the transformed 
polygon x ' can be represented similarly. The transformation parameters T can also 
be represented by four components: change-in-horizontal-position, change-in
vertical-position, scale, and rotation. Let x = (x, y. I, 0), x: = (x', y', 1', 0'), and T 
= (ax, Lly, s, LlO). Then 



a b  
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Figure 13: (a) Da.ta fo~  a "wrench" displayed as. four-parameter. ( x - I o c a t i ~ n ,  y
location, length, orientation) vectors. (b) Corresponding data for a simulated Image. 

Here the wrench appears scaled, translated, and rotated together with other 
background vectors. (c) The principle of detecting a transformation via explicit 
transformation units..Each (x, x') pair of units is connected to a transformation unit. 
The unit that receives the most is selected as the appropriate transformation. (d) An 
example of a specific connection. 

c 
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!:.O = 0 - O' 

s = 111' 

!:.x x - x ' .s.coss - Y' .s.sins 

!:.y y + x· .s.sins - Y' .s.coss 

These relations can be used to determine connecnvity patterns between three 
networks of four-dimensional value units. As an example of a particular connection, 
the unit x: = (2, 3, 10, 40°) together with the unit x = (5, 8, 5, 70°) connect to the 
unit T = (3, 8, 'h, 30°), as shown by Figure l3b. Each pair of units that are on (s(x) 
= s(x') = 1) provides input for a transformation unit. If there is a subset of (x, x) 
pairs that are related by the same transformation T, then that T unit will receive the 
most input. 

This strategy was successfully used to recognize two-dimensional shapes in 
[Ballard, 1981]. However, we were more interested in extending this result to three 
dimensions. In three dimensions, seven parameters describe the transformation: scale 
(one), rotation (three), and location (three). Simple calculations show that if there are 

M units each of different x', x, and T, there will be 3M2 total conjunctive 

connections and approximately M per unit. In the case where M = Nk, where as 
used earlier, N is the number of just noticeable differences and k is the dimension of 
the stimulus, the number of units can become prohibitively large. For the three-

dimensional case, (N = 100, k = 7) would require 1014 units! Coarse coding can be 
used to reduce this number and will be especially effective for encoding T units since 
only one value will be present for most tasks. ln general, however, additional 
economies must be sought. 

One general strategy for dealing with high-dimensional parameters is to split 
them up into subspaces [Ballard, 1984; Ballard and Sabbah, 1983: Hrechanyk and 
Ballard, 1983]. This is especially attractive in the case of transformations, since 
explicit algebraic relationships can be found between sub-dimensions, as shown by 
the earlier equations. (This has recently been done for three-dimensional shapes 
[Ballard and Tanaka, 1985], but we will stick with two-dimensional shapes in our 
example. as the graphic displays are more intuitive.) In the two-dimensional example, 
four-dimensional x, x: and T units can be split into nine subspaces, each of which 

contains only N2 units. The image data is represented in terms of three groups of 
units: (1) position units: (2) orientation and scale units: and (3) coarse resolution 
position-orientation-scale units. The last group is the group that was costly to 
represent under the earlier scheme, but in this case the resolution of these units is 
extremely coarse. This is possible since they work in conjunction with the other fine 
resolution units. Model units are represented in the same way. with three groups of 
units like those that represent image data. Interestingly. these groups are similar to 
cells found in striate cortex. Simple cells are position sensitive. complex cells are 
orientation sensitive (and, unlike the units in our model, weakly position sensitive). 
and hypercomplex cells are coarsely position and orientation sensiti ve. The 
transformation T is represented by three groups of units: (1) scale-rotation units: (2) 
rotated position units: and (3) translation units. Figure 14 shows the relationship 
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between these units. Note that only representative units are drawn. Each such unit is 
part of a group which collectively covers all values of the particular parameters. 

This example reflects computational requirements more than the underlying 
biology: it is a sufficiency proof that the transform can be computed in parallel using 
only two-dimensional value units. Nonetheless, since the algebraic relationships are 
basic, it would not be surprising if they were exploited by the underlying biology. 
The "answer" is described by the most active rotation and scale unit (5 in Figure 14) 
and the most active translation unit (9 in Figure 14). 

One drawback that the subspaces have is that an image shape that matches 
correctly in each subspace but does not have the right location/orientation-scale  
correspondence would be indistinguishable from the correct shape. In other words,  
(t +-) would match (+- t). This is an example of a general phenomena of errors in  
subspace correspondence known as illusory conjunctions [Treisman and Gelade,  
1980]. In our design we implemented constraints that loosely couple the two  
subspaces in order to reduce the amount of illusory rotation/scale conjunctions.  
However, this problem is probably solved by selective focus of attention. But since  

, this is a sequential mechanism, it is beyond our present scope. Another helpful  
constraint is that of rotation scale filtering, which gives more emphasis to length- 
orientation  units  that  have  an  associated  on transform  unit  and  model  unit. 

Figure  15  shows  several  of the  networks  in  the  computer  simulation  after  one 
parallel  iteration.  In  this  experiment  the  data  of Figure  13c and  d  was  used  as  the 
model and  retinotopic  input,  respectively. The  model  is a caricature of a wrench  that 
appears  transformed  in the  simulated  image  together with artificially generated noise 
vectors.  Figure 15a and  b shows how the  wrench  looks in terms of the  two subspaces 
(x ':  location) and (x: rotation  and  scale), respectively.  Figure  15c and  d  shows  that 
the  network  correctly  computes  the  answer:  single  units  in  each  of  these  spaces-
receive  the  most  input. 

Figure 14. 

Figure 15. 

Shape  recognition  is only  one of several  problems  that  require  the  computation 
of  coordinate  transformations.  Two  other  examples  are  sensory  motor  guidance 
[Sparks,  1983]  and  stable  perception.  The  solution  for  shape  perception  directly 
carries over to these other problems,  although  in each  case there will be  many other 
nontransformational  issues.  For a  development  of the  stable  perception  issues, see 
[Feldman,  1982]. 

5.2  Motion  Perception 

Almost  all computational  approaches  to  vision adopt  the  use of hierarchies  that 
represent  parameters  at  increasing  levels of abstraction.  As mentioned  in  Section  3, 

.there  is considerable evidence  that  the cortical  representations  use similar hierarchies. 
These  hierarchies  were  developed  independently.  The  computational  approach 
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Figure 14: The decomposition of the four-parameter units into nine parameter spaces 
of two-parameter units. Only representative connections are shown. The boldface 
notation indicates the value units depicted in a computer simulation in Figure 15.. 



Input Output Type Connection Rule Comment 

1: (X', Y', L', e') 2:(x',y') A x'=X';y,=y, loosely couples 
3: (1',8') l:(X',Y',L',e')A L' = I',e' = 0' two subspaces 

2:(x' ,y'), 5 : ( s , ~ 8 )  M = X' .s.cosss rotate model4:(xr'Yr) Xr 
+ Y' .s.sinas 

Yr = - x' .s.sinas 

+ Y' .s.cosas 

4:(xr.Yr)' 8:(x,Y) 9:(~x,~y)  M (~x,~y)  = (xr-x, Yr-Y) translation 

matching 

3:(1' ,0'), 5 : ( s , ~ 0 )  6:(1,0) M (1,0) = (s.l-, ~O  + 0') rotation I 
scale filtering 

3:(1' ,0'), 6:(1,8) M (s.as) = (1/1', 0-0') rotation I 
scale matching 

6:(1,0) 7:(X,Y,L,e) A I = L, °= e loosely couples 
two subspaces 

7:(X,Y,L,e) 8:(x,y) A X - x, Y = y 

A = additive, connections summed Pi = ~WijSj  

M = multiplicative, conjunctive connections Pi - ~wijkSjSk  

Figure 14 Cont A table showing the different algebraic relations used to connect the 
units in the figure. 

J 
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Figure 15: The results of a computer simulation. showing the parameter spaces that 
were outlined in Figure 14. The input to a unit, Pi, is encoded as a grey level. The 

data shown in Figure 13a and b were used as the prototype and image, respectively. 
The objective is to find the correct transformation (scale, rotation) and (x-translation. 
y-translation) units that relate the prototype to a subset of the image data. The top 
two pictures show the subspace encoding technique using the prototype as an 
example. (a) Location units for Figure 13a. (b) Rotation, length units for Figure l3a. 
The bottom two pictures show the subspace encoding of the transformation space. 
(c) The correct rotation-scale unit receives the most input. (d) The correct translation 
unit receives the most input. 
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demands an explicit representation and algorithm to compute information necessary 
to do a specific task. The biological approach is aimed at explaining anatomical and 
physiological data from the cortical substrate. Yet despite this independence, the 
hierarchies reveal surprising correspondences. To be specific, we consider the 
example of motion detection. Table 3 compares computational parameters with 
plausible biological areas. The biological areas were selected on the basis of single 
neuron recording data and interconnection hierarchies [Maunsell and Van Essen, 
1982]. 

Table 3: Motion Perception Hierarchy 

level abstraction computational parameters plausible biological area 

1 Image spatially distributed 
intensity levels 

rods, cones 

2 spatial and 
temporal change 

local intensity change 
due to movement, edges 
or lighting changes 

LGN, VI, V2 

3 optic flow 
and derivatives 

physical velocities 
and spatial derivatives 

MT [Allman et al., 1982; 
Movshon, 1983] 

4 rigid motion parameters of rigid 
motion: rotation and 
translation 

posterior parietal [Sakata et 
al., 1980]: superior tempo
ral sulcus [Bruce et al., 
1981] 

From the computational perspective, each of these levels solves a certain 
problem: they extract important parameters from the level below and represent them 
explicitly. The exact choice of representation between levels 1 and 2 is guided by the 
need to represent both spatial and spatial frequency information [Sakitt and Barlow, 
1982] and the need to represent information at different scales [Poggio et al., 1982]. 
Optic flow is the retinotopic velocity field induced by motion of the observer or 
objects in the world [Gibson. 1950]. Not all spatio-temporal change is due to 
movement, e.g., consider changes in illumination strength. Thus optic flow makes 
explicit the spatio-temporal change that arises from pysical movement. The explicit 
representation of optic How is an important step, but in order to use motion stimuli 
fully, the information must be transformed into rigid body parameters. In a value 
unit model, optic flow vectors turn on units representing global rotation and 
translation vectors. Information in this form can be used for recognition, eye 
movements, and navigation. 

One could question whether all these levels are really necessary. From pure 
computational principles, it is possible to bypass levels and compute rigid body 
motion parameters directly from image intensities; however, the value unit 
representation scheme demands intermediate levels because relations that are 
expressed in terms of many parameters involve too many connections. Like the 
number of units, the number of connections increases exponentially with the number 
of parameters. Thus in value unit representations, the only scheme which is practical 
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-in terms of numbers of connections must use intermediate representational levels. 
Keeping the constraints simple by introducing hierarchies has another advantage: 
there is a better chance that abstract units can evolve naturally during a learning 
process by being fortuitously connected to highly correlated units representing less 
abstract information [Barlow, 1983; von der Malsburg and Willshaw, 1977; Hinton 
and Sejnowski, 1983]. Thus in terms of normal spatio-temporal change, optic flow 
may be an invariant that is sufficiently probable to be learned by a Hebbian scheme 
such as [Hinton et al., 1984; Barto et al., 1982], whereas rigid motion parameters may 
be insufficiently correlated. On the other hand, the rigid motion parameters may be 
highly correlated in terms of optic flow. Once an abstract level has been learned, 
levels that are even more abstract can be learned. 

While the optic flow computation is particularly elegant, similar constraints may 
be found for rigid body motion parameters. Ballard and Kimball [1983] have shown 
a formulation that uses temporal variations in the optic flow. In that implementation, 
rotation is found by assuming that three-dimensional velocity information is available 
from the time-varying image. Other parametric approaches to representing rigid 
body motion, have used the two-dimensional optic flow image [Prazdny, 1981; 
O'Rourke, 1981;' Ullman and Hildreth, 1983]. In particular situations, such as 
translatory motion, other, interesting parameters can be computed directly from the 
optic flow [Lee and Reddish, 1981; Hrechanyk and Ballard, 1983]. All these 
formulations can be translated into the value unit formalism. 

Computing Flow 

To show how the value unit formalism can handle motion, let us start with the 
interconnections at the less abstract end of the hierarchy. Specifically, we show how 
optic flow can be computed from spatio-temporal change. Computing the local 
velocity at a specific retinal location is done differently depending on whether or not 
the spatial image intensities are oriented. To consider the two different cases, suppose 
the image contains an edge. In this case, only velocity estimates perpendicular to the 
edge can be obtained (the well-known "aperture problem"). The other case is when 
the image contains relatively unoriented intensity patterns. If this image moves, the 
velocity can be detected by correlation in space and time. However, space-time 
correlation is costly to implement biologically. A computationally economical 
solution is to be content with the direction of motion and take advantage of motion 
blur. To do this one can use oriented pattern detectors provided their integration 
times are sufficiently long. That is, motion blur produces a spatially-oriented pattern 
which triggers the detector. These two strategies are depicted in Figure 16. Note that 
this slow behavior is the opposite to that of the edge detectors which must have fast 
integration times. Slow integration times in the case of the edge detector will nullify 
its output. 
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. Table 4: Detector Summary. 

.,. = unit integration time; V = speed; 0 = diameter of spatial RF 

Type of Value Unit Integration Time Spatial Frequency Oriented 

Edge T« V/O low yes 

Blur T» V/O high yes 

Spot T« V/D low no 

In addition to velocity direction, velocity magnitude, or speed, can be detected by 
linking pairs of spot detectors. The important point here is that speed can be 
detected with good accuracy given low spatial resolution. These three kinds of value 
units are described in Table 4. Interestingly, the Edge, Blur, and Spot value units 
have strong similarities with neurons in the Y-, X-, and W-system as described by 
[Stone et al., 1979], -but these identifications must be considered very speculative at 
this point. 

Up to this point, the temporal response of the value units to the input has not 
been discussed. For most applications, simply thinking of the response as 
instantaneous is sufficient to illustrate important behavior. However, the motion 
example is a case where the temporal behavior of the unit is important. We assume 
that for most cases the temporal response, expressed as an integration time T, is very 
fast with respect to the stimulus (as before), but that in the special case of blur units, 
it is more helpful to have the response time be slower than the stimulus. This allows 
the unit to respond to the blurred photometric pattern. 

A circuit that uses these different kinds of value, units to compute optic flow is 
shown in Figure 17. All of the units are spatially indexed, that is, repeated for 
different retinotopic locations; only the representative units necessary for the 
computation of one flow vector are shown. Units are on or off according to the 
modeldiscussedearlier. Specifically, at each point: (1) an edge (8) unit is on if the 
input is a linear intensity discontinuity of the appropriate orientation angle; and (2) a 
blur (8) unit is on if the input is moving past that location at the appropriate 
orientation angle [Bandyopadhyay, 1985b]. These are two different ways of signaling 
velocity direction. Speed is detected by combining coarsely-tuned spot detectors from 
different spatial locations. Inputs are linked if spatio-temporal summation is required 
to turn the unit on. The notation "s" means that the inputs must be different by a 
fixed time delay 8. If the flow estimate is determined by an edge (8) unit, additional 
computation is required to estimate the true flow vector since the velocity estimate is 
only for the component perpendicular to the edge. One way of combining the 
information is to use two different estimates. The appropriate connection rule can be 
worked out simply from a graphical construction [Horn and Schunk, 1981; Movshon, 
1983], and Figure 17 shows how to combine two perpendicular components. 

Figure 16. 

Figure 17. 
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Figure 16: Two ways to measure optic flow. Top: (a) Moving high frequency 
patterns indicate flow direction after (b) temporal blurring [Bandyopadhyay, 1985b]. 
Bottom: (c) Moving edges only indicate flow in the direction perpendicular to the 
edge. However, two non-parallel edge measurements can be combined, as shown in 
(d) [Movshon, 1983]. 
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Figure 17: A circuit that implements the different optic flow detection strategies 
described in the text. Oriented Edge units record the perpendicular direction of local 
motion. These can be combined with a measure of speed to estimate the velocity 
perpendicular" to the edge vp- Two local estimates, vp and vp·. can be combined to 

obtain an optic flow vector. A separate mechanism uses blur units that correctly 
measure velocity direction from temporally blurred images. These, when combined 
with a speed measurement, provide a separate estimate of optic flow. 
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As shown in Ballard and Kimball (1983],· the value-unit approach can be also 
applied to the more abstract hierarchical levels. One wants to characterize the gestalt 
of rigid body motion; the solution is to define a parameter space of value units. 
Functional constraints determine the wiring between value units in the different 
representational spaces. If the parameter space dimensionality requires an unrealistic 
number of units, the space is implemented as subspaces of interconnected units. Like 
the form perception experiments.: the motion experiments use· rotational and 
translational subspaces. 

In a value unit experiment to detect rigid motion parameters, if depth and optic 
flow are available, a description of the motion can be created in tenns of rigid body 
parameters. We assumed that related work in stereo [Marr and Poggio, 1976] was 
successful, in addition to the optic flow networks. 

Given flow and depth, three-dimensional (3d) flow can be recovered. From 3d 
flow, use Newtonian kinematics: 

v(X,Y,Z) = VT + Ux(X-Xc' Y-Yc' Z-Ze) 

where v(X,Y,Z) is the 3d velocity of a point in space, which may be expressed in 
terms of a rigid translational velocity VT and a rotation w about an origin (Xc' Yc-

Zc). The summary of our method is as follows: 

Step 1: For each pair of velocities v(Xl,Y1,Zl) and v(X2,Y2,Z2), 
build a value unit network to find dir(u) from dir(v(Xl,Yl,Zl) 
x dir (v(X2,Y2,Z2» 

Step 2: Build a value unit network to find magtu) and VT from the 

above equation, assuming dir(u) is known 

In this description, "dir" and "mag" stand for direction and magnitude, respectively. 
Step 1 is actually an improvement over the originally proposed method described in 
{Ballard and Kimball, 1983]. The results of these experiments are shown in Figure 
18. 

Figure 18. 

Different constraints than Ballard and Kimball's [1983] are currently being tested 
[Prazdny, 1981; O'Rourke, 1981; Ullman and Hildreth, 1983; Lee and Reddish, 
1981; Lawton, 1983; Bandyopadhyay, 1985a], but the usefulness of the rigid motion 
parameters themselves suggests that they will be likely to be represented cortically. 
Preliminary evidence for neurons sensitive to the appropriate full-field stimuli has 
been found in the superior temporal sulcus [Bruce et al., 1981] and in posterior 
parietal cortex [Sakata et al., 1980]. 

While we have just sketched the principal features of a value unit solution to 
motion representation, this level of discussion is sufficient to allow us to draw 
important ·conclusions. The most important concerns the meaning of the different 
cortical areas. The larger and larger receptive fields encountered as the anatomic 
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Figure 18: The next step in the hierarchy uses units to represent subspaces for global 
rotation and translation parameters. A global parameter is independent of retinotopic 
position and represents full-field stimuli. The figure shows a result of a computer 
experiment where three-dimensional velocity vectors provided input to rotation and 
translation subspaces of units as described in the text. (a) One frame of three-
dimensional  vectors.  (b)  A geodesic  value  unit display  representing possible  rotation 
directions, showing that the  correct rotation direction unit receives  the most input. (c) 
Three  subspaces of units  representing  the  magnitude of rotation  combined with  the 
three  components  of translational  velocity.  Although  many  units  receive  input,  the 
three  correct  units  receive  much  more  input  than  the  others. 
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_.hierarchy is progressed can be explained as a. natural consequence of the more-
abstract  parameters  that  are  being  represented.  The  most  important  point  is  that 
hierarchies of units  represent  visual information  of a  different  nature  as  implied  by 
Table  3. 

As  in  the  form  perception  example,  the  motion  example  shows  that  physical 
constraints  can .  be  directly  represented  in  terms of the  corticocortical connections  if 
the  constraints  only  involve a small  number of terms.  If  in  fact the  constraints  used 
by the brain are multivariate and of high dimensionality,  then  the  value unit model  is 
unrealistic. 

To  summarize  the  main  points  of  this  section: 

1)   Important  problems  in  visual  perception  can  be  readily 
expressed  in  connectionist  models.  Two  examples  are 
coordinate  mappings  and  rigid  body  motion  perception.  The 
specific  constraints  used  for  each  of these  cases are  constantly 
being  refined,  but our claim is that the  right constraints will still 
have  value  unit  implementations. 

2)   The  networks  that solve these  problems  make  extensive  use of 
hierarchies  and  parameter  subspaces.  Both of these  techniques 
help  to  keep the  connection  growth problem,  introduced by  the 
value  unit  formalism,  under  control. 
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6. Associating Value Units . ln. Different Modalities 

The splitting up of large parameter spaces into subspaces is a tremendously 
important strategy. It makes the value unit model extensible to arbitrary number of 
dimensions as long as they can be decoupled in some way. On the other hand, it is 
easy to see that the use of subspaces instead of the high-dimensional space can lead 
to problems. Consider Figure 19 which represents a subspace of color units and a 
subspace of form units. The lower group of units differs from the upper in that the 
lower group are retinotopically indexed whereas the upper group are not. For this 
reason the upper group are referred to as "de-spaced." Suppose the mechanisms of 
the previous section (at a much coarser grain) are given a stimulus of a triangular, 
blue object and a circular, red object. If one considers the subspaces alone as in 
Figure 19, then the immediate problem is that the associations between the high 
confidence units have been lost. There is a growing body of psychological evidence 
that suggests that this is a ubiquitous problem in perception. During fast ( ~  100 ms) 
tachistoscopic presentations of colored shapes, subjects will make submodality 
association errors, so-called "illusory conjunctions," but given more time they can 
usually correct their mistakes [Treisman and Gelade, 1980]. The illusory conjunction 
experiments suggest both that the separate groups of value units is a real problem 
and that given additional processing time beyond a few hundred milliseconds, there 
is a solution to this problem. Furthermore, the psychological data suggests that the 
conjunctive mechanism is sequential. In experiments with displays of colored letters. 
subjects were asked questions of the form "Is there a red triangle?" In these 
experiments, the processing time increases linearly with the number of visual tokens. 
However, if the question is "Is there a triangle?" the processing time is independent 
of the number of tokens. One value unit solution to this problem, suggested by 
Feldman and Ballard [1982], uses spatial focus units to couple the different 
submodalities of color and form. 

Figure 19. 

In accordance with the psychological data, this solution assumes that the overall 
computational behavior of the networks is sequential within the submodalities. That 
is, priming a despaced unit, say "triangular," causes increased input to the 
appropriate spatial focus units which then: (a) inhibit other spatial locations; and (b) 
help computations at the spatial focus locations. Thus processing can be restricted to 
the appropriate spatial locus. We hasten to say that this explanation captures only the 
gross features of Treisrnan's data: the fact of illusory conjunctions and sequential 
processing. Additional circuitry is necessary to simulate all the precise timing effects. 
Crick [1984] has suggested a neurobiological locus for this mechanism that implicates 
thalamic nuclei as well as cortical areas. 

The ability to associate high-confidence value units provides a mechanism 
necessary to isolate a particular stimulus. This is especially important in the value 
unit model for the following reason. Consider the example of picking up or looking 
at an object. Since we postulate that all the cortex is represented in value units, this 
control must be achieved through hard-wired connections from sensory to motor 
cortex. [f the connections involve intermediate units, they are also value units. This 
means that if the stimulus is not isolated as a single, localized group of value units, 
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Figure 19: Using spatial units to couple de-spaced color and motion units. By 
selecting a specific modality, for example color, its corresponding spatially-coincident 
feature may be found even if it is not directly coupled. In this case, non-spatially 
indexed color units excite spatially indexed color units which in turn are coupled to 
spatially indexed shape units. This preferentially excites the non-spatially indexed 
shape units that correspond to the color. The enhanced links are shown in boldface 
in the figure. 
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the motor system will be compromised by receiving parallel inconsistent inputs. An 
example would be a frog snapping at the "average fly" produced by two concurrent 
moving spot stimuli [Didday, 1976]. Although this did occur in Didday's detailed 

.sirnulation, it was rare; interestingly, he used network-like control structure to isolate 
a single stimulus. 

Maintaining Associations 

Although for some situations it is sufficient to isolate a single stimulus, more 
complex situations require the ability to: 

1) use two or more associations at the same time; or 

2) remember previous associations. 

For these kinds of problems a number of solutions have been proposed: (a) shared 
links [Feldman, 1982]; (b) dedicated links [Feldman, 1982]; (c) synchronously firing 
units [Abeles, 1982; Crick, 1984]; and (d) fast, short-term synaptic weight changes 
[von der Malsburg, 1981]. Hinton and Sejnowski's weight change formalism [1983] is 
also a candidate for (d), but at present has been used to model long-term changes. 
This paper focuses on fast, short-term weight changes. A weight change is fast if it 
takes place within two to fifty milliseconds. Such weight changes provide a passive 
memory for value unit networks that avoids conjunctions between previous and 
ongoing computations. 

The idea of fast, short-term synaptic weight changes has had a history of varying 
popularity. The novel addition to the idea that we propose is that the change in 
weights cannot be random or correlated with any repeated firings but instead must 
be more structured. The way we propose to do this is to use convergence states as a 
trigger for such modifications. The difficulty with an unstructured weight 
modification scheme is that it may interfere with the base relaxation computations 
which require the weights to be kept constant. This requirement follows from the 
fact that during the short convergence cycles of the relaxation, inappropriate units 
may temporarily have high confidence values. An example is the case of a local 
visual feature that turns out to be inconsistent with more global context. A certain 
number of cycles are required to allow more global value units to "overrule" this 
local evidence [Sabbah, 1981; 1982]. If weights were allowed to change very quickly, 
then the local evidence would continue to predominate. Thus the main point is that 
the weight modifications must not occur during short-term convergence, as the 
intermediate and final states may be different. 

The other requirements are: first, that the weight change must be rapid relative 
to a few hundred milliseconds, and second, that the weight change is a state change 
that should persist for a substantial period (minutes) while other computations are 
carried out. The first requirement is strictly for performance: other computations 
which depend on the weight change are held up until it occurs. The second 
requirement characterizes the weight change as a system state change that should 
persist long enough to be useful in several other computations. 
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To illustrate the problem and solution further,we develop the color-form 
example. Consider again the case of four objects which are described by the different 
combinations of two shapes and two colors. A connectionist method of 
representation would allocate a unit for each of the objects, as shown in Figure 20. 
Conjunctive connections can be used for each of the stimulus pairs. To change the 
weights, one can first use the focusing method described earlier to isolate an 
individual pairing, and only at that point: (a) increase the weights of all the active 
bindings: and (b) decrease the weights of all the inactive bindings. After this has 
been done, only the correct objects will be activated even though all the 
combinations of features are active. (In this example, although the symbols on the 
units are the same for the purposes of discussion, the actual information will be 
different at each of the three levels. As in Figure 19, the first two units represent 
retinotopically indexed information and de-spaced information, respectively. The 
third level has more coarsely coded information appropriate for object classes. For 
example, all canonical triangles at level 2 will map into the triangle category node at 
level 3. If categories were not used at level 3, one would quickly run out of units.) 

Figure 20. 

Special-purpose connection systems required to implement weight changes may 
reside in the hippocampus, but the evidence is also still very speculative. The 
hippocampus involves multimodal connections from almost all cortical areas. 
Furthermore, it is one of the few places where long-term synaptic potentiation has 
been observed. Also, interfering with the hippocampus impairs the ability to do tasks 
which require converting short-term associations to longer-term memories. A host of 
possibilities for a chemical mechanism are available--most likely calcium channels or 
peptides. 

To  summarize the main points of this section: 

1)  The use of subspaces is ubiquitous and raises the difficult 
problem of how to associate units in different subspaces that are 
part of the same percept. Several connectionist mechanisms 
which solve this problem are under study. The possibilities 
emphasized in this paper are: (a) sequential focusing to isolate 
associations: and (b) fast synaptic weight changes to maintain 
associations. 

2)  Fast synaptic weight changes are a passive form of memory that 
allows the same network to be used for additional computation. 
In active forms of memory the separation of the remembered 
state from the current state is more difficult to control. 
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Figure 20: The basis for the cross-talk problem. The object network must be 
connected to handle feature cross products and yet keep individual bindings distinct. 
Sequentially isolating the bindings allows the weights on the appropriate pairings to 
be changed to reflect the spatial correspondences. The changed weights are indicated 
by boldface links. The weights are reset when the bindings are no longer appropriate. 
The higher the level, the more abstract the encoding. Level 1 encodes retinotopic 
information. Level 2 encodes de-spaced object-centered information. Level 3 encodes 
categorical information. 
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7. Conclusion 

We have argued that the value unit model is compelling in light of current 
.neurological findings and computational studies, but what are the alternatives to 
value unit connectionism? To address this question, let us briefly summarize the 
features of the value unit design: 

1)  It is a representation that allows parallel access to different  
values of a variable. This allows parallel computation within the  
observed 300 ms human responses.  

2)  It is a representation that is independent of particular  
constraints. Although our examples came from vision, value  
units could be a lingua franca for the cortex that allows easy  
communication across different modalities. Value units also  
remove the distinction between symbolic and numerical data.  
Success in language modeling by [McClelland and Rumelhart,  
1981] and the general features of somatosensory cortex  
[Woolsey, 1981] suggest this ubiquity.  

3)  It is compatible with a computational model that tries to  
minimize energy in satisfying constraints. This model,  
developed out of work by several groups (Hopfield, Kirkpatrick  
et al., Hinton and Sejnowski, Geman and Geman), has the  
advantage that it divorces the representation from the  
computation. Thus these two issues can be addressed separately.  

4)  It is an encoding that emphasizes collections of small parameter  
descriptions. The decoupling of the vision problem into local  
constraints that can be represented in terms of low-dimensional  
variables has led to major advances [Maloney, 1984; Pentland,  
1984]. Thus value units seem to be a representation that allows  
hard problems to be encoded into computationally tractable  
forms, 

5)  Hierarchies of value unit encodings are robust; networks still  
compute even when large portions are removed.  

6)  Hierarchies of value unit encodings can exhibit enormous  

diversity. One criticism that might be leveled is that 1011  
neurons would not be sufficient to encode the necessary  
experiences. However, this is where hierarchies help. Crudely  
put, hierarchies of value units form a kind of "numeric"  
representation, with abstract units forming "higher-order bits"  
and less abstract units forming "lower-order bits" that can be  
composed. In a similar way, subspaces also expand the number  
of possibilities by allowing compositions. Thus the number of  
objects representable would be: (the number of object token  
units) x (the number of color units) x (the number of shape  
units) x (the number of motion units), etc.  
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7) Hierarchies of value units that represent specific invariants that 
can be computed in parallel represent a straightforward answer 
to the Gestaltists: the things that naturally organize are just 

. those. that have explicit small-parameter descriptions. 

Given these advantages, let us consider some alternatives. One alternative is a 
Von-Neumann-like design, but we can reject this as being too slow when built in 
neural circuitry. Parallel Von Neumann computers are also infeasible, owing to the 
difficulty in satisfying property (2). One of the big current problems with networks of 
Von Neumann machines is the time taken in interpreting different message 
protocols. 

A second alternative is variable encoding. Analog computers are designed on this 
principle, and there is no reason why differential equations could not be directly 
encoded in neural circuitry. Current models of the eye movement control circuitry 
are based on analog servomechanisms and have made several important predictions 
[Robinson, 1978]. The advantage of the analog encoding is that it is more compact 

than the value unit encoding (but probably only by about a factor of 102, since the 
tiring rate is extremely band-limited). Variable units have two important 
disadvantages: (a) only one value of a variable can be accessed at a time: and (b) the 
circuitry tends to be more delicate (adding or removing pieces effects performance 
unpredictably). Nonetheless, just as the thalamus uses some value encoding, the 
cortex could use some variable encoding. However, most single cell 
electrophysiological recording data would rule out variable units. 

One controversial aspect of the value unit h~  pothesis is the encoding of values in 
a few units. this has become known as the "localist" hypothesis, as opposed to the 
"distributed" hypothesis that suggests that encodings involve many hundreds or 

more units. The Nk argument sharpens this debate. Naturally, many hundreds of 
units will be involved in a percept: the crucial question is: how are small groups of 
parameters handled? Keeping the number of units that represent a parameter vector 
small will facilitate parallel computations, since nearby values do not interfere, and 
may simplify the connection problem, since another network that requires the value 
need only connect to a few units. Besides these advantages, single cell recording data 
seems to be in favor of a localist encoding. It certainly is for the highly retinotopic 
areas such as VI and V2. We argue that once the correct parameters are identified it 
will extend to other extra-striate areas as well. 

What are the advantages of locality? In connectionist terms, to implement the 
useful relationships among sensory and motor parameters, it is enormously useful to 
have value units that are similar in value be physically proximal. However, as the 
value units become increasingly abstract, the notion of value locality becomes more 
vague and the physical locality less imperative. Extremely abstract units may form a 
diffuse network that is scattered throughout the cortex and obeys no regular pattern. 
In this case the primary-secondary indexing concept may not be useful, but we 
believe the concepts of value units and topological locality could still prove useful. 
Skimpy evidence comes from patients with lesions of the corpus callosum who 
exhibit very discrete functional losses (e.g., [Dimond et al., 1977]). 
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To conclude on a less technical note, for a longtime strictly computational 
models have not had a significant interaction with basic studies in the neurosciences. 
However, new discoveries in both these areas are leading to a renaissance of attempts 
to bridge these disciplines..We hope -that this paper will spark additional interest in 
interdisciplinary studies. 
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