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Perceptual bistability arises when two conflicting interpretations of an ambiguous stimulus

or images in binocular rivalry (BR) compete for perceptual dominance. From a computa-

tional point of view, competition models based on cross-inhibition and adaptation have

shown that noise is a crucial force for rivalry, and operates in balance with adaptation. In

particular, noise-driven transitions and adaptation-driven oscillations define two dynamical

regimes and the system explains the observed alternations in perception when it operates

near their boundary. In order to gain insights into the microcircuit dynamics mediating spon-

taneous perceptual alternations, we used a reduced recurrent attractor-based biophysically

realistic spiking network, well known for working memory, attention, and decision making,

where a spike-frequency adaptation mechanism is implemented to account for percep-

tual bistability. We thus derived a consistently reduced four-variable population rate model

using mean-field techniques, and we tested it on BR data collected from human subjects.

Our model accounts for experimental data parameters such as mean time dominance,

coefficient of variation, and gamma distribution fit. In addition, we show that our model

operates near the bifurcation that separates the noise-driven transitions regime from the

adaptation-driven oscillations regime, and agrees with Levelt’s second revised and fourth

propositions. These results demonstrate for the first time that a consistent reduction of

a biophysically realistic spiking network of leaky integrate-and-fire neurons with spike-

frequency adaptation could account for BR. Moreover, we demonstrate that BR can be

explained only through the dynamics of competing neuronal pools, without taking into

account the adaptation of inhibitory interneurons. However, the adaptation of interneurons

affects the optimal parametric space of the system by decreasing the overall adaptation

necessary for the bifurcation to occur, and introduces oscillations in the spontaneous state.

Keywords: perceptual bistability, binocular rivalry, computational modeling, spike-frequency adaptation, spiking

networks, mean-field

INTRODUCTION

Binocular rivalry (BR) is a paradigm often used to study per-

ceptual bistability. Since the invention of the stereoscope by Sir

Wheatstone (1838) and his first systematic description of the

phenomenon, there has been a plethora of both experimental

and theoretical studies. The beauty in BR is the capacity of the

phenomenon to offer insights into conscious perception, rather

than on the earlier notion that rivalry is strictly a “binocular

phenomenon” which optimizes unified stereoscopic vision and

is utterly unrelated to other multistable perceptual phenomena.

When a subject is dichoptically presented with two conflicting

images, only one image is perceived at a time while the other

is suppressed from awareness (Levelt, 1968; Blake, 1989, 2001;

Logothetis, 1998; see Blake and Logothetis, 2002 for review).

Perception, therefore, alternates between the two visual patterns

allowing a dissociation of sensory stimulation from conscious

visual perception.

Theoretical studies are mostly based on competition models

consisting of two selective neuronal populations whose activity

encodes one of the two conflicting images. The main components

of these oscillatory models are cross-inhibition and self-adaptation

(Lehky, 1988; Lago-Fernandez and Deco, 2002; Laing and Chow,

2002; Wilson, 2003; Moreno-Bote et al., 2007; Shpiro et al., 2007).

Cross-inhibition leads to the suppression of one of the two images,

while a fatiguing process, such as spike-frequency adaptation

and/or synaptic depression, eventually weakens inhibition, and

causes the previously suppressed neuronal population to win the

competition. This mechanism generates anti-phase oscillations of

the mean firing rates of the two neuronal populations believed

to represent perceptual alternations between the two conflicting

visual patterns. Alternatively, alternations in perception have also

been represented as switches between two attractors due to noise

in noise-driven attractor models (Salinas, 2003; Freeman, 2005;

Kim et al., 2006; Moreno-Bote et al., 2007). Recently, Shpiro et al.
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(2009) implemented both noise and adaptation mechanisms in

a common theoretical framework, and showed that both mech-

anisms operate in balance during perceptual bistability. Indeed,

an optimal combination of adaptation and noise can explain the

pattern of neuronal discharges observed in the macaque prefrontal

cortex during rivalrous stimulation (Deco and Panagiotaropoulos,

unpublished data), while it was recently proposed that noisy adap-

tation signals could represent one of the physiological mechanisms

resulting in BR dynamics (van Ee, 2009; Alais et al., 2010).

Most of the computational models proposed to account for

BR are rate-like models. Biophysically plausible spiking networks

have also been put forward (Laing and Chow, 2002; Moreno-Bote

et al., 2007). Nevertheless, the reduced models presented in Laing

et al. (2010) for BR were derived heuristically from the spiking net-

work of Laing and Chow (2002). In the present work, we present

instead a four-variable reduced model consistently derived from a

spiking neuronal network (Deco and Rolls, 2005; Moreno-Bote

et al., 2007; Theodoni et al., 2011) with biophysically realistic

AMPA, NMDA, and GABA receptor-mediated synaptic dynamics,

as well as spike-frequency adaptation mechanisms based on Ca2+-

activated K+ after-hyperpolarization currents (Wang, 1998; Liu

and Wang, 2001), using mean-field techniques (Brunel and Wang,

2001; Deco and Rolls, 2005; Wong and Wang, 2006). More specif-

ically, we further reduce the extended mean-field model (Deco

and Rolls, 2005) of Brunel and Wang (2001) by using a simpli-

fied mean-field approach introduced by Wong and Wang (2006).

We thus reduced the original full spiking network of thousands

of neurons to a four-variable rate-like model of two neuronal

populations each one encoding one of two competing percepts

in BR.

Both the spiking network and our four-variable reduced net-

work consider noise and adaptation mechanisms. Our goal was to

find out which of them is responsible for the perceptual alterna-

tions in BR. We based our study on behavioral data collected from

human subjects experiencing BR between orthogonal sinusoidal

gratings, which were presented continuously in time. The experi-

mental data used to constrain our model consisted of dominance

durations of both percepts, coefficients of variation, and parame-

ters of gamma distribution fits to the distribution of dominance

durations. When varying the strength of neuronal adaptation in

the absence of noise, different dynamical regimes appear. At low

levels of neuronal adaptation the system resides in a bistability

regime where switches could happen only due to noise. As adap-

tation strength is increased, perceptual alternations are possible

without noise because the system has entered an oscillatory regime.

The transition regime separating the bistability from the oscilla-

tory regime is a mixed-mode oscillations regime. By emulating the

experimental paradigm for different adaptation strengths and lev-

els of noise, we searched for parameters where our model would

replicate the experimental data. In addition, we tested two extreme

conditions where all inhibitory interneurons in the original spiking

network are adapted or not. We found that, in order to account for

the experimental data, and in both conditions, the system operates

in the bistability regime near the boundary between noise-driven

switches and adaptation-driven oscillations. In addition we show

that in this case the model also satisfies Levelt’s second revised and

fourth propositions.

Interestingly, spike-frequency adaptation of interneurons,

apart from decreasing the overall adaptation necessary for the

bifurcation to occur when the same stimulus is applied, also influ-

ences the system behavior in the absence of a stimulus. When

interneurons are not adapted, the two neuronal populations fire

asynchronously and at low rates in the spontaneous state. On the

contrary, adapted inhibitory interneurons lead the two neuronal

populations to a higher firing and oscillatory activity in the absence

of stimulus.

MATERIALS AND METHODS

BIOPHYSICALLY INSPIRED SPIKING MODEL

The network consists of four neuronal populations, three of them

excitatory and one inhibitory (Figure 1A). Populations 1 and 2

consist of neurons selective to one or the other conflicting images

in BR. The third population (labeled as ns) comprises neurons

that are non-selective to the stimulus features. There is all-to-

all connectivity. Note that within each population we assume

homogeneity of connections for simplicity. The introduction of

inhomogeneities (e.g., sparse random connectivity) does not affect

the attractor landscape of the dynamics but only increases the noise

(finite-size effects, see Mattia and Del Giudice, 2002). The model

is based on the attractor paradigm of Amit (1995). It implements

cooperation among neurons that belong to the same population,

due to recurrent synaptic connectivity, and competition between

neurons that belong to the two selective neuronal populations, due

to feedback inhibition.

Neurons within a certain population share the same statistical

properties, i.e., single-cell parameters, inputs, and connectivity.

They are modeled as leaky integrate-and-fire (LIF) neurons. The

subthreshold dynamics of the membrane potential of excitatory

(E) or inhibitory (I) LIF neurons is described by the following

dynamics

CE,I
m

dV (t )

dt
= −g E,I

m (V (t ) − VL) + Itotal(t ) (1)

with resting potential V L = − 70 mV, membrane capacitance, leak

conductance, and membrane time constant for excitatory neurons

CE
m = 0.5 nF, g E

m = 25 nS, τE
m = CE

m/g E
m = 20 ms respectively, and

for inhibitory neurons C I
m = 0.2 nF, g I

m = 20 nS, τI
m = C I

m/g I
m =

10 ms, respectively. The total synaptic current to each neuron is

the sum of excitatory postsynaptic currents mediated by AMPA

(I ampa) and NMDA (I nmda) glutamatergic and GABAA (I gaba)

GABAergic receptors, an external excitatory postsynaptic current

mediated by AMPA receptors (I ampa,ext) and a slow Ca2+-activated

K+ after-hyperpolarization current (I ahp):

Itotal(t ) = Iampa,ext(t )+Iampa(t )+Inmda(t )+Igaba(t )+Iahp(t ) (2)

where

Iampa,ext(t ) = − g E,I
ampa,ext (V (t ) − VE)

Cext∑

j

S
ampa,ext
j (t ) (3)

dS
ampa,ext
j (t )

dt
= −

S
ampa,ext
j (t )

τampa
+

∑

k

δ
(

t − t k
j

)
(4)
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FIGURE 1 | (A) Biophysically plausible spiking network of integrate-and-fire

neurons with spike-frequency adapting mechanism based on Ca2+-activated

K+ hyperpolarizing currents. There are four neuronal populations: one

inhibitory (orange, I), one excitatory comprised of non-selective neurons (gray,

ns), and two excitatory populations (red, 1 and blue, 2) within which neurons

have similar stimulus selectivity. Arrows denote excitatory connections; lines

ending to circles, inhibitory connections whereas lines ending to squares,

after hyperpolarizing currents with peak conductance gahp. All neurons receive

background input and selective populations receive an additional external

stimulus λ1, λ2. (B) Assuming that the mean firing rate of the non-selective

neuronal population is constant, the network is reduced into three neuronal

populations: two excitatory (1, 2) and one inhibitory (I). (C) Four-variable

reduced rate model of two populations with recurrent excitation,

cross–inhibition, and neuronal adaptation.

Iampa(t ) = − g E,I
ampa (V (t ) − VE)

CE∑

j

wjS
ampa
j (t ) (5)

dS
ampa
j (t )

dt
= −

S
ampa
j (t )

τampa
+

∑

k

δ
(

t − t k
j

)
(6)

Inmda(t ) = −
g E,I

nmda (V (t ) − VE)

1 + γe−βV (t )

CE∑

j

wjS
nmda
j (t ) (7)

dSnmda
j (t )

dt
= −

Snmda
j (t )

τnmda,decay
+ axj(t )

(
1 − Snmda

j (t )
)

(8)

dxj(t )

dt
= −

xj(t )

τnmda,rise
+

∑

k

δ
(

t − t k
j

)
(9)

Igaba(t ) = − g E,I
gaba (V (t ) − VI)

CI∑

j

S
gaba
j (t ) (10)

dS
gaba
j (t )

dt
= −

S
gaba
j (t )

τgaba
+

∑

k

δ
(

t − t k
j

)
(11)

Iahp(t ) = − gahpCa(t ) (V (t ) − VK) (12)

dCa(t )

dt
= −

Ca(t )

τCa
+ ρ

∑

i

δ (t − ti) (13)

a = 0.5 (ms)−1, δ(t ) is the Dirac delta-function, and Sj are the

synaptic gating variables (fractions of open channels), where

sums over j are over presynaptic neurons, sums over k are over

spikes emitted by the presynaptic neuron j at time t k
j , and the

sum over i is over spikes of the same neuron up to time t.

w j Are dimensionless connection weights between and within

the neuronal populations which define the structure and func-

tion of the network. Within the selective neuronal populations

excitatory synapses are potentiated by a factor w j ≡ w + > 1

according to the “Hebbian” rule according to which cells that

fire together are strongly connected. In the text we refer to

this factor as recurrent connectivity. Excitatory synapses between

the two selective neuronal populations, and excitatory synapses

between the non-selective to selective populations are modified

by w j ≡ w − = 1 − f(w + − 1)/(1 − f) < 1, where f = 0.15, so that

the spontaneous activity of all excitatory cells is at the same

level (Amit and Brunel, 1997). For the rest of the connections,

w j = 1. Reversal potentials for excitatory postsynaptic currents are

V E = 0 mV, and for inhibitory ones V I = − 70 mV. The peak con-

ductances for excitatory synapses are g E
ampa,ext = 2.08 nS, g E

ampa =
104/N nS, g E

nmda = 327/N nS, g E
gaba = 1250/N nS, and for

inhibitory g I
ampa,ext = 1.62 nS, g I

ampa = 81/N nS, g I
nmda =

258/N nS, g I
gaba = 973/N nS, where N is the total number

of neurons in the network. The NMDA currents are voltage-

dependent, and modulated by intracellular magnesium concen-

tration [Mg2+] = 1 mM, with parameters γ = [Mg2+]/3.57 and

β = 0.062 (mV)−1. The rise time of the NMDA mediated synap-

tic current is τnmda,rise = 2 ms, while the rise time of AMPA

and GABA mediated synaptic currents are neglected for being
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extremely fast (<1 ms). The decay time constants are τampa = 2 ms,

τnmda,decay = 100 ms, and τgaba = 10 ms. The reversal potential of

the potassium channels is V K = − 80 mV.

When the membrane potential of an excitatory or inhibitory

neuron reaches a certain threshold V thr = − 50 mV a spike is

emitted and transmitted to other neurons. The membrane poten-

tial is reset to V reset = − 55 mV after a refractory period, τE
ref =

2 ms for excitatory neurons, and τI
ref = 1 ms for inhibitory

neurons. During that period the neuron is unable to produce

further spikes. In addition, the gating variable Ca, emulating

the cytoplasmic Ca2+ concentration to which we will be refer-

ring in the text, increases by a small amount ρ = 0.005, and

decays exponentially with a time constant τCa = 600 ms (Liu and

Wang, 2001). The gahpCa is the effective K+ conductance and

the gahp defines the level of neuronal adaptation or adaptation

strength.

The total number of neurons in the network is N neurons.

There are CE = C1 + C2 + Cns = 0.8N excitatory neurons, where

C1 = C2 = fCE neurons in each of the two selective neuronal

populations, and Cns = (1 − 2f) CE non-selective neurons where

f = 0.15. The number of inhibitory interneurons in the network

is C I = 0.2N. In order to simulate the background input, each

neuron in the network receives input through Cext = 800 excita-

tory connections, each one receiving an independent Poisson spike

train with rate 3 Hz. To simulate the external visual stimulation,

neurons within the two selective neural populations receive an

additional Poisson spike train with invariant in time rates λ1, λ2

which define the stimuli strength.

To integrate the system of coupled differential equations that

describe the dynamics of all cells and synapses we used a second

order Runge–Kutta routine with a time step of 0.02 ms. To calcu-

late the mean firing rate of a neuronal population, we divided the

number of spikes emitted in a 50-ms sliding window, with a time

step of 5 ms, by its number of neurons and by the window size.

REDUCED RATE MODEL

We derived a four-variable reduced rate model from the above

described spiking network, following the simplified mean-field

approach of Wong and Wang (2006). This approach is based on

the mean-field approximation derived in (Brunel and Wang, 2001)

which analyses networks of neurons that have conductance-based

synaptic inputs when the network of integrate-and-fire neurons is

in a stationary state. In the mean-field approximation, it is con-

sidered the diffusion approximation according to which the sums

of the synaptic gating variables (Eqs 3, 5, 7, and 10) are replaced

by a DC component and a fluctuation term. Moreover, due to the

different synaptic time constants, the only noise term that remains

is that of the external synaptic gating variable which is considered

as Gaussian. Using this approach, the original network of thou-

sands of spiking neurons can be reduced into a set of coupled

self-consistent non-linear equations. This describes the average

firing rate of each neuronal population as a function of the aver-

age input current, which in turn is a function of its average firing

rate. This mean-field approximation has been extended for spiking

networks including Ca2+-activated K+ hyperpolarizing currents

(Deco and Rolls, 2005), such as the one described in the previous

section. Here, we extend the two-variable reduced model of Wong

and Wang (2006) by considering this spike-frequency adaptation

mechanism in neurons.

The transfer function of a LIF neuron receiving a noisy input,

I total, is given by the first-passage time formula (Renart et al., 2003):

r = φ (Itotal) =

⎡
⎢⎢⎣τref + τm

√
π

Vthr−Vss
s∫

Vreset−Vss
s

eu2
(1 + erf(u)) du

⎤
⎥⎥⎦

−1

(14)

where s is the amplitude of the fluctuations of the synaptic input,

i.e., of the noise, Vss = (VL + Itotal/g E,I
m ), and erf(u) is the error

function. The remaining parameters have been defined in the

description of the spiking network in the previous section. In the

simplified mean-field approach, it is assumed that the driving force

of the synaptic currents are constant and that the variance of the

membrane potential does not vary significantly and it can be con-

sidered fixed as constant. Furthermore, instead of using Eq. 14, the

input–output function of Abbott and Chance (2005) is considered:

φ (Itotal) =
ciItotal − Ii

1 − e−gi (ci Itotal−Ii )
, i = E, I (15)

where ci (cE = 310 (Hz/nA), c I = 615 (Hz/nA)) is the gain factor, gi

(g E = 0.16 s, g I = 0.087 s) is a noise factor determining the shape

of the “curvature” of φ, and Ii/ci (I E = 125 Hz, I I = 177 Hz) is

the threshold current when φ acts as a linear/threshold func-

tion for high gi. The values of these parameters are calculated

after fitting Eq. 15 to the first-passage time formula (Eq. 14)

of a LIF excitatory (E) and of an inhibitory (I) neuron, which

receives AMPA receptor-mediated external Gaussian noise (Wong

and Wang, 2006).

The initial spiking network can be reduced in this way into

a system with 11 + 4 variables, where the 11 are the mean firing

rates of the four neuronal populations with their average synaptic

gating variables. The remaining four are the average cytoplasmic

Ca2+ concentration gating variables of the neuronal populations.

While, by solving the mean-field equations, one can only deter-

mine the fixed points of the system, i.e., the stationary firing rates

of the four neuronal populations describing the firing rates by the

Wilson–Cowan type equations with time constant τr = 2 ms, one

can calculate their temporal dynamics. Then, the system of the

11 + 4 variables is given by the following equations:

τr
dri

dt
= −ri + ϕ

(
Itotal,i

)
(16)

τr
drI

dt
= −rI + ϕ

(
Itotal,I

)
(17)

dS
ampa
i

dt
= −

S
ampa
i

τampa
+ r̃i (18)

dSnmda
i

dt
= −

Snmda
i

τnmda
+

(
1 − Snmda

i

)
F (ψi) (19)

dS
gaba
I

dt
= −

S
gaba
I

τgaba
+ r̃I (20)
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dCai

dt
= −

Cai

τCa
+ ρ r̃i , (21)

dCaI

dt
= −

CaI

τCa
+ ρ r̃I (22)

where i = 1, 2, ns accounts for the two selective and the non-

selective to stimulus features excitatory neuronal populations,

and I accounts for the inhibitory neuronal population. In Eqs

16 and 17, ri and r I (expressed in Hertz) are the presynaptic mean

firing rate of the excitatory and inhibitory populations respec-

tively. In Eqs 18, 20–22, r̃i = ri/1000, and r̃I = rI/1000 in

order to be consistent with the units since the time constants

are expressed in milliseconds. S
ampa
i , Snmda

i , and S
gaba
I stand for

the average synaptic gating variables of the AMPA, NMDA, and

GABA receptors respectively, and τampa, τnmda, τgaba for their

corresponding decay time constants. Cai and CaI stand for the

cytoplasmic Ca2+ concentration gating variable of the three exci-

tatory (i = 1, 2, ns), and the one inhibitory (I) population respec-

tively. ψi = γτnmdar̃i/ (1 + γτnmdar̃i) is the steady state of Snmda
i ,

γ = 0.641, and F(ψi) = ψi/ (τnmda (1 − ψi)) = γr̃i (Brunel and

Wang, 2001; Wong and Wang, 2006).

Furthermore, the model can be reduced to a four-variable sys-

tem if we (1) assume constant activity of the non-selective neurons,

(2) consider only the slow dynamics of NMDA gating variable and

of the Ca2+-activated K+ channels, (3) linearize the input–output

relation of the interneurons, and (4) consider the Ca2+ concen-

tration gating variable of inhibitory interneurons as a function

of adaptation strength. We will discuss this in more details in the

following sections.

Constant activity of non-selective excitatory neurons

When there is no adaptation in the network (gahp = 0 nS), the fir-

ing rate of the non-selective neurons does not change much under

different conditions. This allows us to assume that they fire at a

constant rate of 2 Hz, as in Wong and Wang (2006). We further

assume the same when there is neuronal adaptation in the net-

work (g ahp �= 0 nS) in order for our four-variable reduced model

to coincide with the two-variable reduced of Wong and Wang

(2006) at g ahp = 0 nS. Implementing spike-frequency adaptation

to all excitatory and inhibitory neurons, the mean firing rate of the

non-selective population increases as a function of the level of neu-

ronal adaptation, as shown in Figure 2. The mean firing rate was

calculated by averaging the last 5 s of each 10 s-trial and by aver-

aging over 100 trials. In Figure 2A, we show this dependence at

different recurrent connectivities for an additional external stimu-

lus to neurons belonging to the two selective populations of 40 Hz

(a stimulus strength used in the simulations in the Results). We see

that, for a given stimulus, recurrent connectivity does not change

much the mean firing rate of the non-selective population as a

function of the level of adaptation strength. This result stands for

different stimuli (not shown here). In Figure 2B, we show the

mean firing rate of the non-selective population as a function of

the level of adaptation at different external inputs for a recurrent

connectivity of w + = 1.8 (the recurrent connectivity used in the

simulations in the Results). It is apparent that there is an increase,

both as a function of level of neuronal adaptation for a given stim-

ulus, and as a function of stimulus for a given neuronal adaptation.

FIGURE 2 | (A) Average firing rate of the non-selective neuronal population

as a function of the level of adaptation at different recurrent connectivities

for external input λ1 = λ2 = 40 Hz. (B) Average firing rate of the

non-selective neuronal population as a function of the level of neuronal

adaptation at different external stimuli for recurrent connectivity w + = 1.68.

Nevertheless, for simplicity we decided to neglect this increase and

considered that the mean firing rate of the non-selective popula-

tion is constant at 2 Hz for all conditions (i.e., also when there

is neuronal adaptation in the network). As a consequence of this

assumption, we further neglected the extra inhibition on the selec-

tive populations evoked through the interneurons. Nevertheless,

as we show in Figures 7C,D and 10C,D, that the adopted assump-

tions do not change the results much. By assuming that the mean

firing rate of the non-selective population is constant, the sys-

tem is reduced to three neuronal populations as it is shown in

Figure 1B.

Slow dynamics of NMDA gating variable and cytoplasmic Ca2+

concentration

The membrane time constant of LIF neurons can be neglected

since they respond instantaneously to a stimulus (Brunel et al.,
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2001; Fourcaud and Brunel, 2002). In addition, the fast dynamics

of the synaptic gating variables of AMPA and GABAA receptors,

compared to the slow synaptic gating variable of NMDA receptors,

may also be neglected as they reach their steady states much faster.

Their average values can thus be written as proportional to the

mean firing rate of presynaptic cells (Brunel and Wang, 2001;

Wong and Wang, 2006). In this work, we also consider the slow

dynamics of the cytoplasmic Ca2+ concentration that cannot be

neglected. Therefore, Eqs 19, 21, and 22 remain as they were, while

Eqs 16–18 and 20 become:

ri = φ(Itotal,i) (23)

rI = φ(Itotal,I) (24)

S
ampa
i (t ) = τampar̃i(t ) (25)

S
gaba
I (t ) = τgaba r̃I(t ) (26)

where i = 1, 2. The total currents in the selective populations (1, 2)

and in the inhibitory (I), resulting from the simplified mean-field

approach, are given by the following equations:

Itotal,1 = Isyn,1 + Iahp,1 = Iampa,ext,1 + Istim,1 + Iampa,1 + Inmda,1

+ Igaba,1 + Iahp,1

= −g E
ampa,ext 〈VE〉 τampaCextr̃ext − g E

ampa,ext 〈VE〉 τampaλ̃1

− g E
ampa 〈VE〉 τampaf CE w+r̃1 − g E

ampa 〈VE〉

× τampaf CE w−r̃2 − g E
ampa 〈VE〉 τampa

(
1 − 2f

)
CEw−r̃ns

− g
eff ,E

nmda
〈VE〉 f CE w+S1 − g

eff ,E

nmda
〈VE〉 f CE w−S2

− g
eff ,E

nmda
〈VE〉

(
1 − 2f

)
CE w−ψns

− g E
gaba (〈VE〉 − VI) τgabaCIr̃I − g̃ahp (〈VE〉 − VK) Ca1

(27)

Itotal,2 = Isyn,2 + Iahp,2 = Iampa,ext,2 + Istim,2 + Iampa,2 + Inmda,2

+ Igaba,2 + Iahp,2

= −g E
ampa,ext 〈VE〉 τampaCextr̃ext − g E

ampa,ext 〈VE〉

× τampaλ̃2

− g E
ampa 〈VE〉 τampaf CE w−r̃1 − g E

ampa 〈VE〉

× τampaf CE w+r̃2 − g E
ampa 〈VE〉 τampa

(
1 − 2f

)
CEw−r̃ns

− g
eff ,E

nmda
〈VE〉 f CE w−S1 − g

eff ,E

nmda
〈VE〉 f CE w+S2

− g
eff ,E

nmda
〈VE〉

(
1 − 2f

)
CE w−ψ̃ns

− g E
gaba (〈VE〉 − VI) τgabaCIr̃I − g̃ahp (〈VE〉 − VK) Ca2

(28)

Itotal,I = Isyn,I + Iahp,I = Iampa,ext,I + Iampa,I + Inmda,I + Igaba,I

+ Iahp,I

= −g I
ampa,ext 〈VI〉 τampaCextr̃ext

− g I
ampa 〈VI〉 τampaf CE r̃1 − gI

ampa 〈VI〉 τampaf CE r̃2

− g I
ampa 〈VI〉 τampa

(
1 − 2f

)
CEr̃ns

− g
eff ,I

nmda
〈VI〉 f CE S1 − g

eff ,I

nmda
〈VI〉 f CE S2

− g
eff ,I

nmda
〈VI〉

(
1 − 2f

)
CE ψ̃ns

− g I
gaba (〈VI〉 − VI) τgabaCIr̃I − g̃ahp (〈VI〉 − VK) CaI

(29)

where g
eff ,E,I

nmda = g E,I
nmda

1 + γe
−β〈VE,I〉 , E stands for excitatory, I for

inhibitory, and S1, S2 are the average synaptic gating variables

of the NMDA receptors of the two selective populations. To the

external excitatory input currents to the two selective populations,

I ampa,ext,1, I ampa,ext,2, we included the contribution of the external

stimuli λ̃1 = λ1/1000 (1/ms) and λ̃1 = λ1/1000 (1/ms) respec-

tively. g̃ahp = gahp/1000 (µS), and the values of the fixed averaged

membrane potentials for the excitatory and inhibitory neurons are

〈VE〉 = − 53.4 mV, 〈VI〉 = − 52.1 mV respectively, the same as the

ones considered in Wong and Wang (2006).

Linearization of the input–output relation of interneurons

The mean firing rate of the inhibitory neurons lies in the range of

8–15 Hz when there is no spike-frequency adaptation encoded in

the neurons of the network. However, when spike-frequency adap-

tation in all neurons in the network, the mean firing rate of the

inhibitory neurons increases slightly and up to 20 Hz. Within the

range 8–20 Hz, the single-cell input–output relation is still almost

linear (Figure 3) and is fitted by:

rI = φ
(
Itotal,I

)
=

1

gI2

(
cIItotal,I − II

)
+ r0 (30)

where g I2 = 1.7876, and r0 = 11.3721 Hz. c I = 615(Hz/nA) and

I I = 177 Hz are the same as in Eq. 15. By substituting I total,I (Eq.

29) in Eq. 30 we find:

rI = −
cI

ηgI2

g I
ampa,ext 〈VI〉 τampaCextr̃ext

−
cI

ηgI2

(
g I

ampa 〈VI〉 τampaCEf r̃1 + g I
ampa 〈VI〉 τampaCEf r̃2

+g I
ampa 〈VI〉 τampaCE

(
1 − 2f

)
r̃ns

)

−
cI

ηgI2

(
g

eff ,I

nmda
〈VI〉 CEf S1 + g

eff ,I

nmda
〈VI〉 CEf S2

+g
eff ,I

nmda
〈VI〉 CE

(
1 − 2f

)
ψns

)

−
cI

ηgI2

g̃ahp (〈VI〉 − VK) CaI −
II

ηgI2

+
r0

η

(31)

where η = 1 + cI
gI2

g I
gaba (〈VI〉 − VI) τgabaCI/1000. Finally, by sub-

stituting r I (Eq. 31) in the expressions of I total,1(t ), I total,2(t )

(Eq. 27 and 28), the system is reduced to two populations

(Figure 1C).

Ca2+ concentration of interneurons as a function of the level of

neuronal adaptation

If we consider spike-frequency adaptation to the inhibitory

interneurons, the model consists of five variables, two aver-

age synaptic gating variables, S1,2, of the selective populations,
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FIGURE 3 | Input–output function of an interneuron: the line is plot of

the first-passage time formula of a LIF model with σ = 4.2 (Eq. 14),

while the circles correspond to the fit of Eq. 15. In the inset, a close up is

drawn (solid line) and the linear approximation using Eq. 30 (dashed line).

two average Ca2+ concentration gating variables of the selective

populations, Ca1,2, and one of the inhibitory population, CaI. In

order to further reduce the system of equations, we assume that

the Ca2+ concentration of the inhibitory population is constant

in time at different levels of neuronal adaptation, since it changes

only by a modest amount. The dependence of CaI on the level

of neuronal adaptation is found by simulating the full biophys-

ically plausible spiking network, as we did in Section “Constant

Activity of Non-Selective Excitatory Neurons” for the mean fir-

ing rate of the non-selective population. More specifically, the CaI

was calculated by averaging the last 5 s of each 10 s-trial, and then

by averaging over 100 trials. In Figure 4A, we present CaI as a

function of the level of neuronal adaptation at different recurrent

connectivities for an additional external stimulus to both selective

populations of 40 Hz (a stimulus strength used in the simulations

in the Results). In Figure 4B, we present CaI as a function of

the level of neuronal at different external inputs for a recurrent

connectivity of w + = 1.8 (the recurrent connectivity used in the

simulations in the Results). After fitting a quadratic function to

the plot CaI = f(g ahp) for recurrent connectivity w + = 1.68, and

without external stimulus (black line in Figure 4B), we find:

CaI = 2.1 × 10−5 × g 2
ahp + 8.4 × 10−4 × gahp + 0.025 (32)

In Figures 4A,B, it is apparent that the shape of this func-

tion does not change significantly under different conditions,

but it is shifted to higher values at higher stimuli. Neverthe-

less, for simplicity, we neglected this increase and we consid-

ered Eq. 32 approximated by the value 0.025 for all gahp, i.e.

CaI = 0.025 for all conditions. The consequence of this assumption

is that we consider higher inhibition to the selective popula-

tions. However in Figures 7C,D and 10C,D where we compare

the reduced model with the spiking model, we show that both

models behave similarly. We note that using Eq. 32, without

FIGURE 4 | (A) Average gating variable CaI emulating the Ca2+

concentration of the inhibitory population as a function of the level of

adaptation at different recurrent connectivities for external stimulus

λ1 = λ2 = 40 Hz. (B) The average gating variable CaI as a function of the level

of neuronal adaptation at different external stimuli for recurrent connectivity

w + = 1.68.

approximations, we found that the final results don’t change

qualitatively.

Reduced four-variable model

As described in the previous sections, we consistently reduced a

full biophysically plausible spiking network with spike-frequency

adaptation mechanism implemented to a four-variable reduced

rate model (Figure 1C). The dynamical equations characterizing

this system are:

r1 = φ
(
Itotal,1

)
=

cEItotal,1 − IE

1 − e−g E(cEItotal,1−IE)
(33)

r2 = φ
(
Itotal,2

)
=

cEItotal,2 − IE

1 − e−g E(cEItotal,2−IE)
(34)

dS1

dt
= −

S1

τnmda
+ (1 − S1) γr̃1 (35)

dS2

dt
= −

S2

τnmda
+ (1 − S2) γr̃2 (36)
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d Ca1

dt
= −

Ca1

τCa
+ ρr̃1 (37)

d Ca2

dt
= −

Ca2

τCa
+ ρr̃2 (38)

The total inward currents to the populations are given by

Itotal,1 = JN,11S1 − JN,12S2 + JA,11r1 − JA,12r2 − λCa1 + κCaI

+ I0 + Istim,1 + Inoise,1 (39)

Itotal,2 = JN,22S2 − JN,21S1 + JA,22r2 − JA,21r1 − λCa2 + κCaI

+ I0 + Istim,2 + Inoise,2 (40)

where

JN,11 = g E
gaba (〈VE〉 − VI)

τgaba

1000
CI

cI

ηgI2

g
eff ,I

nmda
〈VI〉 f CE

− g
eff ,E

nmda
〈VE〉 f CE w+ (41)

JN,22 = JN,11 (42)

JN,12 = g
eff ,E

nmda
〈VE〉 f CE w− − g E

gaba (〈VE〉 − VI)

×
τgaba

1000
CI

cI

ηgI2

g
eff ,I

nmda
〈VI〉 f CE (43)

JN,21 = JN,12 (44)

JA,11 = g E
gaba (〈VE〉 − VI)

τgaba

1000
CI

cI

ηgI2

g I
ampa 〈VI〉

τampa

1000
f CE

− g E
ampa 〈VE〉

τampa

1000
f CE w+ (45)

JA,22 = JA,11 (46)

JA,12 = g E
ampa 〈VE〉

τampa

1000
f CE w− − g E

gaba (〈VE〉 − VI)

×
τgaba

1000
CI

cI

ηgI2

g I
ampa 〈VI〉

τampa

1000
f CE (47)

JA,21 = JA,12 (48)

λ = λ′g̃ahp, where λ′ = (〈VE〉 − VK) (49)

κ = κ′g̃ahp where κ′ = g E
gaba (〈VE〉 − VI)

×
τgaba

1000
CI

cI

ηgI2

(〈VI〉 − VK) (50)

I0 = l · rext + m · rns + n · ψns

+ g E
gaba (〈VE〉 − VI)

τgaba

1000
CI

(
II

ηgI2

−
r0

η

)
(51)

l = g E
gaba (〈VE〉 − VI)

τgaba

1000
CI

cI

ηgI2

g I
ampa,ext 〈VI〉

τampa

1000
Cext

− g E
ampa,ext 〈VE〉

τampa

1000
Cext (52)

m = g E
gaba (〈VE〉 − VI)

τgaba

1000
CI

cI

ηgI2

g I
ampa 〈VI〉

τampa

1000

(
1 − 2f

)

× CE − g E
ampa 〈VE〉

τampa

1000

(
1 − 2f

)
CEw− (53)

n = g E
gaba (〈VE〉 − VI)

τgaba

1000
CI

cI

ηgI2

g
eff ,I

nmda
〈VI〉

(
1 − 2f

)
CE

− g
eff ,E

nmda
〈VE〉

(
1 − 2f

)
CEw− (54)

Istim,1 = JA,ext · λ1 = −g E
ampa,ext 〈VE〉

τampa

1000
λ1 (55)

Istim,2 = JA,ext · λ2 = −g E
ampa,ext 〈VE〉

τampa

1000
λ2 (56)

η = 1 +
cI

gI2
g I

gaba (〈VI〉 − VI)
τgaba

1000
CI (57)

g
eff ,E,I

nmda =
g E,I

nmda

1 + e0.062〈VE,I〉/3.57
(58)

ψns =
γτnmdarns

/
1000

1 + γτnmdarns

/
1000

(59)

Where N is the total number of neurons in the spiking net-

work, CE = 0.8N, C I = 0.2N are the numbers of the excitatory

(E) and inhibitory (I) neurons, Cext = 800 is the external exci-

tatory connections, and f = 0.15. The rest of the parameters

are: cE = 310 (Hz/nA), g E = 0.16 s, I E = 125 Hz, c I = 615 Hz/nA,

I I = 177 Hz, γ = 0.641, τnmda = 100 ms, τCa = 600 ms ρ = 0.005,

〈V E〉 = − 53.4 mV, 〈V I〉 = − 52.1 mV, V I = − 70 mV, V K = −
80 mV, rext = 3 Hz, rns = 2 Hz, τampa = 2 ms, τgaba = 10 ms,

g I2 = 1.7876, r0 = 11.3721 Hz, g ext,E
ampa = 0.0021 µS, g E

ampa =
0.1/N (µS), g E

nmda = 0.3/N (µS), g E
gaba = 1.3/N (µS), g ext,I

ampa =
0.00162 µS, g I

ampa = 0.086/N (µS), g I
nmda = 0.258/N (µS),

g I
gaba = 1/N (µS), g̃ahp = gahp/gahp1000 (µS), and CaI = 0.025.

In the present work, we used w+ = 1.68 (w − = 0.88) while g ahp

(nS) defines the level of neuronal adaptation,one of the parameters

that we mainly varied.

Noise, I noise,i where i = 1,2 stands for neuronal population 1

and 2, is modeled as white noise, filtered by the fast time constant

of AMPA synapses, and described by an Ornestein–Uhlenbeck

process (Uhlenbeck and Ornstein, 1930).

τampa
dInoise,i(t )

dt
= −Inoise,i(t ) + η(t)

√
τampaσ

2
noise (60)

Where η is a Gaussian white noise with zero mean and unit vari-

ance and σ2
noise is the variance of the noise. In the present work,

n = σnoise defines the level of noise, and is the other parameter that

we mainly varied.

Effective transfer function

It is not trivial to solve Eqs 33–40 since the mean firing rates are

given by their inputs through the transfer function (Eqs 33 and 34),

and the inputs are themselves dependent on the mean firing rates

(Eqs 39 and 40). To overcome this difficulty of self-consistency

calculations, we found (as in Wong and Wang, 2006), an effective

transfer function Λ(I total). We start by defining four variables:

x1 = JN,11S1 − JN,12S2 + I0 + Istim,1 (61)

x2 = JN,22S2 − JN,21S1 + I0 + Istim,2 (62)

x3 = λCa1 − κCaI (63)

x4 = λCa2 − κCaI (64)

Then, according to Eqs 39 and 40, in the noise-free case, Eqs 33

and 34 can be written as:
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r1 −
cE(x1 − x3 + JA,11r1 − JA,12r2) − IE

1 − e−gE(cE(x1−x3+JA,11r1−JA,12r2)−IE)
= 0 (65)

r2 −
cE(x2 − x4 + JA,22r2 − JA,21r1) − IE

1 − e−gE(cE(x2−x4+JA,22r2−JA,21r1)−IE)
= 0 (66)

Equations 65 and 66 define a system which we can numerically

solve for different sets of the variables x1, x2, x3, and x4. We then

fit r1 and r2 with an equivalent transfer function, which depends

on the new variables:

r1 = Λ1 (x1, x2, x3, x4)

=
a

(
JA,11

)
x1 − fA

(
JA,12, x2 − x4

)
− e

(
JA,11

)
x3 − b

(
JA,11

)

1 − e−d(JA,11)(a(JA,11)x1−fA(JA,12,x2− x4)−e(JA,11)x3−b(JA,11))

(67)

r2 = Λ2 (x1, x2, x3, x4)

=
a

(
JA,22

)
x2 − fA

(
JA,21, x1 − x3

)
− e

(
JA,22

)
x4 − b

(
JA,22

)

1 − e−d(JA,22)(a(JA,22)x2−fA(JA,21,x1−x3)−e(JA,22)x4−b(JA,22))

(68)

where J A,11 = J A,22, J A,12 = J A,21 and

a = 239400 · JA,11 + 270 (Hz/nA) (69)

b = 97000 · JA,11 + 108 (Hz) (70)

d = −30 · JA,11 + 0.154 (s) (71)

e = 301000 · JA,11 + 270 (Hz/nA) (72)

fA(JA,12, y) = JA,12

(
−276y + 106

)
θ(y − 0.4) (Hz) (73)

where θ(x) is the Heaviside function. Note that the parameters

a, b, d, and the function fA are the same as in the two-variable

reduced model of Wong and Wang, 2006, supplementary infor-

mation D) where there is no spike-frequency adaptation in the

neurons (x3 = x4 = 0). In that case, our four-variable reduced

model coincides with the two-variable reduced model of Wong

and Wang, 2006. In order to also consider spike-frequency adapta-

tion, we included parameter e, which we approximated as linearly

dependent on J A,11 with parameters chosen to fit the numeri-

cal solutions. In Figure 5A, the average firing rate of population

1 is plotted as a function of x1 by numerically solving Eq. 65

(line), and by fitting Eq. 67 (circles). In Figure 5B the average

firing rate of population 1 is plotted as a function of x1 for

different couplings through AMPA synapses (from right to left:

J A,11 = J A,22 = 0, 0.0005, 0.001, 0.0015 nA). As the couplings J A,11,

J A,22 increase, the gain of the effective transfer function also does.

The effective transfer functions Λ1, Λ2 do not change no matter

how the network parameters (recurrent connectivities, synaptic

conductances, stimulus strength) change.

Finally, our four-variable reduced rate model is given by Eqs

67, 68, 61–64, 35–38, and 60. The noise terms I noise,1, I noise,2 were

included in the variables x1, x2 respectively.

Parameters and simulations

In the simulations in the Results, the recurrent connectiv-

ity weight used was w+ = 1.68, and, hence, from Eqs 41–59,

we find λ′ = 26.6 mV, κ′ = 31.11 mV, I 0 = 0.3553 nA,

J A,11 = J A,22 = 9.5402 × 10−4 nA/Hz, J A,12 = J A,21 = 7.1258 ×
10−5 nA/Hz, J N,11 = J N,22 = 0.1497 nA, J N,12 = J N,21 = 0.0276 nA,

and J A,ext = 2.2428 × 10−4 nA/Hz. The only parameter that we

slightly changed is the external background input I 0, i.e., We used

I 0 = 0.3536 nA in order to amplify the basin of attraction of the

two unstable fixed points in the absence of stimulus and zero

neuronal adaptation strength.

The mean firing rate of the two competing populations were

calculated by averaging r1 (or r2) over a time window of 50 ms,

which was sliding every 5 ms. For the numerical integration of the

differential equations, we used the Euler method with a time step of

0.5 ms. The analysis of the output of the simulations is described in

the Results. For the spiking simulations, we used C++ program-

ming, for the four-variable reduced model simulations MATLAB,

and for the bifurcation diagrams XPPAUT (Ermentrout, 1990).

EXPERIMENTAL DATA

During the psychophysical experiment, subjects were presented

with flickering (at 18 Hz) orthogonal sinusoidal gratings to the

two eyes. The gratings (spatial frequency 2.5 cycles per degree,

contrast 20%) were foveally presented on independently linearized

FIGURE 5 | (A) Input–output function of population 1: the line is numerical solution of Eq. 65 and the circles are fit of the effective transfer function Eq. 67.

(B) Numerical solutions (lines) and fits (circles) as in 5A for different couplings through AMPA synapses: from right to left JA,11 = JA,22 = 0, 0.0005, 0.001,

0.0015 nA/Hz.
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monitors facing each other (resolution 1024 × 768 at 72 Hz). The

subjects viewed the gratings through a set of angled front-surfaced

silver-coated mirrors in a black shielded setup (viewing distance:

118 cm). Typically, subjects underwent 5–10 observation periods.

Each observation period consisted of a rivalrous stimulation that

lasted 100 s, with an interval of about 20 s between each obser-

vation period. During the rivalry period, subjects responded by

pressing buttons to report the perceived orientation of the grating

or released the buttons when a piecemeal pattern was perceived.

Sometimes, multiple datasets were collected on different days from

the same subject. From the data collected in each observation

period, we calculated the mean dominance time, the coefficient

of variation and gamma’s distribution parameters λ and r after

fitting to the distribution of dominance periods:

f (x) =
λr

Γ(r)
xr−1e−λx , Γ(r) =

∫ ∞

0
t r−1e−t dt (74)

where r is positive real number. Then, for each subject we aver-

aged over all its observation periods. Mean time dominances (Td)

ranged between 2.01 and 3.56 s. Coefficient of variations (CV)

ranged between 0.418 and 0.704 and the gamma parameter r

ranged between 2.251 and 5.446. The range of these values is what

we took into account to constrain our model.

RESULTS

In a recent study, and in order to reproduce experimental data

of perceptual bistability, both noise and adaptation mechanisms

were implemented in a common framework. It was shown that

the working point of the model, is at the edge of the bifur-

cation where the system transits from noise-driven switches to

adaptation-driven oscillations (Shpiro et al., 2009). Here, we come

to the same conclusion with our biologically realistic reduced rate

model, and we study the effect of adaptation in inhibition.

We started by considering spike-frequency adaptation to all

neurons, excitatory pyramidal, and inhibitory interneurons. We

found that the model replicates the experimental data in a para-

metric region, where both noise and neuronal adaptation con-

tribute almost in balance. Then, we tested the same for the case

where there is no spike-frequency adaptation to the inhibitory

interneurons of the network. Our results show that the system still

operates near the bifurcation. However, when interneurons are not

adapted, a stronger level of adaptation to the excitatory neurons

is necessary for the bifurcation to occur. Furthermore, adaptation

of interneurons has a striking effect on the spontaneous state in

the absence of stimulus. We found that in the absence of stimulus,

if interneurons are adapted, the system transits to an oscillatory

regime, while if interneurons are not adapted, it does not. Finally,

for the parameters for which the model replicates the experimental

data we show that it reproduces Levelt’s fourth and second revised

proposition.

SPIKE-FREQUENCY ADAPTATION TO ALL NEURONS OF THE NETWORK

Bifurcation diagrams

In the original biologically realistic spiking neuronal network

presented in the methods, all excitatory pyramidal neurons and

inhibitory interneurons include spike-frequency adaptation. The

reduction to the four-variable rate model was derived considering

this condition. In Figures 6A,B, we show the bifurcation diagrams

where the steady states of the average synaptic gating variable of

one of the two neuronal populations are plotted, in the noise-

free case, as a function of the level of spike-frequency adaptation,

in the absence of stimulus and upon stimulus respectively. The

same bifurcation diagrams stand for the other neuronal popula-

tion due to symmetry in the network. Eqs 39 and 40 indicate that

when interneurons include spike-frequency adaptation, there is an

additional input to the selective populations due to the term:

κ × CaI = g E
gaba × (−VI) ×

(τgaba

1000

)
× CI ×

(cI)

(η × g12)

× (−VK) × g̃ahp × CaI (75)

In the absence of external stimulus via a supercritical Hopf-

bifurcation, this additional input brings the system to a transition

(at g ahp = 11.2 nS) from a stable low firing rate regime to an

oscillatory one. At a higher level of adaptation (g ahp = 52.5 nS)

the system returns to a new steady state of higher firing rate via

another supercritical Hopf-bifurcation. At low levels of adaptation

the steady state coexists with two stable and two unstable steady

states which disappear in a fold bifurcation at g ahp = 1.4 nS (not

shown). In the bifurcation diagrams, stable steady states are repre-

sented by thick lines, and unstable ones by thin lines. The branched

curves of circles show the maximum and the minimum oscillation

amplitudes of one of the two selective populations when circles

are filled. Open circles correspond to unstable oscillations.

In Figures 6C,D, the nullclines dS1(t )/dt = 0, dS2(t )/dt = 0

(whose intersections are the steady states of the system) are plotted

in the (S1, S2) phase-space of the model, for zero spike-frequency

adaptation (g ahp = 0 nS). When neurons do not include spike-

frequency adaptation, the phase-spaces of the model resemble the

one of the two-variable reduced model (Wong and Wang, 2006).

In the absence of stimulus, there are five fixed points (three stable

and two unstable) and the system lies in the lower left fixed point

where neurons fire at the same low rates (Figure 6C). When exter-

nal stimulus is applied to both populations, the phase-space and

the bifurcation diagram (at g ahp = 0) reconfigure (Figures 6B,D).

The input here is λ1 = λ2 = 40 Hz. The two asymmetrical attrac-

tors are separated by an unstable steady state (saddle node), and

the system is in a bistability regime. In Figure 6B, as the level

of adaptation increases, the system first transits to a mixed-mode

oscillations regime (Curtu, 2010) at g ahp = 7.7 nS and later to a

stable one via two subcritical Hopf-bifurcations at g ahp = 7.8 nS.

Finally, at g ahp = 44.5 nS, the system transits to a stable steady state

via a supercritical Hopf-bifurcation.

Replicating experimental data

Keeping in mind the bifurcation diagrams, we simulated our

reduced four-variable rate model by applying the same stimula-

tion protocol as in the experiment. The input to both populations

was λ1 = λ2 = 40 Hz. For each level of neuronal adaptation, i.e.,

peak conductance of the Ca2+-activated K+ channels, g ahp, we

applied this stimulus for 100 s. We then calculated the mean Td

of the two percepts, and the coefficient of variation. After fitting

the distribution of Td to a gamma distribution, we calculated the

parameter r (Eq. 74). In order to mimic the experimental protocol

that each subject underwent, for each g ahp, we performed 10 such
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FIGURE 6 | Spike-frequency adaptation to all neurons of the

network. (A) Bifurcation diagram in the absence of stimulus. Stable

steady states are represented by thick lines while unstable ones by thin

lines. Filled circles are the maximum and the minimum amplitudes of

stable oscillations. Open circles correspond to unstable oscillations.

(B) Bifurcation diagram in the presence of stimulus λ1 = λ2 = 40 Hz (C).

(S1, S2) phase-space in the absence of neuronal adaptation and in the

absence of stimulus. The nullclines of the synaptic gating variables S1

and S2 are the green and orange lines respectively, and their

intersections define the stable and unstable steady states. (D) (S1, S2)

phase-space in the absence of neuronal adaptation but in the presence

of stimulus.

trails, and computed the average values of mean Td, the coefficient

of variation and the r parameter from the gamma distribution fit

over these trials. Finally, we did the same with different levels of

noise. One dominance period was defined as the time starting

when the difference in the firing rates of the two populations was

5 Hz and ended when it became zero. In Figure 7A, we present

the mean Td, and the coefficient of variation for five levels of

noise as a function of neuronal adaptation, g ahp. In Figure 7B,

the r parameter from the gamma distribution fit is plotted as a

function of level of neuronal adaptation and for the same levels

of noise. The horizontal lines denote the range that the experi-

mental data define. Vertical lines in Figures 7A,B are drawn at

the bifurcation points where the system transits from a bistable

dynamical regime to an oscillatory one, as presented in the cor-

responding bifurcation diagram (Figure 6B). We are looking for

the level of noise and of adaptation at which the model results

reside in the range of values defined by the experimental data.

The green big circle denotes such levels (g ahp = 6.2 nS, n = 0.016),

and in Figure 7C, we plot the mean firing rates of both popu-

lations at these levels in the absence (black and green plots) and

upon (blue and red plots) stimulus. For these parameters, the

mean Td = 3.24 s, the coefficient of variation is CV = 0.457, and

r = 2.841.

From our results, it is apparent that both noise and adaptation

are the driving forces for the alternations in BR. The working point

of our model is in the bistability regime and close to the bifurcation

toward the oscillatory. Noise and adaptation contribute almost in

balance to the perceptual alternations. At this point, we should

note that the level of noise necessary for the model to replicate

the experimental data is high enough to drive the system into the

oscillatory regime (Figure 6A) in the absence of stimulus as one

can see in Figure 7C (black and green plots).

Moreover, in Figure 7D, we plot the mean firing rates of the

selective neuronal populations as we compute them by simulating

the spiking network with N = 500 total neurons,and with the same

parameters we used to plot Figure 7C. Thin red and blue plots

correspond to the activity of the selective populations upon stim-

ulus, and thin black and gray plots to their activity in the absence

of stimulus, while thick plots are the corresponding activity after

smoothing with a time window of 500 ms (sliding every 50 ms).

We see that both the spiking and the reduced model exhibit similar

behavior in the presence, as well as in the absence, of the stimulus.

This means that the approximations we considered for the deriva-

tion of our four-variable reduced rate model (see Materials and

Methods) are accurate. In addition, for these parameters, we ran 10

trials of 100 s-stimulation. From the smoothed mean firing rates,

we computed the average mean Td, coefficient of variation, and r

parameter from the gamma distribution fit to the distribution of

the Td at each of the 10 trials, as we did with the reduced model. We

found mean Td = 2.82 s, mean coefficient of variation CV = 0.582

and r = 3.137. These values reside in the range defined by the

experimental data, similarly as we found with the reduced model.
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FIGURE 7 | Spike-frequency adaptation to all neurons of the network:

Replicating the experimental data (A) Mean time dominance and

coefficient of variation as a function of neuronal adaptation for different

levels of noise (blue: n = 0.01, red: n = 0.014, green: n = 0.016, magenta:

n = 0.018 and celestial: n = 0.019) for λ1 = λ2 = 40 Hz. (B) Parameter r of

gamma distribution fit to the distribution of dominance times as a function of

neuronal adaptation for the same noise levels as in (A). In both (A,B),

horizontal lines denote the range that the experimental data define. Vertical

lines are drawn at the bifurcation points where the system transits from a

bistable dynamical regime to a mixed-mode oscillations and to an oscillatory

regime. Green big circles at the levels gahp = 6.2 nS, n = 0.016 indicate a case

where the model replicates the experimental data. We find that the model

replicates the experimental data in the noise-driven regime and close to the

bifurcation. (C) The mean firing rate of the selective populations for

gahp = 6.2 nS and n = 0.016 in the absence of stimulus (black and green plots)

and upon stimulus (blue and red plots). (D) The mean firing rate of the

selective neuronal populations by simulating the spiking network (with

N = 500 neurons) with the same parameters as the ones used simulating the

reduced model (C). Thin lines are plots from a trial and thick lines are the

same after smoothing. We see that both models exhibit similar behavior in

both the presence (blue and red plots) and absence (black and green plots) of

the stimulus.

Finally we computed the bifurcation point, where the model tran-

sits to the mix-mode oscillatory regime, employing the spiking

network. The total number of neurons used was N = 20000 in

order to decrease the noise in the network as much as possible. The

bifurcation point is at g ahp,bif,spiking = 6 nS, close to the bifurcation

point found with the reduced model (g ahp,bif,reduced = 7.7 nS). The

g ahp,bif,reduced is higher than the g ahp,bif,spiking due to the assump-

tions adopted in the Methods but mostly to the advantage of the

reduced model to eliminate noise which cannot be done in the

spiking network.

Furthermore, we tested the effect of increasing the external

stimulus strength (λ1 = λ2 = 50 Hz) which would correspond to

an increase of the stimulus contrast in the experiment. The rest of

the parameters were the same as before, as well as the stimulation

protocol and analysis. In Figures 8A,B (thick lines), we present

the results for the same levels of noise, as in Figures 7A,B. We also

plot the results for λ1 = λ2 = 40 Hz (thin lines) for comparison.

Levelt’s fourth proposition indicates that increasing the stimulus

contrast results in an increase of the average rivalry reversal rate

(Levelt, 1968), which corresponds to a decrease in the average

dominance duration. This is apparent in Figure 8A for all levels of

neuronal adaptation and of noise. In addition, by increasing the

strength of the external stimulation, the bifurcation points (verti-

cal lines) shift to lower values, while the mixed-mode oscillations

regime narrows. Nevertheless, the model’s results (Td = 2.49 s,

CV = 0.457, and r = 2.825) reside again in the ranges defined by

the experimental data, while working in the bistable regime (big

red circle: g ahp = 5.4 nS, n = 0.014) and close to the bifurcation

point g ahp,bif,reduced = 5.8 nS. Once more, for the same parame-

ters, we simulated the spiking network (with N = 1000 neurons),
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FIGURE 8 | (A) Mean time dominance and coefficient of variation as a

function of neuronal adaptation for different levels of noise (blue: n = 0.01,

red: n = 0.014 and green: n = 0.016) for λ1 = λ2 = 40 Hz (thin lines) and

λ1 = λ2 = 50 Hz (thick lines). (B) Parameter r of gamma distribution fit to the

distribution of dominance times as a function of neuronal adaptation for the

same levels of noise as in (A). In both (A,B), horizontal lines denote the

range that the experimental data define. Vertical lines are drawn at the

bifurcation points where the system transits from a bistable dynamical

regime to a mixed-mode oscillations and to an oscillatory regime. Red big

circles at gahp = 5.4 nS, n = 0.014 indicate a case for which the model

replicates the experimental data.

and found Td = 3.298 s, CV = 0.462, and r = 3.975. These values

are close to the ones computed with the reduced model and inside

the range of the experimental data. The bifurcation point as cal-

culated by simulating the spiking network with N = 20000 total

neurons, is at g ahp,bif,spiking = 4.3 nS.

SPIKE-FREQUENCY ADAPTATION ONLY TO THE EXCITATORY

PYRAMIDAL NEURONS OF THE NETWORK

Bifurcation diagrams

We removed neuronal adaptation from interneurons by setting

κ = 0 in Eqs 63 and 64. The rest of the parameters of the model

remained the same. We note that when interneurons are not

adapted, the mean firing rate of the non-selective population and

the mean firing rate of the inhibitory population decrease for

higher adaptation strengths. Here, we again assume that the mean

firing rate of the non-selective population is constant in all condi-

tions, as we had assumed in the case of adapted interneurons (see

Constant Activity of Non-Selective Excitatory Neurons of Mate-

rials and Methods). In addition, and for simplicity, we kept the

same parameters of the linearization of the input–output formula

(Eq. 30) as in the case of adapted interneurons. In the following

we show that these assumptions do not change the results much.

In Figure 9, we present the bifurcation diagram of one of the

two neuronal populations in the absence and in the presence of an

external stimulus employing our four-variable reduced rate model.

The same bifurcation diagrams also stand for the other population

due to symmetry. While in the presence of a stimulus, the bifur-

cation diagram (Figure 9B) is qualitatively similar as in the case

where we included spike-frequency in interneurons (Figure 6B),

the bifurcation diagram is qualitatively different in the absence of

external stimulus (Figure 9A compared to Figure 6A). Here, there

is no additional input (Eq. 75) to the excitatory populations and

the system remains in a stable steady state of low firing rate which

decreases as level of neuronal adaptation increases (Figure 9A).

We note that, as in the case where all neurons are adapted, at low

levels of adaptation the steady state coexists with two stable and

two unstable steady states which disappear in a fold bifurcation at

g ahp = 0.36 nS (not shown).

In Figure 9B, stable steady states are represented by thick lines,

and unstable ones by thin lines. Filled circles correspond to the

maximum and minimum values of stable oscillations, while open

circles correspond to unstable oscillations. Upon stimulus presen-

tation, λ1 = λ2 = 50 Hz, and at g ahp = 0, the system transits from

a stable steady state of low firing rate to a winner-take-all regime,

where one of the populations fires at high rate while the other fires

at low rate. The system reaches the attractor and lies in a bistability

regime. Without noise, the system would remain in this attractor,

being unable to transit to its anti-symmetrical (i.e., switches in

perception are not possible). As adaptation increases, the basin of

attraction decreases, and switches are more likely to occur upon

noise introduction. Nevertheless, higher levels of adaptation drive

the system into an oscillatory regime where, even in the absence

of noise, alternations from one percept to the other are inevitable.

More specifically, starting at high values of g ahp, the system lies

in a stable steady state where both populations fire at low firing

rate. As g ahp decreases, the system transits to a stable oscilla-

tory regime via a supercritical Hopf-bifurcation at g ahp = 14.2 nS.

At g ahp = 9.96 nS, the system transits into a mixed-mode oscilla-

tions regime (Curtu, 2010) via two subcritical Hopf-bifurcations.

The big unstable periodic orbit coalesces with the stable peri-

odic orbit at g ahp = 9.57 nS, via a double limit cycle bifurcation,

and the system transits to the bistability regime where two anti-

symmetric attractors are separated by a saddle node fixed point. At

g ahp = 11.2 nS, the trajectories of the three unstable fixed points

coalesce into an unstable fixed point via a subcritical pitch-fork

bifurcation. This cumbersome dynamics of the mixed-mode oscil-

lations regime, although very interesting, is beyond the scope of

the present study. The dynamics of our model has similar charac-

teristics as described in Shpiro et al. (2007), Curtu et al. (2008),

Curtu (2010). A point to note is that, in our case, we also have

recurrent excitation resulting in an asymmetry between regimes
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FIGURE 9 | Spike-frequency adaptation only to the excitatory pyramidal

neurons of the network. (A) Bifurcation diagram in the absence of stimulus,

stable steady states are represented by thick lines while unstable ones by

thin lines. Filled circles are the maximum and the minimum amplitudes of

stable oscillations. Open circles correspond to unstable oscillations. (B)

Bifurcation diagram in the presence of stimulus λ1 = λ2 = 50 Hz.

of release and escape mechanisms with the release regime being

small due to the recurrent connectivity in the network (Shpiro

et al., 2007; Seely and Chow, 2011).

Replicating experimental data

We saw previously that when inhibitory interneurons are adapted,

both noise and adaptation are responsible, almost in balance,

for the perceptual alternations. Here, we follow the same stim-

ulation protocol and analysis, as in Section “Replicating Experi-

mental Data,” for the case where inhibitory interneurons are not

adapted. With the bifurcation diagram (Figure 9B) in mind, we

applied the same fixed external stimulus to both populations,

λ1 = λ2 = 50 Hz. We then computed the mean Td, the coefficient

of variation and the r parameter of the gamma distributions fit to

the distributions of dominance times, as a function of neuronal

adaptation, at different levels of adaptation and of noise. The rest

of the parameters are the same except for the exclusion of spike-

frequency adaptation from interneurons by setting κ = 0 in Eqs 63

and 64. The results are presented in Figure 10. Different lines cor-

respond to different noise levels. Horizontal lines denote the range

that the experimental data define. Vertical lines are drawn at the

bifurcation points which define the different dynamical regimes.

In Figures 10A,B, big blue (g ahp = 9.7 nS, n = 0.01), red

(g ahp = 9 nS, n = 0.014), green (g ahp = 8.8 nS, n = 0.016), and

celestial (g ahp = 8.2 nS, n = 0.019) circles are sets of parameters

for which all three mean Td, coefficient of variation, and r para-

meter reside in the range defined by the experimental data. We

find that, in all these cases, the model is in the bistability regime

and near to the bifurcation point. We note that it is also possible

that for a given noise-level (n = 0.01, blue big circle), experimen-

tal data are replicated inside the mixed-mode oscillations regime.

In Figure 10C, we plot the mean firing rates of the two neu-

ronal populations when level of noise is n = 0.014, and adaptation

strength is g ahp = 9 nS (red big circle in Figures 10A,B) in two

conditions: in the absence of stimulus (black and green plots) and

upon stimulus (blue and red plots). We see that when interneurons

are not adapted neuronal populations fire at low rates and in an

asynchronous state in the absence of stimulus.

Moreover, in Figure 10D, we plot the mean firing rates of

the two selective neuronal populations, as we compute them

by simulating the spiking network with N = 500 total neurons,

and with the same parameters we used to plot Figure 10C. As

in the case where we considered adapted inhibitory interneu-

rons (Figures 7C,D), both models behave similarly in the pres-

ence and in the absence of the stimulus, indicating that the

assumptions adopted for the reduction are accurate. In addi-

tion, we computed the mean Td, the coefficient of varia-

tion and the r parameter from the gamma distribution fit to

the distribution of the Td simulating the spiking network (as

we did in section Replicating Experimental Data). We found

that the results were in the range defined by the experimen-

tal data. More specifically, we found Td = 2.64 ms, CV = 0.463,

and r = 5.147, similar to the ones we attained with the reduced

model for the same parameters (Td = 3.29 ms, CV = 0.581, and

r = 4.992). Finally, we computed the bifurcation point by sim-

ulating the spiking network with N = 20000 neurons, and we

found that the bifurcation point is at g ahp,bif,spiking = 8.3 nS,

close to the bifurcation point we observed with the reduced

model (g ahp,bif,reduced = 9.57 nS). As in the case where inhibitory

interneurons are also adapted, the g ahp,bif,reduced is higher than

the g ahp,bif,spiking. This is a consequence of the assumptions

adopted for the derivation of the reduced model, as well as

of the noise in the spiking network which cannot be totally

eliminated.

Furthermore, in Figure 11, we plot the mean Td and the coef-

ficient of variation for the two extreme cases, i.e., all interneurons

are all (gray lines) or none (black lines) adapted. We plot the results

from the simulations where in both cases the stimulus strength is

λ1 = λ2 = 50 Hz and the level of noise is n = 0.014. We see that by

removing spike-frequency adaptation mechanism from interneu-

rons, mean dominance duration and its coefficient of variation

increase for the same level of neuronal adaptation to the excitatory

neurons. The bifurcation points, where the model transits from

noise-driven switches to adaptation-driven oscillations, shifts to

higher values of g ahp. At the same time, the level of adaptation for

which the model replicates the experimental data also increases

Frontiers in Human Neuroscience www.frontiersin.org November 2011 | Volume 5 | Article 145 | 14

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Theodoni et al. Reduced spiking network for binocular rivalry

FIGURE 10 | Spike-frequency adaptation only to the excitatory pyramidal

neurons of the network: Replicating the experimental data. (A) Mean

time dominance and coefficient of variation as a function of neuronal

adaptation for different levels of noise (blue: n = 0.01, red: n = 0.014, green:

n = 0.016, and celestial: n = 0.019) for λ1 = λ2 = 50 Hz. (B) Parameter r of

gamma distribution fit to the distribution of dominance times as a function of

neuronal adaptation for the same levels of noise as in (A). In both (A,B),

horizontal lines denote the range that the experimental data define. Vertical

lines are drawn at the bifurcation points where the system transits from a

bistable dynamical regime to a mixed-mode oscillations and to an oscillatory

regime. Blue, red, green, and celestial big circles at gahp = 9.7 nS, gahp = 9 nS,

gahp = 8.8 nS, and gahp = 8.2 nS, respectively indicate sets of parameters for

which the model replicates the experimental data. We find that the model

operates in the bistability regime close to the bifurcation as well as in the

mixed-mode oscillation regime (blue big circle). (C) The mean firing rate of the

populations for gahp = 9 nS and n = 0.014 in the absence of stimulus (black and

green plots) and upon stimulus (blue and red plots). (D) The mean firing rate

of the selective neuronal populations by simulating the spiking network (with

N = 500 neurons) with the same parameters as the ones used in (C). Thin

lines are plots from a trial, and thick lines are the same after smoothing. We

see that both models exhibit similar behavior in both the presence (blue and

red plots) and in the absence (black and green) of the stimulus.

but resides in both cases within the bistability regime and close to

the bifurcation.

LEVELT’S SECOND REVISED AND FOURTH PROPOSITION

Levelt’s four propositions in BR (Levelt, 1968) exemplify how

stimulus parameters affect the duration of perception of two con-

flicting images. These propositions define additional constrains

to computational models candidates to explain BR. Most of the

times, computational models were tested with Levelt’s second and

fourth proposition. Recently, Levelt’s second proposition has been

revised (Brascamp et al., 2006) and states that, when the contrast of

one image changes the average dominance duration of the image

with higher contrast is mainly affected. Levelt’s fourth proposition

states that when the contrast of both images increases, the average

rivalry reversal rate increases, meaning that the mean Td of both

images decreases.

Here, we tested Levelt’s second revised proposition for four

sets of noise and neuronal adaptation levels (big blue, red, green,

and celestial circles in Figures 10A,B) for which the model’s

results reside in the ranges defined by the experimental data, when

inhibitory interneurons are not adapted. The results are shown

in Figures 12A–C. In the insets, we tested the same for the case

where inhibitory interneurons are adapted with the same level of

noise and stimulus strength (big red circle, Figures 8A,B) as when
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FIGURE 11 | Mean time dominance and coefficient of variation as a

function of neuronal adaptation for level of noise n = 0.014, when

inhibitory interneurons are adapted (gray lines) and when they are not

adapted (black lines) for stimulus strength λ1 = λ2 = 50 Hz. Gray and

black vertical lines define the bifurcation points when inhibitory

interneurons are adapted and when they are not, respectively.

they are not adapted. We first applied equal stimulus for 100 s to

both populations of low strength, λ1 = λ2 = 45 Hz. We then com-

puted the mean dominance durations of each population and we

averaged over 10 such trials. Then, we kept the stimulus to one

of the populations fixed, λ1 = 45 Hz, and we increased the other.

The results are shown in Figure 12A. In Figure 12B, we applied

equal stimulus of intermediate strength to both populations,

λ1 = λ2 = 47.5 Hz, and we computed the mean Td as previously.

Then, we kept the stimulus to one population fixed, λ1 = 47.5 Hz,

and we manipulated the other. Finally, we applied equal stimulus

of high strength to both populations, λ1 = λ2 = 50 Hz, and com-

puted the mean dominance periods. Then, we kept the stimulus to

one of the populations fixed at this high level,λ1 = 50 Hz, while we

decreased the other (Figure 12C). In Figures 12A–C, the dashed

lines are plots of the mean Td of the population receiving fixed

stimulus (λ1) while solid lines are plots of the mean Td of the

population receiving variable stimulus (λ2). Vertical lines denote

the stimulus strength when it is equal to both populations. We

see that Levelt’s second revised proposition is satisfied by all four

levels of neuronal adaptation and noise for which our model repli-

cates the experimental data when inhibitory interneurons are not

adapted as well as when they are (insets in Figures 12A–C). We

should mention though that from Moreno-Bote et al. (2010), we

know that alternation rate is higher and symmetric around equi-

dominance, i.e., when external stimulus is equal to both neuronal

populations. This would be an additional constrain for the model.

In Figure 12B, we see that this is not always the case. Nevertheless,

in the study by Moreno-Bote et al. (2010), it is shown that mod-

els best replicate this result when normalized stimuli are applied,

which is not the case here.

In Section “Replicating Experimental Data,” we tested Lev-

elt’s fourth proposition for two different stimulus strengths in

the case where inhibitory interneurons are adapted. Here, we

test Levelt’s fourth proposition for the case where inhibitory

interneurons are not adapted for applied stimulus strengths

λ1 = λ2 = 50,50,55,60 Hz (Figure 12D). Each stimulation lasted

100 s, and at each trial we computed the mean dominance dura-

tions of both populations. Finally, we averaged over 10 trials. The

level of noise was n = 0.014. In Figure 12D, we see that as stimu-

lus strength increases mean dominance duration decreases. Thus

our model accounts for Levelt’s fourth proposition. Note that this

decrease is more prominent at low levels of neuronal adaptation

and at higher levels of neuronal adaptation mean Td is similar

across different stimulus strengths.

DISCUSSION

In the present work, we present a theoretical approach which could

provide novel insights into the microcircuit dynamics responsible

for multistable perception. We consistently derived a four-variable

reduced rate model from a biologically plausible spiking neuronal

network, and we tested it considering experimental behavioral

data of BR. We calculated the mean dominance duration of the

percepts, the coefficient of variation, and the parameters of the

gamma distribution fit to the distribution of dominance dura-

tions. We emulated the experiment by simulating our reduced

model for different sets of noise and neuronal adaptation levels,

and we looked for the optimal ones for which the model replicates

the experimental data. In the noise-free condition, the range of

adaptation strength defines different dynamical regimes where our

model can operate. There is a bistability regime,where switches can

only arise due to the implementation of noise. There is a mixed-

mode oscillations regime which is the transition regime of the

model from the bistability to the oscillatory regime. Finally, there

is an adaptation-driven oscillatory regime where alternations can

happen even without noise. By testing different levels of noise and

adaptation strengths, we came to the same conclusion as Shpiro

et al. (2009). In order to satisfy the experimental data, the system

must operate in the noise-driven regime close to the boundary

with the adaptation-driven regime. Thus, both mechanisms are

responsible in balance for the perceptual alternations.

It is not the first time that a reduced spiking model is used

to explain BR. Laing et al. (2010) recently presented reduced

rate-like models derived from a fine scale spiking model con-

sisting of two populations, one excitatory and one inhibitory, of

Hodgkin–Huxley type neurons (Laing and Chow, 2002). Neurons

are orientation selective, include both spike-frequency adaptation

and synaptic depression, and each population can be thought of

as lying on a ring. Nevertheless, their reduction is not derived

consistently from the spiking network. Instead it is based on both

intuition based on observations of the spiking network, and on

data-mining tools to select appropriate variables. By processing

the results of simulations, the authors determined functions that

govern the dynamics of these variables. Our reduced model, on

the other hand, is consistently derived from a spiking network

using mean-field techniques. In addition, we studied the underly-

ing mechanism responsible for perceptual alternations as Shpiro

et al. (2009), and we extended the results by studying the effect of

adapting inhibitory interneurons.

The biophysically realistic spiking network, from which we

derived the reduced model, has been previously studied for

perceptual bistability (Moreno-Bote et al., 2007). Their spiking
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FIGURE 12 | (A–C) Mean time dominance of one of the two neuronal

populations of the model receiving fixed stimulus λ1 (dashed lines) and of the

neuronal population receiving variable stimulus λ2 (solid line), as a function of

the variable external stimulus λ2, for the four noise-adaptation points for

which the model replicates the experimental data when interneurons are not

adapted (big circles in Figures 10A,B). Arrows denote the starting point

where both populations receive the same stimulus, λ1 = λ2. In the insets the

same are plotted for the case where inhibitory interneurons are adapted (red

big circle in Figures 8A,B). A: when λ1 = 45 Hz, (B) when λ1 = 47.5 Hz and (C)

when λ1 = 50 Hz. (D) Mean time dominance of both populations for different

stimulus strengths when inhibitory interneurons are not adapted and

n = 0.014.

network is very similar to ours, but the main difference is that

they only include spike-frequency adaptation to excitatory pyra-

midal cells. Their interesting results show the effect of noise and

stimulus strength in the behavior of the network. The novelty of

our work is that we implemented a four-variable reduced rate-like

model which we derived consistently from a similar biophysically

realistic spiking network of thousands of neurons using mean-field

techniques. More specifically, we performed a further reduction of

the extended mean-field model (Deco and Rolls, 2005). This helps

us understand the dynamics of the full original spiking network,

which in turn can provide us with numerous data such as realistic

synaptic dynamics, spiking time series, local field potentials, etc.

Moreover, we were able to study two extreme cases by includ-

ing spike-frequency adaptation in all or in none of the network’s

inhibitory interneurons. Interestingly, we found that, in both

cases, our model replicates the experimental data in the bound-

ary between noise and adaptation. We thus conclude that spike-

frequency adaptation of inhibitory interneurons is not relevant

to the cause of perceptual alternations observed in BR. However,

we demonstrate that adaptation of interneurons has an effect on

the parametric space where the bifurcation is observed. When

interneurons are not adapted, stronger adaptation is necessary in

the remaining components of the network to induce a bifurcation.

As a result, more adaptation is necessary to obtain the optimal

working point of the system.

Additionally, we found that spike-frequency adaptation in

interneurons generates different types of spontaneous dynamics.

When the interneurons in the spiking network are not adapted, the
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selective neuronal populations fire asynchronously and at low rates

during the spontaneous state. On the other hand, when interneu-

rons are adapted, the model exhibits an oscillatory regime even

during the spontaneous state. This type of oscillatory regime has

been reported in an attractor memory network (Lundqvist et al.,

2010). Here, for the set of parameters for which the model repli-

cates the experimental data, noise is high enough to drive the

system into the oscillatory regime in the absence of stimulus, when

interneurons are adapted.

Furthermore, adapted inhibitory interneurons affect the reac-

tion time at the onset of a stimulus. In Theodoni et al. (2011), it

has been shown that neuronal adaptation accelerates decisions in

an adaptation-related aftereffects decision making task. The spik-

ing model studied in that work is similar to the one presented

here (when all inhibitory interneurons are adapted). From our

four-variable reduced model, we found that when interneurons

include spike-frequency adaptation, an additional input to both

selective populations is implemented which increases with adap-

tation strength. This results in a faster ramping activity at higher

adaptation strengths, which in turn leads to faster reaction times

at the onset of a stimulus. We expect that when interneurons are

not adapted, we would have the opposite effect.

We would like to note that we examined two extreme con-

ditions. Either all the inhibitory interneurons of the network

are adapted or none of them. Nevertheless, for example in the

prefrontal cortex, where neuronal activity follows phenomenal

perception (Panagiotaropoulos et al., unpublished data), we know

that there are three types of interneurons. Half of them are

dendritic-targeting, and the others are divided into interneu-

rons targeting, and perisoma targeting (Conde et al., 1994; Gab-

bott and Bacon, 1996). Perisoma targeting interneurons do not

include spike-frequency adaptation while the rest do include

(Wang et al., 2004). In our network neurons are not considered as

multi-compartmental, and we cannot distinguish the inhibitory

interneurons among these three types. Nevertheless, a more bio-

physically plausible condition would be to consider a percentage

of adapted inhibitory interneurons.

Levelt’s propositions show how mean dominance durations are

affected as a function of stimulus strength to both or to one eye.

They refer to BR but it has been shown that there is a general

validity in other paradigms of visual rivalry, revealing common

computational mechanisms (Klink et al., 2008). Levelt’s propo-

sitions, especially the second and the fourth, have been a usual

constrain for computational models of BR (Laing and Chow, 2002;

Brascamp et al., 2006; Moreno-Bote et al., 2007, 2010; Wilson,

2007; Seely and Chow, 2011). In the present work, we tested Lev-

elt’s fourth proposition in both conditions, where interneurons

are all or none adapted. In both conditions, we found that the

reduced model satisfies this law. In addition we tested Levelt’s sec-

ond revised proposition (Brascamp et al., 2006), and found that

the model also satisfies this law. We would like to mention that

our study was not in full accordance with the recent study of

Moreno-Bote et al. (2010). They showed that competition mod-

els like ours better reproduce experimental findings based on

Levelt’s revised second proposition when the stimuli applied to

the populations are normalized, which was not the case in the

present work.

In addition, we note that, in this study, we did not check for

serial correlations in percept durations. Interestingly, non-zero

serial correlations were reported recently in both BR and structure-

from motion ambiguity paradigms (van Ee, 2009). Experimental

findings in their work were replicated by implementing noise in

adaptation of percept-related neurons. It would be interesting to

see whether our reduced model can reproduce such serial corre-

lations, and in what conditions. Furthermore, an open and inter-

esting question is the freezing of perception during intermittent

presentation of ambiguous stimuli (Orbach et al., 1963; Leopold

et al., 2002; Maier et al., 2003). Using a reduced model consistently

derived from a biologically realistic spiking network one could

study the underlying dynamics, and may unravel mechanisms

underlying such a phenomenon.

Lastly, BR has often been compared to cognitive processes such

as attention and decision making (Leopold and Logothetis, 1999;

Stoner et al., 2005). But it is only recently, that attempts have been

made to study how these phenomena might be related (Braun and

Mattia, 2010; Kalisvaart et al., 2011) within a theoretical frame-

work. We have used a biophysically realistic spiking network that

was initially used to model working memory (Brunel and Wang,

2001) and later decision making (Wang, 2002), attention (Deco

and Rolls, 2005), and adaptation-related aftereffects in perceptual

decisions (Theodoni et al., 2011). The ability of a similar spiking

network to produce these different, but related, cognitive phe-

nomena indicates that they could have similar underlying neural

mechanisms.
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