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Neuronal oscillations are ubiquitous in the brain and may 

contribute to cognition in several ways: for example, by 

segregating information and organizing spike timing.  

Recent data show that delta, theta and gamma oscillations are 

specifically engaged by the multi-timescale, quasi-rhythmic 

properties of speech and can track its dynamics. We argue 

that they are foundational in speech and language processing, 

‘packaging’ incoming information into units of the appropriate 

temporal granularity. Such stimulus-brain alignment arguably 

results from auditory and motor tuning throughout the 

evolution of speech and language and constitutes a natural 

model system allowing auditory research to make a unique 

contribution to the issue of how neural oscillatory activity 

affects human cognition.

During the evolution of human speech, the articulatory motor system 

has presumably structured its output to match those rhythms the 

auditory system can best apprehend1. Similarly, the auditory system 

has likely become tuned to the complex acoustic signal produced 

by combined jaw and articulator rhythmic movements2. Both audi-

tory and motor systems must, furthermore, build on the existing  

biophysical constraints provided by the neuronal infrastructure. 

The present article proposes a perspective whereby neuronal oscilla-

tions in auditory cortex constitute a critical component of auditory- 

articulatory alignment and provide a first step deciphering continuous 

speech information.

Acoustic, neurophysiological and psycholinguistic analyses 

of connected speech demonstrate that there exist organizational 

principles and perceptual units of analysis at very different time 

scales3. Short-duration cues and information with a high modula-

tion frequency, typically in ~30–50 Hz range and associated with an 

important part of the signal fine structure, correlate with attributes 

at the phonemic scale, such as formant transitions (for example, 

/ba/ versus /da/), the coding of voicing (for example, /ba/ versus 

/pa/), and other features. Almost an order of magnitude slower, 

the acoustic envelope of naturalistic speech closely correlates with  

syllabic rate and has a canonical time signature as well, the modula-

tion spectrum typically peaking between 4 and 7 Hz. The accretion of 

signal input into lexical and phrasal units, perceptual groupings that 

carry, for example, the intonation contour of an utterance, occurs at 

yet a lower modulation rate, roughly 1–2 Hz. Although the temporal 

modulations on these three scales are aperiodic, they are sufficiently 

rhythmic to elicit robust regularities in the time domain, even in  

single utterances.

The rich frequency composition of speech has motivated much 

research on the neural foundations of speech perception. Although 

spectral information must be analyzed for successful processing, tem-

poral modulations at low and high rates within each frequency band 

are critical. Spectral impoverishment of speech can be tolerated to a 

remarkable degree4,5, whereas temporal manipulations cause marked 

failures of perception6. The framework we propose here hence focuses 

on bottom-up temporal analysis of speech.

We advance the hypothesis that a critical ingredient for parsing 

and decoding connected speech lies in the infrastructure provided by 

neuronal oscillations, neuronal population behavior especially well 

suited to deal with time-domain phenomena. Adopting and adapting 

ideas originating in previous work3,7,8, we argue for a principled rela-

tion between the time scales present in speech and the time constants 

underlying neuronal cortical oscillations that is both a reflection of 

and the means by which the brain converts speech rhythms into lin-

guistic segments. In this hypothesis, the low gamma (25–35 Hz), theta 

(4–8 Hz) and delta (1–3 Hz) bands provide a link between neuro-

physiology, neural computation, acoustics and psycholinguistics.  

The close correspondences between (sub)phonemic, syllabic and 

phrasal processing, on the one side, and gamma, theta and delta 

oscillations, on the other, suggest potential mechanisms for how the 

brain deals with the ‘temporal administrivia’ that underpin speech 

perception. Restricting our scope to the theta and gamma bands, the 

neurophysiological model we propose parallels a phenomenological 

model8 that stipulates phase-locking and nested theta-gamma oscil-

lations (to explain counterintuitive behavioral findings), suggesting 

that the brain can decode extremely impoverished speech provided 

that the syllabic rhythm is maintained9. We discuss new experimen-

tal evidence illustrating the operations and computations implicated 

in the context of this oscillatory framework. We also propose that 

oscillation-based decoding generalizes to other auditory stimuli and 

sensory modalities.

The central conjecture: oscillations determine speech analysis

We propose a cascade of processes that transform continuous speech 

into a discrete code, invariant to speech rate, reflecting certain essen-

tial temporal features of sublexical units (Fig. 1). This model achieves 

segmentation of connected speech at two timescales, which should 

permit the readout of discrete phonemic and syllabic units. We 

hypothesize that intrinsic oscillations in auditory cortex (A1 and A2, 

or Brodmann areas 41 and 42) interact with the neuronal (spiking) 

activity generated by an incoming speech signal. Subsequent to the 
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rest, but only in specific frequency domains 

corresponding to the sampling rates optimal 

for phonemic and syllabic sampling.

Auditory cortex responds strongly to 

stimuli with complex temporal modula-

tions in the amplitude (AM) and frequency 

(FM) domains10,11, such as speech. Recent 

experiments using both noninvasive metho-

dologies such as magnetoencephalography 

(MEG) and electroencephalography (EEG) 

and intracranial methodologies such as elec-

trocorticography and stereotactic EEG have 

supported both phase resetting of cortical 

oscillations12 and phase tracking of speech 

envelopes by the latter12–15. An important 

generalization has emerged: when envelope 

tracking fails, speech intelligibility is com-

promised. For example, in studies using rate 

manipulation by means of speech compres-

sion13,15 or envelope manipulation by means 

of filtering12, when theta band activity ceases 

to follow the speech envelope, intelligibility  

sharply degrades. Theta phase resetting 

and entrainment and phase tracking hence 

appear as two critical operations in parsing 

continuous speech. Whether gamma oscilla-

tions are directly phase reset by the stimulus 

or only through a theta phase reset is not yet 

well understood. Although established in the 

hippocampus, the mechanisms of theta and 

gamma generation, and their functional interaction, have still not 

been demonstrated in the auditory cortex. Investigations in animals, 

including slice work, could clarify whether theta and gamma rhythms 

are independently generated and reset, and how they interact during 

continuous auditory stimulation.

By preferentially tracking modulations within the delta–theta and 

gamma bands, auditory cortex ‘discards’ modulations situated in the 

beta (15–20 Hz) range. Thus speech is analyzed at two, and perhaps 

more, discontinuous time scales, with integration windows of ~150 ms  

and above versus ~30 ms and below. We assume this discontinuity 

to be a possible means by which speech is analyzed in parallel at syl-

labic and phonemic rates. Yet in left auditory cortex, analyses at slow 

and fast rates are not independent. The fractionation of modulation 

tracking over two discontinuous scales permits oscillatory nesting, 

the process by which the phase of slow cortical oscillations controls 

higher rate oscillations; namely, their power or phase16. Through 

theta-gamma nesting, concurrent syllabic and phonemic analyses can 

remain hierarchically bound. Nesting is manifest and can be function-

ally relevant only if there is a minimum ratio across frequencies. In 

the theta-gamma nesting pattern that emerges in the human primary 

auditory cortex in response to speech (Fig. 2f), there is a frequency 

ratio of about 4, suggesting that about 4 cycles of the higher frequency 

occur during one cycle of the lower one. Whether nesting is preserved 

when speech is accelerated, up to which ratio, and how its potential 

failure affects speech comprehension are important missing elements 

of the puzzle. Partial evidence has been obtained from human intra-

cortical recordings15, but more work is needed.

Spike patterning and discretization

Schroeder and colleagues have proposed that spiking is hierarchically 

controlled by cortical oscillations17. Oscillations are typically recorded 

encoding of the spectro-temporal properties of a speech stimulus,  

the salient points (‘edges’) in the input signal cause phase resetting of 

the intrinsic oscillations in auditory cortex, in the theta and likely the 

gamma band (step 1). The activity in the theta band, in particular, is 

modulated to entrain to and track the envelope of the stimulus (step 2).  

The theta and gamma bands, which concurrently process stimulus 

information, lie in a nesting relation such that the phase of theta shapes 

the properties (amplitude, and possibly phase) of gamma (step 3). 

The activity in the gamma band has a tightly coupled relation to spike 

trains, regulating spike patterns (step 4). Finally, neuronal excitability 

is modulated such that acoustic structure of the input is aligned with 

neuronal excitability (step 5; Fig. 1). By this hypothesis, the theta and 

gamma oscillations act (i) by discretizing (sampling) the input spike 

trains to generate elementary units of the appropriate temporal granu-

larity for subsequent processing and (ii) by creating packages of spike 

trains and excitability cycles. In summary, speech onsets trigger cycles 

of neuronal encoding at embedded syllabic and phonemic scales.

Phase resetting, speech envelope tracking and nesting

In human auditory cortex, sustained oscillatory activity can be detected 

at rest in discrete frequency bands, mostly in the delta–theta, alpha and 

low gamma domains7 (Fig. 2a). When auditory cortex is stimulated by 

speech, resting oscillatory activity gives way to a temporally structured 

activity (Fig. 2b). The neuronal response profile is remarkably similar 

to the spectro-temporal structure of the speech envelope in the same 

1–140 Hz frequency range (Fig. 2c,d). Cortical activity, however, does 

not track speech modulations equally over the whole 1–140 Hz fre-

quency range, but preferentially in the theta and low and high gamma 

domains (Fig. 2e). In the example data set, we observe maxima of 

speech–brain coherence around 4 and 30–70 Hz. Thus, speech tem-

porally organizes (resets) oscillatory activity that is already visible at 

Figure 1 A theory of early oscillation-based operations in speech perception. Five operations 

allow connected speech to be parsed by cortical theta and gamma oscillations. We assume a high-

resolution spectro-temporal representation of speech in primary auditory cortex. We represent 

a typical spike train in layer IV cortical neurons. Most of these neurons phase-lock to speech 

amplitude modulations. Response onset elicits a reset of theta oscillations in superficial layers 

(step 1) where auditory cortex output is generated. After reset, theta oscillations track the speech 

envelope (step 2). Theta reset induces a transient pause in gamma activity and a subsequent reset 

of gamma oscillations. Theta and gamma generators that are weakly coupled at rest become more 

strongly coupled and nested (step 3). Gamma power controls the excitability of neurons generating 

the feedforward signal from A1 to higher order areas (step 4). Neuronal excitability phase aligns to 

speech modulations (step 5): gamma tends to be strong when the energy in the signal is weak.

Temporally organized spike train 

(output layers II/III)

Stimulus-induced theta oscillations

(1–8 Hz; LFP, EEG, MEG)

2. Stimulus

envelope tracking

3. Theta-gamma nesting
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as local field potential (LFP) signals from superficial and deep corti-

cal layers (Fig. 3a). By contrast, stimulus-driven spikes are stronger 

in the intermediate layer IV (ref. 18), where thalamo-cortical fibers  

are densest19. Layer IV pyramidal cells in turn contact layer II/III 

pyramidal cells, whose axons reach layer IV of the next hierarchical 

stage20. This simplified input–output network is largely modulated by 

interneurons that are thought to be at the origin of oscillatory activity 

(Fig. 3b). The pyramidal-interneuron gamma (PING) network21 is 

a state-of-the art model of brain oscillations that generates clustered 

spikes at a gamma rate. Neurons receiving input from a PING net-

work exhibit a low firing probability for about 15 ms and a high one 

for the next 15 ms (compare Fig. 1), obviously approximate values as 

low gamma activity varies at rest in humans between less than 30 to 

about 40 Hz. This low-gamma intrinsic activity, called weak gamma, 

becomes stronger during auditory stimulation, as each individual 

neuron becomes more likely to fire at each cycle. The hypothesis 

that output spiking is temporally structured by stimulus-induced  

oscillatory activity is both anatomically and functionally plausible, 

and there is growing evidence that cognitive operations depend on 

spike timing and the alignment of spikes with the phase of oscilla-

tions22. There is, however, no direct evidence that oscillations affect 

spiking in those superficial neurons that provide input to the next 

hierarchical stage. This specific conjecture could be addressed by 

targeted experimentation in animals, including detailed analyses of 

microcolumn anatomical and functional connectivity. Critically, a 

comparison of spike timing in layers IV and II/III in early auditory 

cortical regions during continuous speech is required to establish the 

hypothesized input–output transformation.

We argue that a functional consequence of the modulation of 

 vertical circuits by gamma and theta oscillators is the organization 

of spike timing23 and the ensuing discretization of the cortical out-

put17. Assuming ‘continuous’ spiking input to auditory cortex, the 

output signal is chunked by periodic modulation of the firing like-

lihood. Although the discretization process is presumably not the 

Figure 2 Speech–brain interaction from human 

intracortical recordings of primary auditory 

cortex. (a) Time–frequency representation of 

cortical activity at rest. (b) Time–frequency 

representation of cortical activity in response 

to the French spoken sentence “Le nouveau 

garde la porte.” (c) Stimulus spectrogram, 

which shows spectro-temporal modulations and 

formant structure. (d) An example modulation 

spectrum extracted from a band centered around 

3 kHz (bandwidth 0.5 kHz). To cross-correlate 

speech with the brain response, the broadband 

speech spectrum (1–5 kHz) was split into 

frequency bands (32 channels) from which  

the temporal envelope in the 1–140 Hz 

modulation range is extracted. In the band 

shown, modulations cover this entire range.  

(e) Auditory cortex power strongly correlates 

with speech modulations in two frequency 

bands, theta and gamma. The theta band aligns 

to speech with zero time lag; the gamma band 

reflects speech modulations after a 40-ms  

time lag. (f) An index of inter-trial phase 

consistency, which reflects frequency-specific 

locking between stimulus and brain. The cross-

correlation between index and stimulus is an 

indicator of how oscillations phase-track speech 

amplitude modulations. White box, theta-gamma frequency nesting. These data provide experimental confirmation from human auditory cortex for the 

three first proposed operations (steps 1 to 3 in Fig. 1). SEEG, stereotactic EEG. Data courtesy of C. Liégeois-Chauvel, analyzed by B. Morillon, Y. Beigneux, 

L. Arnal, C. Bénar, C. Liégeois-Chauvel and A.-L.G.
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Figure 3 Generation of oscillations in a cortical 

column. (a) Schematic distribution of oscillatory 

and stimulus-driven spiking activity in a cortical 

column (courtesy M. Oberlaender, Max Planck 

Institute, Florida; modified from ref. 49). 

Oscillatory activity is typically detected in the 

superficial (II/III) and deep (V/VI) cortical layers, 

whereas stimulus-driven spiking is strongest in 

layer IV (right). (b) Cortical column networks 

that could underpin the operations depicted 

in Figure 1. We assume two populations of 

pyramidal neurons in superficial layers, one 

involved in low gamma generation, the other 

in theta generation. These populations are 

connected through an excitatory connection from theta to gamma (details in Fig. 4). Under the cumulative influence of theta and gamma oscillations, 

the spike train–reflecting activity in input layer IV is transformed in a discontinuous spike train in the superficial layer, which will be read out by the 

next hierarchical stage.
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only—nor perhaps the essential—compu-

tational transformation at a given auditory 

cortical processing step, we argue that it is 

fundamental at early stages (A1 and A2).

One feature of signal discretization is to 

create, at the population level, alternations 

of time periods for sensory information integration and transmis-

sion. Metaphorically, neurons in superficial layers of A1 could count 

the number of spikes occurring in layer IV cells over half a gamma 

cycle and convey this averaged number to the next processing stage, 

which could express it directly by, for instance, emitting an analogous 

spike number. This results in a temporally structured output pat-

tern, whereby both gamma phase and spike rate are relevant coding 

cues23. For such a scheme to work, a slow rhythm must integrate 

gamma-discretized information to perform second-level statistics. 

With respect to speech, psychophysical data9 suggest integration 

over ~120 ms, which falls into the theta rhythm. Thus, a gamma-

based code could be read out and integrated through a theta-based 

mechanism. In our proposal, spike discretization serves to present the 

stimulus in discrete chunks (segments) from which many different  

types of computations can be performed. Ultimately, the process per-

mits phonological abstraction, generating discrete representations 

that make contact with spatially distributed phonemic and syllable 

representations underlying recognition24,25. Critical testing of these 

hypotheses requires demonstrating downsampling when progressing 

in the hierarchy—for example, from Brodmann areas 41 and 42 to 

Brodmann area 22. Both electrocorticography and stereotactic EEG  

recordings in humans indicate that Brodmann area 22 tracks speech 

modulations at theta and delta but no longer at gamma rates. 

Even though gamma activity is robustly detectable in Brodmann 

area 22 when a subject listens to connected speech, this activity is  

de-correlated from speech modulations, yet it remains controlled by 

theta activity (theta-gamma nesting, Fig. 4).

Alignment of neuronal excitability with speech modulations

We assume that gamma oscillations control neuronal excitability in 

superficial cortical layers, where the main output signals are emitted 

toward higher processing stages. How the periodicity in output neuro-

nal excitability aligns with the stimulus is an open question. A logical 

proposal is that phases of high neuronal excitability in superficial 

layers coincide with the time periods when the most energetic parts 

of the speech signal reach layer IV. To address this issue, we devel-

oped a biophysical model of coupled theta and gamma oscillations 

adapted from previous theoretical work26,27, in which theta-oscillating  

pyramidal-interneuron networks control gamma oscillating dyads 

(PING; Fig. 5a) through an excitatory connection.

Speech modulations (5–10 Hz) elicit a discharge in theta neurons, 

which then track the modulations in speech even when they are not 

fully periodic, or faster than the intrinsic theta rate (Fig. 5b). The 

excitation of PING by pyramidal-interneuron theta (PINT) networks 

sets a period of excitability that lasts about three or four gamma 

cycles27, which is approximately the minimum duration of a syllable. 

Whereas the rate of theta follows the speech envelope rate, the rate of 

gamma does not change depending on input rate (in part owing to the 

restriction of speech modulations mostly to slow patterns, <10 Hz). 

The release of excitation from PINT neurons between syllables resets 

gamma oscillations, which enables time-locking of the gamma and 

output cells to the next syllable onset. The resulting response of output 

cells is discontinuous. For each gamma cycle, output neurons may fire 

or not fire, which constitutes a binary code reflecting the shape of the 

speech envelope. This model does not need to assume a direct reset 

of gamma oscillations by the stimulus. Detailed laminar analysis of 

spike timing28 in awake humans using new recording methods while 

listening to speech could clarify whether the response in superficial 

layers indeed provides a discrete code, and more detailed modeling 

work should investigate how efficient such a code might be.

Asymmetric sampling

It has been suggested that the two rates at which the incoming signal 

is ‘sampled’ are at least in part laterally distributed3. This hypothesis 

shares many attributes with Zatorre and colleagues’ spectral-temporal 

asymmetry model29. The main assumption is that gamma sampling 

dominates in left auditory cortex, underpinning neural computa-

tions on a 12.5–25 ms timescale, whereas theta sampling is assumed 

to dominate in right auditory cortex. Many functional magnetic 

resonance imaging (fMRI) experiments have tested the idea, largely 

supporting the conjecture that temporal processing at different  

timescales is associated with hemispherically asymmetric activa-

tion30–32. More data have been acquired with other experimental  

approaches (for example, EEG, MEG, combined EEG and fMRI, near 

infrared spectroscopy), and such asymmetries seem to be already 

present at rest in adult humans7,33 and during auditory processing 

0
3

Time (s)

10

20

60

100

140

a c

b d

3
0 1

Time (s)

2

10

20

60

100

140

1 2 2
20

60

100

140

4 6 8

θ/γ

θ/γ

Frequency for phase (Hz)

F
re

q
u

e
n

c
y
 f

o
r 

a
m

p
lit

u
d

e
 (

H
z
)

10

0.2

0.1

0

2
20

60

100

140

4 6 8

Frequency for phase (Hz)

F
re

q
u

e
n

c
y
 f

o
r 

a
m

p
lit

u
d

e
 (

H
z
)

10

Figure 4 Comparison of neural responses in 

auditory primary and association (Brodmann 

area 22) cortices. (a,b) Time–frequency 

representations obtained from recordings made 

with stereotactic EEG in humans (see also Fig. 2)  

in response to a spoken sentence. (c,d) Theta 

phase–gamma power nesting. Although gamma 

power is stronger in association (lower panels) 

than in primary (upper panels) auditory cortex, 

it only tracks fast stimulus modulations in the 

primary region. Yet theta-gamma nesting (white 

box) is detectable in both areas, suggesting that 

gamma activity is controlled by the stimulus in 

primary auditory cortex but controlled by theta 

activity in the association area. Note that theta 

tracking is also slower in the association area, 

supporting the notion of downsampling when 

progressing in the auditory cortical hierarchy.
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in infants34. Asymmetric oscillatory properties in auditory cortex 

can be related to cytoarchitectonic differences, showing more large 

pyramidal cells in cortical layer III in left than right auditory cortex 

and larger cortical columns and interpatch distances35. Given that 

gamma activity seems to originate in superficial layers36 (Fig. 3),  

it is possible that differences in cytoarchitectonic organization are 

involved in an asymmetric oscillatory regime.

An important computational issue pertains to the process of inte-

grating gamma-parsed segments into longer, syllable-length units. 

Because of sampling asymmetry, steady-state speech signals like  

vowels are better analyzed by right than left auditory cortex. Although 

this has been experimentally confirmed14, it does not necessarily 

reflect a better linguistic analysis. Rather, analysis at slow rates (long 

time constants) allows for a more accurate spectral analysis that 

is essential for paralinguistic processes such as speaker identifica-

tion. Analyses of vowels at short time scales by a gamma-dominant 

sampling in left auditory cortex is presumably sufficient for vowel 

identification in the context of speech processing. Although theta 

activity is detected at rest in both temporal cortices, its location in 

the left, over auditory association regions, is compatible with an 

integrative rather than simply a sampling function.

Dysfunctional oscillatory processes

Compelling evidence for our view would be to show that knocking out 

oscillatory mechanisms entails specific speech and language impair-

ments. This is tricky because it is at present impossible to establish 

causal links between susceptibility genes involved in heritable lan-

guage pathologies and cortical oscillations. Yet dyslexia, autism and 

specific language impairment are presumably good candidates to test 

this hypothesis, as they share structural and functional anomalies of 

the perisylvian region and even susceptibility genes37. These genes are 

involved in synaptogenesis, neuronal migration or ion channel for-

mation and could hence influence oscillatory neuronal behavior. In 

dyslexia, more readily than in the two other pathologies, direct links 

between auditory oscillatory activity and reading disability can be envis-

aged. When the dyslexia-linked genes KIAA0319 or DCDC2 are deleted 

Figure 5 A biophysical model of coupled theta 

and gamma oscillations. (a) The model uses 

pyramidal-interneuron gamma (PING) and 

pyramidal-interneuron theta (PINT) networks, 

whereby oscillations at both frequencies 

are generated by the interaction between a 

pyramidal excitatory (exc.) population and an 

inhibitory (inh.) population. (b) Rastergram 

of the simulated network in response to an 

English sentence filtered through precortical 

auditory pathways50; the input corresponds to 

one channel centered on 1.5 kHz. The network 

exhibits intrinsic gamma and theta activities 

before the onset of the sentence, and gamma Time (ms)
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Figure 6 Functional anatomy of the speech processing network.  

(a) Anatomy as adapted from ref. 33, deriving largely from mapping of 

cortical oscillations. Stronger correlations between regions (thick arrows,  

P ≤ 0.01) reflect stronger coupling between oscillatory activity in tested 

frequency bands and the BOLD response. (b) Anatomy as adapted  

from ref. 44, deriving largely from imaging and lesion–deficit data.  

Dotted lines illustrate the putative connectivity in the dorsal and ventral 

processing streams. Regions in the same color indicate areas implicated in 

oscillatory33 (a) or imaging and lesion44 (b) analyses. A1, primary auditory 

cortex; S2, secondary somatosensory cortex; BA40, Brodmann area 40 

(supramarginal gyrus); STS, superior temporal sulcus; MTG, middle temporal 

gyrus; IFG, inferior frontal gyrus; PMC, premotor cortex; AT, anterior temporal 

cortex; AC, auditory cortex; SPT, sylvian parieto-temporal area; ITG, inferior 

temporal gyrus.
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a Oscillation-based functional model

IFG

PMC

oscillations are modulated by theta rhythms26. The PINT generator phase-locks to the onset of slow  

modulations (5–10 Hz) in the speech signal, signaling syllables13. The PINT network is connected  

to the PING one by an excitatory connection. The input–output and gamma parts of the network are  

similar to those in ref. 27. The response of outputs cells constitutes a binary (three-bits) code  

reflecting the shape of the speech envelope. Theta excitatory neurons (Te), dark green; theta  

inhibitory neurons (Ti), light green; gamma excitatory neurons (Ge), dark blue; gamma inhibitory  

neurons (Gi), light blue; output neurons (Out), black. The input (In) is plotted unscaled in red.  

The network is composed of 5 Te, 5 Ti, 60 Ge, 20 Gi and 25 output neurons, modeled as leaky  

integrate-and-fire neurons, with Ge and output neurons having an extra m-current27. Synaptic release includes both synaptic rise and decay time 

constants. (c) Averaged oscillatory activity: theta activity phase-locks to the stimulus, and gamma activity follows speech envelope and theta activity. 

Model development and simulations by A. Hyafil, B. Gutkin, L. Fontolan, O. Ghitza and A.-L.G.
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in animal models, neuronal migration is particularly disturbed in deep 

and superficial cortical layers where oscillations are generated38,39. 

Temporal sampling mediated by cortical oscillations has recently been 

proposed to be a central mechanism in several aspects of dyslexia40. This 

proposal emphasizes a deficit involving theta oscillations, impairing low 

temporal modulations tracking syllable coding and even multisensory 

processing. We argue in a complementary way for the possibility of a 

gamma oscillation deficit yielding an auditory phonemic deficit.

If people with dyslexia parse speech at a frequency slightly higher or 

lower than the usual low gamma rate, their phonemic representations 

could exhibit an idiosyncratic format. Phonemic units would be either 

undersampled or oversampled, without necessarily inducing major 

perceptual deficits41,42. This anomaly would selectively complicate the 

grapheme-to-phoneme matching, leaving speech perception and pro-

duction unaffected. The phonological impairment could take different 

forms, with a stronger impact on the acoustic side for undersampling 

(insufficient acoustic detail per time unit) and on the memory side for 

oversampling (too many frames to be integrated per time unit).

Using auditory steady state responses, we observed that the left-

dominant response around 30 Hz present in subjects with normal 

reading ability is absent in those with dyslexia, suggesting that the 

ability of their left auditory cortex to parse speech at the appropriate 

phonemic rate was altered. Those with dyslexia had a strong response 

at this frequency in right auditory cortex and therefore an abnormal 

asymmetry. The magnitude of the anomalous asymmetry correlated 

with behavioral measures in phonology (such as non-word repeti-

tion and rapid automatic naming). We also found that readers with 

dyslexia had a stronger resonance than controls in both left and right 

auditory cortices at frequencies between 50 and 80 Hz, suggesting 

that the deficit in these subjects was accompanied with phonemic 

oversampling. This oversampling positively correlated with a phono-

logical memory deficit43.

Although important, the observation that oscillatory anomalies 

co-occur with atypical phonological representations remains corre-

lational. Causal evidence that auditory sampling is determined by  

cortical columnar organization could be obtained from knockout 

animal models comparing neuronal activity (multi-unit activity and 

LFP) to continuous auditory stimuli in sites with various degrees  

of columnar disorganization. Such animal work can, however, only 

indirectly address a specific relation to speech and language.

Cortical oscillations and language functional organization

Intrinsic asymmetries in cortical oscillations are observed not only 

in auditory cortex. The phenomenon is even more marked in motor 

cortex, specifically in tongue, lip and hand regions, where theta and 

low and high gamma activity appear strongly left dominant33. Resting 

oscillatory activity is also stronger in a left than right inferior pari-

etal region, Brodmann area 40. Using graph theoretical analyses on 

combined EEG and fMRI data, we delineated a core network where 

oscillations are asymmetric at rest, including A1 (Brodmann areas 41 

and 42), the somatosensory cortex, the articulatory motor cortex and 

Brodmann area 40. Of note, we did not observe left-dominant oscilla-

tory asymmetry in the posterior superior temporal region (Brodmann 

area 22; Wernicke’s area) and in the inferior frontal cortex (Brodmann 

areas 44 and 45; Broca’s region). This is peculiar, as these two regions 

have a strong asymmetric function during language processing. The 

finding suggests either that oscillations do not contribute to the func-

tion of these regions during linguistic processing or that oscillatory 

activity is absent at rest but acquired during processing. We confirmed 

the latter, showing that Wernicke’s and Broca’s regions ‘inherit’ oscilla-

tory asymmetries during linguistic processing from the core network. 

The oscillation-based topographic distribution of the speech process-

ing network (Fig. 6a) accords well with standard descriptions of the 

functional anatomy of speech processing44 (Fig. 6b).

How specific is an oscillation-based parsing model?

Neuronal oscillations, especially in the ranges discussed here, are 

ubiquitous, and the time scales we implicate for perceptual analysis 

are demonstrable in other cases as well, including that of vision45. 

This suggests that the hypotheses we put forth have the potential 

to generalize across domains. However, our immediate concern is 

more narrow: the model we propose is specific to speech processing 

insofar as speech modulations are produced by quasiperiodic corti-

cal motor commands whose time constants more likely match those 

of the auditory cortex than do those of other acoustic stimuli. This 

may be the case because most of the human neocortex works on pre-

ferred frequency channels—for example, gamma—or more specifi-

cally because auditory cortex is tuned throughout development by 

periodic efferent input from the premotor cortex in anticipation of 

spoken speech46. Tuning between left premotor and auditory corti-

ces in the low gamma—that is, phonemic—range can be visualized, 

for instance, using auditory steady state responses43. Such optimal 

stimulus–brain alignment is hard to identify in other cognitive con-

texts, although music and the analysis of conspecific signals may be 

considered candidates. In that sense, speech is only a good model.  

An even more compelling case is audio-visual speech, where stimulus 

periodicity is generated and apprehended by two independent sensory 

streams and then cross-modally unified using specific discretization 

and integration schemes47. More generally, though, every process 

relying on proactive behavior—for example, active sensing48— 

presumably relies on similar mechanisms whereby the sensory intake 

of continuously varying stimuli is framed by the temporal character-

istics of an associated motor behavior.

In this article, we have articulated a set of hypotheses to investigate 

the relation between the perception of connected speech and neuro-

biological mechanisms. We developed a model at anatomic (Figs. 3 

and 6), physiological (Figs. 1, 2 and 4) and computational (Fig. 5) 

levels. At the center of the research program lies the assumption that 

cortical oscillations provide ways to temporally organize the incoming 

speech signal. The main emerging principles are that two prerequisites 

for constructing intelligible representations of the speech stream are 

phase-locking between stimulus and cortex in (at least) two discrete 

time domains and the hierarchical coupling of related cortical oscil-

lations during speech processing.
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