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Abstract

Our ability to move is central to everyday life. Investigating the neural

control of movement in general, and the cortical control of volitional

arm movements in particular, has been a major research focus in recent

decades. Studies have involved primarily either attempts to account for

single-neuron responses in terms of tuning for movement parameters

or attempts to decode movement parameters from populations of tuned

neurons. Even though this focus on encoding and decoding has led to

many seminal advances, it has not produced an agreed-upon conceptual

framework. Interest in understanding the underlying neural dynamics

has recently increased, leading to questions such as how does the cur-

rent population response determine the future population response,

and to what purpose? We review how a dynamical systems perspective

may help us understand why neural activity evolves the way it does,

how neural activity relates to movement parameters, and how a unified

conceptual framework may result.
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M1: primary motor
cortex

PMd: premotor
cortex, dorsal aspect
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INTRODUCTION

It is difficult to appreciate just how central

movement is to everyday life until the ability

to move is lost owing to neurological injury

or disease. Moving is how we interact and

communicate with the world. We move our

legs and feet to walk, we move our arms and

hands to manipulate the objects around us,

and we move our tongues and vocal cords

to speak. Movement is therefore also central

to self-image and psychological well-being.

Decades of research have explored the neural

basis of movement preparation, generation,

and control. In particular, a substantial body

of knowledge about the cortical control of

arm movements in rhesus macaques has grown

from Evarts’ pioneering research (e.g., Evarts

1964, 1968; Georgopoulos et al. 1982, 1986;

Kalaska 2009; Tanji & Evarts 1976; Weinrich

& Wise 1982; Wise 1985). This knowledge re-

cently helped investigators to design cortically

controlled neural prosthetic systems aimed at

restoring motor function to paralyzed patients

(for recent reviews, see, e.g., Green & Kalaska

2011, Hatsopoulos & Donoghue 2009).

Extensive as these discoveries have been,

and encouraging as these medical applications

are, our understanding of the neural control

of movement remains incomplete. Indeed,

there is remarkably little agreement regarding

even the basic response properties of the

motor cortex, including PMd and M1 (e.g.,

Churchland et al. 2010a; Churchland & Shenoy

2007b; Fetz 1992; Graziano 2009, 2011a;

Hatsopoulos 2005; Mussa-Ivaldi 1988; Reimer

& Hatsopoulos 2009; Scott 2000, 2008; Scott &

Kalaska 1995; Todorov 2000 and associated ar-

ticles). This lack of agreement contrasts starkly

with, say, the primary visual cortex, where basic

response properties have been largely agreed

upon for decades. To understand the motor

cortex is thus a major challenge, as well as an

essential step toward designing more capable,

accurate, and robust neural prostheses (e.g.,

Gilja et al. 2011, 2012; Shenoy et al. 2011).

Much of the controversy over motor cortex

responses has hinged on the question of

whether the cortical activity codes (or repre-

sents) muscle action on the one hand or higher-

level movement parameters such as effector ve-

locity on the other. Figure 1 illustrates the di-

chotomy. Cortical activity passes, via the spinal

cord, to the muscles, which contract to move

the arm; but the temporal patterns of muscle

activity and hand movement differ. Which

signal is found in the cortex? Does the firing of

cortical cells drive muscle contraction with little

intervening translation, so that cortical activity

resembles muscle activity; or does it encode the

intended movement end point or path, to be

transformed by the spinal cord into commands

that contract the muscles? Studies correlating

neural activity with electromyographic (EMG)

muscle activity or with movement kinematics

(factors such as velocity and position) have

proven equivocal; investigators have seen both

patterns (for a recent review, see Kalaska

2009). Just as critically, the activity of most

neurons is poorly explained by either pattern

(e.g., Churchland & Shenoy 2007b, Graziano
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Motor cortex ‘code’

or

?

?

Flexible pattern generator?

Figure 1

Schematic illustrating the focus of the representational perspective and of the dynamical systems perspective.
The traditional perspective has concentrated on the representation or code employed by the motor cortex.
For example, does the motor cortex (upper left panel ) code muscle activity (red trace) or reach velocity
(black trace)? Thus, the traditional perspective attempts to determine the output or controlled parameters of
the motor cortex. The dynamical systems perspective focuses less on the output itself and more on how that
output is created (upper right panel ). It attempts to isolate the basic patterns (blue) from which the final output
might be built. It further attempts to understand the dynamics that produced that set of patterns and the role
of preparatory activity in creating the right set of patterns for a particular movement. The red trace indicates
the activity of the deltoid versus time during a rightward reach (e.g., Churchland et al. 2012). The black trace
is the hand velocity for that same reach; the black trace between the beginning and ending reach targets is
the hand path. The light and dark blue traces (upper right) illustrate a potential dynamical basis set from
which the red trace might be built.

Dynamical system:
a physical system
whose future state is a
function of its current
state, its input, and
possibly some noise

2011b, Scott 2008). Thus, the controversy has

continued.

In fact, determining the ‘code’ or ‘repre-

sentation’ in motor cortex is but half the chal-

lenge. Whatever the cortical output, its tempo-

ral pattern must be generated by the circuitry of

the cortex and reciprocally connected subcor-

tical structures. Where is this flexible pattern

generator—which can produce the wide variety

of motor commands necessary to drive our large

repertoire of movements—to be found? Is it up-

stream of M1, handing down a ‘motor program’

to be executed there (Miles & Evarts 1979), or

is the pattern at least partly generated in M1 it-

self? Questions such as these suggest a different

way to study the motor cortex, shifting the focus

from the meaning of the output to the nature of

the dynamical system that creates the required,

precisely patterned, command (e.g., Graziano

2011b). A core prediction of this perspective

is that activity in the motor system reflects a

mix of signals: Some will be outputs to drive

the spinal cord and muscles, but many will be

internal processes that help to compose the out-

puts but are themselves only poorly described

in terms of the movement. They may, for in-

stance, reflect a much larger basis set of pat-

terns from which the eventual commands are

built (see Figure 1). Some of these internal sig-

nals may well correlate coarsely with movement

parameters: For example, one of the blue traces

in Figure 1 resembles hand position, whereas
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another resembles a filtered version of hand ve-

locity. But such coincidental correlations may

not generalize across different tasks and need

not constitute a representation of the move-

ment parameters that is actively used by the

brain (e.g., Churchland & Shenoy 2007b, Fetz

1992, Todorov 2000). Indeed, the dynamical

systems perspective predicts that the evolution

of neural activity should be best captured not in

terms of movement parameter evolution, but

in terms of the dynamical rules by which the

current state causes the next state.

The dynamical systems perspective is not

new to motor neuroscience. Brown, a student

of Sherrington, argued in 1914 that internal

pattern generators are at least as important as

feedforward reflex arcs (Brown 1914, Yuste

et al. 2005). Since then, the approach has

shaped our understanding of central pattern

generators (e.g., Grillner 2006, Kopell &

Ermentrout 2002) and the brain stem circuitry

that guides eye movements (e.g., Lisberger &

Sejnowski 1992, Skavenski & Robinson 1973).

In studying the motor cortex, Fetz (1992)

argued for the dynamical systems perspective

20 years ago in an article entitled, “Are Move-

ment Parameters Recognizably Coded in the

Activity of Single Neurons?” He noted that

over the last three decades this for-

mula [recording single neurons in behaving

animals] has generated numerous papers illus-

trating neurons whose activity appears to code

(i.e., to covary with) various movement param-

eters or representations of higher-order sen-

sorimotor functions. . . . the search for neural

correlates of motor parameters may actually

distract us from recognizing the operation of

radically different neural mechanisms of sen-

sorimotor control. (p. 77)

The same point has been reiterated recently by

Cisek 2006b, who summarizes that “the role

of the motor system is to produce movement,

not to describe it” (p. 2843). The dynamical

systems perspective is also reflected in recent

attempts to understand motor cortex as it

relates to optimal feedback control (e.g., Scott

2004, Todorov & Jordan 2002). Indeed, the

dynamical systems perspective may be experi-

encing a renaissance in neuroscience as a whole

(e.g., Briggman et al. 2005, 2006; Broome et al.

2006; Mazor & Laurent 2005; Rabinovich

et al. 2008; Stopfer et al. 2003; Yu et al. 2006),

largely as the result of the widening adoption

of multichannel recording techniques (e.g.,

Churchland et al. 2007, Harvey et al. 2012,

Maynard et al. 1999), machine-learning based

algorithms for estimating the population state

from those recordings (e.g., Yu et al. 2009),

and the computational resources necessary for

data analysis and the exploration of plausible

models. Just as importantly, there are growing

bodies of neural data that are difficult to inter-

pret from a purely representational framework

but may be more approachable when dynamical

systems concepts are brought to bear (e.g.,

Ganguli et al. 2008, Machens et al. 2010).

In this review we focus on one such body of

literature, that from the field of motor control.

We focus less on the role of dynamics in the

context of sensory feedback (e.g., Scott 2004)

and more on the internal neural dynamics that

occur during movement preparation and the

subsequent dynamics that translate preparatory

activity into movement activity.

A DYNAMICAL SYSTEMS
PERSPECTIVE OF MOTOR
CONTROL

An Alternative to the
Representational View

In principle, the representational and dynam-

ical perspectives are compatible: The first

seeks to determine the parameters controlled

by cortical output, whereas the latter seeks

to determine how that output is generated.

However, in practice, adoption of the repre-

sentational perspective has led to attempts to

explain most neural activity in terms of tuning

for movement parameters. That is, studies

have sought to describe the firing (r) of each

neuron (n) in the motor cortex as a function of

various parameters (parami ) of an upcoming

340 Shenoy · Sahani · Churchland
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or concurrent movement:

rn(t) = fn(param1(t), param2(t), . . .). 1.

Admittedly, the available range of parameters

is extensive, so such models may be adjusted

to exhibit considerable richness (e.g., Fu et al.

1995, Hatsopoulos & Amit 2012, Pearce &

Moran 2012, Reimer & Hatsopoulos 2009,

Wang et al. 2010). Possible covariates include

the intended target location, the kinematics

of the hand or of the joints, the activity of

individual muscles or synergistic groups, the

activity of proprioceptors, the predicted end

point error, and many others. These parame-

ters may also be filtered, allowing for varying

time lags, differentiation, or integration of the

corresponding time-dependent signals. The

common theme, however, is that neuronal

activity should be understood in terms of such

representational functions.

By contrast, the dynamical systems perspec-

tive stresses the view that the nervous system

is a machine that must generate a pattern

of activity appropriate to drive the desired

movement. That is, the cortical activity [a

time-varying vector r(t)], when mapped to

muscle activity [a time-varying vector m(t)] by

downstream circuitry,

m(t) = G[r(t)], 2.

must produce forces that move the body in

a way that achieves the organism’s goals.

The mapping G[ ] captures the action of

all the circuits that lie between the cortex and

the muscles, which may themselves implement

sophisticated controllers. The dimension of

m(t), set approximately by the number of inde-

pendent muscle groups or synergies, is much

lower than that of r(t), the number of different

neurons in the motor cortex. Thus it is unlikely

that G[ ] will be invertible. That is, knowledge

of the final output alone (e.g., desired muscle

activity or kinematics) may be insufficient to de-

termine fully the pattern of neural activity that

generated the output. This view thus accords

with the observation that the apparent tuning

of many neurons changes idiosyncratically with

time (Churchland & Shenoy 2007b), with arm

starting location (Caminiti et al. 1991), with

posture (Kakei et al. 1999, Scott & Kalaska

1995), and with movement speed (Churchland

& Shenoy 2007b). More broadly, it may help to

understand why, despite many well-designed

experiments, the issue of representation in the

motor cortex has remained unresolved (e.g.,

Reimer & Hatsopoulos 2009, Scott 2008). In

this view, a confusion of representation is not

unexpected: the functions ( fn) of Equation 1

may not exist for any proposed set of movement

parameters (Churchland et al. 2010a).

By moving the activity r(t) to the right-hand

side of the equation, the dynamical systems

perspective brings into focus the system that

must generate that firing pattern (Graziano

2011b). Mathematically, population activity

evolves with a derivative ṙ, scaled by time

constant τ , that is determined by the local

circuitry of the motor cortex acting on its

current activity through a function h( ) and by

inputs that arrive from other areas, u(t):

τ ṙ(t) = h(r(t)) + u(t). 3.

With the appropriate input, this dynamical

system causes the population activity to trace a

path in time that maps through G to generate

the correct movement. As this occurs, the

neurons in the population may exhibit a

variety of response patterns. Some patterns

will directly influence the output of G, but

others will reflect the act of pattern generation

itself. A central aim of the dynamical systems

approach is to understand these responses

and thus to understand how the dynamics

of a neural population produce the temporal

patterns needed to drive movement.

Thus, the representational and dynamical

perspectives often suggest very different

forms of experiment and analysis. If seeking a

representation, one asks which parameters are

represented by neural activity, in which ref-

erence frames, and how these representations

are transformed from one reference frame to

another (e.g., Andersen & Buneo 2002, Batista

et al. 2007, McGuire & Sabes 2011, Mullette-

Gillman et al. 2009, Pesaran et al. 2006).

Equation 1 suggests that the pattern of neural
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State-space
trajectory: evolution
of network activity in a
space where each axis
captures one neuron’s
response, or a factor
shared among neurons

activity in time, and across different move-

ments, should resemble that of the encoded

parameters. Thus by designing experiments

in which movement variables (e.g., muscle

activity) vary systematically, one searches for

neural firing patterns that vary in the same way.

Conversely, a failure to find neural activity that

covaries systematically with muscle activity

would be taken to falsify the hypothesis that

the cortex is concerned with control of muscles

(e.g., Hatsopoulos 2005) or at the very least to

suggest a ‘messiness’ of representation.

From the dynamical standpoint, the possi-

bility that some cortical activity patterns are

only indirectly related to the movement and

reflect instead internal states of the dynamical

process dictates a different approach. At least

three practical possibilities present themselves.

First, one might seek evidence of this inter-

nal state-space via direct visualization (Yu et al.

2009) or by testing the prediction that the pop-

ulation response is more complex than expected

given the final output (Churchland & Shenoy

2007b). Second, one might attempt to trace the

causality of the dynamical system. One might

ask how the population’s premovement state

is determined (e.g., Churchland et al. 2006c),

how this state influences the subsequent neural

activity (e.g., Churchland et al. 2010a, 2012),

and how variability in this state influences both

neural activity and the movement (e.g., Afshar

et al. 2011, Churchland et al. 2006a). Finally,

and perhaps most challenging, one might seek

to characterize the function h( ) of Equation 3

by mapping out attractor states (whether fixed-

points, limit cycles, or more complex), probing

the system’s transient behavior (e.g., Buesing

et al. 2012, Macke et al. 2011, Sussillo et al.

2013, Sussillo & Abbott 2009, Yu et al. 2006)

and studying the effects of perturbations ap-

plied to the neural activity (e.g., Churchland &

Shenoy 2007a, Diester et al. 2011, Gerits et al.

2012, O’Shea et al. 2013). These different inves-

tigations are reviewed in greater detail below.

The Population Dynamical State

A dynamical description of cortical function

is inherently a description of activity at the

population level. This notion is evident in

Equations 2 and 3 above, neither of which

can easily be separated into single-neuron

components. Unfortunately, obtaining direct

empirical access to the relevant scale of popula-

tion activity is challenging. The full dynamical

system is an extensively connected recurrent

network of millions of neurons, coupled

through input and feedback signals with much

of the rest of the brain. The best current

measurement technology can record either

individual activity of no more than hundreds

of neurons (using silicon or microwire arrays

or calcium imaging) or aggregate signals that

pool over thousands or more neurons at a time

(local field potentials, fluorescence changes in

voltage-sensitive dyes, or hemodynamic re-

sponses). Neither recording scale would seem

suited to describing in detail the activity of the

whole population. The unreliability of neuronal

spiking introduces further challenges (e.g.,

Faisal et al. 2008, Manwani et al. 2002). Activity

cannot be time-averaged on a scale longer

than the dynamical time constant of Equation

3 without distorting the resulting dynamics.

Similarly, one cannot average over repeated

movements to construct a peri-stimulus-time

histogram (PSTH) without suppressing intrin-

sic trial-to-trial variability, which is often of

interest (e.g., Afshar et al. 2011, Yu et al. 2009).

These challenges can be addressed using

at least two approaches. The first approach

avoids the attempt to visualize or describe the

dynamical process directly. Instead, hypotheses

derived from the dynamical systems viewpoint

are tested by assessing related predictions. One

example is the prediction that trial-to-trial

variance should fall as movement preparation

brings the activity of the cortex to a suitable

initial point from which appropriate movement

activity can be generated (Churchland et al.

2006c, 2010b).

The second approach uses statistical meth-

ods to infer the population state from the

available data and to examine how that state

changes with time. Neurons within a single

cortical population do not act alone; instead

the coordinated firing of all the neurons

342 Shenoy · Sahani · Churchland
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presumably guides the evolution of activity

within the population and the evolution of its

outputs.

This coordination may be intuitively most

clear in the context of representation. Activ-

ity in a sensory population that encodes the

features of a stimulus will covary as those

features change. If the number of features is

fewer than the number of neurons in the pop-

ulation, then population-level activity must be

confined to a space the dimension of which is

lower than the number of neurons. Even if the

stimulus were unknown, the relevant aspects

of the population activity may still be read out

by looking for this lower-dimensional coordi-

nation. The same idea applies when the low-

dimensional structure derives from the pop-

ulation dynamics rather than from a stimulus

representation.

There are at least two reasons to think that

the essential dimensions of the dynamical state

will be few and will be distributed across many,

if not all, of the neurons within a local area.

First, the tight recurrent connectivity of the

network will naturally tend to spread activ-

ity between cells. Second, and more subtly,

the need for the network to be robust against

the very unreliability that hampers experimen-

tal observation favors redundant activation pat-

terns. The vector r in Equations 2 and 3 spans

many neurons, and we assume that independent

noise in the activity of those neurons (or, in-

deed, injury to some of them) has only minimal

impact on the output of the map G. Thus both

G and the function h that determines the dy-

namics are likely to pool responses from many

neurons, compressing the high-dimensional ac-

tivity into a smaller set of meaningful degrees

of freedom and thereby rejecting noise. These

meaningful degrees of freedom may be viewed

as defining a restricted space of lower dimension

that is embedded within the space of all possi-

ble activity patterns. Because only the projec-

tion of the activity into this lower-dimensional

space matters both to the dynamics of the area

and to the influence it exerts on the muscles, the

meaningful outputs of h must also be confined

to this space. Thus, the projection of r into this

DEFINITION OF TERMS

Population dynamical state: a set of coordinates, often repre-

sented as a vector, describing the instantaneous configuration of

a dynamical system and that is sufficient to determine the fu-

ture evolution of that system and its response to inputs. The

population dynamical state of a neuronal network might be the

vector of instantaneous firing of all its cells or may incorporate

aspects of the neurons’ biophysical states. It may also be a lower-

dimensional projection of this network-wide description. See Di-

mensionality Reduction.

Dimensionality reduction: in this context, a technique for

mapping the responses of many neurons onto a small number

of variables that capture the basic patterns present in those re-

sponses. For example, the first variable/dimension might capture

the response of a large proportion of neurons that all have very

similar responses.

lower-dimensional space defines a population

dynamical state (see Definition of Terms).

The dimensions explored by the population

dynamical state may depend on the type of

movements being performed. Over the full

repertoire of movements (e.g., Foster et al.

2012, Gilja et al. 2010, Szuts et al. 2011), the

range of dimensions might number in the thou-

sands or more. However, in limited experimen-

tal settings with well-controlled motor outputs,

the state may be confined to many fewer degrees

of freedom. If so, then it should be possible to

access the population dynamical state by means

of dimensionality reduction techniques applied

to the recorded data (e.g., Yu et al. 2009). These

methods trace out the trajectory followed by

the dynamical system, often on a single trial.

Such trajectories make it possible to observe the

dynamics more directly—indeed, in some cases

the dimensionality reduction itself depends

on forming a simultaneous estimate of the dy-

namical equations—and also to ask qualitative

questions about the nature of the dynamics. For

example, does the population state observed

before the arm moves relate sensibly to the state

trajectory traced out during the subsequent

movement?
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Target
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onset
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    Horizontal
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 position
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Figure 2

Overview of experimental paradigm, behavioral measurements, muscle measurements, and neural measurements. (a) Illustration of the
instructed-delay task. Monkeys sit in a primate chair ∼25 cm from a fronto-parallel display. A trial begins by fixating (eye) and touching
(hand) a central target (red filled square) and holding for a few hundred milliseconds. A peripheral target (red open square) then appears,
cuing the animal about where a movement must ultimately be made. After a randomized delay period (e.g., 0–1 s) a go cue is given (e.g.,
extinction of central fixation and touch targets) signaling that an arm movement to the peripheral target may begin. (b) Sample hand
measurements and electromyographic (EMG) recordings for the same trial as in panel a. Top: Horizontal hand (black) and target (red )
positions are plotted. For this experiment, the target jittered on first appearing and stabilized at the go cue. Bottom: Hand velocity
superimposed on the voltage recorded from the medial deltoid. (c) Sample reach trajectories and end points in a center-out
two-instructed-speed version of the instructed-delay task. Red and green traces/symbols correspond to instructed-fast and instructed-
slow conditions. (d ) Mean reaction time (RT) plotted versus delay-period duration. The line shows an exponential fit. (e) Examples of
typical delay-period firing-rate responses in PMd. Mean ± Standard Error firing rates for four sample neurons are shown. Figure
adapted from Churchland et al. (2006c).

CORTICAL ACTIVITY DURING
MOVEMENT PREPARATION

Studies indicate that voluntary movements are

prepared before they are executed (Day et al.

1989, Ghez et al. 1997, Keele 1968, Kutas &

Donchin 1974, Riehle & Requin 1989, Rosen-

baum 1980, Wise 1985). To build intuition,

consider the sudden, rapid, and accurate move-

ment needed to swat a fly. An immediate, un-

premeditated attack could miss, allowing the fly

to escape. Conversely, a short preparatory delay

may permit the accuracy and velocity of move-

ment to be improved, increasing the chances of

success. In the laboratory, movement prepara-

tion has been studied by instructing a similar,

but experimentally controlled, delay prior to

a rapid, accurate movement (e.g., Mountcastle

et al. 1975). Figure 2a–c illustrates the ex-

perimental design and task timing, along with

sample hand position and EMG measurements.
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Reaction time (RT):
the time from the go
cue until the start of
the movement

Evidence that subjects use this instructed

delay period to prepare a movement comes in

part from the observation that reaction time

(RT) is shorter on trials with a delay (e.g.,

Churchland et al. 2006c, Ghez et al. 1989,

Riehle et al. 1997, Riehle & Requin 1989,

Rosenbaum 1980). Figure 2d illustrates how

RT first decreases and then plateaus with delay

duration, suggesting that a time-consuming

preparatory process has been given a head

start during the initial ∼200 ms of delay (e.g.,

Crammond & Kalaska 2000, Riehle & Requin

1989, Rosenbaum 1980).

Further evidence for movement preparation

comes from neural recordings. Neurons in

many cortical areas, including the parietal reach

region (e.g., Snyder et al. 1997), PMd (e.g.,

Weinrich & Wise 1982), and M1 (e.g., Tanji

& Evarts 1976), systematically modulate their

activity during the delay. Thus, these motor-

related areas appear to be engaged in com-

putation prior to the movement (Crammond

& Kalaska 2000). Figure 2e shows four PMd

neurons that exemplify the range of delay-

period firing patterns: Some neurons’ firing

rates increase, some decrease, and some

stabilize after an initial transient, whereas

others vary throughout. This variety of neural

responses contrasts with the simple monotonic

decline of behavioral RT (Figure 2d ) and

complicates efforts to understand the role of

this activity.

Preparatory Activity as a Subthreshold
Representation

Early proposals extended the representational

view with the suggestion that preparatory neu-

ral activity represents the desired movement at a

subthreshold level with the same tuning as that

used during movement but with lower overall

firing rates (e.g., Tanji & Evarts 1976). This

lower-intensity activity is thought not to evoke

movement by itself, but instead to reduce the

time taken to achieve the correct suprathresh-

old firing pattern, thus shortening RT. This hy-

pothesis has been assumed by many models of

reach generation (e.g., Bastian et al. 1998, Cisek

2006a, Erlhagen & Schöner 2002, Schöner

2004) and agrees with our understanding of the

saccadic system (e.g., Hanes & Schall 1996).

Many studies, particularly those exploring

summary measures such as the population vec-

tor, have indeed reported consistently tuned

neural activity before and during movement

(e.g., Bastian et al. 1998, 2003; Cisek 2006a;

Erlhagen et al. 1999; Georgopoulos et al. 1989;

Requin et al. 1988; Riehle & Requin 1989).

However, some studies at the single-neuron

level have come to the opposite conclusion: that

preparatory and movement tuning are often

dissimilar (e.g., Wise et al. 1986) and nearly

uncorrelated on average (e.g., Churchland et al.

2010a, Crammond & Kalaska 2000, Kaufman

et al. 2010, 2013). Attempts to verify a thresh-

old mechanism have also proven inconclusive.

Higher premovement firing rates are not

consistently associated with shorter RTs (e.g.,

Bastian et al. 2003, Churchland et al. 2006c).

Furthermore, responses of cortical inhibitory

interneurons seem inconsistent (Kaufman et al.

2010) with the common hypothesis that sub-

threshold preparatory activity is released from

inhibition to initiate the movement (Bullock &

Grossberg 1988, Sawaguchi et al. 1996).

Preparatory Activity as the Initial
Dynamical State

The dynamical systems view suggests a different

purpose for preparatory activity. Equations 2

and 3 describe the evolution of neural activity

and its translation to muscle activity and thus

to movement. The population state trajectory,

and thus the movement produced, will clearly

depend on the dynamics by which the popula-

tion state evolves, captured by the function h( ).

It may also be affected by descending input or

feedback [u(t)] and by any sources of noise (e.g.,

van Beers et al. 2004). Finally, and crucially for

our current purposes, the trajectory will depend

on the population state r(t0) at the time (t0) that

movement-related activity begins to be gener-

ated. Thus, all else remaining equal, different

initial states will lead to different movements.

This suggests that one role of preparation is
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to bring the population dynamical state to an

initial value from which accurate movement-

related activity will follow efficiently.

In general, more than one initial population

dynamical state may lead to a movement that

is sufficiently accurate: for example, a reach

adequate to earn a reward. Assuming smooth-

ness in the dynamics, and in the mapping to

muscle activity and thus to kinematics, we

might expect preparation for each movement

to be associated with a compact subregion

of the space of all possible population states

(Figure 3a). State-space trajectories [r(t) for

t > t0] originating from different points in this

subregion may vary; however, for the reach

to be successful, such variation must (a) be

confined to dimensions that are discounted

by the mapping to muscles, (b) perturb the

movement by too little to affect the desired

outcome, or (c) be contained by compensatory

changes in the external input provided by other

areas, including corrective feedback signals.

Thus, the representational and dynamical

perspectives both suggest that different move-

ments should require different preparatory ac-

tivity. Indeed, premovement firing is found to

vary with every movement parameter studied

so far (Cisek 2006b), including direction (e.g.,

Kurata 1989, Wise 1985), distance (e.g., Cram-

mond & Kalaska 2000), speed (Churchland

et al. 2006b), and curvature (Hocherman &

Wise 1991); even apparently random variability

in the preparatory state correlates with variabil-

ity in the subsequent movement (Churchland

et al. 2006a). However, short of a rapid de-

and re-coding of activity between preparation

and movement, the representational view pre-

dicts that preparatory and movement tuning

should be congruent, which contrasts with the

single-unit data as reviewed above. If the link

between pre- and peri-movement activity were

simply dynamical, on the other hand, then there

would be no reason to necessarily expect such

congruence.

Two recent studies have extended fur-

ther support for the dynamical view. First,

Churchland et al. (2010a) showed that although

preparatory activity does indeed covary with

movement parameters such as direction, dis-

tance, speed, and curvature, it is more closely

related to the pattern of cortical neural ac-

tivity during the movement—as would be ex-

pected if the premovement population state

led directly to the subsequent trajectory of

movement-period neural activity, and only in-

directly to the movement. Second, Kaufman

et al. (2011) observed that preparatory states

associated with different reaches were arranged

along dimensions orthogonal to the dimensions

of activity that correlate with changes in muscle

force during movement. This result is consis-

tent with a view in which preparatory activity

does not itself engage changes in muscle out-

put through the mapping G[ ] but nonetheless

leads to movement control signals that do. In a

representational picture, where prepatory and

movement activity are similarly tuned, such or-

thogonality would be unexpected.

The Dynamics of Preparation

The end point of motor preparation is hypoth-

esized to be an initial population dynamical

state, from which the movement-period neural

activity evolves to generate the desired move-

ment. How is the correct initial state achieved

between the times when the subject first sees

the target and subsequently is told to move?

Clearly the dynamics of movement preparation

cannot be the same as the dynamics of move-

ment activity. During movement preparation,

the dynamical system must bring the popu-

lation state toward the optimal preparatory

region (as in Figure 3a) not away from it. Is it

possible to detect signatures of this convergent

dynamical process?

Activity in the experimental premovement

period starts from a baseline condition, in which

the only behavioral constraints are that the

eyes remain fixated and the hand remains still

(Figure 2a). There is little to prevent motor

cortical activity in this state varying substan-

tially across trials. During preparation, the

activity then approaches the preparatory state,

while avoiding the premature generation of

movement. Again, because the intervening

346 Shenoy · Sahani · Churchland

A
n
n
u
. 
R

ev
. 
N

eu
ro

sc
i.

 2
0
1
3
.3

6
:3

3
7
-3

5
9
. 
D

o
w

n
lo

ad
ed

 f
ro

m
 w

w
w

.a
n
n
u
al

re
v
ie

w
s.

o
rg

b
y
 S

ta
n
fo

rd
 U

n
iv

er
si

ty
 -

 M
ai

n
 C

am
p
u
s 

- 
L

an
e 

M
ed

ic
al

 L
ib

ra
ry

 o
n
 0

8
/1

1
/1

3
. 
F

o
r 

p
er

so
n
al

 u
se

 o
n
ly

.



100 ms pre-target

Neuron 3

Neuron 2

Right
reach

Trial 1

Trial 2

Left
reach

     Neuron 1
�ring rate

100 ms post-target

Movement
onset

Pre-target

Go cue

200 ms post-target

b

c d

a

Figure 3

Schematic illustration of the optimal subspace hypothesis and single-trial neural trajectories computed using Gaussian process factor
analysis (GPFA). (a) The configuration of firing rates is represented in a state-space, with the firing rate of each neuron contributing an
axis, only three of which are drawn. For each possible movement, we hypothesize that there exists a subspace/subregion of states that
are optimal in the sense that they will produce the desired result, with a minimal reaction time, when the movement is triggered.
Different movements will have different optimal subspaces (shaded areas). The goal of motor preparation would be to optimize the
configuration of firing rates so that it lies within the optimal subspace for the desired movement. For different trials (arrows), this
process may take place at different rates, along different paths, and from different starting points. Figure from Churchland et al.
(2006c). (b) Projections of PMd activity into a two-dimensional state-space. Each black point represents the location of neural activity
on one trial. Gray traces show trajectories from 200 ms before target onset until the indicated time. The stimulus was a reach target
(135◦, 60 mm distant), with no reach allowed until a subsequent go cue; 15 (of 47) randomly selected trials are shown. (c) Trajectories
were plotted until movement onset. Blue dots indicate 100 ms before stimulus (reach target) onset. No reach was allowed until after the
go cue ( green dots), 400–900 ms later. Activity between the blue and green dots thus relates to movement planning. Movement onset
(black dots) was ∼300 ms after the go cue. For display, 18 randomly selected trials are plotted, plus one hand-selected outlier trial (red,
trial ID 211). Covariance ellipses were computed across all 47 trials. This is a two-dimensional projection of a ten-dimensional latent
space. In the full space, the black ellipse is far from the edge of the blue ellipse. This projection was chosen to preserve accurate relative
sizes (on a per-dimension basis) of the true ten-dimensional volumes of the ellipsoids. Data are from the G20040123 dataset. (d ) Data
are presented as in panel c, with the same target location, but for data from another day’s data set (G20040122; red outlier trial: ID 793).
Figure panels b–d adapted from Churchland et al. (2010b).

states do not themselves engage muscles,

they may well be less constrained than those

traversed during the movement’s active phase.

(See schematic trials 1 and 2 in Figure 3a.) The

final preparatory state, however, is constrained

by the need to generate the correct movement.

Thus, we might expect that as preparation pro-

gresses, the relative variability across different

trials should fall. Such a decrease has indeed

been identified in the Fano factor of individual

neurons in both the premotor cortex and motor

cortex (Churchland et al. 2006c, Mandelblat-

Cerf et al. 2009, Rickert et al. 2009). The

decline in variability is also apparent in the

population dynamical state directly visualized

via dimensionality reduction (Churchland et al.

2010b), as shown in Figure 3b. As predicted,

the reduction in variance comes primarily from

convergence in the low-dimensional popula-

tion dynamical state rather than in the spiking

noise of each cell (Churchland et al. 2010b).

Finally, variability is only partially reduced

when incomplete information about the target

is provided (Rickert et al. 2009). These findings

support the hypothesis that motor preparation

requires network activity to converge to a
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relatively tight set of population dynamical

states. As an aside, a similar decline in neural

variability is present in a variety of different

cortical areas whenever a relevant stimulus is

presented (Churchland et al. 2010b). These

findings suggest that many different cortical

computations may involve attractor-like dy-

namics. Nonetheless, the significance of such

computation must depend on the function

of the area. In visual cortex, the decline in

variability may reflect the formation of a more

consistent representation of the visual stim-

ulus. In the motor areas considered here, the

evidence (discussed below) indicates that the

decline in variability reflects convergence to a

preparatory state that has motor consequences.

What are the consequences if the conver-

gence of the preparatory state is not complete

at the time of the go cue? Instructed-delay

experiments in which accuracy was emphasized

have gathered some data to address this ques-

tion. First, Churchland et al. (2006c) found

that neural variability was lower among trials

with short RT, in which motor preparation

was likely to have been complete at the time of

the go cue, than among trials with longer RT,

in which motor preparation may have been

incomplete or not quite accurate. This result

is consistent with lower variability indicating

greater preparatory accuracy (i.e., closer to

the optimal preparatory state). Second, when

subthreshold electrical microstimulation dis-

rupted the preparatory state, RT was increased

(Churchland & Shenoy 2007a). This effect

could reflect additional time taken to recover

the appropriate preparatory state (see also Ames

et al. 2012 for another possibility). The effect

was specific (Churchland & Shenoy 2007a).

First, RT was more strongly affected when the

microstimulation targeted the premotor cortex

(where preparatory activity is more common)

rather than the motor cortex (where prepara-

tory activity is less common). Second, effects

were seen only when the preparatory state

was disrupted around the time of the go cue;

disruption of the preparatory state before it

was needed had little impact on RT. Third, the

impact on reach RT was much greater than the

impact on saccadic RT, consistent with the role

of the premotor cortex in preparing reaches

rather than saccades and inconsistent with the

possibility that microstimulation simply dis-

tracted the animal. Finally, O’Shea et al. (2013)

recently found that optical stimulation of op-

togenetically transfected PMd neurons during

the preparatory period similarly increases RT.

THE TRANSITION
TO MOVEMENT

By itself, the idea that motor cortical activity

represents or codes movement parameters

(Equation 1) does not constrain the relationship

between preparatory and movement activity.

Nonetheless, this transition has frequently

been thought to depend on the strengthening

of a representation until it crosses a firing-rate

threshold, by analogy to the oculomotor

system. However, direct evidence for such

a threshold has been lacking in the case of

reaches (Bastian et al. 2003, Churchland et al.

2006c). By contrast, under the dynamical

systems perspective (Equations 2 and 3), the

transition to movement is a transition between

two different types of network dynamics, most

likely to be mediated by a change in the external

input term u(t) of Equation 3. Preparatory

dynamics, which brings the population to a

suitable state of readiness, then gives way to

the dynamics that generate movement. As the

movement is triggered, the population dynam-

ical state departs from the prepared initial state

and follows a trajectory through state-space. It

is that state-space trajectory—determined by

the initial state, the neural dynamics, and any

feedback—that drives the movement.

The transition from preparatory to move-

ment dynamics may be directly observable.

Petreska et al. (2011) used an unsupervised

machine-learning technique to study changes

in dynamics within multielectrode neuronal

data gathered while animals performed

instructed-delay reaches. They observed

stereotyped dynamical transitions occurring

at times shortly after target presentation as

well as between the go cue and the beginning

348 Shenoy · Sahani · Churchland

A
n
n
u
. 
R

ev
. 
N

eu
ro

sc
i.

 2
0
1
3
.3

6
:3

3
7
-3

5
9
. 
D

o
w

n
lo

ad
ed

 f
ro

m
 w

w
w

.a
n
n
u
al

re
v
ie

w
s.

o
rg

b
y
 S

ta
n
fo

rd
 U

n
iv

er
si

ty
 -

 M
ai

n
 C

am
p
u
s 

- 
L

an
e 

M
ed

ic
al

 L
ib

ra
ry

 o
n
 0

8
/1

1
/1

3
. 
F

o
r 

p
er

so
n
al

 u
se

 o
n
ly

.



of movement. The timing of the dynamical

transition that followed the go cue was corre-

lated with the timing of subsequent movement

onset. Indeed, this transition—the identity and

timing of which were determined by the neural

data alone—predicted trial-to-trial variation

in RT much better than did alternatives based

on a threshold applied to overall firing or to

the length of the population vector, even when

that threshold was chosen with direct reference

to the behavior.

Afshar et al. (2011) addressed a related issue.

They reasoned that natural variability might

occasionally displace the population dynamical

state from the average point of preparation

toward the direction in which that state will

need to evolve when the movement is to be

initiated. Any such variability could actually

be beneficial to the initiation of movement

and might reduce RT. Indeed, Afshar et al.

found that the displacement of the dynamical

state at the time of the go cue in the direction

defined by the movement-period activity was

negatively correlated with RT. Furthermore,

RT was even lower if the preparatory state

happened to be moving in that direction at the

time of the go cue. Thus, although previous

studies (Churchland et al. 2006c, Rickert et al.

2009) stressed the importance of an accurate

and consistent preparatory state (RTs being

lower on average when neural activity is near

that state), displacement from the preparatory

state can, in fact, result in a lower RT when

the displacement is in the direction that is to

be traversed during movement.

CORTICAL ACTIVITY DURING
MOVEMENT

The dynamical systems perspective focuses

on the population dynamical state and its

evolution. Testing specific hypotheses there-

fore often requires direct visualization of that

state. The traces in Figure 3c,d illustrate the

trajectories of the population dynamical state

on 19 trials from just before target onset to

the moment when movement begins. After

target onset, the dynamical state approaches

a preparatory region and its variability falls.

Then, following the go cue, the neural state

moves rapidly away from the preparatory

state in a curved trajectory. Some trial-to-trial

variability is evident even after the go cue. In

particular, for two outlier trials, the neural

state wanders before falling back on track.

On these trials, the monkey hesitated for an

abnormally long few hundred milliseconds

before beginning to reach. These observations

underscore the ability of dimensionality reduc-

tion methods, when applied to data collected

from multielectrode arrays, to reveal single-

trial (and potentially rare) phenomena that

would normally have been lost to averaging or

discarded owing to abnormal behavior. That

said, for this highly practiced task, such trials

were rare (about 0.1%). On the vast majority

of trials, the population state evolved along

a stereotyped curved trajectory. How can we

characterize that trajectory: its shape, its time

evolution, and the principles that give rise to it?

This relates to Fetz’s original question, “Are

movement parameters recognizably coded in

the activity of single neurons?” If they are, then

the neural state-space trajectory should reflect

the trajectory of the represented parameters.

For example, consider the model in which neu-

ral activity is cosine-tuned for reach velocity

(Moran & Schwartz 1999). This relationship

can be written in matrix form as r(t − τ ) =

Mv(t), where r(t) is an n × 1 vector describing

the firing rate of each neuron, v(t) is the three-

dimensional reach velocity vector at time t, τ

is the lag by which neural activity leads move-

ments, and M is an n × 3 matrix describing

(in each row) each neuron’s preferred direction.

Under this model, the population state would

be three dimensional, with those dimensions

capturing the neural representation of velocity.

The population vector is a dimensionality re-

duction method made specifically for just such

a situation.

However, a simple velocity-tuned

model is inadequate to fully capture the

richness of the neural responses. Figure 4

illustrates the PSTH responses of two typical

neurons recorded from the motor cortex
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20

0

Cell 12

Monkey B

Cell 114

Monkey J

Spikes/s
20

0

Spikes/s

Target
onset

Movement
onset

200 ms

Target
onset

Hand path Hand path

Movement
onset

Figure 4

Peri-stimulus-time histogram (PSTHs) and arm-movement kinematics. PSTH from two sample neurons
(left and right panels), including hand paths for sample reaches (insets). Monkey B performed a standard
center-out reaching task, with two distances and two instructed speeds. Monkey J performed a more complex
version of this task where some reaches were required to curve around a barrier. Traces are colored red to
green on the basis of the relative level of preparatory activity for each condition. Insets show hand
trajectories and are color-coded to reveal the directional nature of preparatory tuning. Note that what was
preferred during the preparatory period was typically not preferred during the movement period; e.g., the
first neuron shows a preference for left and up during the preparatory period but a preference for right and
down by movement onset. Figure adapted from Churchland et al. (2010a).

of two monkeys. Monkey B performed a

standard center-out reaching task, with two

distances and two instructed speeds. Monkey J

performed a similar task, but in it some reaches

were required to curve around a barrier.

Four features of the neural responses are

relevant to the controversy over what is being

coded. First, the same neurons exhibit both

preparatory- and movement-period activity,

yet tuning during the preparatory period

often differs from that during the movement

period (e.g., cell 12 prefers up-left during the

preparation, but down-right by movement

onset) (Churchland et al. 2010a). Second, the

movement-period responses are complex and

multiphasic (Churchland et al. 2010a, 2012;

Churchland & Shenoy 2007b). Third, the re-

sponses of different neurons are heterogeneous,

even in the same animal and the same local

region of the cortex (Churchland et al. 2010a,

Churchland & Shenoy 2007b, Fetz 1992). In

dynamical systems terms, the neural responses

occupy a relatively high-dimensional space, on

the order of 15–30 dimensions (Churchland

& Shenoy 2007b). Thus, if neurons are to

represent movement parameters, there must be

many such parameters (e.g., Pearce & Moran

2012). Finally, neural firing fluctuates over

400–800 ms, even when the reaches themselves

are quite brief (e.g., the reaches for Monkey

B lasted ∼150–300 ms). Thus if movement

parameters are represented directly, there must

be some unexpected temporal multiplexing

(e.g., Fu et al. 1995).

In large part because the neural responses

are complex, our field does not yet agree on

the relationship between movement-period

neural responses and movement itself; the

nature of G in Equation 2 remains mostly

unresolved (although, see, e.g., Fetz et al.

2000). Yet some recent progress has been

made in characterizing the nature of h in

Equation 3 and in describing the dynamics that

generate movement-period neural responses.

First, the collective activity of motor cortical

neurons is better described by a model in which

activity is driven by a low-dimensional dynam-

ical model, relative to a model in which firing

coordination emerges from direct connections

between recorded cells (Macke et al. 2011).

Second, the dynamics at play during move-

ment appear to have some simple aspects. In
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Monkey N-array

Projection onto

jPC1 (a.u.)

Projection onto

jPC2 (a.u.)

Figure 5

Projections of the neural population response,
produced by applying jPCA to the first six principal
components of the data. Two-dimensional
projection using 218 single- and multiunit isolations,
108 conditions employing straight and curved
reaches, from the N-array data set. Each trace is the
average trajectory for one of 108 conditions.
Trial-averaged neural trajectories are colored red to
green on the basis of the level of preparatory activity
for that projection. Each trace (one condition) plots
the first 200 ms of movement-related activity away
from the preparatory state (circles). Figure adapted
from Churchland et al. (2012).

many lower-dimensionality projections, one of

which is shown in Figure 5, the neural trajec-

tory simply rotates with a phase and amplitude

set by the preparatory state (Churchland et al.

2012). The rotational trajectories of the neural

state resemble what is seen during rhythmic

movement, even though the reaches were not

overtly rhythmic. These trajectories suggest

that the role of motor cortex may be most

naturally thought of in the context of pattern

generation. Consistent with this idea, EMG

activity was well fit by the sum of two rhythmic

components that were fixed in frequency

but varied in phase and amplitude across the

different movements (Churchland et al. 2012).

It should be stressed that the neural dy-

namics have aspects that are not well fit

by a simple linear model (Churchland et al.

2012, Sussillo et al. 2013). However, a sim-

ple linear time-invariant system accounted for

a large proportion of the variance (48.5% of

variance explained over the nine data sets

tested) (Elsayed et al. 2013). Furthermore, the

linear component was almost entirely normal

and rotational (linear systems constrained to be

normal and rotational performed 93.2% and

91.3% as well as did an unconstrained linear

system) (Elsayed et al. 2013).

Although purely rotational dynamics are

only an approximation to the true nonlinear

dynamics, the observation that neural pattern

generation involves rotations of the neural state

illustrates two key points of the dynamical sys-

tems perspective. First, the goal of the prepara-

tory state is not to act as an overt representation,

but rather to set the amplitude and phase of the

subsequent rotations. Second, those state-space

rotations produce, in the temporal domain,

brief sinusoidal oscillations that form a natural

basis set for building more complex patterns

(e.g., the blue traces in Figure 1 can be linearly

combined to fit the red EMG trace quite well).

Thus, the neural dynamics and the resulting

patterns can be understood in simple terms,

even though they do not constitute an overt

representation of movement parameters.

The observed similarity between the average

trajectories during rhythmic and nonrhythmic

movement might come about because the

nervous system has redeployed old principles

for a new purpose. Alternatively, rotations are a

common dynamical motif and produce a natural

basis set (Rokni & Sompolinsky 2012). Thus we

see more than one potential explanation for the

key features of the observed dynamics. These

key features are that dynamics are similar across

different reach types, have a strong rotational

component, and have their phase and amplitude

determined by the neural state achieved during

movement preparation. A number of dynam-

ical models, possibly including control-theory

style models, may be able to account for these

features (e.g., Scott 2004, Todorov & Jordan

2002). That said, the data are inconsistent with

many classes of dynamics (Churchland et al.

2012). Because the observed dynamics are sim-

ilar across reach types, they are not consistent

with a system that is dominated by reach-

specific inputs (e.g., a dynamical system that
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converts velocity commands to muscle activity).

The rotational patterns are also not consistent

with rise-to-threshold or burst-generator mod-

els. This discrepancy is important because many

previous intuitions regarding single-neuron

activity derived from such models. Most cen-

trally, these intuitions included the expectation

that the preparatory- and movement-period

preferred direction should be closely related. In

contrast, the empirical preferred direction is in

a constant state of flux, a natural consequence

of the underlying rotations (Churchland et al.

2010a, 2012). This observation illustrates how

the complex responses of individual neurons

can often hide simple underlying structure—

structure that is readily interpretable from a

state-space, dynamical systems perspective.

DISCUSSION

The past 50 years have witnessed remarkable

progress in our understanding of the cortical

control of arm movements. Many fundamental

principles have been discovered, and this basic

scientific knowledge has led to rapid advances,

including early clinical trials of cortically

controlled neural prostheses for paralyzed

participants (Collinger et al. 2013; Hochberg

et al. 2006, 2012). Despite this consider-

able progress, it remains arguable whether

an adequate conceptual framework has yet

been identified, around which experimental,

computational, and theoretical research can

be oriented. Indeed without an adequate

conceptual framework, it is unclear how a

unified and comprehensive understanding for

cortical motor control could be assembled

or even recognized. This sentiment, initially

expressed by Fetz in his 1992 article, appears

to be of at least as great a concern today as it

was 20 years ago. The following excerpts from

recent articles serve as examples.

A shift in how to examine the motor system

occurred in the 1980s from a problem of con-

trol back to a problem of what variables were

coded in the activity of neurons. . . . [P]erhaps

it is time to re-evaluate what we are learning

about M1 function from continuing to ask

what coordinate frames or neural representa-

tions can be found in M1. Perhaps it is time

to stop pursuing the penultimate goal of iden-

tifying the coordinate frame(s) represented in

the discharge patterns of M1 and again move

back to the question of control. (Scott 2008,

p. 1220)

Neurophysiological experiments have re-

vealed neural correlates of many arm move-

ment parameters, ranging from the spatial

kinematics of hand path trajectories to muscle

activation patterns. However, there is still no

broad consensus on the role of the motor cor-

tex in the control of voluntary movement. The

answer to that question will depend as much

on further theoretical insights into the com-

putational architecture of the motor system

as on the design of the definitive neurophys-

iological experiment. (Kalaska 2009, p. 172)

An epic, twenty-year battle was fought over

the cortical representation of movement. Do

motor cortex neurons represent the direction

of the hand during reaching, or do they

represent other features of movement such as

joint rotation or muscle output? As vigorous

as this debate may have been, it still did not

address the nature of the network within the

motor cortex. Indeed, it tended to emphasize

the properties of individual neurons rather

than network properties. . . . The battles over

the cortical representation of movement

never satisfactorily addressed those questions.

(Graziano 2011b, p. 388)

It appears that the field has reached a

point where a new way of conceptualizing

cortical motor control is needed. We have

reviewed here a relatively new dynamical

systems framework that appears to have

several of the desired attributes. As such,

the dynamical systems framework may help

deepen our understanding of the neural

control of movement. It may help do so by

(a) making relatively few assumptions (e.g.,

being agnostic to tuning curves, specifically
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their lack of invariance and generalization);

(b) observing and documenting the dominant,

and perhaps essential, features of neural

state-space trajectories; (c) providing single-

trial neural correlates of behavior that offer

insights beyond those available using average

relationships alone; (d ) generating hypotheses

that can be answered in the quantitative terms

of population dynamical states and evolution

rules (equations of motion), without the

need to ascribe representational meaning to

the detailed response of single neurons; and

(e) being entirely open to the nature of the

dynamics uncovered (e.g., ranging from pat-

tern generators through sophisticated feedback

controllers).

The dynamical systems framework is not

single-neuron nihilistic: It does not ignore or

attempt to average away the complex features

of single-neuron responses. Indeed, we hope

that by capturing the underlying dynamics

it will become possible to explain the many

seemingly odd aspects of individual-neuron

responses. The dynamical systems perspective

also provides a clear road map and goal, which

is to quantify the dynamical systems instan-

tiated by neural circuits. This mathematical

quantification comes in two inter-related parts:

the state-space neural trajectories (a focus of

this review article) and the form and meaning

of the evolution rule or equations of motion

(a focus of ongoing research; e.g., Abeles

et al. 1995, Churchland et al. 2012, Petreska

et al. 2011, Rabinovich et al. 2008, Seidemann

et al. 1996, Smith et al. 2004, Vaadia et al. 1995,

Yu et al. 2006). It appears possible that three

primary dynamical systems underlie reaching

arm movements: one to prepare the neural

state in an appropriate manner; a second system

to use this computationally optimized starting

point to generate movement activity, muscle

contraction, and thus movement itself; and a

third system that uses feedback for control.

Much future research is certainly needed to

explore this possibility, to extend and relate it

to numerous behaviors beyond the instructed-

delay point-to-point reaching task, and to see

whether the dynamical systems perspective can

ultimately help provide a more comprehensive

understanding of cortical motor control.

FUTURE ISSUES

The predictions, experiments, and analyses

described above stem from a dynamical systems

perspective, and to some degree their confir-

mation argues for that perspective. Yet many

central questions remain largely unaddressed.

What is the nature of the relevant dynamics

(h in Equation 3), and why are they what

they are? Do they relate to the dynamics

of movement-generating circuits in simpler

organisms? Do they reflect sophisticated mech-

anisms of online control and feedback (e.g.,

Scott 2004, Todorov & Jordan 2002)? How and

why do dynamics change as a function of input

from other brain areas (e.g., resting versus

planning versus moving)? What is the nature

of the circuitry, both local and feedback, that

produces these dynamics? What is the mapping

between the population dynamical state and

muscular activity (G in Equation 2)? Answering

such questions will likely depend on progress in

three domains of research: first, the increased

ability to resolve dynamical structure in neural

data; second, the increased ability to perturb

the population dynamical state while observing

dynamical structure; and third, the increased

ability to relate state-space trajectories to

externally measurable parameters.

For example, it is becoming possible to em-

ploy optogenetic techniques to briefly increase

(or decrease) the firing rate of excitatory or

inhibitory neurons in the cortex of the rhe-

sus monkey (e.g., Diester et al. 2011, O’Shea

et al. 2013). This can be accomplished at var-

ious times relative to withholding, preparing,

or generating arm movements while simulta-

neously observing the resulting perturbation

and recovery of the population dynamical state.

This class of pump-probe experiment should

enable more quantitative measurement of the

neural dynamics in operation during various

phases of the behavioral task and should help

illuminate the nature and operation of the neu-

ral circuitry underlying these neural dynamics.
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SUMMARY POINTS

1. Movement preparation has long been thought to be a critical step in generating move-

ment. Recent work supports this idea and argues that achieving the correct preparatory

state is important for producing the desired movement.

2. Measurements of the preparatory state predict both reaction time and trial-to-trial move-

ment variability. Disruption of the preparatory state increases reaction time.

3. Preparatory activity is not a subthreshold version of movement activity but instead ap-

pears to serve as an initial state for dynamics that engage shortly before movement onset.

4. The onset of these dynamics is tied to movement onset rather than to the go cue and is

predictive of trial-by-trial reaction time.

5. Neural responses during the movement appear complex but have at least some simple

aspects: Dynamics can be approximated by a linear differential equation in which the

same dynamics govern many reaching movements.

6. Because dynamics are similar across conditions, the pattern of movement-related activity

is determined largely by the preparatory state.

7. The best linear approximation (to the true nonlinear dynamics) is dominated by rotational

dynamics. Preparatory activity sets the amplitude and phase of the movement-period

rotations.

8. The resulting firing rate patterns form a natural basis set for building more complex

patterns such as muscle activity.
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Bastian A, Riehle A, Erlhagen W, Schöner G. 1998. Prior information preshapes the population representation

of movement direction in motor cortex. Neuroreport 9:315–19
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