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Abstract

Brain circuits are composed of diverse cell types with distinct morphologies, connections, and distributions of
ion channels. Modeling suggests that the spatial distribution of the extracellular voltage during a spike de-
pends on cellular morphology, connectivity, and identity. However, experimental evidence from the intact brain
is lacking. Here, we combined high-density recordings from hippocampal region CA1 and neocortex of freely
moving mice with optogenetic tagging of parvalbumin-immunoreactive (PV) cells. We used ground truth tag-
ging of the recorded pyramidal cells (PYR) and PV cells to construct binary classification models. Features de-
rived from single-channel waveforms or from spike timing alone allowed near-perfect classification of PYR and
PV cells. To determine whether there is unique information in the spatial distribution of the extracellular poten-
tials, we removed all single-channel waveform information from the multichannel waveforms using an event-
based delta-transformation. We found that spatiotemporal features derived from the transformed waveforms
yield accurate classification. The extracellular analog of the spatial distribution of the initial depolarization
phase provided the highest contribution to the spatially based prediction. Compared with PV cell spikes, PYR
spikes exhibited higher spatial synchrony at the beginning of the extracellular spike and lower synchrony at
the trough. The successful classification of PYR and PV cells based on purely spatial features provides direct
experimental evidence that spikes of distinct cell types are associated with distinct spatial distributions of ex-
tracellular potentials.
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Significance Statement

It is not clear whether and how neuronal morphology, cell type, and synaptic inputs are mapped to the spa-
tial distribution of the extracellular voltage during spikes. Here we show that spatial information alone allows
accurate differentiation between pyramidal cells and parvalbumin-immunoreactive cells in neocortex and
hippocampus of freely moving mice. The ability to distinguish cell types based on spatiotemporal properties
of extracellular potentials suggests that neurons with distinct morphology, connectivity, and ion channel
distributions create unique and learnable extracellular patterns. Further research may reveal whether unique
spatial information is characteristic of other cell types.

Introduction
Brain circuits are composed of different cell types with

distinct roles in neuronal network dynamics (Tremblay et

al., 2016; Tasic et al., 2018). Since the days of Brodmann
(1909) and Ramón y Cajal (1909), it has been recognized
that neurons in different brain regions, nuclei, and layers
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may have different morphologies (McKay and Turner,
2005; Ascoli et al., 2007; Clascá et al., 2012; Jones, 2012;
Fujishima et al., 2018). Within a brain region, neurons that
vary in the type of output (e.g., excitatory, inhibitory) and
postsynaptic targets (e.g., somatic, dendritic, or axonal) ex-
hibit distinct morphology (Markram et al., 2004; Klausberger
and Somogyi, 2008; Kepecs and Fishell, 2014). Histologic
and in vitro studies showed that the size, form, and orienta-
tion of the soma, the dendritic tree, and the axonal arbor all
vary between cells that express different genes and neuro-
chemical markers (Monyer and Markram, 2004; Zeisel et al.,
2015; Zeng and Sanes, 2017).
In behaving animals, extracellular recording techniques

allow simultaneous recording of electrical potentials gener-
ated by multiple neurons and sampling every neuron at sev-
eral spatial locations (Buzsáki, 2004; Shobe et al., 2015; Jun
et al., 2017; Hong and Lieber, 2019; Steinmetz et al., 2021).
Multisite recordings with well defined electrode geometry
open the door to blind cell type classification based on elec-
trophysiological properties. The relation between morphol-
ogy (structure) and neuronal cell type (function) is well
established in vitro and using postmortem immunohistology
(McCormick et al., 1985; Freund and Buzsáki, 1996; Somogyi
and Klausberger, 2005). Extensive modeling work has been
dedicated to understand the relationship between the spatial
distribution of extracellular electrical potentials resulting
from spikes and neuronal morphology (Rall, 1962; Gold et
al., 2009; Einevoll et al., 2013). However, the relationship
between the spatial distribution of extracellular electrical
potentials and neuronal cell types in the intact brain re-
mains unexplored.
To determine whether spikes of different cell types give

rise to distinct distributions of extracellular potentials, we
focus here on pyramidal cells (PYR) and parvalbumin-im-
munoreactive (PV) cells in neocortex and hippocampal re-
gion CA1. PYR have pyramid-shaped somata and vertically
oriented, apical and basal (polar) dendritic trees (Spruston,
2008). In contrast, PV (mainly basket) cells have less polar-
ized dendritic trees and axonal arbors that extend horizon-
tally (Maccaferri et al., 2000; Pawelzik et al., 2002; Ganter et
al., 2004). Furthermore, PYR and PV cells exhibit distinct
spatial profiles of ion channels. While similar somatoden-
dritic gradients are observed for Na1 channels, K1 channels
exhibit a steeper decreasing gradient along dendrites farther
from the soma in PYR, compared with PV cells (Magee and

Johnston, 1995; Johnston et al., 2000; Hu et al., 2010). To
go beyond descriptive structure–function relations, we hy-
pothesized that PYR and PV cells could be classified based
solely on spatial information acquired from freely moving
mice using high-density probes. Previously, classification
of PYR and interneurons in neocortex and hippocampus
was based on waveform features (Henze et al., 2002;
Barthó et al., 2004; Cardin et al., 2009; Stark et al., 2013;
Mendoza et al., 2016; Yu et al., 2019), firing patterns
(Taira and Georgopoulos, 1993; Kobayashi et al.,
2019; Troullinou et al., 2020), or combinations thereof
(Csicsvari et al., 1998; Frank et al., 2001; Viskontas et
al., 2007). However, cell type classification based on
spatial features per se was never attempted.
Here, we used connectivity-based and optical tagging to

establish a dataset of labeled PYR and PV cells from neo-
cortex and CA1 of freely moving mice. To tune the classifi-
cation procedure and determine baseline performance, we
first created classification models that used features based
on single-channel waveforms or on spike timing. Using a
chunking-based data augmentation method, the models
achieve near-perfect performance. Next, we devised an
event-based d -transformation method to conserve only
purely spatial information and derived spatial features from
the multichannel recordings. Models trained on spatial fea-
tures derived from the transformed waveforms yield accu-
rate classification. The findings suggest that differences
between PYR and PV cell neuronal morphology, connectiv-
ity, and ion channel distributions are reflected in the extrac-
ellular potentials in a consistent manner.

Materials and Methods
Experimental design
The dataset used in this study has been previously ana-

lyzed (Stark et al., 2013).

Experimental animals
Seven PV::ChR2 male mice, generated by crossing ho-

mozygous male Ai32 mice (catalog #012569, The Jackson
Laboratory) with homozygous female PV-Cre mice (catalog
#008069, The Jackson Laboratory), were used for chronic
recordings. The animals and data were used for the work
by Stark et al. (2013). All animal handling procedures were
approved by the Rutgers University and New York University
Animal Care and Facilities Committees.

Probes and surgery
Every animal was implanted with a four-shank diode

probe as previously described (Stark et al., 2012). Probes
were constructed by coupling 470nm blue LEDs (diame-
ter, 2 mm; model LB P4SG, Osram) to 50mm multimode
optical fibers and attaching every diode–fiber assembly
to a single shank of a 32-site/four-shank silicon probe
(Buzsaki32, NeuroNexus). Fiber tips were located;50mm
above the top recording site. Probes were implanted in
the right hemisphere (anteroposterior, �1.6 mm; medio-
lateral, 1.1 mm) under isoflurane anesthesia. During sur-
gery, the probes were lowered to a depth of 0.4–0.7 mm.
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Recordings and photostimulation
After allowing the animals to recover for at least 48 h,

recordings were initiated. Recordings were conducted in
the home cage during spontaneous behavior. Mice were
tethered by one ultralight cable for multichannel neuronal
recordings and a second cable for multichannel optical
stimulation. Recordings were conducted as the probe
was moved gradually from the neocortex to the CA1 py-
ramidal cell layer. At each location in the brain, neuronal
activity was inspected for spontaneous spiking activity,
and, if encountered, a baseline period of at least 15min
was recorded followed by photostimulation (peak driving
current, 60mA; mean 6 SD peak light power, 3567 mW;
50–70ms pulses). Signals were generated by custom
code written in MATLAB (MathWorks), converted by a
digital signal processor (model RX5 and/or RX6, TDT) to
voltage signals, and fed into a linear 16-channel current
source. After each session, the probe was either left in
place or moved (35–70 mm steps), and the brain was al-
lowed to settle overnight.

Spike sorting and ground truth labels
During recordings, neural activity was filtered (1–5000Hz),

amplified (20� by Plexon headstages; 50� by an RC
Electronics system), and digitized (16bits, 20kHz) on a 128-
channel DataMax recording system (RC Electronics). Applied
currents were recorded by the DataMax system. Offline,
spike waveforms (32 samples/channel) were extracted from
the wide-band records, detrended, and sorted into single
units automatically (Harris et al., 2000), followed by manual
adjustment. Only well isolated units [(amplitude, .50mV;
L-ratio, ,0.05 (Schmitzer-Torbert et al., 2005); inter-spike
interval index, ,0.2 (Fee et al., 1996)] were considered. A
total of 199 neocortical and 781 CA1 units conformed to
these criteria.
For connectivity-based tagging, we tagged units that

participated as a reference in a cross-correlation histogram
(CCH) that exhibited a significant (p,0.001, Bonferroni-
corrected Poisson test) peak in the monosynaptic time
range (0–5ms) as excitatory cells (424 of 980 units). Units
that exhibited a significant trough in the monosynaptic time
range were tagged as inhibitory (21 of 980 units). For opto-
genetic-based tagging, units that exhibited a significant
(p, 0.001, Poisson test) increase in spiking rate during 50–
70ms DC pulses given on the recording shank were
tagged as optically activated cells; 98 of 980 (10%) units
conformed to the criterion. Next, we labeled units based
on the three tags. Units tagged exclusively as excitatory
were labeled as PYR cells (420 units), whereas units
that were optically activated or inhibitory (but not exci-
tatory) were labeled as PV cells (102 units). The remaining
units (458 of 980, 47%) were not labeled and were dis-
carded from the dataset. Ten of the labeled units (PYR 9
units; PV, 1 unit) were recorded using seven instead of
eight channels and were therefore discarded as well,
yielding a final dataset that included 512 tagged units
(PYR cells, 411 units; PV cells, 101 units; Fig. 1). Of the
101 units referred to as “PV cells,” 93 were optically acti-
vated (92%), 13 were both optically activated and inhibi-
tory, and 8 units were only inhibitory. Spike width, firing

rate, and bursting behavior were similar for the inhibitory
and the optically tagged PV cells. Thus, the 8 inhibitory-
tagged PV-like cells were grouped with the 93 optically
activated cells, and the entire group was denoted as PV
cells. A majority of the units (449 of 512 units) were re-
corded from CA1. The median [interquartile range (IQR)]
number of spikes per unit was 8368 [4494–16,929] for
PYR, and 66,850 [13,031–174,802] for PV cells.

Classification
Feature extraction
The shape and timing of the recorded spikes were used to

extract a total of 34 features. We derived features of the fol-
lowing three modalities: waveform-based features, derived
from a single channel (n=8); spike-timing features, ignoring
the spike waveform (n=8); and spatial features, derived from
the multichannel waveforms (n=18). All features were based
exclusively on spontaneous events that occurred in the lack
of any light stimuli. For every spike, the waveform was ex-
tracted for 32 samples (1.6ms) on every channel of the re-
cording shank. The limited duration of the spikes places an
upper bound on the classification performance of waveform-
based and spatial models. For every channel separately, the
waveform was averaged over spikes, and the mean waveform
was calculated and upsampled by eightfold using Fourier in-
terpolation to increase the temporal resolution. Since the
average and the Fourier transform are linear operators, the
order of the two steps does not affect the outcome.

Single-channel feature extraction
For the waveform-based features, the channel with the

largest trough-to-peak (TTP) magnitude was denoted as
the “main” channel. The waveform in the main channel was
scaled by dividing all values by the minimal value (i.e., at
the trough). Scaling was performed to remove information
about the sampling process (e.g., electrode impedance
and neuron–electrode distance). When the absolute value
at the trough was smaller than at the peak, waveforms
were inverted (multiplied by�1). The outcome is a 256-ele-
ment vector limited to the �1 to 1 range, with at least
one value at �1. To provide a rich description of the wave-
form, a total of n=8 waveform-based features were ex-
tracted from the main channel (Fig. 2, Table 1): four from
the waveform itself, one from the first temporal derivative,
and three from the second temporal derivative. For every
feature, we compared the distribution of values between all
available PYR cells (n=411) and PV cells (n=101) and cal-
culated effect sizes. The specific measure of effect size
used was the nonparametric estimator for common-lan-
guage effect size (Aw; Ruscio, 2008) which exhibits a small-
er bias compared with alternatives (Li, 2016). Aw estimates
the probability that a random sample from one distribution
is larger than a random sample from a second distribution.
Disregarding the direction of the effect, Aw is thus limited
to the 0.5–1 range, taking a value of 0.5 when the two dis-
tributions are fully intermixed, and 1 when the two distri-
butions do not overlap at all. All eight features (100%)
exhibited a consistent difference (0.64 � Aw � 0.98; p,
0.05, U test; Table 1). Thus, all waveform-based features
are potentially useful for classification.
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The addition of a redundant feature would contribute no
additional information to the classification process. To esti-
mate relations between features, we first computed rank
(Spearman’s) correlation coefficients (CCs) between every
possible pair of waveform-based features (Extended Data
Fig. 2-1A). To go beyond monotonic relations, we esti-
mated mutual information (MI) between distributions of
pairs of features (Timme and Lapish, 2018). If a feature had
,10 unique values, the feature was considered naturally
discrete; only the spatial dispersion (SPD)-Count feature
(see Spatial feature extraction subsection below) was natu-
rally discrete. The use of 10 bins limits the maximal infor-
mation to log210=3.3bits. Deviation from chance level
was determined using a permutation test, creating a null
distribution based on 5000 iterations of shuffled pairs
and evaluating the tail of the null distribution above the

observed MI. We found that some features were only
weakly correlated with others (e.g., the Break-measure,
median [IQR] absolute CC was 0.19 [0.076–0.24]), sug-
gesting that independent information could be gleaned
by using the feature. Alternatively, a weakly correlated
feature may be dominated by noise. However, the possi-
bility is unlikely since the Break-measure differed for the
PYR and PV groups (Aw = 0.64; p= 7.85� 10�6, U test;
Table 1). Other features were more strongly correlated
with the host of other features (e.g., full-width at half-
maximum (FWHM), 0.81 [0.45–0.87]; Smile-cry, 0.76
[0.33–0.91]). Since a small number of samples limits
the power of standard statistical tests (e.g., the Mann–
Whitney U test), when comparing CCs between two
groups within a modality we applied a permutation test. We
compared a statistic, defined as the difference between the

Figure 1. PYR and PV interneurons are tagged in freely moving mice. A, Optical tagging of PV cells. a, Every PV::ChR2 mouse was
chronically implanted with a four-fiber/four-shank/32-channel optoelectronic array in the neocortex (nCX). Optical stimuli were applied, in
separate sessions, in the nCX and in hippocampal region CA1. Peristimulus time histogram of the PV cell (bottom), triggered by the
onset of 50ms light pulses applied on the optical fiber attached to the recording shank (n=20; 33mW). The unit is tagged as PV because
of a robust firing rate increase during light (gray) compared with no-light periods. ***p, 0.001, Poisson test. b, Wide-band (1–5000Hz) re-
cordings from four same-shank channels in CA1. Bottom, Spike trains of a PYR (purple) and the PV cell (green). B, Connectivity-based
tagging. Top, Mean (6SD) spike waveforms. For every unit, the channel that exhibits the highest trough-to-peak magnitude is denoted
the main channel (boxed). Middle, Auto-correlation histograms (ACHs), showing burst spiking activity of the PYR (purple). Bottom,
Cross-correlation histogram (CCH; black) between the spikes of the PYR and the optically tagged PV cell. Gray, Monosynaptic window.
The CCH is consistent with monosynaptic excitation of the PV cell by the reference unit, tagging the reference unit as excitatory (PYR).
***p, 0.001, Poisson test. C, Tagged dataset. Of the 512 units in the dataset, 411 (80.3%) are PYR, and 449 (87.7%) are from CA1.
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Figure 2. Waveform-based and spike-timing features allow near-perfect classification of PYR and PV cells. A, Features extracted
from the mean waveform of the main channel. Voltage values were scaled by the absolute value at the maximal negativity, yielding
arbitrary units (AU; the example units are the same as in Fig. 1B). a, Trough-to-peak (TTP) duration feature, defined as the time be-
tween the maximal negativity and the ensuing maximal positivity. b, Cumulative distribution function (CDF) of the TTP duration fea-
ture for the entire population (PYR, n=411; PV cells, n=101; no chunking). Here and in all subsequent CDFs, horizontal lines
represent 50%, vertical dashed lines indicate medians, and the *** symbol corresponds to p, 0.001 (U test). The filled circles repre-
sent values corresponding to the examples given in a. The difference between PYR and PV cells indicates longer TTP durations for
PYR compared with PV cells. B, Waveform-based features allow near-perfect classification. Cross-validated random forest models
were trained using the waveform-based features (n=50 partitions). The chunking method yields improved classification compared
with no chunking. The ROC AUCs without chunking (blue) and with 50 spike chunks (orange) are higher than chance level.
***p, 0.001, Wilcoxon test compared with chance level, 0.5. Inset, Confusion matrices (no chunking) based on different decision
thresholds (top, 0.1; bottom, 0.9) show variability in prediction, exemplifying the shortcomings of threshold-dependent metrics. C,
Features extracted from spike timing. High-frequency features derived from single-sided short-term (0–50ms) ACHs. a, The
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medians of the two groups of CCs, to the 95th percentile
of a null distribution created by shuffling the CCs be-
tween the groups, and calculating the statistic 1000
times. We did not observe stronger absolute CCs within
families: the absolute intrafamily correlation was 0.37
[0.14–0.62], whereas the absolute interfamily CC was
0.47 [0.24–0.79] (p.0.05, permutation test). Quantifying
the interrelations between waveform-based features using
MI yielded similar results. The median [IQR] MI between
waveform-based feature distributions was 0.658 bits
[0.292–0.955] bits, and the rank correlation coefficient be-
tween the MI and CCs was 0.816 (p=0.001, permutation
test; Extended Data Fig. 2-1B, inset). The bulk of the var-
iance in the MI (R2 = 0.67) could be explained by pairwise

rank correlations, suggesting that interrelations between
feature pairs are largely monotonic. Thus, based on the
feature redundancy analysis, partitioning into families may
have only semantic value, and all derived features may
contribute to classification.

Spike-timing features
For the features based on spike timing, the autocorrela-

tion histogram (ACH) was calculated for every unit over a
range of 61000ms using a bin size of 0.5ms. The ACH
depends only on the timing of the spikes and is agnostic
to the spike waveforms. The ACH was upsampled eight-
fold using polyphase filtering to increase the temporal re-
solution. The ACH is an even function, but edge effects

continued
Uniform-distance feature is defined as the average absolute difference between the single-sided ACH and a straight line (the exam-
ple units are the same as in Fig. 1B). b, Cumulative distribution of the Uniform-distance feature for the entire population (no chunk-
ing). The larger Uniform-distance values for PYR indicate larger deviations from linear recovery for PYR compared with PV cells. D,
Classification based on spike-timing features is not consistently improved by chunking. AUCs were derived from ROC curves based
on n=50 cross-validated random forest models. ROC curves for the test data without chunking (blue) and with 1600 spike chunks
(orange) with performance above chance level. All conventions are the same as in B. See also Extended Data Figures 2-1, 2-2.

Table 1: Waveform-based features

Feature Family Description
PYR
median [IQR]

PV
median [IQR]

Effect
size (Aw)

a

Cell type
(p-value)b

SHAP
(p-value)c

TTP duration Waveform The duration between the
trough (maximal negativity)
and the peak (maximal posi-
tivity) [ms)

0.77 [0.76–0.77] 0.29 [0.25–0.35] 0.98 5.9 � 10�58 0.25 (0.001)

TTP magnitude The difference between the
trough and the peak (AU)d

1.4 [1.4–1.5] 1.3 [1.2–1.3] 0.97 3.7 � 10�48 0.11 (0.003)

FWHM The duration in which the value
is at least �0.5 (i.e., half of
the trough) (ms)

0.21 [0.2–0.23] 0.16 [0.15–0.18] 0.89 3.7 � 10�34 0.005 (0.59)

Rise coefficient A straight line connects the
trough and the last sample.
The coefficient is the time
from the trough to the point
where the absolute distance
from the line is maximal (ms)

0.29 [0.26–0.32] 0.24 [0.21–0.26] 0.80 2.2 � 10�21 0.005 (0.99)

Maximum speed First time
derivativee

The duration after the trough,
for which the spike maintains
the same change rate (deriv-
ative) (ms)

0.19 [0.14–0.26] 0.14 [0.13–0.17] 0.69 3.4 � 10�9 0.011 (0.41)

Break
measure

Second time
derivativee

The sum of the values of the
second derivative just before
the trough (0.3-0.08ms be-
fore the trough) (10–1 *AU)

�0.67 [�0.76 to �0.56] �0.58 [�0.7 to �0.49] 0.64 7.9 � 10�6 0.003 (0.84)

Smile-cry The sum of the values of the
second derivative at the end
of the spike (0.26-0.76ms
from the trough) (10–2 *AU)

�1.2 [�1.4 to �1.1] �0.3 [�0.9 to �0.1] 0.89 5.7 � 10�35 0.013 (0.044)

Acceleration The sum of the squared values
of the second derivative just
after the trough (0.08-
0.25ms after the trough) (10–
6 *AU)b

9 [5–14] 91 [49–139] 0.97 6.8 � 10�49 0.12 (0.002)

aAw ranges from 0.5 (no difference) to 1 (nonoverlapping distributions).
bMann–Whitney U test.
cMedian SHAP values based on 50 spike chunks, indicating feature importance. In parentheses are p-values based on a one-tailed permutation test.
dThe waveforms are scaled to the �1 to 1 range. Thus, while the original units are mV, here we use arbitrary units (AU).
eDerivatives were computed numerically as the difference between every two adjacent samples.
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necessarily cause asymmetry in any practical implemen-
tation. To obtain an ACH (0–1000ms) free from edge ef-
fects, the value in every positive time bin was averaged
with its negative homolog. A total of n=8 spike-timing
features was derived (Fig. 2, Table 2). Three of the fea-
tures were high-frequency features, derived from the
short-term ACH (up to 50ms). Two were low-frequency
features, derived from the long-term ACH (50–1000ms).
The last three were wide-band features: two were derived
from the complete ACH (0-1000ms), and one was derived
from the entire recording. For every feature, we compared
the values derived for the PYR and PV cells. All eight fea-
tures (100%) exhibited a consistent difference between
PYR and PV cells (p, 0.05, U test; Table 2). Thus, spike-
timing features may be useful for classification.
To quantify interrelations, we computed CCs and MI

between spike-timing features extracted from the com-
plete spike trains (Extended Data Fig. 2-2). The high-fre-
quency features exhibited high within-family absolute
correlations (median [IQR], 0.85 [0.83–0.88]), whereas
lower absolute correlation values were observed be-
tween the other features (low-frequency and wide-band
families together: 0.26 [0.24–0.70]; p = 0.098, permuta-
tion test; Extended Data Fig. 2-2A). In contrast to the
waveform-based feature families, intrafamily absolute
correlations (0.81 [0.49–0.83]) were higher than inter-
family absolute correlations (0.50 [0.40–0.61]; p = 0.012,
permutation test). MI between pairs of spike-timing fea-
tures yielded results similar to those for pairwise correla-
tions. The median [IQR] MI between spike-timing features
was 0.469 [0.283–0.701] bits, and the rank correlation

coefficient between MI and CCs was 0.967 (p=0.001, per-
mutation test; R2 = 0.93; Extended Data Fig. 2-2B, inset).
The fact that almost all variance of the MI values is ex-
plained by pairwise correlations suggests that the interrela-
tions between the pairs of features are largely monotonic.
The correlations between high-frequency features, namely
Uniform-distance, Kullback–Leibler distance (DKL)-Short,
and Rise-time suggest that the features provide redundant
information. Thus, a small number of spike-timing features
may suffice for classification.

Spatial feature extraction
For extracting purely spatial features, an event-based

d -transformation was first applied to the mean upsampled
waveform of every channel to remove all waveform-based
information (Fig. 3A), as follows. (1) First, positive spikes
were inverted as done for the waveform-based process. (2)
Next, three events were defined. One event was the time of
maximal negativity (NEG). For the additional two events,
the median over all the channels was calculated. The sec-
ond event was the first median crossing (FMC), the first
time point before the maximal negativity of the channel in
which the global median was crossed. The third event was
the second median crossing (SMC), the first time point
after the maximal negativity of the channel in which the
global median was crossed. Every event was detected on
every channel, yielding a total of 24 points. (3) Third, the
waveform was replaced by a d -like function that took the
value of the maximal negativity of the channel at the singu-
lar event time point and zeros everywhere else. The d -like
functions were scaled by the absolute value of the global

Table 2: Spike-timing features

Feature Family Description
PYR
median [IQR]

PV median
[IQR]

Effect
size (Aw)

a

Cell type
p-valueb

SHAP
(p-value)c

Uniform-
distance

High frequency
(0–50 ms)d

The mean distance between the
CDF of the ACH and the CDF of a
uniform distribution

0.12 [0.09–0.16] 0.03 [0.02–0.04] 0.95 1.6 � 10�44 0.14 (0.002)

DKL-Short The DKL between the PDF of the
ACH and the PDF of a uniform
distribution

0.25 [0.17–0.34] 0.058 [0.037–0.079] 0.95 2.2 � 10�44 0.025 (0.36)

Rise time The duration in which the values in
the CDF of the ACH are above a
threshold of 1/e (ms)

11.1 [9.4–13.7] 19.3 [17.8–20.6] 0.88 4.3 � 10�33 0.031 (0.25)

Jump-index Low frequency
(50-1000 ms)d

The mean distance between the
CDF of the ACH and the CDF of a
uniform distribution

0.067 [0.044–0.088] 0.016 [0.0095–0.024] 0.92 9.3 � 10�39 0.029 (0.31)

DKL-Long The DKL between the PDF of the
ACH and the PDF of a uniform
distribution

0.069 [0.032–0.15] 0.0039 [0.0017–0.012] 0.89 6.1 � 10�35 0.19 (0.001)

PSD-center Wide-band
(0–1000 ms)

The centroid of the power spectral
density (PSD), namely the
squared FFT of the ACH (Hz)

37 [33–42] 31 [26–37] 0.65 2.8 � 10�6 0.016 (0.56)

PSD9-center The centroid of the derivativee of the
PSD with respect to frequency
(Hz)

23 [19–29] 21 [18–27] 0.57 0.012 0.009 (0.83)

Firing rate The average firing rate (spikes/s) 0.69 [0.35–1.47] 8.95 [3.39–16.35] 0.93 1 � 10�40 0.077 (0.038)

aAw ranges from 0.5 (no difference) to 1 (nonoverlapping distributions).
bMann-Whitney U test.
cMedian SHAP values based on 1600 spike chunks, indicating feature importance. In parentheses are p-values based on a one-tailed permutation test.
dMost high-frequency and low-frequency features are based on distributions and therefore hold no units.
eDerivatives were computed numerically as the difference between every two adjacent samples.
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Figure 3. Transforming multichannel spike waveforms to event-based d -like functions removes all waveform-based information and
allows extracting purely spatial features. A, The event-based d -transformation procedure, illustrated for the FMC event. a, The
mean waveforms, with d -like functions marking the FMCs. The transformation replaces all voltage values with zeros, except for the
event points, which are assigned the same value as the trough. In gray are channels for which the magnitude of the TTP is below a
predetermined threshold (Materials and Methods). The main channels are boxed. b, Next, waveform-related information that might
be recovered by combining multiple d -transformed events is removed. The d -like functions are scaled and centralized (arrowheads),
placing the event of the main channel at the midpoint (129th sample). B, Left, The scaled waveform of the main channel of all units
in the dataset before the transformation, sorted for PYR and PV cells separately by the time of the trough. Right, The same wave-
forms after event-based d -transformation. The transformation removes nearly all of the variability between units. C, Cross-validated
random forest models (n=50; no chunking) were trained using waveform-based features extracted from the transformed spikes.
The confusion matrix, based on a naive decision threshold of 0.5, yields a constant prediction of one class. n.s.p. 0.05, Wilcoxon
test. Numbers in every cell denote the median [IQR]. Performance was quantified by the threshold-independent AUC. The classifica-
tion yields an AUC of exactly 0.5, corresponding to purely random prediction. D, A time-based feature, FMC-Time-lag-SD, derived
from the differences between the times of the FMC event in different channels. The feature quantifies the temporal dispersion of the
event, without considering the actual positions of the recording electrodes. a, FMC-Time-lag-SD is defined as the SD of the time dif-
ferences between the FMC event of the main channel (vertical dotted lines) and the other channels. In gray are ignored channels, for
which the magnitude of the TTP was below a predetermined threshold. b, Cumulative distribution of the FMC-Time-lag-SD feature
for the entire population (411 PYR, 98 PV cells, no chunking). The smaller FMC-Time-lag-SD values of the PYR indicate higher spa-
tiotemporal synchrony for PYR compared with PV cells. All conventions for the CDFs here and in subsequent panels are the same
as in Figure 2A. E, A graph-based feature, FMC-Average-weight, derived from the differences between the FMC event time in differ-
ent channels and the electrode locations. a, FMC-Average-weight is defined as the average edge weight in the event graph. The
event graph is a directed graph with vertices representing the electrodes, and edges representing the transmission speed based on
the timing of the events and the location of the electrodes. Only channels that passed the threshold for the magnitude of the TTP
were considered. b, Cumulative distribution of the FMC-Average-weight feature (no chunking). The larger values for PYR indicate
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minimum over all channels, effectively removing all wave-
form-based information from every single channel. However,
waveform-based information may still be available when
using multiple events together (e.g., FMC, NEG, and SMC).
(4) To remove all waveform-based information, the d func-
tions were shifted together to centralize (shift to the 129th
sample) the time of the event on the main channel. The pro-
cess transforms the waveform in the main channel to be
nearly identical for all units (Fig. 3B). Residual variability in the
time of the trough may remain if the channel with maximal
magnitude of the TTP and the channel with the maximal neg-
ativity are not the same.
Overall, n=18 features were extracted from the trans-

formed waveforms (Table 3) associated with the three
events, quantifying the following three dimensions: time
based, graph based, and value based. (1) In the time-
based dimension, only the timing of the events was con-
sidered (e.g., the SD of the FMC; Fig. 3D, FMC-Time-lag-
SD). Channels for which the magnitude of the TTP (before
d -transformation) did not pass an arbitrary threshold of
25% of the maximal magnitude of the TTP over all chan-
nels were ignored (Fig. 3D, gray). A median [IQR] of 4 [3–5]
PYR channels and 3 [2–5] PV cell channels were removed.
(2) The graph-based dimension included both event tim-
ing and the physical locations of the recording electrodes
on the probe. An event graph was generated based on a
specific event, with a node for each channel (e.g., Fig. 3E,
FMC-Average-weight). Only channels for which the magni-
tude of the TTP passed the 25% threshold were consid-
ered. Directed edges connected every two nonoverlapping
events, with a weight representing “transmission speed”:
the Euclidean distance between the electrodes, divided by
the time difference between the events. (3) The value-
based dimension (SPD) ignored timing information and
considered the scaled maximal negativity values on every
channel, based on the global maximal negativity (e.g., Fig.
3F, SPD-Count). We found that 10 of 18 (56%) of the spa-
tial features exhibited differences between PYR and PV
cells (p,0.05, U test). Although some features do not
show consistent differences between the two cell types,
classification may benefit from the features because of, for
instance, distinct second-order statistics.
To estimate feature redundancy because of high corre-

lations, we computed the CCs between the spatial fea-
tures extracted from the transformed mean waveforms
(Extended Data Fig. 3-1A). The rank correlation matrix of
the spatial features showed absolute correlations (median
[IQR]: 0.2 [0.1–0.33]), that were weaker than for the wave-
form-based features (p=3.5� 10�4, U test) and for the
spike-timing features (p=1.1� 10�7). Eighty percent of
the spatial feature pairs exhibited absolute correlations
higher than zero (122 of 153; p, 0.05 permutation test).
Intrafamily absolute correlations (0.27 [0.17–0.42]) were

higher than interfamily correlations (0.17 [0.08–0.29]; p=
0.006, permutation test). The median [IQR] MI between spa-
tially based feature distributions was 0.19 [0.155–0.266] bits,
and the rank correlation coefficient between MI and CCs
was 0.84 (p=0.001, permutation test; R2 = 0.706; Extended
Data Fig. 3-1B). Since the correlation and the MI analysis
agreed, the relatively weak correlations between spatial fea-
tures may result from large amounts of noise in every fea-
ture. Alternatively, the features may provide independent
information, useful for classification.

Classification procedure
The classification model was chosen to be random for-

ests (Breiman, 1996, 2001) because of the relative simplicity.
Furthermore, several methods are available for understanding
the determinants of a specific random forest model prediction
(Archer and Kimes, 2008). To achieve good estimation of
model performance, a nested cross-validation procedure
was applied (Varma and Simon, 2006; Krstajic et al., 2014).
For every modality (waveform, spike timing, and spatial), the
training procedure was repeated n=50 times. In every itera-
tion, data were first partitioned in an approximate 80:20 ratio
into training and test sets in a stratified fashion. Thus, the
training set always included 328 PYR and 80 PV cells, and
the test set included 83 PYR and 21 PV cells; only the identity
of the units changed between iterations. To handle the imbal-
ance between the number of PYR and PV cells in the dataset,
the model weights that control the effect of every class on
the impurity score used for training the random forest
model were adjusted. Specifically, instead of assigning equal
weights, class weights were set to be inversely proportional
to the number of samples in every class using the following:
total number of training set samples/(number of classes �
number of class samples in the training set). Second, a five-
fold grid search was conducted on the training set to find the
best hyperparameters for the model, optimizing the receiver
operating characteristic (ROC) of the area under the curve
(AUC). The tested hyperparameters were the number of esti-
mators, the depth of each estimator, the minimal number of
samples required to split a node, and the minimal number of
samples required to be at a leaf node. Other hyperparameters
received default values based on the implementation of the
scikit-learn library in Python (Pedregosa et al., 2011). Third,
using the optimized hyperparameters, the model was trained
on the entire training set. Finally, model performance was
evaluated using the test set.

Performance and explainability
Model performance was assessed using a metric

that is robust to unbalanced data. Two types of metrics
exist: threshold dependent and threshold independ-
ent. Threshold-dependent metrics consider only the
binary decision: in our case, PYR or PV. Threshold-inde-
pendentmetrics consider the raw prediction, a value between

continued
higher transmission rates for PYR compared with PV cells. F, A value-based feature, SPD-Count, derived from SPD of the maximal
negativity on every channel. a, SPD-Count is defined as the number of channels that reached at least 50% of the maximal negativity
of the main channel. b, Cumulative distribution of the SPD-Count feature (no chunking). No consistent difference between the PYR
and PV cells is observed, suggesting similar spatial distributions of the scaled maximal negativity (p. 0.05, U test). See also
Extended Data Figure 3-1.
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0 and 1, and not the decision itself. Threshold-dependent
metrics require choosing a threshold, and thus the outcome
may vary according to the chosen decision threshold. An ar-
bitrarily chosen threshold does not necessarily reflect per-
formance, especially when considering unbalanced datasets
(Sheng and Ling, 2006). The choice of a decision threshold is
not trivial, and is the subject of active research (Esposito et
al., 2021). For these reasons, we used an established thresh-
old-independent metric, the AUC (Fawcett, 2006). The AUC
reflects the relation between true positives and false positives
for all possible thresholds and is hence threshold independ-
ent as well as suitable for unbalanced datasets.
The theoretical chance level for the AUC metric is 0.5.

To determine the empirical chance level, the performance
of models trained on data with shuffled training-set labels
was assessed. For every modality (waveform, spike tim-
ing, and spatial), the training procedure was conducted
with the labels shuffled only for the training set. The AUC
exhibited the expected chance-level behavior, yielding
the following median [IQR] values: waveform, 0.46 [0.34–
0.57]; spike timing, 0.46 [0.39–0.56]; and spatial, 0.48
[0.44–0.55]. Since chance-level results were obtained on
the test sets, further assessment of model performance
was conducted with respect to 0.5, the theoretical chance
level.
To assess the contribution of every feature to the final

classification prediction, we used Shapley additive ex-
planations (SHAPs) values (Lundberg et al., 2020). The
SHAP method uses a game-theoretic approach to calcu-
late an importance score for every feature in each sample,
considering all interdependencies with other features.
Since the predictions of random forest models range from

0 to 1, the contribution of every feature can take values
from �1- to 1. For each model, we calculated and aver-
aged the absolute contribution of every feature based on
the test set, taking the median over the 50 partitions to
avoid idiosyncrasies of a single arbitrary partition. Since
the absolute value is taken, SHAP values are necessarily
non-negative, creating a skewed distribution that does
not have an expected value of zero. To calculate signif-
icance, we used a permutation test. The SHAP values
for each feature were compared with the SHAP values
obtained for the models trained with shuffled training-
set labels. Models trained with shuffled labels repre-
sent chance-level classifiers, for which the importance
of every feature can be considered as the chance-level
baseline. To create a null distribution, we partitioned
the dataset into a train and test sets 1000 times. For
every train-test partition, we shuffled the labels, trained
the models as described previously, and calculated the
SHAP values. Then, to calculate a p-value for every fea-
ture, we compared the original SHAP value to the null
distribution.

Chunking method
Models trained on larger nonredundant datasets typi-

cally exhibit improved performance. Therefore, data aug-
mentation approaches to synthetically increase the size of
the dataset are often applied (Moreno-Barea et al., 2018).
Augmentation may be implemented by adding noise or
transforming the data (rotation and reflection in image
classification; Mikołajczyk and Grochowski, 2018). Here,
to augment the size of a given dataset, features were ex-
tracted from “chunks” that included subsets of spikes,

Table 3: Spatial features

Feature Family Description Event PYR median [IQR] PV median [IQR]
Effect
size (Aw)

a

Cell type
p-valueb

SHAP
(p-value)c

Time-lag-SS Time basedd The mean SS of the time
offsets of the event
(103 * ms2)

FMC 0.44 [0.13–1.39] 3.33 [0.49–12.02] 0.74 6.47 � 10�14 0.094 (0.001)
NEG 0.34 [0.1–1.1] 0.16 [0.05–0.35] 0.64 7.04 � 10�6 0.008 (0.32)
SMC 1.9 [0.77–3.45] 1.69 [0.68–3.48] 0.51 0.34 0.046 (0.015)

Time-lag-SD The SD of the time offsets
of the event (ms)

FMC 15.9 [8.8–26.3] 40.6 [17.4–86.3] 0.72 2.3 � 10�12 0.093 (0.001)
NEG 13.5 [7.7–23.5] 9.4 [5.4–13.3] 0.63 3.44 � 10�5 0.009 (0.30)
SMC 26 [18.8–34.3] 24.1 [15.6–38.9] 0.50 0.47 0.052 (0.006)

Average-weight Graph-based The average edge weight
in the graph (mm/s)

FMC 2455 [1366–3509] 1206 [684–2577] 0.68 1.65 � 10�8 0.038 (0.027)
NEG 2724 [1678–4269] 3633 [2173–5387] 0.61 3.13 � 10�4 0.007 (0.31)
SMC 1844 [1232–2674] 2034 [1099–2947] 0.51 0.34 0.008 (0.31)

Longest path The sum of weights in the
longest path in the
graph (mm/s)

FMC 6722 [3581–11,514] 4909 [2417–9945] 0.58 0.0053 0.014 (0.18)
NEG 8103 [4200–14,436] 11,517 [4923–16,349] 0.55 0.06 0.006 (0.33)
SMC 6050 [3269–11,115] 6888 [3237–11,056] 0.51 0.33 0.013 (0.21)

Shortest path The sum of weights in the
shortest path in the
graph (mm/s)

FMC 1049 [657–1619] 494 [267–928] 0.74 1.04 � 10�13 0.068 (0.001)
NEG 1071 [714–1754] 1607 [916–2572] 0.63 1.4 � 10�5 0.006 (0.33)
SMC 584 [426–872] 701 [409–1024] 0.55 0.08 0.008 (0.30)

SPD- Count Value-basede The number of values that
crossed 0.5

2 [1–3] 2 [1–3] 0.55 0.06 0.007 (0.17)

SPD-SD The SD of the vector 0.30 [0.28–0.33] 0.29 [0.27–0.31] 0.65 3.02 � 10�6 0.008 (0.32)
SPD-Area The AUCf 1.95 [1.45–2.54] 2.02 [1.64–2.44] 0.52 0.29 0.016 (0.19)

SS, Sum of squares.
aAw ranges from 0.5 (no difference) to 1 (nonoverlapping distributions).
bMann-Whitney U test.
cMedian Shapley additive explanations (SHAP) values based on 25 spike chunks, indicating feature importance. Parentheses, p-values based on a one-tailed
permutation test.
dTime offsets are relative to the main channel.
eBased on the vector of maximal negativity values for each channel, scaled to the 0–1 range. The features are based on counts and thus hold no units.
fThe area under the curve of the count of channels versus the threshold value.
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instead of using all available spikes together. Thus, we in-
creased variability using the natural richness of the data
that is otherwise flattened to a single mean waveform.
The chunking process increases the number of samples
in the dataset, with the possible cost of increased noise.
A total of n=7 different chunk sizes was used, with 25,

50, 100, 200, 400, 800, or 1600 spikes per chunk. For a
given unit with N spikes and a chunk size C, the spikes
were randomly split into bN/Cc chunks so that every
chunk consisted of between C and 2C – 1 distinct spikes.
Spikes were randomly assigned to chunks. In a given
split, all chunks consisted of the same number of spikes
up to a difference of a single spike. Every chunk received
the label of the source unit. Because of the different num-
bers of spikes recorded for PYR and PV cells (5,651,196
PYR spikes and 11,612,978 PV cell spikes), the balance
between PYR and PV samples changed compared with
the original dataset (411 PYR and 101 PV cells). For in-
stance, using a chunk size of 25 spikes, the total number
of PYR samples was 225,850 while the number of PV
samples was 464,473.
To determine features for every chunk separately,

the waveforms were averaged over all available same-
channel spikes within a chunk, from which waveform
and spatial features were derived. To derive chunk-specif-
ic spike-timing features, the ACH was accumulated by
summing over all single-spike ACHs. For every spike, the
single-spike ACH was based on all spikes that occurred in
the �1000 to 1000ms time window around the reference
spike. To be applicable to the chunking case, the single-
spike firing rate was defined as the mean of the inverse in-
terspike intervals before and after the spike.
To provide information about the distribution of the val-

ues over chunks, several statistics were extracted from
the individual values of every chunk. Extracting statistics
based on all the chunks of a unit allows considering intra-
unit variability as a feature. For every feature, the mean,
SD, and the 25%, 50%, and 75% quantiles were ex-
tracted (referred to as “chunk statistics”). Note that ex-
tracting the mean out of all the individual feature values
of the chunks is not the same as not using chunking.
Without chunking, first all the waveforms are averaged,
transformed, and then features are extracted. In con-
trast, when using the mean over chunks, averaging hap-
pens at the end of the process (averaging the waveforms
within a chunk still happens at the beginning). If all steps
are linear, the two processes yield the same results.
However, since feature extraction is not a linear opera-
tor, the mean statistic may contain unique information.
The specific statistics were chosen to capture the first
and second moments of the across-chunk distribution
and for their simplicity. The chunk statistics can be ex-
panded further to capitalize on different properties of the
distribution over different chunks. The five new chunk
statistics increased the total number of features used by
the model sixfold. Notably, the chunk statistic features
are the same for all the chunks of a given unit.
When training models using chunks, the data were par-

titioned based on units. In the training set, every chunk
was considered independently (not as part of the unit). In

addition, instead of performing a grid search for every
chunk size, the hyperparameters for all chunk sizes were
chosen by a no-chunking equivalent. Chunk statistics
were extracted for the no-chunking dataset as well, so the
number of features was equal to the number of features in
the chunking method. The models applying chunking
used the hyperparameters found using the no-chunking
equivalent grid search, based on the same partition of the
data to training and test sets. For testing and evaluating,
every chunk received an independent prediction. Then,
predictions were pooled over all same-unit chunks by
casting a majority vote, yielding a final chunk-based pre-
diction for the unit.
When calculating the SHAP values for the chunking-

based models, we randomly chose 1000 samples out of
the test set. The procedure for computing SHAP values
for chunking-based data were otherwise the same as for
the no-chunking data. The absolute SHAP value of every
feature was summed together with the values of the
chunk statistics extracted from the same feature, yielding
a single importance value for every original feature.

Generalization analysis
Units in the tagged dataset were recorded from CA1

(449 of 512 units, 88%) and from neocortex. The availabil-
ity of tagged data from two brain regions allows testing
and quantifying interregion generalization. Generalization
was determined by the performance of models trained
using recordings from one region on test data from the
same region (“training region”), and from the other region
(“non-trained-on region”). To directly quantify generaliza-
tion, we partitioned the full dataset into the following three
sets for each training region: (1) a training set, containing
;80% of the training region units (CA1: 301 PYR, 58 PV;
neocortex: 27 PYR, 23 PV); (2) a test set, containing the
remaining 20% of the training region units (CA1: 76 PYR,
14 PV; neocortex: 7 PYR, 6 PV); and (3) a second test set,
containing all units of the non-trained-on region (neocor-
tex: 34 PYR, 29 PV; CA1: 377 PYR, 72 PV). Waveform,
spike timing, and spatial models were trained on the re-
duced CA1 dataset with 50, 1600, and 25 spike chunks,
respectively (found to yield the best performance for each
modality on the combined dataset). Chunked data were used
for the grid search: the training set was further partitioned into
a “development set” containing 80% of the units and an
“evaluation set” containing 20% of the units. If the develop-
ment set contained.5000 chunks, the grid search was con-
ducted on a random subset of 5000 chunks, minimizing run
time while allowing an efficient search. The difference in the
number of units between the CA1 and neocortical training
sets leads to an inherent difference in absolute performance
between the two training region conditions. However,
generalization can be readily compared between the two
conditions based on the performance of the test set of the
non-trained-on region relative to the performance of the
test set from the training region.

Statistical analyses
A threshold of a = 0.05 was used for all statistical tests.

An exception was the threshold used for tagging the

Research Article: New Research 11 of 21

November/December 2022, 9(6) ENEURO.0265-22.2022 eNeuro.org



units, namely for determining whether a unit exhibits light
activation, and whether two units exhibit monosynaptic
connectivity (a = 0.001). All descriptive statistics (n, me-
dian, IQR) can be found in the results, figures, tables, and
legends. Differences between the medians of two un-
paired groups were evaluated using a Mann–Whitney
U test (two tailed unless otherwise specified). Differences
between the median of a single group and a number, or
between the medians of two paired groups, were eval-
uated using Wilcoxon’s signed-rank test (one tailed un-
less otherwise specified). Comparisons of more than two
groups were conducted using a Kruskal–Wallis one-way
nonparametric ANOVA, and corrected for multiple com-
parisons using Tukey’s procedure. Rank (Spearman’s)
correlation coefficients were tested using a permutation
test. All statistical tests were conducted using either SciPy
library (Virtanen et al., 2020) or custom code implemented
in Python and MATLAB.

Data availability
The code used for feature extraction, model training,

and visualization is freely available on GitHub (https://
github.com/EranStarkLab/SpatiotemporalSpiking).

Results
PYR and PV interneurons are tagged in freely moving
mice
Differentiating between PYR and PV cells based on

electrical properties requires a ground truth-labeled data-
set. We recorded and tagged extracellular spiking data from
freely moving PV::ChR2 mice (n=7) using chronically im-
planted four-shank, 32-channel optoelectronic arrays (Fig.
1Aa). Every shank was equipped with a diode-coupled fiber,
enabling independent illumination of small local groups of
neurons while concurrently recording the extracellular activ-
ity (Fig. 1Ab). We used 50–70ms light pulses for optical tag-
ging. A unit was tagged as PV if the stimulus-locked firing
rate increase was consistently above baseline (p, 0.001,
Poisson test; Fig. 1Ac). Using the optical tagging procedure,
a total of 27 units from the neocortex and 71 from CA1 were
tagged as PV cells.
For every pair of simultaneously recorded units, we calcu-

lated the spike-to-spike CCH and tested for peaks in the
monosynaptic time range (0–5ms; p, 0.001, Bonferroni-
corrected Poisson test). Units that participated as a refer-
ence in a CCH that exhibited a significant peak were tagged
as excitatory (Fig. 1B). Using the monosynaptic CCH analy-
sis, 424 units were tagged as excitatory and 21 as inhibitory;
13 of 21 units were both inhibitory and optically activated.
Together with the optically tagged PV cells and after remov-
ing invalid samples (Materials and Methods), the dataset
consists of 512 units, of which 411 units (80.3%) are PYR
(Fig. 1C).

Waveform-based and spike-timing features allow
near-perfect classification of PYR and PV cells
Waveform-based spike properties differ between PYR

and PV cells and are widely used for cell type classifica-
tion (Barthó et al., 2004; Cardin et al., 2009; Stark et al.,

2013). However, many classifiers use waveform-based
features in conjunction with features based on spike tim-
ing, and previously used spike-based classifiers have not
been cross-validated. For every unit, we calculated n=8
features based on the waveform of the main channel (e.g.,
TTP duration; Fig. 2A, Table 1), defined as the channel
with the largest magnitude of the TTP. After deriving fea-
tures for every unit, we trained and tested classification
models. The median [IQR] AUC for the models was 0.995
([0.978–1]; p=3.1� 10�10, Wilcoxon test compared with
chance level of 0.5). Despite the high AUC, model perform-
ance improved when spikes were partitioned into chunks of
25, 50, and 200 spikes (p,0.05, Wilcoxon test). Partitioning
into 50 spike chunks increased the original AUC by 0.11%
[0–0.55%] to 0.999 (0.989–1; p=0.001, Wilcoxon test; Fig.
2B). A feature importance (SHAP) analysis conducted on the
models trained with 50 spike chunks (Table 1) indicated that
the TTP-duration feature provided the largest contribution to
the prediction (median [IQR] over all 50 instantiations: 0.25
[0.23–0.26], p=0.001, permutation test). The fact that the
AUC is near unity means that models based strictly on
waveform features achieve near-perfect classification.
While spike-timing information has been used for cell

type classification before, most implementations also
considered waveform-based features (Csicsvari et al.,
1998; Frank et al., 2001; Viskontas et al., 2007). To di-
rectly test whether spike timing alone can yield accurate
classification, we derived n=8 spike-timing features from
the spike trains of every unit (e.g., Uniform-distance; Fig.
2C, Table 2). We conducted the training and evaluation pro-
cess for the spike-timing modality as for the waveform-
based classification. Without chunking, the AUC was 0.975
[0.957–0.986] (p=3.8� 10�10, Wilcoxon test). The perform-
ance of the spike-timing models did not exhibit consistent
improvement on chunking (p. 0.05 for all chunk sizes,
Wilcoxon test). Nevertheless, the highest improvement in
the AUC was achieved using 1600 spike chunks, increasing
performance by 0.28% [�0.39 to 0.74%] to yield an AUC of
0.977 [0.965–0.987] (p=0.07, Wilcoxon test; Fig. 2D). SHAP
analysis using models trained with 1600 spike chunks
(Table 2) attributed the highest importance to the DKL-Long
feature (0.19 [0.17–0.2]), followed by the Uniform-distance
feature (0.14 [0.12–0.16] (p,0.002 for both, permutation
test). The results suggest that both high-frequency and low-
frequency features contribute to differentiation between
PYR and PV cells, allowing near-perfect performance.

Transformingmultichannel spike waveforms to event-
based d-like functions removes all waveform-based
information and allows extracting purely spatial
features
Having established a cross-validated pipeline for cell

type classification from spike data, we turned to focus on
spatial features. To limit the information to spatiotemporal
features per se, we first removed all single-channel wave-
form information from the waveforms recorded over the
eight channels using an event-based d -transformation
(Materials and Methods; Fig. 3A). The procedure was ap-
plied to the following three distinct events: the FMC, the
NEG, and the SMC. The transformation yielded nearly
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identical main channel waveforms for all units (Fig. 3B). To
determine whether the d -transformation indeed removed
all single-channel waveform information, we used the
transformed spikes as input for waveform-based feature
extraction, followed by model training and testing. The classi-
fication models yielded chance-level results. Specifically,
the AUC was 0.5 [0.5–0.5] (p=0.99, Wilcoxon test; Fig.
3C). When using a naive decision threshold of 0.5, the
same class was predicted for every sample (Fig. 3C, inset).
Thus, the d -transformed waveforms are devoid of wave-
form-based information.
From the transformed waveforms recorded on the eight

channels, n=18 spatial features were derived for every unit
(Table 3). The features were partitioned into the following
three families: time based (Fig. 3D), graph based (Fig. 3E),
and value based (Fig. 3F; Materials and Methods). Ten of
eighteen (56%) of the spatial features exhibited differences
between the PYR and PV populations (p, 0.05, U test). To
estimate feature redundancy, we computed rank CCs and
MI between every pair of spatial features. The matrix of CCs
between spatial features (Extended Data Fig. 3-1) showed
absolute correlations (median [IQR]: 0.2 [0.1–0.33]) that
were smaller than for the waveform-based features (0.43
[0.2–0.77]; p=3.5� 10�4, U test) and for the spike-timing
features (0.52 [0.38–0.7]; p=1.1� 10�7). Furthermore, MI
values between spatial feature distributions were smaller
than MI between waveform-based features (p, 7.1�
10�9, U test) and smaller than MI between spike-timing
features (p, 4.3� 10�9). Moreover, absolute intermo-
dality CCs [0.13 (0.07–0.20)] were smaller than absolute
intramodality CCs (0.244 [0.13–0.48]; p= 3.1� 10�19,
U test). The weak correlations between spatial and wave-
form-based features, and between spatial and spike-
timing features, suggest that a combination of features
from different modalities may be beneficial for classifi-
cation. Finally, the differences between the PYR and
PV groups for most spatial features, together with the
relatively weak mutual information between pairs of
spatial features, suggest that the various spatial fea-
tures may contain nonoverlapping information useful
for classification.

The variance of spatial features over channels and
across chunks is different for PYR and for PV cells
A direct comparison of the spatiotemporal dispersion of

the event times between PYR and PV cells revealed event-
dependent synchronization differences for both cell types
(p, 4.5� 10�20, Kruskal–Wallis test; Fig. 4A). For PYR, an
increase in spatiotemporal synchronization from FMC to
NEG was observed (exhibited by a decrease in the SD;
FMC: 15.9 ms [8.8–26.3 ms]; NEG: 13.5 ms [7.7–23.5 ms];
p, 0.02, Kruskal–Wallis test, corrected for multiple com-
parisons). An increase from FMC to NEG was also seen for
PV cells (FMC: 40.6 ms [17.4–86.3 ms]; NEG: 9.4 ms [5.4–
13.3 ms]; p, 1� 10�19). For both cell types, the increase in
synchronization was followed by a decrease from NEG to
SMC (SMC: PYR, 26 ms [18.8–34.3 ms], p, 2.2� 10�16;
PV, 24.1 ms [15.6–38.9 ms], p, 3.6� 10�11). Thus, for both
PYR and PV cells, spatiotemporal synchronization changes
during the course of an action potential.

Next, we assessed whether PYR and PV cells exhibit
differences in spatiotemporal synchronization during spe-
cific events. Higher spatiotemporal synchronization was
observed for PYR spikes compared with PV cells during
FMC, expressed by lower SD (Aw = 0.72; p=2.3� 10�12,
U test; Table 3). Thus, the FMC event occurred on multiple
channels nearly at the same time for PYR spikes, where-
as for PV cell spikes the FMC was more dispersed in
time. Synchronization flipped during the NEG event,
with higher synchronization for the PV cell spikes (Aw =
0.63; p = 3.44� 10�5, U test). We did not observe con-
sistent differences during the SMC event (Aw = 0.50;
p = 0.47, U test). Similar changes between events were
observed for the Time-lag-SS and the Shortest-path
features (Extended Data Fig. 4-1). The synchronization
differences between the spikes of PYR and PV cells
may reflect the distinct morphologic and functional
properties of the different cell types.
Intraunit variability, the variability across the chunks of

the same unit, may degrade classification performance.
Alternatively, intraunit variability may differ between classes
and possibly benefit classification. Of the statistics ex-
tracted from the chunks, the SD is a second moment statis-
tic, and may hold unique information compared with the
other chunk statistics used. Specifically, we examined the
intraunit SD values for all spatial features calculated based
on 25 spike chunks (the smallest chunk size used). To allow
comparing SDs of multiple features, features were scaled
based on all units before calculating the SD for every unit.
Most features (13 of 18) showed consistent differences of
the SD between the PYR and PV cells groups (0.56 � Aw �
0.90; p, 0.05, U test; Table 4). All features that did not
differ consistently between the two cell types were of
the graph-based family (FMC-Average-weight, SMC-
Average-weight, SMC-Longest-path, FMC-Shortest-
path, and SMC-Shortest-path; 0.50 � Aw � 0.54; p. 0.05,
U test; Fig. 4B, gray lines). All the features that consistently
differed between the two cell types exhibited larger SD val-
ues for PV cells, compared with PYR (Fig. 4B, black lines).
The median SDs for all features were lower for PYR (0.34
[0.16–0.47]) compared with PV cells (0.53 [0.3–0.6]; p=
1.9� 10�4, Wilcoxon test). The higher intraunit variability
for PV cells indicates a common phenomenon of the spa-
tial features that is identified specifically by chunking.

Features based exclusively on spatial information
allow accurate classification of PYR and PV cells
To determine whether the differences between the

spatial distribution of the extracellular signals from PYR
and PV cells are only correlative or indicative, we con-
ducted a training and evaluation process. The process
was carried in the same manner as for the waveform-
based and spike-timing features. Using the mean wave-
forms, the median [IQR] AUC was 0.83 [0.8–0.85] (p=3.8�
10�10, Wilcoxon test; Fig. 5). The performance of the spa-
tial models improved when chunking was applied: chunk-
ing consistently increased the performance for all tested
chunk sizes (25–1600 spikes: p, 1.45� 10�9, Wilcoxon
test; Fig. 5A). Upon chunking to 1600 spike chunks, the
AUC increased by 9.6% compared with the no-chunking
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AUC. The AUC increased monotonically for progressively
smaller chunk sizes, achieving a value of 0.963 [0.949–
0.975] for 25 spike chunks (16.3% [13.9–19.6%] increase;
Fig. 5B). We did not test smaller chunk sizes. Therefore, re-
sults reported from this point onward are based on the
best model, using 25 spike chunks. While the performance
of the spatial models was lower than the performance of
waveform-based or spike-timing models (p, 6.6� 10�6

for both, two-tailed Wilcoxon test), the results indicate
that PYR and PV cells can be accurately differentiated
based on purely spatial features. On their own, spatial
properties provide a completely new approach to cell
type classification.
To assess the contribution of every spatial feature

and family of features, we analyzed SHAP values. We
found that feature importance was not uniform (Fig.
5C). Specifically, the highest importance was attributed
to features derived from the FMC events (median [IQR]
over all 50 instantiations: FMC-Time-lag-SS: 0.094 [0.087–
0.1]; FMC-Time-lag-SD: 0.093 [0.086–0.099]; p, 0.001 for
both, permutation test; Fig. 5C). The feature families dif-
fered in the contribution to the prediction (p, 1.7� 10�29,
Kruskal–Wallis test). Features of the value-based family

exhibited the lowest summed importance values (0.028
[0.021–0.036]), while the two other families reached higher
values (time-based: 0.25 [0.23–0.27], graph-based: 0.11
[0.1–0.13]; p=2.6� 10�8 for both, Kruskal–Wallis test cor-
rected for multiple comparisons). The importance of the
time-based features was the largest (time based com-
pared with graph based, p=2.6� 10�8). The distribution
of the six most important features is shown in Extended
Data Figure 5-1. The feature importance analysis sug-
gests that features agnostic to the physical distance be-
tween channels and features that do consider spatial
locations make nonoverlapping contributions to classifi-
cation. Moreover, the usage of multiple features derived
from the same event, the FMC, is beneficial.

Spatial models generalize poorer than waveform
models but better than spike-timingmodels
In the tagged dataset, units were recorded from both

CA1 and neocortex, allowing the testing of interregion
generalization. To quantify similarities between regions,
we determined the performance of models trained using
data from a single region on one test set from the training

Figure 4. The variance of spatial features over channels and across chunks is different for PYR and for PV cells. A, Variance over
channels differs between events and cell types. Compared with PYR, PV cells show lower spatiotemporal spike synchrony
(i.e., higher SD) during FMC. The relation reverses during the NEG event. The SD of the SMC event is not consistently different be-
tween PYR and PV cells. n.s.p. 0.05, ***p, 0.001, U test. For both PYR and PV cells, synchrony increases from the FMC to the
NEG, and then decreases during the SMC. Lined *p, 0.05, ***p, 0.001, Kruskal–Wallis test, corrected for multiple comparisons. B,
Variance across chunks differs between cell types. Every dot shows the SD value for a different spatial feature, based on 25 spike
chunks. Of 18 features, 13 (72%) differ in the SD values between the cell type groups, with the SD being higher for PV cells (black
lines, p, 0.05; gray lines, p.0.05, U test). Comparing the median SDs of the 18 spatial features between the cell type groups, PV
cells exhibit higher SDs compared with PYR. Bars (error bars) represent the median (IQR) of the median feature values for each cell
type. ***p, 0.001, two-tailed Wilcoxon test. See also Extended Data Figure 4-1.
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region, and on another test set from the non-trained-on
region. Training on either CA1 data or neocortical data, all
models performed above chance level when tested on both
the CA1 test set and the neocortical test set (p, 7.5�
10�10 for all comparisons, Wilcoxon test; Fig. 6A, Extended
Data Fig. 6-1). Specifically, spatial models trained on CA1
data reached a median [IQR] AUC of 0.966 [0.934–0.979]
when tested on CA1 data and 0.83 [0.805–0.858] when
tested on neocortical data. Complimentarily, when trained
on neocortical data, spatial models reached an AUC of
0.923 [0.833–1] on the neocortical test set, and an AUC of
0.893 [0.86–0.918] on the CA1 test set. Comparing AUCs
of the non-trained-on region, performance was lower
for the spike-timing models compared with the waveform-
based models (p, 2.2� 10�16 for both comparisons,
Kruskal–Wallis test corrected for multiple comparisons;
Fig. 6A). Likewise, performance was lower for the spike-
timing models, compared with the spatial models (p,
0.005 for both comparisons; Fig. 6A). Thus, while all mo-
dalities generalize from CA1 to neocortex and from neo-
cortex to CA1, waveform-based models allow the best
performance whereas spike-timing models perform the
worst.
Above-chance performance on the test set of the non-

trained-on region does not guarantee perfect generalization.
To quantify generalization, we defined a “generalization error”
as the relative decrease when comparing performance on the
test set of the training region and performance on the test set
of the non-trained-on region. The generalization error was
consistently above zero for spatial models trained on data
from either region, and for CA1-trained spike-timing models
(p, 0.05 for all three comparisons, Wilcoxon test; Fig. 6B).
For both training sets, waveform-based models showed
lower errors than spatial models (p,0.05 for both compar-
isons, Kruskal–Wallis test corrected for multiple compari-
sons; Fig. 6C). In addition, for the CA1-trained models, the

generalization error of the spatial models was lower than
that of the spike-timing models (p, 6.7� 10�6). Thus,
spatial models generalize better than spike-timing mod-
els, but worse than waveform-based models, in particu-
lar when trained on CA1 data.
Finally, to determine which spatial features are most im-

portant for classification in every region, we computed
SHAP values for spatial models trained on data from a
single region. Despite some differences in specific values,
the six features that made the largest contributions were
the same for models trained on CA1 data (Extended Data
Fig. 6-2A) and for models trained on neocortical data (Fig.
5C, Extended Data Fig. 6-2B). Hence, the determinants
for the predictions of the spatial models are similar in neo-
cortical and CA1 data.

Discussion
Using optically tagged high-density recordings from

hippocampal region CA1 and neocortex of freely moving
mice, we found that spiking of PYR and PV cells was as-
sociated with different spatiotemporal distributions of ex-
tracellular voltage. Compared with PV cell spikes, PYR
spikes exhibited higher spatial synchrony at the beginning
of the spike and lower synchrony at the trough. Together,
the spatial features derived from the extracellular voltage
distributions allowed accurate classification of PYR and
PV cells.

Differences in the spatial distribution of extracellular
voltages during spikes
Although the contribution of spatial information to classifi-

cation tasks has been explored before (Buccino et al., 2018;
Jia et al., 2019), previous work did not separate spatial in-
formation from other waveform-based properties. Using
an event-based d -transformation, we derived spatial

Table 4: SD across Chunks for spatial features

Feature Event
PYR SD (scaled)
median [QR]a

PV SD (scaled)
median [IQR]a Aw

b p-valuec

Time-lag-SS FMC 0.065 [0.019–0.22] 0.67 [0.42–0.93] 0.90 8.9 � 10�37

NEG 0.033 [0.011–0.076] 0.037 [0.011–0.21] 0.56 0.022
SMC 0.15 [0.097–0.23] 0.51 [0.25–0.83] 0.83 1.1 � 10�25

Time-lag-SD FMC 0.19 [0.093–0.41] 0.80 [0.61–0.94] 0.90 1.3 � 10�35

NEG 0.19 [0.10–0.32] 0.23 [0.12–0.48] 0.56 0.02
SMC 0.32 [0.26–0.42] 0.70 [0.50–0.93] 0.85 1.6 � 10-27

Average weight FMC 0.61 [0.36–0.84] 0.61 [0.41–0.76] 0.50 0.46
NEG 0.43 [0.28–0.62] 0.48 [0.36–0.68] 0.57 0.016
SMC 0.54 [0.43–0.65] 0.57 [0.40–0.70] 0.53 0.2

Longest path FMC 0.53 [0.31–0.81] 0.60 [0.43–0.86] 0.57 0.016
NEG 0.44 [0.29–0.68] 0.59 [0.37–0.76] 0.60 0.0015
SMC 0.52 [0.34–0.72] 0.55 [0.36–0.75] 0.52 0.22

Shortest path FMC 0.48 [0.22–0.92] 0.45 [0.33–0.67] 0.50 0.47
NEG 0.37 [0.15–0.71] 0.59 [0.27–0.86] 0.65 7.2 � 10�5

SMC 0.40 [0.26–0.60] 0.43 [0.28–0.68] 0.54 0.097
SPD-Count 0.069 [0–0.35] 0.15 [0.037–0.40] 0.60 0.0013
SPD-SD 0.18 [0.12–0.24] 0.26 [0.19–0.30] 0.68 6.3 � 10�9

SPD-Area 0.13 [0.10–0.18] 0.18 [0.15–0.24] 0.73 1.1 � 10�12

aBased on 25 spike chunks.
bAw ranges from 0.5 (no difference) to 1 (nonoverlapping distributions).
cMann-Whitney U test.
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features devoid of single-channel waveform information.
The accurate classification based on spatial features is
tantamount to spatiotemporal differences in the extrac-
ellular voltage distribution and is consistent with mor-
phologic differences in the dendrosomatic and axonal
organization of PYR and PV cells. In CA1, PV basket cell
axons form a diverse horizontal network while most den-
drites extend vertically (Freund and Buzsáki, 1996;
Klausberger et al., 2003). The dendritic trees of PYR cells
also extend vertically, but are more polarized (Bannister
and Larkman, 1995; Spruston, 2008). The extracellular
expression of intracellular signals has been studied theo-
retically (Rall, 1962) and modeled for reconstructed mor-
phologies (Holt and Koch, 1999; Gold et al., 2006;
Schomburg et al., 2012; Lindén et al., 2014; Bestel et al.,

2021). Even with limited spatial sampling, the present re-
sults provide direct experimental evidence for a unique
mapping between cell type and the spatial distribution of
extracellular potentials. The results should be construed
as lower bounds, since higher-density or three-dimen-
sional sampling may allow further improvement.
Among spatial features, the dispersion of the FMC

event between recording sites made the highest contri-
bution to the prediction. The FMC is a putative extracel-
lular analog of the initial depolarization phase at the
recording site. Thus, the lower interelectrode variance of
FMC among PYR cells compared with PV cells indicates
higher spatial synchrony at the beginning of the spike.
This observation is consistent with known morphologic
and electrotonic differences between the proximal dendrites

Figure 5. Features based exclusively on spatial information allow accurate classification of PYR and PV cells. A, Classification
based on spatial features is boosted by chunking. AUCs were derived from ROC curves based on n=50 cross-validated random
forest models. The AUC increases monotonically when chunk size is reduced. Every boxplot shows the median (IQR), whiskers ex-
tend for 1.5 times the IQR in every direction, a plus indicates an outlier, and notches represent 95% confidence intervals based on
bootstrapping with 1000 repetitions. The best performance (highest AUC) and largest improvement compared with no-chunking (1)
is observed for 25 spike chunks. ***p, 0.001, Wilcoxon test. B, Spatial features allow accurate classification. ROC curves for the
test data without chunking (blue) and with 25 spike chunks (orange). The AUCs are higher than chance level. All conventions are the
same as in Figure 2B. C, Feature importance analysis for spatial models with 25 spike chunks. SHAP values were used to assess
the individual contribution of each feature to the prediction. The dotted lines represent chance-level importance values, based on
models trained with shuffled PYR-PV labels. The features derived from the FMC event are associated with the highest SHAP values,
indicating that synchrony at the initial depolarization phase makes the highest contribution to classification outcome. **p, 0.01,
***p, 0.001, one-tailed permutation test. See also Extended Data Figure 5-1.
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of PYR and PV cells. Since the probes were always in-
serted perpendicularly to CA1 stratum pyramidale, the
vertical dendritic tree of both PYR and PV cells was
parallel to the extracellular electrode arrays. In CA1, PYR
have thick apical dendrites extending for up to 250 mm
(diameter, 1.6–2.5 mm), whereas PV cell dendrites in stra-
tum pyramidale are thinner (diameter, 1.3–1.7 mm; Gulyás
et al., 1999; Andersen et al., 2007). The higher FMC syn-
chrony of PYR spikes is consistent with lower axial re-
sistance of the thicker proximal PYR dendrites, yielding
synchronized somatic and dendritic potentials.
The second event that showed differences in temporal

dispersion was the NEG, which corresponds to a point
between the peak of the derivative and the peak of mem-
brane potential during the spike (Henze et al., 2000;
Pettersen and Einevoll, 2008). During NEG, spatial syn-
chrony reverses, being higher for PV cells compared with
PYR cells. The narrower waveforms of PV cells are asso-
ciated with a higher concentration of voltage-gated K1

(Kv) channels, compared with PYR cells (Bean, 2007). In
neuronal models with passive dendrites and when mem-
brane time constants are relatively slow, membrane re-
sistance has little effect on spike shape (Pettersen and
Einevoll, 2008). However, since active conductance af-
fects spike shape (Martina and Jonas, 1997), the differen-
ces in synchrony during the NEG event may result from
distinct spatial gradients of Kv channels in CA1 PYR and
PV basket cells. In PYR, there is a rapid decrease in the
density of Kv channels on dendrites farther from the soma

(Johnston et al., 2000), whereas the decrease for basket
cells is more moderate (Hu et al., 2010). Kv channels open
at depolarization, initiating repolarization and late hyper-
polarization, and, in turn, govern the frequency and width
of the spikes (Pongs, 1999). The more uniform spatial
density of Kv channels in PV cells compared with PYR
cells may synchronize the extracellular signals generated
by the different cellular compartments.
The spatial features exhibit lower intraunit variability

of PYR cells, compared with PV cells. The difference
between the PYR and PV variability contributed to clas-
sification. The excitatory input of PYR in CA1 originates
mainly from upstream regions (e.g., CA3 and entorhinal
cortex; Andersen et al., 2007), whereas CA1 PV cells
are mainly innervated by local PYR cells (Freund and
Buzsáki, 1996). Thus, a possible source for the differ-
ence in intraunit variability is the distinct sources of ex-
citation of PYR and PV cells.

Differences in spike waveform and spike timing
Compared with basket cells, neocortical and CA1 PYR

have wider spikes (Simons, 1978; Connors et al., 1982;
Kawaguchi and Hama, 1988; Contreras, 2004), lower fir-
ing rates (Kawaguchi et al., 1987), and an increased burst
propensity (Kandel and Spencer, 1961; Ranck, 1973;
Harris et al., 2001). Indeed, we found that waveform
width (e.g., TTP-duration), burstiness (e.g., Uniform-
distance), and firing rate all differ between PYR and PV

Figure 6. Spatial models generalize poorer than waveform models, but better than spike-timing models. A, Cross-validated random
forest models (n=50) were trained for every modality on the CA1 (left, red) or neocortex (nCX; right, gray) data, and tested sepa-
rately on different data from CA1 and from nCX. Conventions for boxplots here and in B are the same as in Figure 5A. All models ex-
hibit above-chance performance. ***p, 0.001, Wilcoxon test. The performance of models on the non-trained-on region is highest
for waveform-based models and lowest for spike-timing models. **p, 0.01; ***p, 0.001, Kruskal–Wallis test corrected for multiple
comparisons. B, The decrease in performance on generalization. Generalization error is defined here as the difference between the
AUC on the test set of the training region and the AUC on the test set of the non-trained-on region, divided by AUC on the test set
of the training region. Spatial models trained on either region and spike-timing models trained on CA1 data, show generalization er-
rors larger than zero. n.s.p. 0.05; **p, 0.01; ***p, 0.001, Wilcoxon test. The dashed horizontal line represents the zero-mark (i.e.,
same performance on CA1 and nCX). When trained on CA1 data (red), spatial models generalize poorer than waveform models but
better than spike-timing models. n.s.p. 0.05; *p, 0.05; ***p,0.001, Kruskal–Wallis test corrected for multiple comparisons. See
also Extended Data Figures 6-1, 6-2.

Research Article: New Research 17 of 21

November/December 2022, 9(6) ENEURO.0265-22.2022 eNeuro.org

https://doi.org/10.1523/ENEURO.0265-22.2022.f6-1
https://doi.org/10.1523/ENEURO.0265-22.2022.f6-2


cells. Furthermore, both TTP-duration in the waveform
models, and the Uniform-distance in the spike-timing
models, contributed to the prediction. The importance
of waveform width properties is in line with studies that
used width-related features to differentiate between
PYR and interneurons (Frank et al., 2001; Cardin et al.,
2009; Stark et al., 2013). Similarly, the importance of
burstiness and firing rate is consistent with prior work
(Connors and Gutnick, 1990; Taira and Georgopoulos,
1993). The long-term ACH, which was not used before for
classification, held informative value, consistent with dis-
tinct low-frequency rhythmic activity of PYR and PV cells
(e.g., theta; Csicsvari et al., 1999; Buzsáki, 2002; Czurkó
et al., 2011).

Chunking
When discussing the extracellular waveform of a neu-

ron, many studies refer to the mean waveform (Trainito et
al., 2019; Sun et al., 2021). To improve the performance of
the classification models, we exploited the variability of
spike waveforms and timing recorded from a single cell
using chunking, increasing the number of samples at the
possible cost of increased noise. The chunking method
as implemented here was agnostic to two pieces of infor-
mation. First, spikes were randomly assigned to chunks,
ignoring possible time-related changes that may be con-
structive. Second, the relation of chunks to the same unit
was only partially considered, and additional “chunk sta-
tistics” may be extracted. The statistics extracted from
the distribution of feature values over chunks provide lim-
ited consideration of the other chunks. Consequently, the
present implementation does not allow classification of all
the chunks of a specific unit as a whole. Hence, our re-
sults form a lower bound for the improvement to be
gained from chunking. More complex models may capi-
talize on time-dependent differences and dependencies
between the samples. Modifying chunk size inherently re-
sults in a trade-off between the number of samples and
the noise. Spatially and waveform-based models bene-
fited the most from smaller chunks, while spike-timing
models benefited from larger chunk sizes. The higher sen-
sitivity of spike-timing models to noise in small chunks is
consistent with the discrete nature of the spike trains, be-
cause ACHs are sparse when the number of spikes is small.

Interregion differences
Waveform models yielded near-perfect classification of

data from the non-trained-on region for both training re-
gions, in line with similar waveform widths of PYR and PV
cells in neocortex and CA1 (McCormick et al., 1985;
Kawaguchi and Hama, 1988). Yet, the generalization of
waveform models was not perfect and is not expected to
be universal: in the primate, pyramidal tract PYR cells ex-
hibit narrow spikes (Vigneswaran et al., 2011; Lemon et
al., 2021). CA1-trained spike-timing and spatial models
exhibited decreased performance when tested on neocort-
ical data compared with CA1 data, with spatial models
generalizing better than spike-timing models. The poor
generalization observed for the spike-timing models is

consistent with the fact that neocortical PYR cells are
less likely to exhibit bursts, compared with CA1 PYR cells
(McCormick et al., 1985; Lacaille et al., 1987). The interme-
diate generalization of the spatial models may correspond
to interregion differences in cellular morphology, ion chan-
nel distributions, or other cellular network properties. The
synaptic and intracellular events that occur just before and
during the spike may affect the spatial distribution of
the signal (Zador et al., 1995; Hagen et al., 2016, 2017).
Hence, even morphologically identical cells with the exact
same compartmental distribution of ion channels are ex-
pected to show different spatial distributions of extracellu-
lar potentials when embedded in distinct networks.

Limitations and applications
There are a few notable limitations to this work. First,

cell type classification based on spatial features requires
sampling of the extracellular space over multiple points.
Here, we used a fixed electrode configuration with 20mm
vertical spacing, and application to data recorded using
other configurations may require modifications. Second,
expanding the duration of the sampled spikes beyond
1.6ms (32 samples at 20 kHz) may increase the perform-
ance of spatially based models. Third, while several mod-
els yielded near-perfect performance, focusing strictly on
mice does not warrant generalization to homological brain
regions in other animals.
Our results suggest several possible applications. First,

the concept of chunking combined with a majority vote
can be used in real time, allowing classification outcomes
to be updated online. Using the chunking and voting ap-
proach, there is no need to rerun the entire model when-
ever a new piece of data is collected. Instead, every
time a predetermined number of spikes is gathered, an-
other vote can be added to the prediction. Second,
classification based strictly on spike timing can be used
when waveform information is unavailable or for real-
time applications.

Future directions
To identify the cellular network origin of the spatiotem-

poral differences in synchrony between PYR and PV cells,
targeted experiments may be conducted. We hypothesize
that the higher intraunit variability observed for PV cells
compared with PYR cells may reflect distinct connectivity
patterns. The excitatory input of PYR cells in CA1 origi-
nates mainly from upstream regions (e.g., CA3 and en-
torhinal cortex; Andersen et al., 2007), whereas CA1 PV
cells are more likely to be innervated by local PYR cells
(Freund and Buzsáki, 1996). The hypothesis may be tested
using somatic opsins (Shemesh et al., 2017; Chen et al.,
2018; Forli et al., 2021). The spatiotemporal distribution of
extracellular potentials during spikes generated via somatic
activation can be compared with natural spiking, generated
by integrating EPSPs impinging mainly on the dendrites.
More consistent spatiotemporal synchrony achieved for
optically induced spikes will provide direct evidence
that input variability may lead to more variability in the
spatiotemporal synchrony.
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In the future, other spatial features may be used to in-
crease classification performance. We showed that the
cross-validated classification of PYR and PV cells is al-
ready near perfect when based on waveforms alone, but
other cell types may not be accurately distinguished using
features derived from a single channel. For instance, com-
pared with PV cells, somatostatin interneurons have lower
firing rates and broader spikes (Ma et al., 2010; Royer et
al., 2012; Veit et al., 2017). Distinguishing between multi-
ple cell types using extracellular data may benefit from
using spatial information.
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