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Abstract

Speech is the most important signal in our auditory environment, and the processing of
speech is highly dependent on context. However, it is unknown how contextual demands
influence the neural encoding of speech. Here, we examine the context dependence of
auditory cortical mechanisms for speech encoding at the level of the representation of
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magnetic resonance imaging. We found that the performance of different tasks on identical
speech sounds leads to neural enhancement of the acoustic features in the stimuli that are
critically relevant to task performance. These task effects were observed at the earliest stages
of auditory cortical processing, in line with interactive accounts of speech processing. Our
work provides important insights into the mechanisms that underlie the processing of
contextually relevant acoustic information within our rich and dynamic auditory environment.
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S
peech is the most crucial acoustic signal in our daily life.  
It conveys information for interpersonal communication as 
well as for the recognition of the identity and emotional state 

of an individual1. The type of information that is most relevant 
depends on the specific context and the momentary behavioural 
goal2. Consequently, speech processing needs to be highly adaptive 
and efficient2. Such efficiency and adaptiveness is achieved in the 
human brain through the active interplay between bottom-up pro-
cessing of the physical input in early sensory areas, and top-down 
modulatory mechanisms driven by upstream auditory and non-
auditory (such as frontal) areas3,4. Interactive speech models there-
fore propose that initial bottom-up processing is implemented on 
the incoming input, activating multiple possible linguistic represen-
tations of the sound5,6. Simultaneously, higher-level speech-recog-
nition mechanisms exert inhibitory influences on these competing 
interpretations, ultimately resulting in the activation of the correct 
interpretation6. Top-down effects are therefore thought to alter the 
bottom-up processing of speech sounds. However, it is unclear 
whether—and in what manner—these top-down modulations 
alter the neural representations of the acoustic content of speech 
(referred to as speech sound encoding hereafter). It is also unknown 
where these changes occur in the cortical processing pathway.

On the basis of previous studies in animals and humans, it has 
been suggested that cortical sound encoding can be characterized 
by a set of modulation filters7–10. After initial frequency decomposi-
tion in the cochlea, sounds are decomposed during subcortical and 
cortical processing with respect to their joint spectral and temporal 
modulation content8. This decomposition provides a multiresolu-
tion representation of sounds. Evidence suggests that phonetic 
information is encoded in this multidimensional space in the human 
superior temporal gyrus (STG)11. Multiple studies in animals have 
shown that neural spectrotemporal sensitivities in primary audi-
tory areas are flexible and can dynamically adapt to task demands, 
task difficulty or learned associations12–15. The extent to which these  

top-down influences on early auditory processing occur in the 
human brain remains to be explored.

In humans, top-down effects on the neural processing of speech 
have been found, but in higher-level areas, such as the inferior pari-
etal or frontal cortices or in (auditory) association areas located in 
the posterior STG (postSTG) and sulcus2,16,17. Top-down influences 
have been shown to modulate specific aspects of neural speech 
representations18. For example, one study has shown that critical 
spectrotemporal features of incoming speech signals can be more 
accurately retrieved from neuronal responses within the posterior 
superior temporal lobe if the speech is attended to, compared to the 
features that can be retrieved from simultaneously presented unat-
tended speech18. Other studies have shown that previous exposure 
to similar or identical stimuli directly influences the bottom-up rep-
resentations of speech sounds within the posterior temporal lobe. 
For example, in the context of perceptual restoration of missing 
phonemes, linguistic predictions coming from top-down lexical/
linguistic knowledge modulate neuronal responses in the postSTG 
before the onset of the critical phoneme. These modulations have 
been shown to enhance the representation of acoustic energy spe-
cifically related to the restored phoneme4. Another study has shown 
that an increase in the intelligibility of degraded speech—arising 
after exposure to the corresponding intact speech signal—evokes an 
amplification of the representation of spectrotemporal features that 
are characteristic of speech19.

The above studies show that the neural mechanisms that under-
lie speech processing actively adapt to task demands, attention and 
previous semantic knowledge. Moreover, the two previous stud-
ies4,19 show that top-down effects—driven by previous exposure—
modulate specific aspects of how acoustic information is encoded 
within the temporal lobe. These dynamic changes in sound encod-
ing have mostly been found in the postSTG and sulcus and/or in the 
inferior frontal gyrus—regions upstream of the primary auditory 
cortex. However, interactive models of speech processing predict 
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that top-down mechanisms affect even early auditory pre-lexical 
levels of processing, enabling early processes to tune to or amplify 
the acoustic features that are critically relevant to the processing of 
speech5,6. According to these models, it could be expected that task 
requirements modulate the encoding of speech sounds already in 
early auditory cortical areas (that is, in Heschl’s gyrus (HG) and 
Heschl’s sulcus (HS)). However, there is inconsistent evidence 
for task-dependent modulation of activation in primary auditory 
areas. For example, performing semantic categorization tasks on 
speech stimuli minimally modulates activity in HG20–22. By contrast, 
other studies using pattern-classification techniques have shown 
that response patterns evoked by speech sounds in early auditory 
areas are modulated by task demands, perception and learning23–26. 
However, none of these latter studies related these observations to 
the processing of specific features of speech input. Recent devel-
opments in model-based functional magnetic resonance imaging 
(fMRI) analysis27,28 now enable us to relate spatially distributed 
neural sound representations to the specific acoustic features that 
underlie task requirements8,29,30.

In the present study, we used model-based fMRI to examine how 
context—which we operationalized as the execution of different 
tasks—modulates the encoding of speech throughout the human 
auditory cortex. Specifically, we investigated how the neural encod-
ing of the same speech sounds changes as a function of preferential 
processing of different acoustic features within the sounds. During 
high-resolution fMRI measurements, participants performed either 
a linguistic (identification of stop consonants) or a paralinguistic 
(speaker identification) task on identical speech stimuli (pseudo-
words with similarities to French phonology but containing no 
meaning). Then, we used model-based decoding30 to examine the 
acoustic energy that is encoded by the brain along three acoustic 
dimensions: frequency, spectral modulation and temporal modu-
lation. These acoustic dimensions are differentially important for 
characterizing specific aspects of linguistic versus paralinguistic 
information in the speech signal. For example, plosive consonants 
(such as /p/, /t/ and /k/) have sudden and spectrally broad bursts, 
whereas voice processing—or speaker identification—relies more 
heavily on fine spectral detail and pitch31.

Consequently, to accurately perform these respective tasks, par-
ticipants needed to focus on different types of acoustic information 
in the sounds. We therefore expected that this would be reflected 
in dynamic changes to the encoding of identical auditory input. 
Specifically, on the basis of previous findings on the neural pro-
cessing of different aspects of speech sounds11,31,32, we hypothesized 
that performance of the speaker task would result in the preferen-
tial encoding of higher spectral modulations, and that performance 
of the phoneme task would result in the preferential encoding of 
lower spectral modulations and faster temporal modulations. 
Moreover, using regionally specific analyses, we examined task-
driven modulation of neural encoding across different auditory 
sub-regions, and assessed whether such modulation occurs even in 
early auditory areas.

Results
Identification tasks and behavioural performance. In the fMRI 
scanner (7 T), participants performed a phoneme- and a speaker-
identification task on the same pseudo-words (see the ‘Task and 
stimuli’ section in the Methods). During the speaker-identifica-
tion task, participants were asked to indicate whether a stimulus 
was spoken by speaker 1, speaker 2 or speaker 3, whereas during 
the phoneme-identification task, the participants heard the same 
pseudo-words but were asked to indicate whether they contained 
a /p/, /t/ or /k/ sound. Pseudo-words were used to diminish the 
use of lexical information for anticipating the presence of a tar-
get sound and to promote reliance on the auditory input dur-
ing the phoneme task. To specifically guide the acoustic focus 

towards spectral information during the speaker task, we did not 
use actual different speakers within this study. Instead we cre-
ated the percept of three different speakers by manipulating the 
fundamental frequency of the pseudo-words recorded from one 
female speaker (see the ‘Task and stimuli’ section in the Methods). 
Performance in the scanner was well above chance for both tasks 
(mean ± s.e.m. for the speaker task = 88.8% ± 2%, and for the 
phoneme task = 96.5% ± 0.9%); however, participants had more 
difficulty in identifying the different speakers compared with 
the different phonemes (t12 = −4.193, P = 0.001 (two-tailed), dif-
ference (mean ± s.e.m.) = −7.7% ± 1.8%, 95% confidence interval 
(CI) = −11.7% to −3.71%; Supplementary Fig. 1). There were no 
significant differences in performance on the different targets 
within each task (speaker task: F2,24 = 0.852, P = 0.439; phoneme 
task: F2,24 = 0.320, P = 0.729; Supplementary Fig. 1).

Speaker and phoneme modulation profiles based on the stimuli. 
The aim of this study was to examine whether identical speech 
sounds are encoded differently in the auditory cortex when different 
tasks are performed on the sounds. We therefore determined which 
acoustic aspects of the sounds themselves were the most informa-
tive for performance of the respective tasks. To do this, we mod-
elled the acoustic energy of our stimuli using a model that mimics 
cortical sound representations30,33. This sound representation model 
represents the energy of the sounds along the following acoustic 
dimensions: frequency (f), spectral modulation (Ω) and temporal 
modulation (ω; see the ‘Sound representation model for processing 
of speech sounds’ section in the Methods; Supplementary Fig. 2a). 
Consequently, we evaluated the acoustic energy of the sounds in a 
three-dimensional modulation space that encompasses different 
sound features, with each sound feature representing the time-aver-
aged acoustic energy at a specific frequency and at specific spectral 
and temporal modulations.

Next, we analysed the relative importance of different sound 
features for the identification of the different targets in the respec-
tive tasks by assessing which sound features contained significant 
acoustic variation within each target (see the ‘Estimation of speaker 
and phoneme modulation profiles based on the stimuli’ section 
in the Methods). This provided target-specific modulation pro-
files that represent the sound features that are the most informa-
tive for identifying each target. After statistical validation (see the 
‘Estimation of speaker and phoneme modulation profiles based on 
the stimuli’ section in the Methods), marginal modulation profiles 
were obtained by calculating an average of the acoustic variation 
across the irrelevant acoustic dimension.

Generally, the modulation profiles of the different targets were 
characterized by multiple frequency-specific spectrotemporal mod-
ulations (Fig. 1). However, the acoustic variation in the modulation 
profiles of the different speakers were most pronounced at higher 
spectral modulations (>1.1 cycles per octave) for centre frequen-
cies of up to 0.8 kHz and above 2.9 kHz. These profiles did not  
show high acoustic variation for specific temporal modulations 
(see Fig. 1a and Supplementary Fig. 3 for three-dimensional rep-
resentations of the speaker profiles). By contrast, the modulation 
profiles of the different phonemes could mostly be characterized by 
acoustic variation at fast rates of temporal modulation (>7.8 Hz up 
and down) and at broader spectral modulations for a wide range of 
centre frequencies, but mostly for frequencies above 0.6 kHz (see  
Fig. 1a and Supplementary Fig. 3 for three-dimensional represen-
tations of the phoneme profiles). The pattern of greater acous-
tic variation at faster temporal modulations and broader spectral 
modulations became more pronounced when the profiles were cal-
culated on the basis of the parts of the speech samples that corre-
sponded to the target phonemes only (Supplementary Fig. 4).

We further examined which acoustic variations were character-
istic for each target class (that is, for all speakers or all phonemes). 
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To do this, we initially calculated the average across the profiles of 
the individual speakers or the individual phonemes, and then cre-
ated one-dimensional (frequency-unspecific) modulation profiles 
by calculating the average along the two irrelevant acoustic dimen-
sions (for the temporal profiles we also calculated the average across 
upward and downward modulations; see the ‘Estimation of speaker 
and phoneme modulation profiles based on the stimuli’ section in 
the Methods).

The spectral modulation profiles showed that the speakers have 
increasingly higher acoustic variation towards higher spectral mod-
ulations, whereas the phonemes have highest variation at the lowest 
scale (Fig. 1b). The temporal modulation profiles revealed that the 
speakers do not show a clear increase in acoustic variation at spe-
cific modulation rates. By contrast, the phonemes show an increase 
in acoustic variation towards faster rates of temporal modulation 
(peak at 18 Hz; Fig. 1b).
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Fig. 1 | target-specific modulation profiles for the six individual target sounds. a, Two-dimensional modulation profiles for the individual target sounds, 

showing the normalized acoustic variation of the individual speakers (top two rows) and phonemes (bottom two rows). The profiles show the sound 

features that had significant acoustic variation (t-test with P < 0.05, uncorrected), and the colour code indicates the mean acoustic variation (normalized) 

across the sounds belonging to one target. Non-significant sound features are shown in blue. The speakers showed the highest acoustic variation for 

higher spectral modulations (>1.1 cycles per octave) at centre frequencies of up to 0.8 kHz. The energy variation was not selective for specific rates of 

temporal modulation. By contrast, the phonemes showed the highest variation at fast rates of temporal modulation (>7.8 Hz up and down) and at broad 

spectral modulations for centre frequencies above 0.6 kHz. Plots are interpolated for display purposes. b, One-dimensional modulation profiles showing 

the mean acoustic variation (normalized) across the three speakers (blue) and the three phonemes (red). The spectral profiles indicate that the speakers 

showed increasingly higher acoustic variation towards higher spectral modulations. The phonemes showed the greatest acoustic variation at the lowest 

scale (0.5 cycles per octave), and the variation decreased for higher spectral modulations. The temporal modulation profiles for the different speakers 

showed high variation across all rates of temporal modulation, and did not show specificity for particular rates of temporal modulation. The temporal 

profiles for the different phonemes showed clear increases in variation at faster rates of temporal modulation, with the peak at 18 Hz. Modulation profiles 

are normalized for each target class for display purposes. Temporal modulation profiles are averaged across upward and downward temporal modulations 

(see the ‘Estimation of speaker and phoneme modulation profiles based on the stimuli’ section in the Methods).
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Given the importance of these different sound features in the 
stimuli for differentiating between speakers and between pho-
nemes, we expected that neural encoding of higher spectral modu-
lations would be amplified during the speaker task, and that neural 
encoding of lower spectral and faster temporal modulations would 
be amplified during the phoneme task.

Auditory cortical responses during the speaker and phoneme 
tasks. The participants (n = 13) performed the two tasks while 
their sound-evoked neural responses were measured using fMRI. 
The speech sounds evoked significant blood-oxygen-level-depen-
dent (BOLD) responses in a wide expanse of the bilateral supe-
rior temporal cortex, including HG, HS, planum temporale (PT), 
planum polare (PP), STG and superior temporal sulcus (STS;  
Fig. 2). Beyond the auditory cortex, activation was also found in the 
insula and orbitofrontal cortex. Despite the significant difference 
in behavioural performance on the two tasks (see ‘Identification 
tasks and behavioural performance’ section above), a general linear 
model (GLM) contrast analysis showed that the speaker task yielded 
higher responses in only a small cluster in the right PT (cluster-
size: 39 vertices, t-statistic (mean cluster) = 5.1; Supplementary  
Fig. 5). The phoneme task did not evoke enhanced responses com-
pared with the speaker task (no significant voxels after correction 
for multiple comparisons (corrected P value (Pcorr) < 0.05) using a 
cluster size thresholding procedure on the basis of permutation and 
an initial uncorrected P = 0.001).

Neural encoding of speech sounds in auditory regions of interest. 
We examined the neural encoding of the sounds in six different audi-
tory areas by reconstructing the sound features of the stimuli from 
the fMRI responses that we obtained during task performance. On 
the cortical surface reconstruction of each participant, we manu-
ally labelled the six following regions of interest (ROIs): HG, PT, PP, 
anterior STG (antSTG), middle STG (midSTG) and postSTG (Fig. 3; 
see the ‘Delineation of anatomical ROIs’ section in the Methods for 
delineation criteria). For each ROI and each hemisphere separately, 
we trained a linear decoder to reconstruct the acoustic energy of 

every sound feature, as defined by the sound representation model30 
(see the ‘Estimation of the linear decoders’ section in the Methods 
and Supplementary Fig. 2b–d for an overview of the modelling steps 
and Supplementary Fig. 6 for the number of voxels used per ROI). 
Specifically, for each sound feature, we trained a linear decoder on 
the fMRI responses within each ROI to predict the acoustic energy 
for that given feature. Reconstruction accuracies (that is, prediction 
accuracies) were assessed by computing the Pearson’s correlation 
coefficient (r) between the actual acoustic energy for each sound fea-
ture in the test sounds and the energy of that feature as predicted 
by the decoder (see the ‘Estimation of ROI-specific MTFs for each 
participant’ section in the Methods; Supplementary Fig. 2). Group 
reconstruction accuracies for all of the features of the sound represen-
tation model resulted in a task-specific modulation transfer function 
(MTF). The MTF describes reconstruction accuracies as a function 
of frequency and of spectral and temporal modulations, and thus pro-
vides an overview by which sound features could be accurately recon-
structed from the fMRI responses. All group MTFs were statistically 
validated and thresholded (see the ‘Estimation of ROI-specific MTFs 
at the group-level’ section in the Methods and Supplementary Fig. 7a 
for the distributions of reconstruction accuracies for all sound fea-
tures). After statistical validation of the MTFs, we obtained marginal 
modulation profiles by calculating the average of the reconstruction 
accuracies along the irrelevant acoustic dimension.

During both tasks, the sound features of the stimuli could be 
accurately reconstructed for a broad range of spectral and temporal 
modulations; however, reconstructions for faster rates of tempo-
ral modulation (>10 Hz up and down) and for centre frequencies 
between 0.5 kHz and 1.7 kHz were generally better (see Fig. 4 and 
Supplementary Fig. 8 for three-dimensional representations of the 
MTFs). For the speaker task, a broader range of centre frequencies 
could be accurately reconstructed compared with the phoneme task 
(Fig. 4b). By contrast, the marginal profiles for the phoneme task 
show a clearer pattern of peak reconstruction accuracies for faster 
rates of temporal modulation (>10 Hz). For example, the left PT 
and the PP show clearer segregation in reconstruction accuracies 
between slower and faster temporal modulations compared with 
those seen during the speaker task for corresponding ROIs (Fig. 4c).

Analysis of task differences using single sound features. To 
determine which brain regions encoded the sounds differently as 
a function of task, we tested for task differences in the MTFs of 
the different ROIs. For this, we examined whether reconstruction 
accuracies for specific sound features were higher for one task than 
for the other (see the ‘Estimation of task differences between group 
MTFs’ section in the Methods). For ROIs that did not show hemi-
spheric differences, the task effects were examined using the MTFs 
that were averaged across hemispheres, whereas for ROIs that did 
show hemispheric differences (PT and midSTG; Supplementary 
Results 1), we examined the task effects for the two hemispheres 
separately (see the ‘Estimation of task differences between group 
MTFs’ section in the Methods).

Results showed task differences in the MTFs for five out of the 
six ROIs. During the speaker task, reconstruction accuracies for 
specific sound features were higher within the MTFs of the follow-
ing ROIs: bilateral HG, PP and postSTG, right PT and left midSTG. 
During the phoneme task, we found higher reconstruction accura-
cies within the MTFs of bilateral postSTG and right midSTG (see 
Fig. 5 and Supplementary Fig. 9 for unthresholded differences, 
Supplementary Fig. 10 for three-dimensional representations and 
Supplementary Fig. 11 for task effects in voice-selective areas).

We further examined which specific spectral and temporal mod-
ulations were encoded differently across multiple ROIs by com-
puting task-specific spectral and temporal modulation profiles as 
follows. For each participant, we averaged the reconstruction accu-
racies of the sound features across the ROIs that showed significant 
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task differences (that is, across HG, PT (right hemisphere (RH)), 
midSTG (left hemisphere (LH)) and postSTG for the speaker task, 
and across midSTG (RH) and postSTG for the phoneme task; see 
the ‘Comparison of task-specific spectral and temporal modulation 
profiles’ section in the Methods). One-dimensional profiles were 
then obtained by calculating the average of the reconstruction accu-
racies across the irrelevant acoustic dimensions.

We tested for differences in reconstruction accuracies between the 
spectral profiles of the speaker and of the phoneme tasks at each scale 
and, similarly, for the temporal profiles at each modulation rate (see 
the ‘Comparison of task-specific spectral and temporal modulation 
profiles’ section in the Methods). Results showed that reconstruction 
accuracies during the speaker task were significantly higher than 
those during the phoneme task for spectral modulations above 1.1 
cycles per octave (Ω = 1.7: t12 = 3.548, P = 0.004; Ω = 2.6: t12 = 4.225, 
P = 0.001; Ω = 4.0: t12 = 5.092, P < 0.001; all tests were Bonferroni-
corrected for the number of tests; Fig. 6). By contrast, reconstruction 
accuracies during the phoneme task were significantly higher than 
those during the speaker task at the lowest spectral scale (Ω = 0.5: 
t12 = −6.387, P < 0.001; Fig. 6). Results for the temporal modulations 
showed that accuracies overlapped between the two tasks at faster 
rates of temporal modulation reconstruction, whereas at slower rates 
of temporal modulation reconstruction accuracies were significantly 
higher for the speaker task than the phoneme task (ω = 1.0: t12 = 4.932, 
P < 0.001; ω = 1.2: t12 = 4.960, P < 0.001; ω = 2.8: t12 = 5.361, P < 0.001; 
ω = 3.4: t12 = 4.725, P < 0.001; Fig. 6). These differences indicate that 
the encoding of fast temporal modulations is more specific to the 
phoneme task compared with the encoding of a broader range of 
rates of temporal modulation during the speaker task.

Finally, we examined whether the differences in the neural encod-
ing of the sounds observed in the tasks showed amplification of sound 
features that were relevant to task performance. On the basis of the 
profiles that we obtained from the stimuli (Fig. 1b), we expected that 
distinct spectral and temporal information would be informative for 
the two tasks. We therefore first correlated the spectral profiles of the 
two tasks obtained from the neural data with the spectral profiles that 
we obtained from the stimuli (see the ‘Comparison of task-specific 
spectral and temporal modulation profiles’ section in the Methods). 
We found a greater correlation between the spectral profile of the 
speakers in the stimuli and the neural spectral profiles obtained dur-
ing the speaker task compared with the correlation between those 
obtained during the phoneme task (t12 = 9.298, P < 0.001 (two-tailed), 
mean difference (s.e.) = 1.35 (0.15), 95% CI = 1.03–1.67). Similarly,  
we found a greater correlation between the spectral profile of the  
phonemes in the stimuli and the neural spectral profiles obtained  

during the phoneme task compared with the correlation of those 
obtained during the speaker task (t12 = 9.818, P < 0.001 (two-tailed), 
mean difference (s.e.) = 1.39 (0.14), 95% CI = 1.08–1.70). We  
also expected to observe a greater reliance on faster temporal infor-
mation during the phoneme task. Consistent with this prediction,  
we found a greater correlation between the temporal profile of the 
phonemes in the stimuli and the temporal profiles that we obtained 
from neural data obtained during the phoneme task compared with 
the correlation of those obtained during the speaker task (t12 = 6.510, 
P < 0.001 (two-tailed), mean difference (s.e.) = 0.82 (0.13), 95% 
CI = 0.55–1.10).

Analysis of target separability using multiple sound features. In 
addition to analysing task-related differences in neural encoding at 
the level of single-sound features, we also tested for amplification of 
task-relevant information at the whole-sound level. More specifi-
cally, we expected that target identification would enhance the neu-
ral separability between targets. Consequently, sounds belonging 
to different speakers would be most separable during the speaker 
task, and sounds belonging to different phonemes would be most 
separable during the phoneme task. We tested this prediction using 
linear classification (support vector machine (SVM)) on the recon-
structed sounds, which we derived from the fMRI responses dur-
ing performance of each task. For each individual, we trained SVMs 
to discriminate between the reconstructed sounds spoken by the 
different speakers regardless of the phoneme, and to discriminate 
between reconstructed sounds containing the different target pho-
nemes regardless of the speaker (see the ‘Analysis of target separa-
bility with the use of linear classification’ section in the Methods). 
For each task, classifications were performed on all positively recon-
structed sound features and separately for the two hemispheres 
(mean classification accuracies of speaker identity for the speaker 
task: t12 = 6.385, P < 0.001 (two-tailed), mean (s.e.) = 0.54 (0.006), 
95% CI = 0.52–0.55; and for the phoneme task: t12 = 0.748, P = 0.469 
(two-tailed), mean (s.e.) = 0.50 (0.005), 95% CI = 0.49–0.51. Mean 
classification accuracies of phoneme identity for the speaker task: 
t12 = 3.182, P < 0.008 (two-tailed), mean (s.e.) = 0.51 (0.005), 95% 
CI = 0.50–0.52; and for the phoneme task: t12 = 6.972, P < 0.001 
(two-tailed), mean (s.e.) = 0.53 (0.005), 95% CI = 0.52–0.54; Fig. 7a).

We expected that the reconstructed sounds belonging to dif-
ferent targets would be more separable when they were relevant to 
task performance, which would be reflected by higher classification 
accuracies for task-relevant targets compared with classifications 
for task-irrelevant targets. We used repeated-measures analysis 
of variance (ANOVA) to test whether the classification accura-
cies differed between the target class (speakers or phonemes), task 
(speaker or phoneme task), ROI and hemisphere. We found an 
interaction between target class and task (F1,12 = 17.714; P = 0.001), 
as well as a three-way interaction between target class, task and 
ROI (F5,8 = 6.516; P = 0.011). When we tested each ROI separately, 
we found a main effect of the task only in the antSTG, with higher 
classification accuracies for the speaker task for both speakers and 
phonemes (F1,12 = 5.869, P = 0.032; Fig. 7b). We did not find such 
an effect of task in any other ROI (HG: F1,12 = 0.690, P = 0.422; 
PT: F1,12 = 0.915, P = 0.358; PP: F1,12 = 0.015, P = 0.904; midSTG: 
F1,12 = 0.116, P = 0.739; postSTG: F1,12 = 2.162, P = 0.167; Fig. 7b). 
Moreover, in accordance with our predictions, we found significant 
interactions between target class and task in the following ROIs: 
HG, PT, midSTG and postSTG (HG: F1,12 = 26.078, P < 0.001; PT: 
F1,12 = 7.638, P = 0.017; midSTG: F1,12 = 5.077, P = 0.044; postSTG: 
F1,12 = 15.161, P = 0.002). Within these ROIs, speaker classifica-
tion accuracies were higher for the sounds that were reconstructed 
from the fMRI responses during the speaker task than for those of  
the phoneme task. The opposite was found for phoneme classifica-
tion (Fig. 6c). These results show that the acoustic representations 
of the sounds change as a function of task requirements. For the 
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Fig. 4 | marginal modulation profiles of the mtFs during the speaker and phoneme tasks. a,b, Two-dimensional marginal modulation profiles showing 

the reconstruction accuracies of the sound features during the speaker (a) and the phoneme tasks (b), for each ROI. The colour code indicates the group 

average r between the predicted acoustic energy and the actual energy of the sound features. a, During the speaker task, peak reconstruction accuracies 

were found for faster temporal modulations (>10 Hz up and down) and for higher spectral modulations (4 cycles per octave) at centre frequencies 

between 0.5 kHz and 1.7 kHz. b, During the phoneme task, peak reconstruction accuracies were found for fast temporal modulations (>10 Hz up and down) 

at centre frequencies between 0.4 kHz and 1.0 kHz. All correlations were statistically validated and thresholded (cluster-size threshold yielding αclu < 0.05; 

see the ‘Estimation of ROI-specific MTFs at the group level’ section in the Methods). Non-significant correlations are shown in blue. The plots have been 

interpolated for display purposes. Negative ω indicates upward temporal modulations and positive ω indicates downward temporal modulations. Before 

statistical assessment, all correlation values were normalized by applying the Fisher z-transformation.
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postSTG, we also found an interaction between hemisphere and 
task; classification accuracies were higher in the RH during the 
speaker task (F1,12 = 5.050, P = 0.044).

Discussion
Our results show that the performance of different tasks on identi-
cal speech stimuli modulates fine-grained task-relevant aspects of 
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the neural encoding of those sounds. Furthermore, we found that 
this top-down modulation occurs even in HG, which is the earli-
est cortical stage of auditory processing34. The difference in encod-
ing during the respective tasks was modulated in a manner that is 
consistent with the characteristic sound features of the targets that 
were attended to during these tasks. Acoustic analysis of the speech 
sounds showed that speaker information in the speech signal is 
characterized by modulation at higher spectral modulations, and—
accordingly—the encoding of these sound features was amplified 
during the speaker task. By contrast, phonetic information in the 
stimuli was characterized by lower spectral modulations and faster 
temporal modulations, and this was paralleled by amplification in 
the neural encoding of corresponding sound features during the 
phoneme task.

Our study shows alterations in the bottom-up processing of 
speech sounds—which are probably driven by top-down influ-
ences—through selective enhancement or amplification of the 
encoding of spectrotemporal information that is relevant to the 
current behavioural goal. Our findings complement those of other 
studies with human participants that found contextual modulation 
of the neural representations of speech stimuli in early auditory 
areas23,25,26, but we go further in terms of uncovering the acoustic 
specificity of these modulations with respect to behaviourally rele-
vant goals. Our findings of similar effects of task modulation across 
different, lower- to higher-level auditory regions suggest the pres-
ence of multiple spatially distributed neural computations that work 
in parallel to facilitate flexible task-relevant behaviour. Moreover, 
our findings are in line with interactive speech models, which 
assume that the bottom-up processing of speech sounds is affected 
by interactions between multiple lexical and pre-lexical processes3,6.

Our study provides a bridge between human sound processing 
and the mechanisms found in non-human species12,13,35. Multiple 
electrophysiology studies in animals have shown that neuronal-
response profiles adapt to task requirements, and the matched-
filter hypothesis12,35,36 proposes a mechanism that could underlie 
this rapid task-driven flexibility. This hypothesis states that behav-
iourally induced changes in spectrotemporal sensitivities match the 
task-relevant spectrotemporal features within the sounds. The same 
principle has been proposed in the visual domain37, and our results 
suggest that this mechanism also generalizes to the human auditory 
cortex during the processing of complex naturalistic sounds.

For both tasks, we found high reconstruction accuracies for 
faster temporal modulations, albeit this was more specific for the 
phoneme task. These results are in line with previous studies that 
showed the importance of temporal information for linguistic pro-
cessing38, and suggest that the human auditory cortex automatically 
processes faster temporal modulations in speech stimuli, regardless 
of whether linguistic or paralinguistic information is attended to. 
Furthermore, for the phoneme task, the reconstruction accuracies 
were highest at the lower spectral modulations, and they dropped 
significantly at higher scales. This parallels the acoustic variation 
that was found to distinguish the target phonemes (in our case, stop 
consonants) from one another. Together with the higher accuracies 
at faster temporal modulations, these findings suggest that there 
may be a trade-off between the relative importance of temporal and 
spectral detail during the perception of unvoiced stop consonants in 
that not only are faster temporal modulations enhanced during the 
processing of these sounds, but also in that higher spectral modu-
lations are suppressed—or ignored—by the brain. Taken together, 
our results suggest that higher spectral density is more relevant 
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for voice processing only, in contrast to rapidly changing tempo-
ral information—which seems to be important for the processing 
of both speech phonetics and speaker identity—highlighting the 
importance of temporal information during the processing of dif-
ferent types of information in the speech signal.

Previous studies in humans that examined task effects in the con-
text of speech processing using electrocorticography have found few 
modulation effects in HG20–22. A possible explanation for this dis-
crepancy could be differences in the nature of the tasks. In the previ-
ous studies, participants mainly performed semantic categorization 
tasks on speech sounds, whereas in this study, participants had to 
retrieve detailed acoustic information embedded in the speech 
sounds, especially during the phoneme task. Therefore, the partici-
pants in the former studies probably relied on semantic processing, 
which takes place in more-upstream cortical areas such as the STS. 
By contrast, in our study there was heavier reliance on spectrotem-
poral parsing of the actual acoustic signal, which takes place in the 
earliest auditory areas39–41. Another explanation could be that task 
modulations of early auditory processing may be subtle24, and thus 
sensitive analysis methods such as multivariate analyses—as used in 
this study—may be required to detect them.

The MTFs that we modelled with the data obtained during the 
speaker task were generally richer than the MTFs obtained with the 
data from the phoneme task. Together with the difference in task 
difficulty (Supplementary Fig. 1), it could be questioned whether 
the participants listened more attentively to the acoustic input dur-
ing the speaker than during the phoneme task, which could have 
resulted in better encoding of the sounds during the former task. 
However, we argue that a generic attentional effect cannot explain 
our results. First, the difference in evoked fMRI responses between 
the two tasks was small (Supplementary Fig. 5) and we used an equal 
number of voxels across the tasks for the modelling of the encoding 
(see the ‘Estimation of the linear decoders’ section in the Methods). 
This ensured that the amount of input for the training of the linear 
decoders was the same for each task. Second, single-feature-based 
analyses showed encoding advantages for both the speaker and the 
phoneme tasks in different ROIs. Moreover, multi-feature analy-
ses did not show generally higher classification accuracies for the 
speaker task compared to the phoneme task, with the exception 
of the antSTG. However, we did not observe task-related modula-
tion in the neural encoding of the sounds in the antSTG. Finally, 
we found dissociations in the task modulation effects that were 
consistent with the amplification of task-relevant acoustic informa-
tion in four out of six ROIs. If the modelling of sound encoding had 
been generally less successful due to decreased attention during the 
phoneme task, we should not have found any advantage of this task 
compared with the speaker task, nor relationships with the acoustic 
information that was critical for the respective tasks.

The difference in richness of the MTFs between the two tasks 
can, more probably, be explained by the fact that the sound repre-
sentation model that we used may be less well tailored for the pho-
nemes than for the speakers. The frequency shifts that we applied 
to create the percept of different speakers were clearly detectable in 
the modulation space, whereas the acoustic signatures of the dif-
ferent phonemes were less well pronounced. This difference was 
confirmed by significantly better classification of the speakers com-
pared with the phonemes when we classified the different targets on 
the basis of their actual acoustic energy (mean difference in classi-
fication accuracies = 0.25; see Supplementary Results 2). The better 
fit of the model for the speaker task probably resulted in successful 
reconstruction of broader sound features during this task.

The computational modelling paradigm that we adopted in this 
study can be implemented in different ways, namely using single-
voxel encoding and multivariate decoding (used here as described 
previously30). When using single-voxel encoding, a voxels response 
is modelled as a function of combined spectrotemporal information. 

However, single-voxel encoding relies on the responses of individual 
voxels and does not account for possible relationships between the 
responses of multiple voxels together. Previous studies have shown 
that task modulation effects are subtle and are distributed over mul-
tiple voxels23,24. To increase the sensitivity of our analysis, we applied 
multivariate decoding, which models the encoding of acoustic 
information across multi-voxel brain responses30. Neural encoding 
is established for each sound feature separately, which allows for the 
implementation of a rich acoustic model that accounts for the finer 
interdependent spectrotemporal acoustic detail that natural speech 
contains. As a consequence, this method does not account for corre-
lations across sound features, whereas aspects of speech—especially 
phonemes—can be differentiated on the basis of a variety of com-
bined spectral and temporal cues42,43. For this reason, we examined 
task-related differences in neural encoding not only with respect to 
single-sound features using model-based decoding, but also across 
multiple sound features within the sounds using a classification 
approach.

We found regional differences in the encoding of the sounds 
(Supplementary Figs. 12 and 13). For example, we found the high-
est reconstruction accuracies in the PT, which replicates its impor-
tant role in the processing of spectrotemporally complex sounds39,44. 
Furthermore, we found a higher involvement of HG for the speaker 
task only, which can be explained by the spectral nature of this task 
and by the tonotopic representations that have been found in this 
region45. Furthermore, due to manipulation of the fundamental fre-
quencies in our stimuli, the speaker task could have entailed aspects 
of pitch processing. Our finding of involvement of HG during the 
speaker task could—in part—reflect this, given that previous stud-
ies found pitch-sensitive regions within this area46,47. Furthermore, 
the few lateralized effects that we found are not consistent with pre-
vious observations regarding the lateralization of phonemic versus 
pitch processing2,48, suggesting that such lateralization may depend 
on the use of specific tasks and stimuli.

Prediction accuracies of the MTFs in our study were generally 
lower compared with the ones found by Santoro et al.30, who used a 
similar computational modelling approach to ours, or to those found 
by other studies that reconstructed speech from brain responses11,49,50 
(see Supplementary Figs. 14 and 15 and Supplementary Table 1 for 
information about the reliability of the reconstructed MTFs that we 
observed, and Supplementary Fig. 16 and Supplementary Table 2 
for information about the variability in the estimations of the task 
effects). One explanation for the difference in prediction accura-
cies in this study compared with other studies could be our choice 
of stimuli, which were single pseudo-words with similar durations 
and syllabic structures. The use of these stimuli entailed the model-
ling of a restricted modulation space, compared with the modula-
tion space that is sampled when using a wider variety of linguistic 
sounds or when using environmental sounds (linguistic and non-
linguistic). A smaller modulation space makes successful feature 
reconstruction more challenging because decoders are trained on 
acoustic variation within the modulation space. Alternatively, lower 
prediction accuracies in our study could have been caused by the 
repeated presentations of speech stimuli, which might have attenu-
ated BOLD responses that were evoked. This is another challenge 
for successful decoding, because the latter also depends on fluctua-
tions in BOLD responses.

In conclusion, our results provide meaningful insights into the 
flexibility of auditory encoding in the human brain, non-invasively. 
Our data elucidate the neuro-computational mechanisms that 
enable the dynamic processing of task-relevant information within 
our rich and dynamic auditory environment—mechanisms which 
may generalize to other sensory modalities. The model-based 
decoding approach that we used enables a broad range of applica-
tions, for example, to address questions such as how expertise or 
pathology alter the encoding of sounds. However, open questions  
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remain regarding the neural mechanisms that underlie the encod-
ing of higher-level, more-abstract aspects of speech. Models of 
encoding can therefore be refined by adding higher-level phonetic 
features, such as pitch, voicing, voice-onset-time and formant 
ratios6,11,42. Such extensions of the computational modelling of 
speech will enable a more-complete understanding of how speech 
perception comes about; however, the major challenge for future 
studies will be to establish the exact mechanisms that underlie the 
transformation of the acoustic signal into abstract representations.

methods
Participants. Thirteen right-handed native French-speaking adults (6 women; 
mean age (s.d.) = 23 yr (4 yr)) participated in the study. The participants had self-
reported normal hearing and reading abilities and none of them were musicians. 
The approval for the study was granted by the Cantonal Ethics Committee of the 
Vaud Canton (Switzerland). All participants gave written informed consent before 
the study, and they received monetary compensation for their participation. No 
statistical methods were used to predetermine the sample size, but our sample size 
is larger than those reported in previous publications30,51,52. Four other participants 
were originally included in this study but were later excluded because two did 
not complete the full experimental sessions and two displayed excessive head 
movement during the fMRI acquisition.

Task and stimuli. The speech stimuli included 120 pseudo-words that  
respected the rules of French phonology but had no meaning. The pseudo-
words were created from a preselected French word list that was retrieved 
from the Lexique word database (http://www.lexique.org) using the Lexique 
Psycholinguistic Toolbox, which selectively scrambles letters within  
words while respecting French phonetic rules. The duration of the stimuli 
ranged from 1,000 ms to 1,200 ms, with a sampling frequency of 16 kHz.  
The stimuli ranged from three to five syllables in length, with a mean  
of four syllables. For each stimulus, sound onset and offset were ramped  
with a 10 ms linear slope, and the energy level (root mean square) was set  
to a constant value.

The participants performed a speaker identification (three target speakers) 
and a phoneme identification (three target stop consonants; /p/, /t/ and /k/) task. 
For example, the participants were presented with the item: /gabʁatadə/, and 
during the speaker-identification task, they identified the corresponding speaker 
(speaker 2 in this example), whereas during the phoneme-identification task, 
they indicated which target phoneme was in the stimulus (/t/ in this example). 
All targets (specific speaker or specific phoneme) were equally distributed across 
the stimuli (n = 40 per target), and task irrelevant targets were balanced across 
the task-relevant targets. For example, 13 of all the pseudo-words containing a /t/ 
target were spoken by speaker 1, 14 were spoken by speaker 2 and 13 were spoken 
by speaker 3. All of the pseudo-words contained only one out of the three target 
phonemes, and these targets occurred once or twice within each stimulus (with 
an equal probability of either). Furthermore, 25% of the words started with the 
target phoneme. The stimuli were spoken by a female professional phonetician 
and—to create the percept of different speakers—the fundamental frequency of 
the recorded pseudo-words was manipulated using an overlap-add  
technique based on waveform similarity (WSOLA) implemented in Audacity 
(www.audacityteam.org). The pitch-shifting algorithm that we used minimally 
alters the speed of the signal due to the combination of time stretching and 
resampling. For the creation of the stimuli corresponding to speaker 1, the 
fundamental frequency of a random subset (one third) of the stimuli was down-
shifted by 7.5% with respect to the original value. For the creation of stimuli 
corresponding to speaker 2, the fundamental frequency of another third of the 
items was down-shifted by 0.01%, and for the creation of stimuli corresponding 
to speaker 3, the fundamental frequency of the remaining items was up-shifted by 
10%. The shift in fundamental frequency for speaker 2 was not audible compared 
with the original stimuli. The naturalness of these pitch-shifted stimuli and the 
degree of success in creating the percept of different speakers were validated in a 
previous experiment, with different participants.

fMRI measurements. The fMRI experiment consisted of two sessions that were 
performed up to one week apart. Before the first session, the participants were 
familiarized with the two identification tasks to ensure that they understood and 
performed the task correctly. In both fMRI sessions, the participants performed 
the two identification tasks, which were administered in a counter-balanced order 
within and between sessions and across participants. The participants reported 
their responses through button presses using both hands. They were only required 
to respond on cued trials (13% of the trials), which were signalled by a visual cue 
presented after the stimulus (cued trials were excluded from the brain imaging 
data analyses). To motivate task engagement, the participants received an extra 
monetary bonus at the end of the two sessions if their task performance during 
scanning was at or above a desired performance level (75% correct); all participants 
achieved this. Sounds were presented binaurally at a comfortable listening level 

using the S14 model fMRI-compatible earphones by Sensimetrics (www.sens.com). 
The intensity of the sounds was adjusted to equalize their perceived loudness.

The stimuli were divided into four non-overlapping sets (n = 30 per set), each 
set containing a balanced subset of the different targets. Each of the four sets was 
presented within one fMRI session and repeated during the following session. In 
one session, the participants performed the speaker task on a particular stimulus 
set, and in the other session they performed the phoneme task on that set. Every 
stimulus set was presented within two consecutive functional runs, and the task 
changed after each stimulus set.

Every stimulus was presented three times, and the order of the stimuli was 
pseudo-randomized such that none of the targets relevant to the task were 
repeated during consecutive trials, and such that the irrelevant targets were not 
repeated more than two times in a row. One scan session consisted of a total of 
eight functional runs. One run lasted approximately 8 min and included 60 trials. 
The participants were cued to give a response during 13% of the trials, and during 
12% of the trials no sound was presented (null trials) to increase inter-stimulus 
intervals. Data collection and analysis were not performed blind to the conditions 
of the experiment.

MRI parameters. Brain imaging was performed using a 7 T head-only scanner 
(Siemens Medical Solutions) with a 32-channel RF head array coil housed 
within a birdcage transmit coil (Nova Medical). A fast event-related scheme 
was used to collect the functional T2*-weighted images. Each volume consisted 
of 35 slices covering the superior temporal plane, and was acquired using a 
clustered echo planar imaging sequence (repetition time (TR) = 2,600 ms; time of 
acquisition (TA) = 1,250 ms, echo time (TE) = 20 ms, silent gap = 1,350 ms, voxel 
size = 1.5 × 1.5 × 1.5 mm3, GRAPPA acceleration X3). Stimuli were presented within 
the silent gap between acquisitions, with a randomized inter-stimulus interval of 
two, three or four TRs. The minimal inter-stimulus interval was 5,100 ms.

Anatomical T1-weigted images were acquired using the MP2RAGE sequence, 
a modified magnetization-prepared rapid gradient-echo (MPRAGE) sequence that 
generates two image sets at different inversion times for bias field compensation53, 
with the following parameters: resolution = 0.6 × 0.6 × 0.6 mm3, TRmp2rage/TE/
TI1/TI2 = 6,000 ms/2.05 ms/800 ms/2,700 ms. The MP2RAGE sequence included 
the sampling of fat excitation data (using a binomial pulse with a 7° flip angle), 
enabling retrospective motion correction of the T1-weighted images54.

Data preprocessing. Functional and anatomical images were analysed using 
BrainVoyager and BrainVoyager QX (Brain Innovation). Preprocessing steps 
for the functional images consisted of slice scan-time correction (cubic spline 
interpolation), three-dimensional motion correction (trilinear/sinc) and temporal 
high-pass filtering to remove nonlinear drifts of maximum seven cycles per 
time course. Owing to head movement of two participants during acquisition of 
the anatomical scan, the anatomical images of these participants were motion 
corrected retrospectively by using the fat-selective excitation data as a three-
dimensional motion navigator54. The functional images were coregistered to the 
anatomical images, and both were transformed into Talairach space. The volume 
time courses were moderately spatially smoothed (kernel width 2 mm). Cortical 
surface reconstructions were generated for all participants by segmenting the 
grey–white matter border in the anatomical images. Cortex-based alignment was 
performed on all participants using a moving-target-group-average approach 
on the basis of curvature information55. Alignment information was used for the 
random-effects general linear modelling of task effects, to obtain a group surface 
reconstruction and to compute the overlap of ROIs across participants.

fMRI analysis for univariate group contrasts. Univariate analyses were 
based on the functional time series that were resampled on the cortical surface 
reconstructions of the participants. Volume time courses were therefore mapped 
from the volume space onto the surface space using a customized MATLAB 
code (www.mathworks.com). Random-effects GLM analyses were performed 
on time-course data sampled on individual cortical reconstructions and aligned 
to the cortical group map using cortex-based alignment (BrainVoyager, Brain 
Innovations; Fig. 2). For the examination of task differences, we used one 
predictor per task (convolved with a double-gamma haemodynamic response 
function (HRF)). Note that the stimuli were identical for the two tasks, and 
that only task instructions differed. All GLMs included confounding predictors 
for each participant’s motion-corrected parameters and for the excluded cued 
trials. Functional contrast maps (t-statistics) were calculated to assess task-
specific sound-evoked responses (Supplementary Fig. 5). Functional contrasts 
were corrected for multiple comparisons (Pcorr < 0.05) by applying a cluster-size 
threshold obtained using Monte Carlo simulations (initial threshold of P = 0.001 
and 3,000 permutations), implemented in BrainVoyager.

Sound representation model for processing of speech sounds. Cortical 
representations of the stimuli were estimated using a biologically inspired model 
of auditory processing7,30. This is a two-stage model with an early processing 
stage that mimics the auditory transformations performed from the cochlea 
to the midbrain and a cortical processing stage that consists of more-complex 
spectrotemporal transformations that are presumed to take place in the auditory 
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cortex. Ultimately, the output of this auditory model provides a multidimensional 
representation of the initial sound waveform that encompasses the following 
acoustic dimensions: time, frequency, spectral and temporal modulations, and 
directionality.

In the early processing stage, the one-dimensional sound waveform was 
converted into a two-dimensional spectrotemporal representation describing the 
logarithmic (tonotopic) frequency content of a sound and how it evolved over time. 
This spectral analysis by the cochlea was simulated by a bank of 128 overlapping 
band-pass filters with a constant Q (Q10dB = 3) and with centre frequencies that were 
uniformly distributed along a logarithmic frequency (f) axis spanning 5.3 octaves 
(fmin = 180 Hz and fmax = 7,040 Hz). The output of these filters then entered a hair-
cell stage that consists of a high-pass filter, a nonlinear compression and a low-pass 
filter. This was followed by a midbrain stage that was modelled by a first-order 
derivative with respect to the logarithmic frequency axis, a half-wave rectifier and a 
short time window integration (time constant = 8 ms).

The resulting auditory spectrogram then entered the cortical processing 
stage. Within this stage, the spectral and temporal modulation content of the 
spectrogram was estimated by a set of cortical filters. These two-dimensional filters 
were selective to different combinations of spectral and temporal modulations, 
and were centred at different frequencies along the tonotopic axis. Mathematically, 
the combined cortical filters performed a complex wavelet decomposition of 
the auditory spectrogram. The magnitude of this decomposition yielded a 
phase-invariant measure of the modulation content. We used two-dimensional 
filters that were tuned to six spectral modulation frequencies (Ω = 0.5, 0.7, 1.1, 
1.7, 2.6 and 4 cycles per octave) and to 20 temporal modulation frequencies 
(ω = (log2(1):20:log2(50)) Hz). The filters had a constant Q, and were directionally 
selective to either upward- or downward-drifting frequency sweeps.

We obtained the above auditory spectrogram and the corresponding 
modulation content of our stimuli using the NSL Tools package (available at  
http://www.isr.umd.edu/Labs/NSL/Software.htm) and using customized MATLAB 
codes. Afterwards, we reduced the multidimensional sound representations by 
first calculating the average across all time bins and by reducing the 128 tonotopic 
frequency bins from the auditory spectrogram into 60 frequency bins with constant 
bandwidth in octaves. Ultimately, the acoustic energy of each stimulus was 
represented by 14,400 sound features in total (6 spectral modulations × 40 temporal 
modulations (upward and downward) × 60 frequency bins). All of the processing 
steps described above were applied to all 120 stimuli, resulting in an (N × F) feature 
matrix, where S represents the acoustic energy of all the sounds, N is the number of 
sounds (120) and F the number of features (14,400; see Supplementary Fig. 2a for a 
visualization of the transformation of the sounds).

Estimation of speaker and phoneme modulation profiles on the basis of the 
stimuli. The modulation profiles for the individual targets, as discussed in the 
‘Speaker and phoneme modulation profiles based on the stimuli’ section, were 
obtained as follows. The feature matrix S, described above, was first normalized 
across all sounds (z-score), thus providing a standardized measure of the 
acoustic variation for a given sound feature. Then—for every sound feature—we 
calculated whether the sounds belonging to a specific target contained significant 
acoustic variation (t-test (d.f. = 39) with P < 0.05, uncorrected). Target-specific 
modulation profiles were obtained by selecting the significant sound features, and 
by calculating the average of the acoustic variation of these features across the 
different sounds belonging to that target (these modulation profiles are shown in 
Fig. 1a). The profiles for each target class (speakers or phonemes) were obtained 
by calculating the average of the profiles across the different speakers or across the 
different phonemes. From these profiles, we created one-dimensional (frequency-
unspecific) modulation profiles by calculating the average along the two irrelevant 
acoustic dimensions. Given that the full sound representation model included 
upward and downward temporal modulations, the one-dimensional temporal 
profiles also involved calculating the average across corresponding upward 
and downward modulations (for example, across −4 Hz and 4 Hz upward and 
downward modulation rates, respectively; the modulation profiles of each target 
class are shown in Fig. 1b).

Delineation of anatomical ROIs. We manually labelled the six following auditory 
ROIs (as described in a previous publication30 and using an anatomical criteria 
described previously56): HG, PT, PP, antSTG, midSTG and postSTG.

HG corresponded to the first transverse temporal gyrus in the superior 
temporal plane. Its anterior-medial border was defined by the first transverse 
sulcus (FTS), and its posterior–lateral border was defined either by HS, or by the 
sulcus intermedius (SI) when one was present. Its medial border was confined by 
the circular sulcus of the insula (CSI).

The PT is a triangular area posterior to HG, along the superior temporal 
plane56. Its anterior-medial border was confined by HS or by the SI when one 
was present. Medially, its border was defined as the deepest point of the Sylvian 
fissure from the medial origin of HS until the posterior point of the STG at the 
temporoparietal junction. Laterally, its border was defined by the lateral rim of the 
superior temporal plane.

The PP is an area anterior to HG along the superior temporal plane, directly 
adjacent to the insula and the frontal operculum56. Its medial border was confined 

by the CSI. Its lateral border was defined by following the FTS until the anterior 
tip of HS or SI. From here, the lateral border became the lateral rim of the superior 
temporal plane.

The STG corresponds to the lower bank of the Sylvian fissure, and was defined 
anteriorly from the temporal pole extending posteriorly to the end of the Sylvian 
fissure at the temporoparietal junction. The STG was divided into an anterior, 
middle and posterior part. The borders of midSTG were defined by using the 
anterior-lateral and posterior-medial ends of HG as references points.

For all of the participants, all anatomical ROIs were labelled on the cortical 
surface reconstructions of each hemisphere obtained with BrainVoyager. The 
labelled ROIs were projected into the volume space of each participant to obtain 
three-dimensional masks. All of the masks were corrected for mislabelled voxels 
and for voxels that overlapped between the different ROIs by visual inspection and 
using customized MATLAB codes (the resulting ROIs are visualized in Fig. 3).

Estimation of fMRI responses to individual speech sounds. We computed 
responses of voxels to individual speech sounds using a two-phase procedure 
implemented with customized MATLAB codes. For each voxel i, the response 
vector Yi (which consists of [N × 1], where N is the number of sounds) was 
obtained in two steps (as described previously30). First, a HRF common to all 
stimuli was estimated using a GLM analysis in which all speech sounds were 
treated as a single condition. Then, using this HRF and one predictor per sound, 
we computed the beta-weight for each speech sound. We implemented a fourfold 
cross-validation across the four sets of stimuli that are described in the ‘fMRI 
measurements’ section. The HRF was estimated using the training data, and beta-
weights were computed separately for the training and test data (90 training sounds 
and 30 test sounds per cross-validation).

Further analyses were performed on voxels that had a significant positive 
response (beta-weights) to the training sounds within the anatomically defined 
ROIs (P < 0.05, uncorrected). The responses of the voxels to the speech sounds 
were modelled twice—once on the basis of the data obtained during the speaker 
task and once on the basis of the data obtained during the phoneme task. This 
resulted in separate multi-voxel response patterns for each task.

Estimation of the linear decoders. For each task, a linear decoder was trained to 
estimate the relationship between the multi-voxel fMRI responses within a specific 
ROI and the cortical representations of all the sounds. For each participant, we 
trained linear decoders to predict the acoustic energy for every sound feature 
of the feature matrix S (described above). Separate linear decoders were trained 
for each feature as follows (as described previously30; see Supplementary Fig. 
2b for a visualization). The sound feature Si[Ntrain × 1] was modelled as a linear 
transformation of the multi-voxel response pattern Ytrain [Ntrain × V], plus a bias  
term (bi) and a noise term (no), according to the following equation:

= + +S b noY C 1 (1)i i itrain

where Ntrain is the number of sounds in the training set, V is the number of vox-
els per ROI, 1 is an [Ntrain × 1] vector of ones, and Ci is a [V × 1] vector of weights 
for which the elements cij quantify the contribution of voxel j to the encoding of  
feature i. Approximately 500 to 1,500 voxels were used for each linear decoder  
(see Supplementary Fig. 6 for the number of voxels per ROI). For each participant, 
the number of voxels used for decoding was equalized across the two tasks for cor-
responding ROIs.

The solution to equation (1) was computed by means of kernel ridge regression 
using a linear kernel57. We wanted to optimize the prediction accuracy per sound 
feature rather than to establish comparable linear transformations between 
the different tasks, therefore, the regularization parameter λ was determined 
independently for each feature and for each task by generalized cross validation58. 
The search grid included 32 values between 100.5 and 1011, logarithmically spaced 
with a grid grain of 100.33 (see Supplementary Fig. 7b for the distribution of 
the selected λ values for each ROI). Training and testing of the decoders was 
performed using fourfold cross-validation across the four stimulus sets (90 training 
sounds and 30 test sounds per cross-validation).

Estimation of ROI-specific MTFs for each participant. We modelled sound 
encoding during performance of the tasks by estimating ROI-specific MTFs 
separately for the two tasks. For each participant, an MTF was modelled as 
follows. The linear decoders (described above) were used to predict the acoustic 
energy for the sound features of unseen test sounds in a fourfold cross-validation 
scheme (30 sounds per cross-validation). We combined the predictions of the 
fourfold cross-validations by concatenating the predictions of the sound features 
for all of the test sounds (120 sounds in total). This resulted in a feature matrix 
Spred for each task, representing the predicted acoustic energy of all the sounds, 
where N is the number of sounds (120) and F the number of features (14,400). 
The prediction accuracy for each sound feature was then assessed by computing 
r between the predicted acoustic energy and the actual acoustic energy of the 
sounds for that sound feature, as represented in feature matrix S. This resulted 
in 14,400 correlation coefficients (equal to the total number of sound features), 
which together represent the MTF of a certain region (see Supplementary Fig. 2c,d 
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for a visualization of these steps). The MTFs were computed by calculating the 
correlations between each sound feature in the actual feature matrix S and each 
sound feature in the predicted feature matrix Spred for each task separately. MTFs 
were computed for every participant, and in the next step we computed group-
averaged MTFs.

Estimation of ROI-specific MTFs at the group level. We created group-averaged 
MTFs by combining the MTFs that were computed for each participant, and 
nonparametric random-effects group analysis was used to assess statistical 
significance for each group MTF (MTFi > chance) as follows. First, we computed 
the null distribution for every correlation coefficient in the MTF of each 
participant. These distributions were obtained by randomly permuting (5,000 
times) the stimulus labels of each predicted sound feature (Si

pred) and—for each 
permutation—we recomputed the correlation between the permuted sound feature 
(Si

pred) and the actual sound feature (Si). The empirical chance score of a feature’s 
correlation coefficient (rchance) was defined as the mean correlation value of this null 
distribution.

We then assessed whether the observed correlation values were significantly 
above chance at the group level using one-tailed exact permutation testing. 
These tests were one-sided because negative correlations indicated unplausible 
predictions of acoustic energy. Before statistical assessment, all correlation values 
were normalized by applying the Fisher z-transformation. The test statistic was the 
group average of the difference between the observed correlation and the obtained 
chance score (d = r − rchance) of each participant. The null distribution for the group-
average difference was obtained by changing the sign of d for a randomly selected 
subset of participants, and then recalculating the group-average difference score59. 
This procedure was repeated for all possible permutations of the sign change 
(213 = 8,192). The P value of the test statistic was computed as the proportion of the 
null distribution that yielded a group difference equal to or more extreme than the 
observed one.

We used a cluster-size threshold procedure to correct for multiple comparisons 
across the different features within an MTF60. For this, we calculated the cluster size 
of the false-positive rate (α) for every permutation in the null distribution of the 
group-average difference using an initial uncorrected threshold of αin = 0.05. The 
minimum cluster size that yielded a cluster level of αclu = 0.05 was then used as a 
threshold for the actual correlation values within the MTF.

The whole statistical procedure described above was repeated for every ROI 
independently, resulting in 12 group MTFs for each task (6 for each ROI and 2 for 
each hemisphere). For each task, we statistically tested for hemispheric differences 
within each ROI (Supplementary Results 1), and the MTFs were averaged across 
hemispheres when no such differences were found. The resulting group MTFs are 
discussed in the ‘Neural encoding of speech sounds in auditory ROIs’ section and 
are visualized in Fig. 4. Group analyses were performed on all participants (n = 13), 
except for the antSTG (n = 12). For this ROI, we had to exclude one participant 
because—for this person—the sounds did not evoke significant fMRI responses 
during performance of the phoneme task.

Estimation of task differences between group MTFs. To test for task differences  
in the MTFs of corresponding ROIs, we computed pairwise comparisons  
using the following conjunction analyses (that is, combined contrasts):  
(MTFspeaker > MTFphoneme) ∩ (MTFspeaker > chance) and (MTFphoneme > MTFspeaker) ∩  
(MTFphoneme > chance). Note that for the conjunction test to be significant, both 
contrasts need to be significant.

The procedure for obtaining the P values of the contrasts (MTFspeaker > chance) 
and (MTFphoneme > chance) is described in the above section. Similarly, the P 
values for the contrasts (MTFspeaker > MTFphoneme) and (MTFphoneme > MTFspeaker) 
were obtained with the same exact permutation test. The test statistic used 
for these contrasts was the group average of the individual task differences 
(d = rspeaker − rphoneme for the MTFspeaker > MTFphoneme contrast and d = rphoneme − rspeaker 
for the MTFphoneme > MTFspeaker contrast). These MTFs were also corrected for 
multiple comparisons across the whole MTF using the cluster-size threshold 
procedure described above. We used the MTFs that were averaged across 
hemispheres only when no hemispheric differences were found for both tasks 
(Supplementary Results 1). This was the case for HG, PP, antSTG and postSTG. 
In the case of PT and midSTG, we computed the contrasts separately for the RH 
and LH. The task differences that we found between the MTFs are discussed 
in the ‘Analysis of task differences using single sound features’ section, and are 
visualized in Fig. 5.

Comparison of task-specific spectral and temporal modulation profiles. We 
further explored the differences in the MTFs of the speaker and phoneme tasks 
across multiple ROIs by creating task-specific spectral and temporal modulation 
profiles, as follows. For every participant, the modulation profiles for the speaker 
task were obtained by calculating the average of the reconstruction accuracies of 
the significant sound features across the MTFs that showed task effects for the 
speaker task (that is, the significant features within HG, PT (RH), PP, midSTG 
(LH) and postSTG). Similarly, for each participant, the modulation profiles for 
the phoneme task were obtained by calculating the average of the reconstruction 
accuracies of the significant sound features across the MTFs that showed task 

effects for the phoneme task (that is, the significant features within midSTG 
(RH) and postSTG). We then created one-dimensional modulation profiles 
by calculating the average across the two irrelevant acoustic dimensions (for 
the temporal profiles we also averaged across upward and downward temporal 
modulations). We tested for task differences between these one-dimensional 
modulation profiles at each spectral and temporal modulation using t-tests (d.f. = 5 
for spectral scales and d.f. = 19 for temporal rates with P < 0.05, Bonferroni-
corrected for the number of spectral or temporal modulations). The results of these 
comparisons are visualized in Fig. 6.

We further tested for the relationship between the neural and the stimulus 
modulation profiles. For this, we computed r, across participants, between the 
spectral and temporal profiles of the speaker or phoneme task obtained from the 
neural data with the spectral and temporal profiles of the speaker or phoneme 
targets class obtained from the stimuli (Fig. 1). The differences in the correlation 
coefficients were assessed using t-tests (d.f. = 12 with P < 0.05). Before statistical 
assessment, all correlation values were normalized by applying the Fisher 
z-transformation. These results are shown in the ‘Analysis of task differences using 
single sound features’ section.

Analysis of target separability with the use of linear classification. We tested 
for task-related modulations in target separability using the sounds that were 
reconstructed from the fMRI responses. For this, we applied a SVM algorithm 
(implemented in MATLAB) on the predicted feature matrix Spred of each task. 
For each participant, classification was performed on Spred of each ROI and each 
hemisphere. For every Spred, classifiers were trained to discriminate between 
the sounds belonging to the different speakers, and classifiers were trained to 
discriminate between the sounds containing the different target phonemes. The 
three-class problem was transformed into binary classification using a pairwise 
scheme (speaker 1 versus speaker 2, speaker 1 versus speaker 3 and speaker 2 
versus speaker 3 for the different speakers, and /p/ versus /t/, /p/ versus /k/ and /t/ 
versus /k/ for the different phonemes). For each pairwise classification, all of the 
sounds belonging to a specific target were used (40 sounds per target); this resulted 
in a classification matrix of 80 sounds by 14,400 predicted sound features. Only 
sound features that were positively predicted were included; sound features with 
negatively predicted acoustic energy were set to 0. Training and testing of the SVM 
was performed using a leave-one-out scheme (79 training sounds and 1 test sound 
per iteration). Classification accuracy was assessed by computing the number of 
correct classifications of the test sounds divided by the total number of test sounds 
(80 in total). For each participant, overall classification accuracies for all speakers 
and for all phonemes were obtained by calculating the average of the classification 
performance of the three pairwise classifications.

The empirical null distributions of classification performances were 
obtained by randomly permuting (200 times) the target labels and repeating the 
training and testing procedure. For each classifier, the empirical chance score of 
classification performance was defined as the mean classification accuracy of the 
null distribution. The P values of the mean prediction accuracies were assessed 
using t-tests (d.f. = 12, P < 0.05, Bonferroni-corrected; Fig. 7a). To examine whether 
target separability changed as a function of task performance, we performed a 
repeated-measures ANOVA on the mean classification accuracies of all of the 
participants. The results of these analyses are discussed in the ‘Analysis of target 
separability using multiple sound features’ section, and are visualized in Fig. 7.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The stimuli and the sound representations of the stimuli (feature matrix S) and the 
estimated fMRI responses (beta-weights) from a subset of the participants from 
this study are available as Supplementary Audio Files, Supplementary Data 1 and 2.

Code availability
The code that support the findings of this study is available from the corresponding 
author upon reasonable request.
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Behavioural & social sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description This is a within-subject design were we repeatedly measured brain responses to evaluated the quantitative difference in fMRI responses.

Research sample The study included right-handed native French adults (6 females and 7 males, mean age 23 years, sd = 4 years), mostly University 

undergraduate students, but not exclusively . The participants were selected based on self-reported normal hearing and reading abilities, 

and given the nature of the task manipulations that we used, the participants should had normal reading abilities and no extensive 

musical experience.

Sampling strategy Participants were recruited through advertisements, mostly within the University environment. We used the sample size of another 

study that used an similar modeling approach as a reference.

Data collection The fMRI experiment consisted of two sessions, which were performed up to one week apart. During data collection, the participants 

were presented with identical speech stimuli twice, once while performing  a speaker identification task on these sounds, and once while 

performing a phoneme identification task. During the speaker identification task, the participants indicated whether the presented sound 

was spoken by speaker 1, speaker 2 or speaker 3. During the phoneme identification task the participants indicated whether the 

presented sound contained either a /P/, /T/ or /K/ sound.  

 

Prior to the first session and outside the scanner, the participants were familiarized with the these two tasks. Behavioral performances 

were recorded with the use of a computer. There was nobody else present during the experiment besides the participant and the 

research team. The researchers were not blind to the experimental condition and the study hypotheses during data collection.

Timing Data was collected in three different sampling cohorts, with the following acquisition dates: 

cohort I > October 2014 - December 2014 

cohort II > June 2015 

cohort III > December 2016 - January 2017 

Data exclusions Data was excluded from 2 participants, due to extensive head movement during data acquisition. This exclusion criteria was pre-

established.

Non-participation 2 participants dropped out during the experiment, because of discomfort within the scanner. 

Randomization We used a within-subject design, therefore the participants were not allocated into specific experimental groups; instead they 

participated in all experimental conditions.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 

system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems

n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Clinical data

Methods

n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Antibodies

Antibodies used Describe all antibodies used in the study; as applicable, provide supplier name, catalog number, clone name, and lot number.

Validation Describe the validation of each primary antibody for the species and application, noting any validation statements on the 
manufacturer’s website, relevant citations, antibody profiles in online databases, or data provided in the manuscript.
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Eukaryotic cell lines

Policy information about cell lines

Cell line source(s) State the source of each cell line used.

Authentication Describe the authentication procedures for each cell line used OR declare that none of the cell lines used were authenticated.

Mycoplasma contamination Confirm that all cell lines tested negative for mycoplasma contamination OR describe the results of the testing for 
mycoplasma contamination OR declare that the cell lines were not tested for mycoplasma contamination.

Commonly misidentified lines
(See ICLAC register)

Name any commonly misidentified cell lines used in the study and provide a rationale for their use.

Palaeontology

Specimen provenance Provide provenance information for specimens and describe permits that were obtained for the work (including the name of the 
issuing authority, the date of issue, and any identifying information).

Specimen deposition Indicate where the specimens have been deposited to permit free access by other researchers.

Dating methods If new dates are provided, describe how they were obtained (e.g. collection, storage, sample pretreatment and measurement), 
where they were obtained (i.e. lab name), the calibration program and the protocol for quality assurance OR state that no new 
dates are provided.

Tick this box to confirm that the raw and calibrated dates are available in the paper or in Supplementary Information.

Animals and other organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals For laboratory animals, report species, strain, sex and age OR state that the study did not involve laboratory animals.

Wild animals Provide details on animals observed in or captured in the field; report species, sex and age where possible. Describe how animals 
were caught and transported and what happened to captive animals after the study (if killed, explain why and describe method; if 
released, say where and when) OR state that the study did not involve wild animals.

Field-collected samples For laboratory work with field-collected samples, describe all relevant parameters such as housing, maintenance, temperature, 
photoperiod and end-of-experiment protocol OR state that the study did not involve samples collected from the field.

Ethics oversight Identify the organization(s) that approved or provided guidance on the study protocol, OR state that no ethical approval or 
guidance was required and explain why not.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Human research participants

Policy information about studies involving human research participants

Population characteristics See above

Recruitment Participants were recruited through advertisement, which were advertised mostly, but not exclusively, within the University 

environment. Consequently our sample mainly consists out of undergraduate students. This possibly could have had some 

influences on general task performances, however given that it is a within-subject design we do not think this has had an impact 

on the interpretation of the results. 

Ethics oversight The approval for the study was granted by the Cantonal Ethics Committee of the Vaud Canton (Switzerland). 

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Clinical data

Policy information about clinical studies

All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.

Clinical trial registration Provide the trial registration number from ClinicalTrials.gov or an equivalent agency.

Study protocol Note where the full trial protocol can be accessed OR if not available, explain why.

Data collection Describe the settings and locales of data collection, noting the time periods of recruitment and data collection.
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Outcomes Describe how you pre-defined primary and secondary outcome measures and how you assessed these measures.

ChIP-seq

Data deposition

Confirm that both raw and final processed data have been deposited in a public database such as GEO.

Confirm that you have deposited or provided access to graph files (e.g. BED files) for the called peaks.

Data access links 
May remain private before publication.

For "Initial submission" or "Revised version" documents, provide reviewer access links.  For your "Final submission" document, 
provide a link to the deposited data.

Files in database submission Provide a list of all files available in the database submission.

Genome browser session 
(e.g. UCSC)

Provide a link to an anonymized genome browser session for "Initial submission" and "Revised version" documents only, to 
enable peer review.  Write "no longer applicable" for "Final submission" documents.

Methodology

Replicates Describe the experimental replicates, specifying number, type and replicate agreement.

Sequencing depth Describe the sequencing depth for each experiment, providing the total number of reads, uniquely mapped reads, length of 
reads and whether they were paired- or single-end.

Antibodies Describe the antibodies used for the ChIP-seq experiments; as applicable, provide supplier name, catalog number, clone 
name, and lot number.

Peak calling parameters Specify the command line program and parameters used for read mapping and peak calling, including the ChIP, control and 
index files used.

Data quality Describe the methods used to ensure data quality in full detail, including how many peaks are at FDR 5% and above 5-fold 
enrichment.

Software Describe the software used to collect and analyze the ChIP-seq data. For custom code that has been deposited into a 
community repository, provide accession details.

Flow Cytometry

Plots

Confirm that:

The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation Describe the sample preparation, detailing the biological source of the cells and any tissue processing steps used.

Instrument Identify the instrument used for data collection, specifying make and model number.

Software Describe the software used to collect and analyze the flow cytometry data. For custom code that has been deposited into a 
community repository, provide accession details.

Cell population abundance Describe the abundance of the relevant cell populations within post-sort fractions, providing details on the purity of the samples 
and how it was determined.

Gating strategy Describe the gating strategy used for all relevant experiments, specifying the preliminary FSC/SSC gates of the starting cell 
population, indicating where boundaries between "positive" and "negative" staining cell populations are defined.

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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Magnetic resonance imaging

Experimental design

Design type Fast event-related

Design specifications Every subject underwent 2 sessions. Per subject there were 16 blocks (8 per session), 960 trials in total (480 per session, 

60 per block). One block lasted about 8 minutes, one trial was 1 TR (2.6 sec). Sounds were presented within silent gaps 

between acquisitions, with a randomized inter-stimulus-interval of 2, 3 or 4 TRs (5.2 sec, 7.8 sec or 10.4 sec).

Behavioral performance measures Performance was measured using button presses on cued trials (128 trials). We used mean percentage correct 

responses to assess task performance.

Acquisition

Imaging type(s) Functional and structural

Field strength 7 Tesla

Sequence & imaging parameters Functional T2*-weighted images were collected using a GRAPPA acceleration X3 EPI sequence. FOV= 222 x 222 mm, 

matrix size = 148 x 148, slice thickness: 1.5; orientation; anterior-posterior, TE= 20 ms, TR = 2600 ms, TA= 1250 ms, flip 

angle = 90 degree.  

 

Anatomical T1-weighted images were acquired using the MP2RAGE sequence, derived from a modified magnetization-

prepared rapid gradient-echo (MPRAGE) sequence that generates two image sets at different inversion times for bias 

field compensation, with the following parameters: resolution 0.6 x 0.6 x 0.6 mm, TR MP2RAGE= 6000 ms, TE= 2.05 ms, 

TI1 = 800 ms and TI2 = 2700 ms. 

Area of acquisition For the functional measurements, each volume consisted of 35 slices covering the superior temporal plane. The region 

was determined by a fixed slice positioning from the center of the brain, which was obtained with a localizer sequence.

Diffusion MRI Used Not used

Preprocessing

Preprocessing software BrainVoyager 20.2 and BrainVoyager QX 2.8 

preprocessing steps involved: 

- slice scan-time correction (cubic spline interpolation) 

- 3D-motion correction (trillinear/sinc interpolation)) 

- temporal high-pass filtering to remove non-linear drifts of maximum seven cycles per time course. 

- Volumes were spatially smoothed (kernel width 2 mm)

Normalization Images were normalized (non-linear) by first aligning the functional images to the anatomical images using gradient-

based affine transformation (9 parameters: translation, rotation, scale). Anatomical images were normalized into 

Talairach space through sinc interpolation.

Normalization template We used Talairach normalization

Noise and artifact removal We did not use noise or artifact removal

Volume censoring We did not use volume censoring

Statistical modeling & inference

Model type and settings The main analysis is based on a recently developed model-based multivariate decoding approach (see Santoro et al., 

2017).  

fMRI-responses to individual stimuli (sounds) were estimated in a two-phase procedure. For the two tasks separately, 

for each voxel, we first estimated the hemodynamic response function (HRF) common to all sounds, by fitting a fixed-

effect GLM with all the sounds in one condition. Then, the beta weights to individual sounds were estimated by fitting a 

fixed-effect GLM having one predictor per sound. We implemented a 4-fold cross validation. For the HRF estimation 

only training data (three stimulus sets, N = 90 sounds) were used and beta weights were computed for training and 

testing sounds (one stimulus set, N = 30 sounds) separately.  

 

Further analyses (described below) only included voxels with significant positive responses (P < 0.05 uncorrected) to the 

training sounds within specific ROIs.

Effect(s) tested We tested for differences in the encoding of speech sounds as a consequence of performing a speaker task or a 

phoneme task. The dependent variable that was used was the reconstruction accuracy of sound features from the brain 

data. Sound features were defined based on a computational model of auditory processing. In this model, each feature 

represented the acoustic energy in the stimuli at a specific combination of frequency, spectral modulation and temporal 

modulation. For the speaker task and the phoneme task, we trained a multivoxel decoder (described two points below) 

to reconstruct the acoustic energy for individual sound features. The reconstruction accuracy of the sound feature was 
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assessed by computing the Pearson's correlation coefficient between the actual acoustic energy in the test stimuli and 

the energy as predicted by the decoder. 

 

We tested for task effects using a univariate approach and a multivariate approach. For the univariate contrasts we 

tested the following conjunctions: (Speaker Task > Phoneme Task) ∩ (Speaker Task > chance) and (Phoneme Task > 

Speaker Task) ∩ Phoneme Task > chance). Note that “Speaker Task” or “Phoneme Task” here indicates the 

reconstruction accuracies during the respective tasks. We tested for statistical significance of these differences by 

performing random-effects one-tailed non-parametric testing (described below). 

 

For the multivariate approach we applied linear classification (SVM) on the sound features that were reconstructed 

from the fMRI responses during the speaker task and the sound features that were reconstructed from the fMRI 

responses during the phoneme task. For each task we trained different classifiers to differentiate the reconstructed 

sounds on speaker identity ( speaker 1, speaker 2 or speaker 3) and on phoneme identity ( /P/, /T/ or /K/). We tested for 

task effects by comparing classification accuracies. We specifically tested whether classification performance on speaker 

identity based on the reconstructed sounds of the speaker task differed from classification performance on speaker 

identity based on the reconstructed sounds of the phoneme task. And similarly for phoneme identity.   

Specify type of analysis: Whole brain ROI-based Both

Anatomical location(s)
We defined the following  anatomical regions: Heschl's gyrus, planum temporale, planum polare, 

superior temporal gyrus. The latter region was additionally divided into a anterior, middle or posterior 

part.

Statistic type for inference
(See Eklund et al. 2016)

We used ‘sound feature’-wise statistical inference by assessing the significance of the prediction accuracy per sound 

feature (Pearson's correlation coefficient).  We used non-parametric random-effects group analyses for assessing 

statistical significance per sound feature (Pearson’s correlation of sound feature i > chance), per subject. The null-

distribution was obtained with 5000 permutations, and the empirical chance level of a feature’s correlation was defined 

as the mean of this null-distribution. Per permutation, the Pearson’s correlation was recomputed between randomly 

permuted acoustical labels of the reconstructed sound features and the actual sound features.   

 

We then assessed whether the Pearson's correlation was significantly above chance at the group level. For this we used 

random-effects one-tailed non-parametric tests (exact permutation). The test statistic was the group average of each 

subjects difference between the observed correlation and the empirical chance level. The null-distribution of the group-

average difference was obtained by changing the sign of the difference score for a random subset of subjects, and then 

recalculating the group averaged difference. This was repeated for all possible permutations of the sign change 

(2^13=8192). The P-value of the test statistic was computed as the proportion of the null distribution that yielded a 

group difference equal to or more extreme than the observed one.  We repeated this procedure for every sound 

feature, per ROI and separately for the two tasks.  

 

For the multivariate approach we used repeated-measures ANOVAs to test for task difference in classification 

accuracies between the two tasks.

Correction We used cluster-size threshold procedure to correct for multiple comparisons across all the sound features within the 

reduced sound-representation model. We defined the cluster size of the false-positive rate (alpha) for every 

permutation in the null-distribution (described above) with an initial uncorrected threshold of alpha = 0.05. The 

minimum cluster size that yielded a cluster-level of alpha = 0.05 was used as a threshold for the actual correlation 

values found for all sound features within the sound-representation model.

Models & analysis

n/a Involved in the study

Functional and/or effective connectivity

Graph analysis

Multivariate modeling or predictive analysis

Functional and/or effective connectivity Report the measures of dependence used and the model details (e.g. Pearson correlation, partial 
correlation, mutual information).

Graph analysis Report the dependent variable and connectivity measure, specifying weighted graph or binarized graph, 
subject- or group-level, and the global and/or node summaries used (e.g. clustering coefficient, efficiency, 
etc.).

Multivariate modeling and predictive analysis Independent variables were voxel’s fMRI-responses to individual sounds.  

 

Voxels within the anatomically defined ROI which had significant positive responses (P < 0.05 uncorrected) 

to the training sounds were selected. We did not use dimension reduction.  

 

The stimulus feature Si  [Ntrain x 1] resulting from the computational model (see effects tested) was 

expressed as a linear function of the multi-voxel response pattern Ytrain [Ntrain x V], plus a bias term (bi) 

and a noise term (n), according to the following equation:                        

 

Si = YtrainCi + bi1 + n,     
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where Ntrain is the number of sounds in the training set, V is the number of voxels per ROI, 1 is an [Ntrain 

x 1] vector of ones, and Ci is a [V x 1] vector of weights whose elements cij quantify the contribution of 

voxel j to the encoding of feature i.  

 

The solution to equation 1 was computed by means of kernel ridge regression using a linear kernel. The 

regularization parameter λ was determined independently for each feature by generalized cross-

validation. The search grid included 32 values between 10^0.5 and 10^11, logarithmically spaced with a 

grid grain of 10^0.33. Estimations were done with a 4-fold cross validation across the four stimulus sets. 
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