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Abstract

Interruption to gestation through preterm birth can significantly impact cortical development

and have long-lasting adverse effects on neurodevelopmental outcome.We compared cortical

morphology captured by high-resolution, multimodal magnetic resonance imaging (MRI) in n =

292 healthy newborn infants (mean age at birth = 39.9 weeks) with regional patterns of gene

expression in the fetal cortex across gestation (n = 156 samples from 16 brains, aged 12 to 37

postconceptional weeks [pcw]). We tested the hypothesis that noninvasive measures of corti-

cal structure at birth mirror areal differences in cortical gene expression across gestation, and

in a cohort of n = 64 preterm infants (mean age at birth = 32.0 weeks), we tested whether corti-

cal alterations observed after preterm birth were associated with altered gene expression in

specific developmental cell populations. Neonatal cortical structure was aligned to differential

patterns of cell-specific gene expression in the fetal cortex. Principal component analysis

(PCA) of 6 measures of cortical morphology and microstructure showed that cortical regions

were ordered along a principal axis, with primary cortex clearly separated from heteromodal

cortex. This axis was correlated with estimated tissue maturity, indexed by differential expres-

sion of genes expressed by progenitor cells and neurons, and engaged in stem cell differentia-

tion, neuron migration, and forebrain development. Preterm birth was associated with altered

regional MRI metrics and patterns of differential gene expression in glial cell populations. The

spatial patterning of gene expression in the developing cortex was thus mirrored by regional

variation in cortical morphology and microstructure at term, and this was disrupted by preterm

birth. This work provides a framework to link molecular mechanisms to noninvasive measures

of cortical development in early life and highlights novel pathways to injury in neonatal popula-

tions at increased risk of neurodevelopmental disorder.
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Introduction

The mammalian cortex is composed of functionally distinct regions organised along broad

gradients that reflect spatially ordered and concerted variations of cortical structure and func-

tion [1–6]. While the mechanisms behind the emergence of this complex topography are not

fully understood, cortical patterning is underwritten by dynamic regulation of gene transcrip-

tion during gestation [7,8]. During embryonic development, early patterning of the neuroe-

pithelium is established though intrinsic genetic mechanisms [9–12] that regulate early

neurodevelopmental processes including neurogenesis and neuronal migrations from around

6 to 8 postconceptional weeks (pcw) in humans [11,13]. During fetal development, this leads

to the establishment and expansion of transient neural structures, including the subventricular

zone, preplate, and subplate, and, eventually, formation of the cortex [11,14,15].

The advent of modern transcriptomic technologies has allowed the precise mapping of cor-

tical gene expression during the human fetal period [16–18]. Gene transcription is highly dif-

ferentially expressed during prenatal development and varies significantly across cortical areas

[8,16,17,19]. Interruption to the precisely timed dynamics of gene transcription during gesta-

tion is implicated in the onset of common developmental cognitive and neuropsychiatric dis-

orders [18,20,21].

Recently, the postmortem transcription of thousands of genes across the adult brain has

been compiled to form brain-wide gene expression atlases [18,22,23]. This allows precise com-

parison between spatial patterns of cortical gene expression and neuroanatomy quantified

using magnetic resonance imaging (MRI) [24]. Neuroimaging studies have found that patterns

of gene expression in the adult cortex are mirrored by regional variation in cortical morphom-

etry [25] and functional organisation [26] and are associated with neuroimaging markers of

developmental disorders [27]. Similar databases detailing cerebral gene transcription across

the full human life span from early embryonic stages to adulthood are now available [16,18].

This has created an unprecedented opportunity to explore the molecular correlates of neuro-

imaging markers of early brain development.

Advances in neonatal neuroimaging now permit the quantification of developmental neu-

roanatomy in vivo at a higher resolution than previously possible [28,29]. Imaging studies of

the developing human brain shortly after birth have characterised a highly dynamic period of

cerebral change defined by significant increases in brain volume [30,31], cortical thickness and

surface area [31–33], progressive white matter myelination [34,35], and ongoing configuration

and consolidation of functional brain networks [36–41]. Several studies have also used diffu-

sion MRI models to study the microstructure of the cortex at around the time of birth, identi-

fying areal patterns of development that may relate to ongoing cellular processes including

dendritic arborisation and synaptic formation [42–46]. Further, the truncation of gestation

due to preterm birth is associated with widespread alterations in cortical morphometry and

microstructure indexed by MRI at the time of normal birth that highlight the sensitivity of

noninvasive neuroimaging to detect disruptions in early developmental processes [32,42–49].

The combination of these technologies opens a new window to study early human brain

development, facilitating a comparison between patterns of prenatal cortical gene expression

and the development of the brain at around the time of birth, as well as providing a platform

to test mechanistic hypotheses about the impact of early disruptions to brain development dur-

ing gestation. The potential of this approach has been previously demonstrated using postmor-

temMRI to reveal a correspondence between genes linked to neural development and the

microstructure of the fetal cortex [50]. In this study, we explore the association between in

vivo measures of cortical morphometry at birth and regional patterns of fetal gene transcrip-

tion in the human brain. We test the hypothesis that noninvasive markers of neonatal cortical
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structure mirror areal differences in the timing of cellular processes underlying cortical devel-

opment, as indexed by differential spatiotemporal patterning of gene expression in the fetal

cortex. Additionally, we test whether cortical alterations observed after preterm birth and

quantified with MRI are linked with a selective vulnerability of developmental neuronal and

glial cell populations in the developing cortex.

We define a principal mode of variation in neonatal cortical structure that is aligned to dif-

ferential patterns of genes expression in the fetal cortex, enriched for foundational neurodeve-

lopmental processes, including neuronal differentiation and migration, and disrupted by

preterm birth.

Results

A principal axis of the neonatal cortex

Using high-resolution structural and diffusion MRI data acquired from a large cohort of

healthy neonates (n = 292, 54% male, median [range] gestational age at scan = 40.86 [37.29 to

44.71]), we extracted 6 measures of cortical morphology (cortical thickness) and microstruc-

ture (T1w/T2w contrast, fractional anisotropy [FA], mean diffusivity [MD], intracellular vol-

ume fraction [fICVF], and orientation dispersion index [ODI]) from 11 cortical regions of

interest (ROI) with corresponding mRNA sequencing (mRNA-seq) in a prenatal transcrip-

tomic dataset [18] (Fig 1A and S1 Fig).

Normalised regional metrics for all participants are shown in Fig 1B. Similar regional pro-

files are evident across metrics with the pattern of interregional variation reflecting the full

transcortical patterns shown in Fig 1A. Comparable regional patterns were observed in FA

and cortical thickness and between ODI, fICVF, and the T1w/T2w contrast (Fig 1B), with

higher FA, thicker cortex, and a higher T1w/T2w contrast in primary somatomotor cortex

(Fig 1A and 1B). MD displayed an opposing trend across regions, lowest in primary somato-

motor regions and highest in frontoparietal regions.

Based on the similarities in cortical patterning across metrics, we hypothesised that regional

variation across metrics could be represented by a small number of latent factors. Using princi-

pal component analysis (PCA), we projected the regional metrics onto a set of principal axes

that maximally explained variance in the full set of cortical measures (Fig 1C). Using the group

average region ×metric matrix, we found that the first 2 components explained 91.6% of the

total variance (PC1 = 72.3% and PC2 = 19.3%, respectively).

The ordering of regions along the principal axis (PC1; Fig 1C) illustrates a clear separation

between primary and higher-order cortical regions based on neuroimaging metrics, with pri-

mary somatosensory and motor cortex (primary auditory cortex [A1C], primary motor cortex

[M1], and primary sensory cortex [S1]) situated at opposite ends to prefrontal, inferior parie-

tal, and temporal cortex (dorsolateral prefrontal cortex [DLPFC], inferior parietal cortex

[IPC], and inferior temporal cortex [ITC]). This pattern is apparent in all cortical metrics,

most strongly in T1/T2 contrast, fICVF, and MD (S2 Fig). The second principal axis (PC2)

predominantly captured anatomical and microstructural differences in the primary visual cor-

tex (V1) compared to other primary cortex (Fig 1C and 1D).

PC1 is associated with regional patterns of gene expression in mid-
gestation

Using a developmental transcriptomic dataset of bulk tissue mRNA data sampled from cortical

tissue in 16 prenatal human specimens [18], we compared regional variation in cortical MRI

metrics, represented by PC1, with prenatal gene expression in anatomically correspondent
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Fig 1. A principal axis of the neonatal cortex indexed by multimodal MRI. (A) Average cortical neuroimaging metrics in a cohort of
healthy, term-born neonates (n = 292). Metrics derived from structural MRI (T1/T2 contrast and cortical thickness) and diffusionMRI model
parameters using DTI (FA andMD) and NODDI (fICVF and ODI). Right: cortical ROI based on anatomical references with corresponding
developmental transcriptomic data (S1 Fig). (B) Z-scored cortical metrics are shown for each participant grouped within each cortical ROI. (C)
Top: cortical representations of the first 2 principal components (PC1 and PC2) derived from the PCA of the regional MRI metric data in B.
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cortical regions. Through comparison to 5 independent single-cell RNA studies of the develop-

ing fetal cortex [18,51–54], we selected a set of 5,287 marker genes shown to be differentially

expressed in cortical cell populations during gestation. We used a nonlinear mixed-effects

approach to model developmental changes in gene expression in reads per kilobase of tran-

script per million mapped reads (RPKM) as a smooth function of age, accounting for inter-

specimen variability. The nonlinear model provided a better fit of the expression data for all

genes compared to a comparable linear model (range Akaike information criterion [AIC] dif-

ference: −16.7 to −87.7; range Bayesian information criterion [BIC] difference: −2.1 to −58.9).

Using specimen- and age-corrected RPKM values provided by the residuals of the nonlin-

ear mixed model for each gene (S3 Fig), we tested the association between spatial variation in

gene expression during gestation and regional PC1 score using nonparametric correlation

(Kendall’s τ). Of 5,287 genes, 120 displayed a significant (positive or negative) correlation with

PC1 after correction for multiple comparisons with false discovery rate (FDR; p< 0.05). In

total, 71 genes were positively correlated with PC1, with increasing gene expression in regions

with a higher PC1 score (mean ± SD τ = 0.208 ± 0.023) and 49 genes displayed the opposite

relationship, with higher expression in regions with a negative PC1 score (mean ± SD τ =

−0.208 ± 0.022).

We reasoned that genes associated with the patterning of cortical morphometry at birth

may subserve important neurodevelopmental functions. To test this, we performed an over-

representation analysis (ORA) [55] for ontological terms associated with specific biological

processes in both gene lists. Of 71 genes with spatial patterns of expression positively corre-

lated with PC1 (denoted PC+), 61 (86%) were annotated to specific functional terms. Using all

protein-coding genes transcribed in the bulk RNA dataset as the background reference set, we

found significant enrichment of several neurodevelopmental terms including stem cell differ-

entiation (FDR = 0.001, enrichment ratio = 9.32), neuron migration (FDR = 0.03, enrich-

ment = 7.94), and forebrain development (FDR = 0.004, enrichment = 5.65) (Fig 2A and S1

Table). Terms relating to stem cell and neuronal differentiation remained significantly

enriched when restricting the background reference set to only include genetic markers of

fetal cortical cells (n = 5,287; S1 Table). Performing weighted gene correlation network analysis

(WGCNA) on the PC+ gene set, we identified 2 co-expression modules (Fig 2B). The largest

contained 53 genes including a tightly correlated set of developmental genes with roles in regu-

lating cell growth and differentiation including EOMES, NEUROD4, SFRP1, and TFAP2C. The

smaller second module (Module 2) contained 13 genes, with roles including neuronal signal-

ling (ERBB4, CALB2, and SCGN) and neuronal differentiation (ZNF536 and DLX1).

No biological terms were significantly enriched in genes with a spatial pattern of expression

negatively correlated with PC1 (denoted PC−). Using WGCNA, 3 small modules of 7 genes

each were identified (Modules 1N to 3N; S4 Fig), including genes with high neuronal expres-

sion (Module 1N; CDKL5, ZBTB18, and SORCS1) and genes involved in cellular processes

including adhesion and signalling (Module 2N: ACTN2, PTPN2, and SSX2IP) and metabolic

activity (Module 3N: DUSP7 and ST3GAL1).

Bottom: position of each cortical ROI in PCA state space; the position of each region is dictated by its component score (D) for the first 2
principal components. Regions are labelled and coloured by PC1 score. (D) PCA scores of each metric for the first 2 principal components,
coloured by PC1 score. See https://github.com/garedaba/baby-brains/tree/master/figures. A1, primary auditory cortex; DLPFC, dorsolateral
prefrontal cortex; DTI, diffusion tensor imaging; FA, fractional anisotropy; fICVF, intracellular volume fraction; IPC, inferior parietal cortex;
ITC, inferior temporal cortex; M1, primary motor cortex; MD, mean diffusivity; MFC, medial frontal cortex; MRI, magnetic resonance
imaging; NODDI, neurite orientation dispersion and density imaging; ODI, orientation dispersion index; OFC, orbitofrontal cortex; PCA,
principal component analysis; ROI, regions of interest; S1, primary sensory cortex; STC, superior temporal cortex; V1, primary visual cortex;
VLPFC, ventrolateral prefrontal cortex.

https://doi.org/10.1371/journal.pbio.3000976.g001
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Fig 2. Genes associated with neuronal differentiation are differentially expressed along the principal imaging axis. (A) Volcano plot showing enrichment of GO
terms (biological processes) in genes with age-corrected expression levels positively correlated with PC1. Significantly enriched terms (FDR< 0.05, reference: protein-
coding genes) are labelled. (B) Gene co-expression analysis of all PC+ genes revealed 2 modules). Intra-modular connections are shown with node size and colour
indicating strength and edge thickness and colour indicating weight. (C) Differential expression of PC+ genes across cortical regions (top) measured using LMD
microarrays of the cortical plate in two 21-pcw fetal samples (https://www.brainspan.org/lcm/). Heatmap shows relative expression of all 71 PC+ genes in the inner and
outer cortical plate of each labelled region. (D) Total expression (in TPM) of PC+ (top) and PC− (bottom) genes in single cells (n = 572) extracted from cortical regions
in an independent single-cell RNA-seq survey of the mid-gestational fetal cortex [51]. Scatterplots show mean TPM averaged over cells in each region, correlated with
each region’s PC1 score. See https://github.com/garedaba/baby-brains/tree/master/figures and https://github.com/garedaba/baby-brains/tree/master/results/wgcna.
CNS, central nervous system; DLPFC, dorsolateral prefrontal cortex; FDR, false discovery rate; GO, Gene Ontology; IPC, inferior parietal cortex; ITC, inferior temporal
cortex; LMD, laser microdissection; M1, primary motor cortex; OFC, orbitofrontal cortex; RNA-seq, RNA sequencing; S1, primary sensory cortex; STC, superior
temporal cortex; TPM, transcripts per million; VLPFC, ventrolateral prefrontal cortex.

https://doi.org/10.1371/journal.pbio.3000976.g002
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Using independent microarray data from laser microdissection (LMD) of the 21-pcw fetal

cortex [16], we verified that PC+ genes had higher expression in the cortical plate of higher-

order regions (DLPFC, ventrolateral prefrontal cortex [VLPFC], and IPC) compared to pri-

mary cortex (M1 and S1) (Fig 2C; mean fold change = 1.36, p< 0.001, 10,000 permutations).

Using the top 100 differentially expressed genes (DEGs) identified in the LMD dataset, we also

confirmed that genes with higher expression in regions with a higher PC1 score (DLPFC,

VLPFC, and IPC) in mid-gestation were enriched for important neurodevelopment functions

including neuron differentiation (Gene Ontology [GO]: 0021953, FDR = 0.019, reference: all

genes; S2 Table). Additional validation experiments using independent single-cell RNA

sequencing (RNA-seq) data [51] confirmed an association between regional PC1 score at birth

and expression of PC1+ and PC− gene sets in mid-gestation (Fig 2D).

Imaging–gene associations are enriched for specific cell types in the fetal
cortex

To explore these relationships further, we reconstructed cellular gene expression profiles by

stratifying the bulk tissue expression data using genetic markers of cell type derived from sin-

gle-cell RNA studies of the fetal cortex [18,51–54].

Sets of genetic markers for 11 cortical cell classes were initially compiled by combining lists

of genes that are differentially expressed in fetal cortical cell populations (S3 Table). To verify

this grouping, we calculated the average expression trajectories for all genetic markers within

each cell type across gestation and used them to calculate a 2D embedding using UniformMan-

ifold Approximation and Projection (UMAP; Fig 3A). Proximity in the embedded space reflects

similarity between average trajectories of gene expression within cell type over time. In the

embedded space, cell types clustered by assigned class, and maturational timing (e.g., precursor

or mature), as well as within cellular subtype (e.g., inhibitory and excitatory neurons; S5 Fig).

We tested the enrichment of genes expressed by each cell class within the PC+ and PC

− gene sets. We found that PC+ genes were significantly enriched for genes expressed by pre-

cursor cells (p = 0.0003, reference: fetal gene markers), specifically, for genes expressed by

intermediate progenitor cells (enrichment ratio = 1.63, p = 0.0002; S4 Table) and inhibitory

neurons (enrichment ratio = 3.2, p< 0.0001; Fig 3B and S4 Table). Post hoc analysis within

cell class revealed specific inhibitory neuron subtypes present in the mid-fetal brain and

enriched in the PC+ gene set included migrating cortical interneurons from the caudal gangli-

onic eminence (In_5 [51] and IN-CTX-CGE2 [52] both p< 0.0001) and newborn interneu-

rons originating in the medial ganglionic eminence (nIN1; [52] p = 0.0017).

In contrast, PC− genes, with a spatial pattern of expression that was higher in primary

somatomotor regions at mid-gestation, were enriched for genes expressed by mature cell types

(enrichment = 1.18, p = 0.002). In terms of cell class, genes expressed by oligodendrocytes

were enriched within PC−, though not significantly (enrichment = 1.75, p = 0.056; Fig 3B and

S4 Table). When considering only marker genes uniquely expressed by each cell class, PC

− genes were enriched for excitatory neuronal genes (enrichment = 2.14, p = 0.008; S5 Table).

Post hoc analysis within this class revealed a single enriched early-maturing excitatory neuro-

nal subtype (Ex_4 [51], p< 0.0001). Similar patterns of cell class–specific expression of PC

+ and PC− genes were observed in the single-cell RNA dataset (S6 Fig).

Variation in tissue maturation during gestation predicts cortical
development at birth

These data suggest that the spatial patterning of gene expression in the developing cortex is

mirrored by regional variation in cortical morphology and microstructure measured using
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MRI at birth. To test this hypothesis, we created a model of cortical maturity to capture the

relationship between the regional timing of gene expression and tissue maturation.

Fig 3. Cell-specific gene expression is associated with cortical morphology at birth. (A) UMAP embedding of 86 cell types based on trajectories of
relative gene expression over time recovers annotated cell classes. Subplots reflect enrichment ratios of cell classes in PC+ and PC− gene sets (darker
colour represents higher enrichment ratio). (B) Enrichment ratio for fetal marker genes expressed by each cell class is shown for PC+ (left) and PC−
(right) gene sets. See https://github.com/garedaba/baby-brains/tree/master/figures. OPC, oligodendrocyte precursor cell; UMAP, UniformManifold
Approximation and Projection.

https://doi.org/10.1371/journal.pbio.3000976.g003
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Wemodelled tissue sample age as a function of gene expression using support vector

regression (SVR). To ensure full coverage across the prenatal period and to maximise the num-

ber of samples contributing to the model, we included additional data from all tissue samples

from brains aged 8 pcw to 4 months postnatal age (n = 21 total). Using mean cortical gene

expression of all 120 (PC+ and PC−) genes (Fig 4A), our model accurately predicted sample

age across the full prenatal window (Fig 4B), up to 4 months of age. We validated our model in

a separate dataset comprising microarray data from the prefrontal cortex in n = 46 brains aged

13 pcw to 4 months [56] (BrainCloud; Fig 4B).

Using predictions from this model, we estimated the correlation between regional age pre-

dictions and PC1 in the prenatal sample (Fig 4C, left). We expected that for a given brain,

regions with a more advanced gene expression profile (i.e., more similar to older tissue sam-

ples) would return an older age prediction. We observed a negative association develop over

gestation between a cortical region’s predicted maturity and its position along the principal

axis at birth (Fig 4C, right; r2 = 0.36, p< 0.001 [5,000 permutations]), such that in older sam-

ples, a lower PC1 score was associated with an older predicted age based on gene expression.

Using nonlinear models of gene expression over time, we estimated regional genetic matu-

rity at several points across gestation (S7 Fig). We found that the relative maturity of regions

compared to the rest of the cortex varied over time. Primary somatomotor regions remained

relatively advanced throughout gestation compared to the rest of the cortex. In contrast, V1

remained relatively delayed across gestation. A divergence in maturity becomes apparent

within higher-order regions by mid-gestation, with some cortical areas (IPC and ITC) falling

behind other regions towards the time of birth. These patterns were largely repeated using the

full fetal gene marker set (n = 5,287 genes; S8 Fig).

Preterm birth leads to alterations along the principal imaging axis

Based on this evidence, we hypothesised that an interruption to the length of gestation would

yield differences in cortical morphology indexed by variation along PC1. To test this, we com-

pared cortical morphology in healthy neonates (n = 292) to a cohort of preterm-born infants

scanned at term-equivalent age (n = 64, 59% male; mean [SD] gestational age at birth = 32.00

[3.88] weeks).

We extracted neuroimaging metrics from each cortical region and projected each individu-

al’s region ×metric matrix onto the principal imaging axis (S9 Fig). After correcting for age at

scan and sex, regional variation along PC1 explained significantly less variance in preterm

individual’s imaging data than those born at term (ANCOVA: F = 7.9, p = 0.005; Fig 5A).

Across both groups, the mean variance explained by PC1 increased with age (Fig 5A; F = 46.0,

p< 0.001), with a stronger association in the preterm cohort (interaction: F = 6.63, p = 0.01),

suggesting that arrangement along the principal axis is ongoing around the time of birth and

altered by events surrounding preterm birth. There was no significant difference between

sexes (F = 1.12, p = 0.28).

As differences in the variance explained by PC1 are dictated by individual differences in corti-

cal metrics, we sought to test the specific effects of preterm birth on all imaging measures. Using

mixed effects linear models including effects of age, birth status, and regional PC1 score, we con-

firmed a significant main effect of birth status on all cortical metrics except for ODI (S6–S8

Tables). The largest effect was evident in cortical T1w/T2w contrast (F1,354 = 135.53, p< 0.0001,

Cohen’s d = 1.62; S8 Table). On average, cortical T1w/T2w was significantly lower in preterm

infants (marginal means [95% CI] = 1.32 [1.31, 1.33], 1.20 [1.18, 1.22] for term and preterm

infants, respectively). To a lesser extent, both fICVF and FA were, on average, higher in term

infants (d = 0.32, 0.56, respectively), although the direction of this effect was not consistent across
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Fig 4. Tissue maturity correlates with regional variation in cortical morphometry at birth. (A) Developmental patterns of mean cortical gene expression
illustrated in each specimen for all 120 regionally variant genes (PC+ and PC−), ordered by age. (B) The relationship between predicted and true sample age for all
regional samples (n = 198 samples from n = 21 brains) in the PsychENCODE dataset aged between 50 and 400 postconceptional days (8 pcw to 4 postnatal months),
estimated using SVR and LOO cross-validation. The SVR model was validated using additional samples from the BrainCloud dataset (n = 46 samples). Shaded area
indicates 95% CI. (C) Left: The correlation between regional PC1 score and predicted tissue maturity is shown for each sample during gestation. Error bars show 95%
CI for regional age predictions over 1,000 bootstrapped gene samples. Right: PC1 correlation is plotted against specimen age for each brain. Shaded area indicates
95% CI for linear model fit over bootstrap samples. See https://github.com/garedaba/baby-brains/tree/master/figures. CI, confidence interval; LOO, leave-one-out;
SVR, support vector regression.

https://doi.org/10.1371/journal.pbio.3000976.g004
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Fig 5. Disruption of cortical development in preterm-born infants. (A) Left: group difference in individual variance across multiple neuroimaging
metrics explained by the principal imaging axis in term (blue) and preterm (green) infants (left). Right: the relationship between age at scan and variance
explained by PC1 across all cortical metrics (right). Regression lines are shown for term (blue) and preterm (green) infants with 95% CI. (B) Group
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cortical regions (S10 Fig). In contrast, average cortical MD (d = −1.17) and, to a lesser extent, cor-

tical thickness (d = −0.65) were higher in preterm infants across all regions.

The magnitude of regional group differences across all cortical metrics varied as a function

of PC1 (Fig 5B, S7 Table and S10 Fig). This effect was most apparent in T1w/T2w contrast

where the differences between term and preterm groups formed a strong negative association

with PC1 (r = −0.78, p = 0.023 after FDR correction). Similar trends were seen in the other

metrics, although none reached significance (|r| = 0.32 to 0.68, all p> 0.05).

Vulnerability of specific cell populations to the timing of preterm birth

These data show that cortical differences in preterm infants occur along the principal imaging

axis and are most apparent in T1/T2w contrast. We investigated the potential that the differ-

ences observed in preterm cortex may reflect a selective vulnerability in specific cell popula-

tions due to coincidental timing of extrauterine exposure following preterm birth and

temporal variations in gene expression. Focusing on the cortical differences observed in T1/

T2w contrast, we first estimated gene expression trajectories over the latter stages of gestation

(160 to 260 postconceptional days, approximately 25 to 39 weeks gestational weeks). We then

split this period into 10 age windows, and within each, we identified genes with expression sig-

nificantly correlated with the magnitude of group differences in T1/T2w contrast at term-

equivalent age (FDR-corrected p< 0.05, Fig 5C). Within each window, we tested for enrich-

ment of gene expression by each of 10 fetal cell types. In the early preterm period, we found

that mean regional differences in T1w/T2w contrast at term-equivalent age were significantly

associated with genes expressed by both inhibitory and excitatory neurons (windows 1, 2, 3,

and 5, hypergeometric statistic: p< 0.05; Fig 5C, top; reference: fetal cell markers). However,

later in gestation, T1w/T2w differences were correlated with the expression of genes enriched

for glial cell populations, including microglia, endothelial cells (windows 8, 9, and 10; all

p< 0.05), and oligodendrocytes (windows 1, 2, 8, 9, and 10, all p< 0.05; Fig 5C, middle).

Using gene expression data from amouse model of preterm brain injury [57], we confirmed

the relationship between preterm brain injury and altered gene expression in glial cell populations

at birth (Fig 5D). Gene expression in the murine cortex was measured at P1.5, after hypoxic–

ischemic insult at E16.5. DEGs (p< 0.05) were mapped to human homologs with 217 DEGs

matched to human genes included in the current study. We found that the set of DEGs was

enriched for genes both expressed by glial populations in the human fetal cortex and associated

with T1/T2 differences in the neonatal cortex (Fig 5D and S9 Table). Relative to a background set

of mapped genes (n = 15,052) we observed a significant enrichment of genes associated with T1/

T2 in at least 1 age window and expressed by glial populations including microglia (enrichment

ratio = 6.9, p< 0.001), endothelial cells (5.4, p< 0.001), oligodendrocytes (4.9, p< 0.001), and

radial glia (2.2, p = 0.02). These relationships remained significant in microglia and endothelial

cells when restricting the background set to only include matched fetal gene markers (n = 4,733).

Potential cellular processes disrupted in the preterm brain

To identify potential molecular pathways associated with the neuroimaging differences we

observed in the preterm cortex, we identified genes expressed by glial cell types associated with

differences in regional T1w/T2w contrast ordered by position along PC1 (linear regression shown with 95% CI). (C) Enrichment of gene sets from 10 fetal
cortical cell classes (top: neuronal; middle: nonneuronal; bottom: precursor) based on genes significantly associated (FDR p< 0.05) with group differences
in T1w/T2w contrast at 10 time points in the preterm period. (D) Enrichment of genes both expressed by each cell type and significantly correlated with T1/
T2 in at least 1 age window in DEGs measured in an experimental mouse model of preterm brain injury [57]. See https://github.com/garedaba/baby-brains/
tree/master/figures. CI, confidence interval; DEG, differentially expressed gene; FDR, false discovery rate.

https://doi.org/10.1371/journal.pbio.3000976.g005
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both neuroimaging differences in the human preterm brain and experimental models of pre-

term brain injury. Using genes expressed by oligodendrocytes (Fig 6A), microglia (Fig 7), and

endothelial cells (S11 Fig) and associated with T1/T2 differences across multiple prenatal age

windows, we identified protein–protein interaction (PPI) networks using the Search Tool for

the Retrieval of Interacting Genes/Proteins (STRING) database [58]. Networks for oligoden-

drocytes and microglia are shown in Figs 6 and 7. We performed a functional enrichment

analysis of Reactome pathways [59] using the whole genome as a reference to identify specific

molecular processes involving genes in each PPI network and identified significantly enriched

pathways in each cell population (S10–S12 Tables).

In oligodendrocytes, pathway enrichment analysis revealed significant gene associations

across multiple time windows. Genes involved in N-methyl-D-aspartate (NMDA) signalling in

the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK)

pathway (HSA-438066, HSA-442729, and HSA-442982; DLG1 and GRIN2A) were signifi-

cantly correlated with T1w/T2w differences across the majority of the preterm period. In con-

trast, regional expression of genes associated with the MyD88 and Toll-like receptor (TLR)

signalling cascades (HSA-975871; S100B and RPS6KA2) were most closely correlated with

T1w/T2w differences in the latter stages of gestation (windows 5 to 9 and 7 to 10, respectively).

Other pathways linked genes expression over multiple time periods. Neurotrophin signalling

pathways included genes OMG (correlated between windows 1 to 8) and ARHGEF10 (win-

dows 2 to 5), and the Rho-GTPase signalling pathway (HSA-194840) included both ARH-

GEF10 and RHOB (windows 5 to 10). Finally, sphingolipid metabolism pathways included

genes expressed across both the full prenatal in humans and differentially expressed after fetal

ischaemic insult in mice (ACER3, windows 2 to 9).

In microglia, enriched pathways among genes associated with T1/T2 differences in the pre-

term cortex included signal transduction (HSA-162582), cytokine signalling (HSA-1280215),

and stress response (Homology directed repair; HSA-5693538). The regional expression of

genes associated with Rho GTPase signalling (HSA-194315; CIT, RHOB, and ARHGAP25)

spanned the prenatal period and were linked to brain injury in the mouse model (CIT). Simi-

larly, ITGAX, associated with T1/T2 differences late in gestation and linked to cellular inflam-

matory responses, was differentially expressed in the mouse brain after fetal hypoxic–

ischaemia.

In endothelial cells, a large PPI network enriched for genes associated with apoptotic mech-

anisms, including CASP3, CDKN1A, and GADD45B, each with patterns of expression corre-

lated with T1/T2 differences in the preterm cortex (S11 Fig).

This highlights metabolic signalling pathways associated with genes expressed in develop-

mental glial populations during the period most at risk of interruption by preterm birth with a

regional specificity correlated with neuroimaging markers of preterm brain injury at birth and

a functional role in experimental models of preterm brain injury.

Discussion

In this study, we aimed to test the hypothesis that noninvasive neuroimaging measures of cor-

tical structure at birth encode differential spatiotemporal patterning of genes underlying corti-

cogenesis. We found that gene expression in the fetal cortex is mirrored by a principal mode of

variation across multiple MRI metrics in the neonatal cortex. Specifically, regional variation in

cortical morphometry and microstructure reflects differences in developmental maturity and

tissue composition across cortical areas, indexed by the differential timing of gene expression

across multiple cell types in the fetal cortex. Having established this relationship, we found that

interruption to gestation through preterm birth resulted in significant disruptions to MRI-
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based measures of cortical development by the time of full-term birth. Further, the effects of

preterm birth are temporally and spatially coincident to developmental processes involving

cortical glial cell populations. This work provides an experimental framework to link molecu-

lar developmental mechanisms to macroscopic measures of cortical anatomy in early life, dem-

onstrating the relationship between fetal gene expression and neonatal brain development and

Fig 6. Cellular pathways associated with genes expressed by oligodendrocytes and developmental alterations in the preterm cortex. Left: Genes expressed by
oligodendrocytes in the fetal cortex and significantly associated with group differences in T1w/T2w contrasts across at least 3 age windows are shown. Dark green
indicates periods where gene expression and T1w/T2w contrast were significantly correlated for each gene (FDR p< 0.05) across the preterm period. Right: PPI
networks derived using STRING. Top functional enrichments of molecular pathways are shown where applicable. Genes associated with listed enriched pathway and
genes differentially expressed in an animal model of preterm brain injury are highlighted. See https://github.com/garedaba/baby-brains/tree/master/data/gene_lists.
FDR, false discovery rate; PPI, protein–protein interaction; STRING, Search Tool for the Retrieval of Interacting Genes/Proteins.

https://doi.org/10.1371/journal.pbio.3000976.g006

PLOS BIOLOGY Cortical morphology and spatiotemporal gene expression in the newborn brain

PLOS Biology | https://doi.org/10.1371/journal.pbio.3000976 November 23, 2020 14 / 35

https://github.com/garedaba/baby-brains/tree/master/data/gene_lists
https://doi.org/10.1371/journal.pbio.3000976.g006
https://doi.org/10.1371/journal.pbio.3000976


highlighting the specific impact of early exposure to the extrauterine environment due to pre-

term birth.

Using advanced MRI acquired close to the time of birth in a large, healthy neonatal popula-

tion, we mapped multiple measures of regional cortical morphometry onto a single mode of

variation, defining a principal axis of the neonatal cortex. Ordering of cortical regions along

this axis separated lower-order sensory and motor regions from higher-order regions includ-

ing parietal, frontal, and superior temporal cortex (STC) situated at opposite ends. The shared

Fig 7. Cellular pathways associated with genes expressed by microglia and developmental alterations in the preterm cortex. Left: Genes expressed by microglia in
the fetal cortex and significantly associated with group differences in T1w/T2w contrasts across at least 3 age windows are shown. Dark blue indicates periods where
gene expression and T1w/T2w contrast were significantly correlated for each gene (FDR p< 0.05) across the preterm period. Right: PPI networks derived using
STRING. Top functional enrichments of molecular pathways are shown where applicable. Genes associated with listed enriched pathway and genes differentially
expressed in an animal model of preterm brain injury are highlighted. See https://github.com/garedaba/baby-brains/tree/master/data/gene_lists. FDR, false discovery
rate; PPI, protein–protein interaction; STRING, Search Tool for the Retrieval of Interacting Genes/Proteins.

https://doi.org/10.1371/journal.pbio.3000976.g007
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spatial ordering of cortical properties is a common organisational feature of the mammalian

brain [1,2,60,61], reflected in regional variations in cell populations [61], gene expression

[22,62], and connectivity [60] as well as MRI-based measures of functional topography [5] and

cortical morphometry in both adults [63] and infants [64]. The optimal mapping of cortical

properties onto 1 or 2 lower dimensions remains an area of active research [1]; however, stud-

ies have demonstrated that variation along 1 axis, or gradient, is largely reflected by concerted

changes in others [2,6,65], suggesting that lower-order representations of cortical organisation

largely capture shared views of latent neurobiological variation. An important benefit of this

framework is the reduction of multiple metrics into a single measure per participant. In our

case, this takes advantage of the inherent redundancy across multiple structural and diffusion

MRI measures of the same cortical regions, producing a latent representation of cortical struc-

ture across scales. Here, we applied a simple linear mapping, arranging cortical regions along a

single axis using PCA. This was sufficient to explain a significant proportion of variation in

regional MRI-based metrics, with areas with similar cortical profiles clustering together along

the principal axis. Based on an observed differential expression of genes associated with spe-

cific progenitor cell populations, order along this axis was correlated with spatial gene expres-

sion patterns that reflected a differential timing of cortical development across regions.

Comparison to cell-specific gene expression profiles in late gestation suggested that MRI-

based measures of cortical structure at birth correlated with gene expression by specific glial

populations involving oligodendrocytes, microglia, and endothelial cells. This correlation

potentially reflects a spatial variation in the developmental timing of processes associated with

myelination, neuronal guidance, and the continued maturation of the brain’s vascular net-

works at around the time of birth [66–70].

The advent of modern transcriptomic technologies has enabled detailed analyses of the

foundational molecular mechanisms underpinning corticogenesis in the human fetal brain

[16,52,53]. Resolved to the level of individual cells, recent studies have performed systematic

explorations of gene expression dynamics across cell cycle progression, migration, and differ-

entiation of several major cell types in the fetal brain [51]. Combined with regional expression

levels of bulk tissue mRNAmeasured across multiple cortical areas, this allows the spatiotem-

poral mapping of cell-specific gene expression profiles in the developing brain [52]. Here, we

used a development atlas of gene expression, measured across 11 cortical regions from 12 to 37

pcw in 16 separate brain specimens [18]. This data resource provides unparalleled access to

both the spatial and temporal dynamics of developmental mechanisms ongoing in the cortex

during gestation. We found that a number of genes vary across cortical areas in line with a

principal imaging axis. In particular, we found that genes with relatively higher expression in

higher-order regions during gestation were associated with developmentally earlier processes

including neuronal differentiation and migration and were predominantly expressed by inter-

mediate precursor cells and early-maturing inhibitory neurons. Using an alternative approach

in 4 mid-gestation brain samples (aged 16 to 21 pcw), Miller and colleagues identified a gener-

ally rostro–caudal gradient of gene expression progressing along the contours of the develop-

ing brain and anchored in frontal and temporal cortex [16]. While some overlap was evident,

72/85 (85%) of frontally enriched genes that were included in both studies were also positively

correlated with the imaging axis; this indicates that variation along PC1 may reflect a combina-

tion of multiple overlapping intrinsic hierarchies or cellular gradients underlying cortical

development [18,61,62]. Using a machine learning approach designed to accommodate the

large number of genes assayed and validated in an independent sample, we established that the

maturation of a given tissue sample could be accurately determined based on temporally evolv-

ing profiles of gene expression. This approach takes advantage of the degree of variation in

gene expression over development. Temporal variability in expression is present across most
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protein-coding genes, and over 95% of genes that are differentially expressed across cortical

regions are also differentially expressed across gestation, with age explaining a large proportion

of variance in gene expression [18,19]. Using the relative advancement or delay in predicted

age across regional tissue samples, we observed a correlation between emerging differences in

areal gene expression and cortical structure at birth, suggesting an interaction between the rel-

ative rate of development across regions and length of gestation. This was most notable in the

protracted developmental trajectory of the visual cortex in mid-gestation, as noted elsewhere

[16]. Overall, our results lend evidential support to the presence of heterogeneous corticogenic

timing over gestation [71,72].

Based on these observations, we hypothesised that interruption to gestation would lead to

cortical disruptions along the principal cortical axis, reflecting a deleterious interaction with

genetically determined developmental programs ongoing in the cortex in the latter stages of

gestation. To test this, we compared cortical development in healthy newborns to a cohort of

preterm-born infants scanned at the time of normal birth. In line with previous observations

[28,43,73], we found significant differences across most cortical metrics of macro- and micro-

structure in the preterm brain. The magnitude of differences between cohorts aligned with the

principal imaging axis, suggesting a differential impact of perinatal adversity on cortical devel-

opment that is potentially encoded by a selective vulnerability across regions due to differential

maturation rates. Adverse intrauterine environments can result in altered patterns of fetal

gene expression and brain development [74–79], and we demonstrate overlapping genetic

associations between alterations in preterm cortical structure and differential expression in an

experimental model of fetal hypoxic–ischaemic brain injury [57]. However, the antecedents

and impacts of preterm birth on brain development are multifactorial, and we remain cautious

on speculating about the causal mechanisms that may underlie the relationships observed in

this study without further empirical evidence.

The largest effect was observed in the myelin-sensitive T1w/T2w contrast. In adults,

regional variation in cortical T1w/T2w contrast is highly correlated with quantitative MRI

measures of intracortical myelin and histological maps of cytoarchitecture [80]. Myelination

in the neonatal cortex is minimal; however, T1w and T2w signal varies as a function of posi-

tion in the neonatal cortex, and the transcortical pattern of T1w/T2w ratio observed in this

study mirrors closely with that reported in older cohorts, with high values predominant in pri-

mary sensory regions [80]. In addition, we find that genes with expression correlated with

T1w/T2w contrast are enriched for genes expressed by glial cells, including microglia and oli-

godendrocytes, across the second half of gestation. This mirrors earlier reports, based on

microarray data, of correlations between neonatal imaging phenotypes and glial gene expres-

sion during gestation [81]. Using a time-resolved analysis, we found several molecular path-

ways involving genes with spatial and temporal correlation to the potential timing of preterm

birth. This method leveraged nonlinear models fit using the full prenatal sample, allowing the

discrete mapping of varying gene expression associations across the mid to late fetal period.

We identify co-expressed networks of genes expressed by microglia and oligodendrocytes in

late gestation and associated with Rho-GTPase signalling pathways, critical for neuronal

migration [82], and involved in oligodendrocyte maturation and myelination [83,84]; cytokine

signalling and inflammatory response pathways involving NF-κB1 and associated with micro-

glial activation after hypoxic insult [85]; the MAPK/ERK signalling pathway, associated with

neuronal and oligodendrocyte proliferation [86,87], as well as sphingolipid metabolic path-

ways and apoptotic pathways expressed in endothelial cells. These data provide supporting evi-

dence to the important role of developmental glial populations in preterm brain injury [88–

90]. We have previously identified risk alleles in preterm-born infants in genes involved in

lipid metabolism and microglial activation in the developing brain and associated with altered
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patterns of brain development by term-equivalent age [91,92]. In this study, we validate our

observations in an experimental model of fetal hypoxic–ischaemic injury highlighting a differ-

ential expression of glial-expressed genes after early brain injury [57]. We found several genes

identified in both human and mouse studies and associated with T1/T2 differences in the pre-

term brain that were differentially expressed after early brain injury suggested potential delete-

rious effects on glial cell populations that could lead to disrupted neuronal migration and

formation of neural circuitry in the preterm brain [57,57,93–96]. While we recognise the need

for further experimental research to elucidate the link to alterations in cortical structure, our

findings highlight potential pathways by which preterm birth can result in altered cortical

development due to coincidental timing with corticogenic processes in the fetal cortex.

We note several limitations to our study. While we have taken care to validate our observa-

tions across several datasets, we are careful to avoid causal language to describe the associa-

tions presented. Further experimental evidence is required to fully understand how spatial

gene expression gradients lead to alterations in MRI-based measures of cortical structure in

healthy and preterm brains. Due to the nature of the data, we compare postmortem gene

expression data from the fetal cortex with in vivo measurements of cortical development in

healthy and preterm neonates at the end of gestation. We recognise that this approach depends

upon a number of assumptions including that gene expression patterns can be generalised

across preterm and healthy cohorts and that MRI-based metrics acquired at a single time point

act as a surrogate measure for ongoing associations between cortical structure and gene

expression during gestation. We mitigate some of these risks by performing validation experi-

ments in independent datasets and comparing our findings to experimental models of preterm

brain injury. To measure contemporaneous associations in imaging and gene expression,

other studies [50] have employed postmortemMRI of fetal brains to acquire data in age-

matched samples, but this approach comes with the additional challenges of imaging postmor-

tem tissue. With advancements in fetal MRI, we anticipate that future research will focus on

examining imaging–transcriptomic associations across corresponding time points through

mid to late gestation using healthy fetal MRI and preterm infants scanned shortly after birth to

better capture the temporal evolution of the reported associations.

While the fetal dataset made available through PsychENCODE represents an unprece-

dented window into spatiotemporal gene expression in the developing brain, the relatively

coarse spatial sampling limits our ability to map fine-grained spatial variation or boundaries

between primary and secondary areas. Our analyses only begins at 12 pcw, after early gene

expression gradients have begun to impose areal differentiation on the developing brain [9].

Similarly, the bulk tissue samples analysed contained fetal transient structures including the

marginal zone and subplate, which differ from the cortex in terms of spatial and temporal

development [97]. Although we verified our findings in the cortical plate using microarrays

from layer-specific dissection in two 21-pcw donor brains, this analysis was limited to a single

time point. We anticipate that with the increasing availability of spatially resolved gene expres-

sion datasets, advances in fetal and neonatal imaging, as well as layer-specific imaging analysis

[98], further exploration of this area will yield interesting insight into early cortical develop-

ment. In addition, sexual dimorphism in the transient fetal structures of the brain has been

reported [99]. While we felt that the relatively small sample size precluded a direct assessment

of sex differences in gene expression, we included sex as a factor in all models of gene expres-

sion over time and in our analyses of cortical MRI measures.

To examine cell-specific gene expression, we performed a stratification of bulk tissue RNA

using gene lists collated from several independent scRNA studies. This method assumes that

areal differences in gene expression are due to differences in developmental timing represented

by cellular differentiation as well as changes in the proportion of cell types in composite tissue.
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While we did not test directly whether the same cell types also show areal differences in gene

expression, this was previously explored by Fan and colleagues [51]. In 22- to 23-pcw samples,

they found that the dominant mode of variation across cells was cell type rather than regional

location and that most areal differences were driven by significant variations in tissue compo-

sition, as well as differing patterns of maturation. The advent of high-resolution single-cell

RNAmaps [53] will hopefully lead to future studies where we can more directly test regional

development of specific cell types, rather than broader cell classes.

Finally, in this study, we focused on cortical structure rather than function. Future research

may explore spatial associations between fetal gene expression and brain function as measured

by MRI. In adults, a number of recent analyses have compared MRI metrics to patterns of

gene expression reporting significant associations between correlated gene expression and

both structural and functional measures [25,100–102]. As discussed above, concerted variation

in cortical properties is a common feature across MRI modalities [103,104], and spatial gene

associations may be difficult to disentangle across correlated metrics. However, cortical mea-

sures that correlate at a single time point may not develop in tandem, and future exploration

of temporal development of cortical structure and function in relation to gene expression will

yield interesting future research directions in this area.

In conclusion, we show that noninvasive imaging of the cortical structure in the neonatal

brain is sensitive to differential spatiotemporal patterns of gene expression during gestation. In

addition, we find that disruption to this developmental programming by preterm birth is asso-

ciated with significant cortical alterations that appear to reflect the selective vulnerability of

developing glial populations in the developing cortex.

Materials andmethods

Ethics statement

The study was approved by the United Kingdom Health Research Authority (Research Ethics

Committee reference number: 14/LO/1169) and performed in accordance with the Declara-

tion of Helsinki. Written informed parental consent was obtained for all participants.

Participants

Infants were recruited and imaged at the Evelina Newborn Imaging Centre, St Thomas’ Hospi-

tal, London, UK for the Developing Human Connectome Project (dHCP). Neuroimaging and

basic demographic data from the dHCP are available to download from http://www.

developingconnectome.org/second-data-release/.

In total, 442 healthy, term-born infants (gestational age at birth>37 weeks) scanned

between February 2015 and November 2018 as part of the dHCP were included in this study.

From this cohort, n = 362 were successfully processed via the dHCP structural processing pipe-

line (see “Image processing” section below) and included after quality control. Of these, diffu-

sion data from n = 296 was successfully processed using both DTI and NODDI pipelines (see

“Image processing” section below). A further 4 participants were excluded following a final

visual inspection due to cropped anatomical images. Of 107 preterm infants (gestational age at

birth<37 weeks) scanned at term-equivalent age during the same period, 1 was excluded due

to incomplete demographic data, n = 84 completed structural MRI processing, and n = 67

passed diffusion processing after quality control. A further n = 3 were removed after final

visual inspection.

After quality control and image processing, the final cohort comprised n = 292 healthy

term-born infants (54% male, mean [SD] postmenstrual age at birth = 39.96 [1.10] weeks,

PLOS BIOLOGY Cortical morphology and spatiotemporal gene expression in the newborn brain

PLOS Biology | https://doi.org/10.1371/journal.pbio.3000976 November 23, 2020 19 / 35

http://www.developingconnectome.org/second-data-release/
http://www.developingconnectome.org/second-data-release/
https://doi.org/10.1371/journal.pbio.3000976


mean [SD] age at imaging = 40.94 [1.56] weeks) and n = 64 preterm infants scanned at term-

equivalent age (59% male; born 32.00 [3.88] weeks and imaged at 40.57 [2.25] weeks).

Magnetic resonance imaging

MRI was performed on a 3T Philips Achieva (Philips, the Netherlands) using a dedicated neo-

natal imaging system including a neonatal 32 channel phased array head coil [29]. Infants

were imaged without sedation. T1- and T2-weighted anatomical images were acquired along-

side diffusion and resting state functional MRI (total acquisition time: 63 minutes).

Inversion recovery T1- and T2-weighted images were acquired in sagittal and axial orientations

(in-plane resolution: 0.8 × 0.8 mm2, slice thickness: 1.6 mmwith 0.8-mm overlap) with TR = 4,795

ms; TI = 1,740 ms; TE = 8.7 ms; Sensitivity Encoding (SENSE): 2.27 (axial) and 2.66 (sagittal) for

T1-weighted images and TR = 12,000 ms, TE = 156 ms; SENSE: 2.11 (axial) and 2.60 (sagittal) for

T2-weighted images. T1- and T2-weighted image stacks were motion corrected and reconstructed

using the multi-slice aligned sensitivity encoding method with integration into a 3D volume using a

super-resolution scheme into 0.8 × 0.8 × 0.8 mm resolution volumes [105,106].

Diffusion MRI was acquired with a spherically optimised set of directions over 4 b-shells

(b = 0 s/mm2: 20 directions; b = 400: 64 directions; b = 1,000: 88 directions; b = 2,600: 128

directions) with a multiband factor acceleration of 4, TR = 3,800 ms; TE = 90 ms; SENSE: 1.2

and acquired resolution of 1.5 mm × 1.5 mm with 3-mm slices (1.5-mm overlap) recon-

structed using an extended SENSE technique into 1.5 × 1.5 × 1.5 mm volumes [107,108].

Image processing

T1- and T2-weighted images were processing using the dHCP structural pipeline (https://

github.com/BioMedIA/dhcp-structural-pipeline) [28]. Briefly, T2-weighted images were bias

corrected (N4) [109], brain-extracted (Brain Extraction Tool [BET]) [110], and segmented

into grey matter, white matter, and cerebrospinal fluid using Developing Brain Region Anno-

tation With Expectation-Maximization (DRAW-EM) [111]. Cortical surfaces of the right and

left hemisphere were then extracted [112] and aligned to a population-specific cortical tem-

plate [113] using spherical inflation and multimodal surface matching (MSM) with higher-

order constraints (https://github.com/ecr05/MSM_HOCR) [114,115]. This method ensures

that all surfaces across participants have one-to-one vertex correspondence with the dHCP

neonatal template. For each participant, we extracted the following metrics: cortical thickness

(corrected for cortical curvature) and T1w/T2w contrast (calculated using rigidly aligned

T1-weighted images).

Diffusion-weighted images were preprocessed by first denoising [116] and removing Gibbs

ringing artefacts [117], followed by a slice-to-volume motion and distortion correction with a

slice-level outlier rejection using a multi-shell spherical harmonic signal representation (spher-

ical harmonics and radial decomposition [SHARD]) [118]. Visual inspection of the 4D images

ensured motion correction and outlier rejection was successful and that images of poor quality

were excluded from further analysis.

We fit each participant’s diffusion data with both a diffusion tensor model, fitted to the

b = 1,000 s2/mm shell and implemented in MRtrix [119], and the neurite orientation disper-

sion and density imaging (NODDI) model [120]. For the diffusion data, NODDI was imple-

mented with the NODDI MATLAB toolbox using the “invivopreterm” tissue type options

with the default parameters of intrinsic diffusivity fixed to 1.7 × 10−3mm2/s and the starting

point for values considered as the fraction of intra-neurite space lowered to 0 to 0.3 (instead of

0 to 1 in the adult brain) to better fit higher water content in the newborn compared to the

mature adult brain [49,121].
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From these models, we derived parametric maps of FA and MD from DTI, as well as maps

of ODI, quantifying the angular variation of neurite orientation within a voxel and fICVF

indexing the tissue volume fraction restricted within neurites. Cortical diffusion maps were

projected to the cortical surface after co-registration with the corresponding anatomical data.

Images were visually inspected after acquisition and after reconstruction and following

each processing pipeline. Any images that failed to successfully complete the processing pipe-

lines or failed visual inspection at any stage were removed from further analysis. As an addi-

tional step, we quantified in-scanner movement and image quality using a summary metric of

the total head translation, rotation, and the ratio of detected outlier slices. These 3 metrics

were combined into 1 aggregated quality assurance measure [118,122]. This measure did not

significantly differ between groups (term [mean +/− SD] = 1.61 +/− 1.79, preterm = 1.55

+/− 1.03; t = 0.24, p = 0.81). Including QA as a covariate in our analyses of group differences

did not impact our reported observations.

Bulk tissue gene expression data

Preprocessed, bulk tissue cortical gene expression data were made available as part of the Psy-

chENCODE project (available to download from http://development.psychencode.org/) [18].

Tissue was collected after obtaining parental or next of kin consent and with approval by the

institutional review boards at the Yale University School of Medicine, the National Institutes

of Health, and at each institution from which tissue specimens were obtained.

Tissue processing is detailed elsewhere [18]. In brief, mRNA data were available for post-

mortem human brain tissue collected from n = 41 specimens aged between 8 pcw and 40 post-

natal years. For each brain, regional dissection of up to 16 cerebral regions was performed,

including 11 neocortical regions (DLPFC, VLPFC, orbitofrontal cortex [OFC], medial frontal

cortex [MFC], M1, S1, IPC, A1C, STC, ITC, and V1) and 5 subcortical regions (hippocampus,

amygdala, striatum, thalamus, and cerebellar cortex). Detailed anatomical boundaries for each

cortical region at each stage of development are provided elsewhere [17,18]. Regional tissue

samples were subject to mRNA-seq using an Illumina Genome Analyzer IIx (Illumina, San

Diego, California, United States of America) and mRNA-seq data processed using RSEQtools

(version 0.5) [123]. Gene expression was measured as RPKM. Conditional quantile normalisa-

tion was performed to remove GC content bias and ComBat used to remove technical variance

due to processing site (Yale or University of Southern California) [18,124,125].

In this study, we included RPKM data from neocortical samples of prenatal specimens aged 12

pcw onwards (n = 16, age range = 12 to 37 pcw, mean [SD] age = 18.4 [7.7] pcw, 50%male, mean

[SD] number of cortical regions sampled = 9.75 [1.6], mean [SD] postmortem interval = 7.1

[12.6] hours, mean [SD] RNA integrity number [RIN] [126] = 9.26 [0.73]). Prenatal specimens

from the earliest developmental window (8 to 9 pcw) were excluded as some cortical regions (e.g.,

M1 and S1) were combined together to account for immature cortical anatomy [17,18].

The prenatal gene expression data were initially filtered to only include protein-coding

genes (NCBI GRCh38.p12, n = 18,524 out of a possible 20,720). In order to restrict our analysis

to focus on genes expressed in the developing cortex, we further filtered this list to only contain

genes expressed by cells in the fetal cortex based on the composite list of prenatal cell markers

from 5 independent single-cell RNA studies of the developing fetal cortex (see “Genetic mark-

ers of cell type” section below). This resulted in expression data from a final set of 5,287 genes.

Additional gene expression datasets

BrainCloud. Preprocessed microarray data from n = 46 human prefrontal cortex tissue

samples aged approximately 95 to 390 postconceptional days (14 pcw to 4 months postnatal
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age) were downloaded from the Gene Expression Omnibus (GEO; accession: GSE30272).

Prior to analysis, individual gene expression was modelled using nonlinear splines. Surrogate

variable analysis was performed to remove technical variation and batch effects (31 surrogate

variables) while retaining variation due to age. For further details, please see Colantuoni and

colleagues [56]. For each gene, expression was Z-transformed prior to modelling. In total, gene

expression for 4,986/5,287 fetal gene markers was available.

Single-cell RNA. Regional single-cell RNA gene expression data was made available via

GEO (accession: GSE103723) [51]. Briefly, 4,213 single cells were isolated from 20 anatomical

regions of the 22- and 23-pcw fetal cortex and subject to single-cell RNA-seq. Normalised

expression data in transcripts per million (TPM) were available for 96 cells per tissue sample.

We selected data from single cells extracted from matching cortical regions to those described

above and classified to 1 of 10 classes based on clusters identified in [51], as detailed in the

“Genetic markers of cell type” section below (n = 572 cells).

Laser microdissection (LMD) microarray data. LMDmicroarray data were accessed via

the BrainSpan data portal (brainspan.org/lcm). This provides access to DNAmicroarray data

from 4 mid-gestational brains, dissected into around 300 anatomical samples. Detailed infor-

mation is provided elsewhere [16]. We performed a differential search to identify microarray

probes with differential expression in the cortical plate of the DLPFC (regional identification:

fCPdl), VLPFC (fCPvl), and IPC (pCPpv) compared to M1 (fCPm1) and S1 (fCPs1) measured

in two 21-pcw donor brains. Differential expression data for 23,000 probes were downloaded

and corresponding data mapped to the set of preselected fetal marker genes for comparison.

Experimental mouse model of preterm brain injury. Gene expression levels in P1.5

mouse cortex were measured for control or ischaemic pups, where ischaemia was induced by

maternal uterine artery occlusion at E16.5. Four mice in each group were included [57]. Data

were made available via GEO (accession: GSE89998). Analysis was performed using “GEO2R”

and the “limma” package (www.ncbi.nlm.nih.gov/geo/geo2r). Expression data were first log2--

transformed before fold-change was estimated across groups. Mouse genes were mapped to

human homologs using Ensembl (www.ensemble.org) and matched to the list of human fetal

gene markers.

Cortical regions of interest

To facilitate comparison between developmental RNA and MRI data, we created a set of corti-

cal ROI labels corresponding to the anatomical dissections used for mRNA analysis and

aligned to the dHCP imaging data.

Reference postmortem MRI data were acquired as part of the Allen Institute BrainSpan

Atlas of the Developing Human Brain. Details of tissue processing and MRI acquisition are

available at https://help.brain-map.org/download/attachments/3506181/BrainSpan_MR_

DW_DT_Imaging.pdf. In brief, MRI was acquired at 3T (Siemens, Germany) in a postmor-

tem, whole-brain specimens aged 22 pcw. In addition, anatomical annotations corresponding

to the regional dissections in Miller and colleagues [16], Kang and colleagues [17], and Li and

colleagues [18] were provided on a reconstructed cortical surface from a 19-pcw prenatal spec-

imen [50]. Cortical ROI data were available to download in VTK file format, separately for left

and right cortical hemispheres (S1 Fig).

To generate a set of dHCP-compatible cortical labels, we reconstructed the cortical surface

of a 3T postmortemMRI image from a 22-pcw brain. First, manually creating a brain mask to

remove non-brain tissue, then smoothing using a mean filter of 3-mm width. We performed

automated tissue segmentation on the smoothed image using the dHCP structural pipeline,

manually correcting tissue segmentations on a slice-by-slice basis for accuracy prior to cortical
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surface reconstruction. Using dHCP tools, the fetal cortical surface was extracted and cortical

labels manually transferred onto it based on the reference labels provided by Huang and col-

leagues [50] and anatomical descriptions in Li and colleagues [18]. Finally, the fetal surface

was inflated to a sphere and co-registered to the earliest time point (36 weeks gestational age)

of the dHCP cortical surface atlas using MSM [113,115].

This resulted in a set of 11 cortical ROI, each associated with regional bulk tissue mRNA

data sampled across gestation and co-registered with dHCP neuroimaging data to allow corre-

spondent sampling of cortical imaging metrics in the neonatal brain (S1 Fig).

Cortical imaging metric analysis

For every participant, mean values of each imaging metric (thickness, T1w/T2w contrast, FA,

MD, fICVF, and ODI) were calculated within each cortical ROI. Metric values were averaged

across hemispheres and outlier values identified and removed using a median absolute devia-

tion (MAD) of>3.5.

For all healthy term-born infants, regional metrics were Z-transformed and averaged across

participants to produce a group average region✕metric matrix representing the relative varia-

tion of each imaging metric across cortical regions.

We projected the group average data onto 2 axes using PCA via eigendecomposition of the

data covariance matrix. This results in a set of L eigenvectors,WL, which map the original n×p

data matrix, X onto a set of orthogonal axes as TL = XWL. As generally, L<p, the truncated

n×Lmatrix, TL, forms a low-dimensional representation of the original data. We can then

project each participant’s region✕metric matrix, Xs, onto a common set of axes as

Ts
L ¼ XsWL, where T

s
L represents the L component scores for each participant, s.

All analysis was performed in Python (3.7.3) using Scipy (1.3.0) [127] and Scikit-Learn

(0.21.2) [128].

Modelling gene expression trajectories

For each gene, we modelled the relationship between gene expression and specimen age using

mixed-effects models. Using bulk tissue RPKM data described above, each gene’s expression

data were first Winsorised to set very small or large outlying values to the fifth and 95th centile

values, respectively, to stabilise against extreme values before log2 transformation.

We compared 2 models, modelling regional gene expression as either a linear or nonlinear

function of age with fixed effects of sex and RIN. We accounted for sample-specific variation

by including in the model a random intercept for each specimen, such that

y � f ðvÞ þ Xbþ Zb;

where f(�) is a nonlinear function of predictor v, X is anm-observation ×p design matrix

modelling p linear, fixed effects, and Z is anm×(n�r) design matrix modelling r random effects

across n specimens. In this case, age was included as either a nonlinear predictor, f(v), or as a

fixed linear effect alongside sex and RIN. We specified a relatively smooth nonlinear function

of age using a natural cubic spline with 4 knots evenly spaced across the age span. To estimate

region-specific trajectories, we calculated a second nonlinear model, additionally including

separate smooth functions for each cortical region. Models were compared using AIC and

BIC.

We calculated age-corrected RPKM values for each gene in all cortical samples using the

residuals of the best-fit nonlinear mixed model (S3 Fig) to test the spatial association between

gene expression and the principal imaging gradient using nonparametric correlation (Ken-

dall’s τ).
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Modelling was performed in R (3.6.1) using “nlme” [129] and “mgcv” [130] packages.

Genetic markers of cell type

Genetic markers of cortical cell types were collated from 5 independent single-cell RNA stud-

ies of the fetal cortex [18,51–54]. Using single-cell RNA-seq, each study identified sets of genes

differentially expressed across cell clusters or types. Cell types were independently defined in

each study, and a list of all cell types included in this study (n = 87) are shown in S3 Table.

Where applicable, for a given cell type, DEGs were included as cell type markers if they were

found to be expressed in at least 50% all cells surveyed [18,51,52]. Across all 5 studies, each cell

type was manually assigned to 1 of 11 cell classes based on text descriptions from each study

(astrocyte, endothelial cell, microglia, neuron:excitatory, neuron:inhibitory, neuron:unclassi-

fied, oligodendrocyte, oligodendrocyte precursor cell [OPC], pericyte, intermediate progenitor

cell, and radial glia) and classified as either a precursor or mature cell type (S3 Table). For each

cell class, omnibus gene lists were created by collating identified gene markers for all cell types

within a class. Unique gene lists were created by excluding any genes identified as a marker of

more than 1 cell class.

Cell type embedding

Using the region-specific, nonlinear model specified above, expression trajectories for every

gene were estimated for each region at 50 evenly spaced points across the full observation win-

dow (12 pcw to 37 pcw). For each cell type identified in the fetal cortex (see above), expression

trajectories for all cell type gene markers were normalised to unit length, concatenated over

regions, and averaged to capture both temporal and spatial variation in average gene expres-

sion across cell types. Similarities between cell type gene expression trajectories were then visu-

alised by embedding into a 2D space using UMAP based on Euclidean distance.[131]

Enrichment analyses

We performed ORA of each list of gene markers for each of 10 cell classes (excluding neuron:

unclassified), calculating the hypergeometric statistic

p ¼ 1�
Px

i¼0

K
i

� �

M�K
N�i

� �

M
N

� � ;

where p is the probability of finding x or more genes from a cell class–specific gene list K in a

set of randomly selected genes, N drawn from a background set,M. We calculated enrichment

ratios as the proportion of cell class–specific genes in the gene list of interest, compared to the

proportion in the full background set. The background gene set was defined as the full list of

protein-coding genes included in the analysis (n = 5,287) unless otherwise specified. We cor-

rected for multiple comparisons across cell classes using FDR.

We additionally performed ORA for GO terms using WebGestalt [55].

Weighted gene correlation network analysis

We usedWGCNA [132] to identify co-expression modules within PC+ and PC− gene sets.

We performed topology analysis using a gene × gene adjacency matrix constructed from the

residualised log2-transformed RPKM data, after accounting for variance due to age, sex, and

sample effects (see “Modelling gene expression trajectories” section above). A soft threshold

was chosen to approximate scale free topology in the adjacency matrix (PC+: power = 5, r2 =

0.77; PC−: power = 10, r2 = 0.78) [133] before transformation into a topological overlap matrix.
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Hierarchical clustering was used to assign genes to modules based on the dynamic tree-cutting

method [134]. Analysis was performed in R (3.6.1) with the “WGCNA” package [132].

Predicting tissue maturity

We used gene expression over time to construct a predictive model of genetic maturity using

SVR. To maximise coverage across the prenatal period, we included additional samples aged 8

pcw up to 4 months of postnatal age (n = 21 total). Using the n = 120 regionally varying genes

(PC+ and PC−), we first calculated regional gene expression profiles, corrected for variance

due to sex, RIN, and specimen identification while retaining variance due to age, using nonlin-

ear mixed-effects models. We then averaged gene expression across cortical regions in each

specimen to create a specimen × gene (21 × 120) mean gene expression matrix, where each

row represents the normalised log2(RPKM) of each gene for a given specimen, averaged across

cortical regions.

In machine learning, kernels can be applied high-dimensional datasets to improve model

fitting where n<<p. To calculate regional variation in genetic maturity, we implemented a

leave-one-out (LOO) model using SVR with a linear kernel (Scikit-Learn; regularisation

parameter set to C = 10.0) and modelling the association between specimen age (in postcon-

ceptional days) and mean cortical gene expression data in 20 out of 21 specimens. We then

used this model to predict age using the regional gene expression profiles of the remaining,

left-out specimen, resulting in 11 age predictions, 1 per cortical region. We repeated this pro-

cess, leaving out a different specimen each time.

In order to estimate a stable prediction of tissue maturity, we repeated the modelling using

a bootstrapped selection of genes, repeating gene sampling with replacement 1,000 times. We

also repeated the modelling using all 5,287 genes. We calculated the correlation between

regional genetic maturity (averaged over 1,000 bootstraps) and PC1 score for each specimen

and tested the significance of this relationship by permuting mean gene expression profiles

with respect to specimen age 5,000 times during model training.

Group comparison of cortical morphology

We compared regional cortical metrics in term and preterm cohorts using a linear mixed

effects modelling approach. For each of 6 metrics, we modelled metric value as a combination

of age, sex, regional PC1 score and birth group status (term or preterm). We included an inter-

action term for PC1 and birth status to test the hypothesis that preterm birth incurs differential

effects across cortical regions in line with PC1. We also included participant identification as a

random effect to account for correlated within-participant observations across regions. We fit

nested models by maximum likelihood, comparing model fits with and without the inclusion

of birth status using AIC and BIC (S6 Table).

Developmental gene enrichment

In order to test cell class enrichment over time, we split the preterm period (approximately 160

to 260 postconceptional days) into 10 age windows. Using nonlinear gene expression trajecto-

ries, calculated across cortical regions (see “Modelling gene expression trajectories” section

above), we averaged modelled gene expression within each window for every cortical region.

Then, in each window, we calculated the nonparametric association (Kendall’s τ) between

gene expression and the mean difference between term and preterm groups in T1w/T2w con-

trast in each cortical region and recorded significantly associated genes (FDR-corrected at

p< 0.05). Finally, we performed cell-class enrichment (see “Enrichment analyses” section

above) in each of the 10 time-resolved gene sets.
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PPI networks

PPI networks were visualised in Cytoscape (3.7.2) using the StringDB protein query. Pathway

enrichment of Reactome pathways was performed for subnetworks.

Supporting information

S1 Fig. Creating matching cortical labels to enable spatial comparisons of transcriptomic

and neuroimaging data. Eleven cortical ROI corresponding to the anatomical tissue samples

used to measure prenatal gene expression (left) were transferred onto a postmortem fetal corti-

cal surface reconstruction (middle) to allow registration to the dHCP neonatal surface atlas

(right) and sampling of neuroimaging metrics from anatomical correspondent regions at

term-equivalent age. A1, primary auditory cortex; DLPFC, dorsolateral prefrontal cortex; IPC,

inferior parietal cortex; ITC, inferior temporal cortex; M1, primary motor cortex; MFC, medial

frontal cortex; OFC, orbitofrontal cortex; S1, primary sensory cortex; STC, superior temporal

cortex; V1, primary visual cortex; VLPFC, ventrolateral prefrontal cortex.

(TIF)

S2 Fig. Contribution of each cortical metric to the principal imaging component. Left: The

principal eigenvector for PC1 shows the contribution of each metric to the principal compo-

nent. Right: correlations between group average regional cortical metrics and PC1. See https://

github.com/garedaba/baby-brains/tree/master/figures.

(TIF)

S3 Fig. Calculating spatial correlations between gene expression and imaging metrics. For

each gene, expression (RPKM) over samples was modelled using nonlinear mixed effects mod-

els, accounting for variation due to age, sex, and specimen. The residuals of this model, repre-

senting age-corrected expression levels in each cortical region for every sample, were

correlated with the regional principal component score yielding a nonparametric association

(Kendall’s τ) and p-value. Genes were ranked based on association with the imaging phenotype

and p-values corrected with FDR to select significantly associated gene sets. See https://github.

com/garedaba/baby-brains/tree/master/figures.

(PNG)

S4 Fig. Gene modules negatively associated with PC1.Gene co-expression analysis of all neg-

atively associated (PC−) genes revealed 3 modules (1N, 2N, and 3N). Intra-modular connec-

tions are shown with node size and colour indicating strength and edge thickness and colour

indicating weight. See https://github.com/garedaba/baby-brains/tree/master/results/wgcna.

(TIF)

S5 Fig. Cell class embeddings coloured by different features. UMAP embedding of 86 cell

types based on trajectories of relative gene expression coloured by study, timing, and neuronal

subtype. See https://github.com/garedaba/baby-brains/tree/master/figures.

(TIF)

S6 Fig. Cell-specific variation of PC+ and PC− genes.Using single-cell RNA-seq data, we

calculated total RNA expression (sum of cell TPM) of all genes in the PC+ and PC− gene sets.

Individual cells were clustered based on cell assignments into each of 10 cell classes. No cells

were annotated to radial glia, oligodendrocyte, or pericyte in these regions. See https://github.

com/garedaba/baby-brains/tree/master/figures.

(TIF)
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S7 Fig. Developmental trajectories of genetic maturation for regions. Regions are grouped

and ordered by position along PC1 (left to right: A1C, S1, M1; MFC, STC; V1; DLPFC,

VLPFC, OFC, IPC, ITC). Density plots show the difference between model-predicted age and

sample age (5,000 bootstrapped gene samples). Positions to the left of 0 indicate regions that

are less mature compared to the mean. Five time windows through gestation are shown, with

age in postconceptional days. See https://github.com/garedaba/baby-brains/tree/master/

figures.

(TIF)

S8 Fig. Tissue maturity correlates with regional variation in cortical morphometry at birth

using all fetal marker genes. Left: the relationship between predicted and true sample age for

all regional samples (n = 198 samples from n = 21 brains) in the PsychENCODE dataset aged

between 50 and 400 postconceptional days (8 pcw to 4 postnatal months), estimated using

SVR and LOO cross-validation. The SVRmodel was validated using additional samples from

the BrainCloud dataset (n = 46 samples). Shaded area indicates 95% CI. Right. Correlation

between PC1 score and predicted age is shown for each sample. Error bars show 95% CI for

regional age predictions (1,000 bootstrapped gene samples). See https://github.com/garedaba/

baby-brains/tree/master/figures.

(TIF)

S9 Fig. Cortical metric data from all participants projected into PC space. Individual data

were projected onto the first 2 principal components calculated from the group average data

matrix. Points are coloured by PC1 score, and black outline indicates data from preterm

infants. See https://github.com/garedaba/baby-brains/tree/master/figures.

(TIF)

S10 Fig. Mean group differences in cortical metrics. Scatterplots show the average group dif-

ference (term − preterm) in regional metrics as a function of PC1 score. Linear regressions

with 95% CI are shown. See https://github.com/garedaba/baby-brains/tree/master/figures.

(TIF)

S11 Fig. Cellular pathways associated with genes expressed by endothelial cells and devel-

opmental alterations in the preterm cortex. Left: Genes expressed by endothelial cells in the

fetal cortex and significantly associated with group differences in T1w/T2w contrasts across at

least 3 age windows are shown. Dark red indicates periods where gene expression and T1w/

T2w contrast were significantly correlated for each gene (FDR p< 0.05) across the preterm

period. Right: protein–protein interaction networks derived using STRING. Top functional

enrichments of molecular pathways are shown where applicable. Genes associated with listed

enriched pathway and genes differentially expressed in an animal model of preterm brain

injury are highlighted. See https://github.com/garedaba/baby-brains/tree/master/data/gene_

lists.

(TIF)

S1 Table. Gene Ontology enrichment of genes positively associated genes with PC1 using

different background reference sets.

(DOCX)

S2 Table. Gene Ontology enrichment of top 100 genes differentially expressed in LMD

dataset using different background reference sets.

(DOCX)
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S3 Table. Cell type classification by class and timing.

(DOCX)

S4 Table. Cell class enrichments for PC1 including all genes within class.

(DOCX)

S5 Table. Cell class enrichments for PC1 including only unique genes within class.

(DOCX)

S6 Table. Model fits for each cortical metric with and without inclusion of birth status.

(DOCX)

S7 Table. Model parameter estimates for each cortical metric.

(DOCX)

S8 Table. Estimated marginal means of each cortical metric for preterm and term cohorts.

(DOCX)

S9 Table. Cell class enrichments for differentially expressed genes in mouse model of fetal

hypoxia.

(DOCX)

S10 Table. Enriched pathways within PPI networks in oligodendrocytes.

(DOCX)

S11 Table. Enriched pathways within PPI networks in microglia.

(DOCX)

S12 Table. Enriched pathways within PPI networks in endothelial cells.

(DOCX)
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