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The visual systems of many mammals, including humans, are able to
integrate the geometric information of visual stimuli and perform cog-
nitive tasks at the first stages of the cortical processing. This is thought
to be the result of a combination of mechanisms, which include feature
extraction at the single cell level and geometric processing by means of
cell connectivity. We present a geometric model of such connectivities
in the space of detected features associated with spatiotemporal visual
stimuli and show how they can be used to obtain low-level object seg-
mentation. The main idea is to define a spectral clustering procedure with
anisotropic affinities over data sets consisting of embeddings of the vi-
sual stimuli into higher-dimensional spaces. Neural plausibility of the
proposed arguments will be discussed.

1 Introduction

It is well understood from the psychological theory of the Berliner Gestalt
that local properties of the visual stimulus, such as neighboring, good con-
tinuation, and common fate, have a central role in the execution of global
visual tasks like image segmentation and grouping (Wertheimer, 1938;
Wagemans et al., 2012).
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A key concept for understanding visual perceptual tasks is that of asso-
ciation fields, introduced by Field, Hayes, and Hess (1993) to describe the
structure of the field of good continuation, underlying the recognition of
perceptual units in the visual space. These results have been obtained by
psychophysical experiments, presenting stimuli made of an ensemble of
oriented patches, a subset of which was consistently aligned along a con-
tinuous path. The study of these phenomena allowed the identification of
properties that a stimulus should have near a given patch in order to rec-
ognize such samples as belonging to a curvilinear path, namely, colinearity
and cocircularity. The detection of these properties is indeed compatible
with the functional behavior of simple cells in the primary visual cortex V1
as linear feature detectors for local orientations (Hubel & Wiesel, 1977).

Several physiological experiments showed how the principles of associa-
tion fields seem to be implemented in the V1 of mammals, where long-range
horizontal connections preferentially link columns of neurons having sim-
ilar preferred orientation (Bosking, Zhang, Schofield, & Fitzpatrick, 1997).
By interpreting cortical columns as directional differential operators, Citti
and Sarti (2006) showed how this specialized functional organization of V1
naturally leads to a geometric model of the association fields. The field lines
are modeled with a family of integral curves on a contact structure based
on the Lie algebra of the group of rigid motions of the Euclidean plane
SE(2). This geometric approach lies within a well-established research line
founded by seminal work (Koenderink & van Doorn, 1987; Hoffman, 1989;
Mumford, 1994; Petitot & Tondut, 1999), whose current state of the art can
be found in Citti and Sarti (2014).

Further phenomenological experiments demonstrated the central role
for the perception of global shapes of the features of movement direction
and velocity (Rainville & Wilson, 2005) and that, similar to what happens
for the integration of spatial visual information, the brain is capable of
predicting complex stimulus trajectories and grouping together elements
having similar motion or apparent motion paths (Verghese, Watamaniuk,
McKee, & Grzywacz, 1999; Verghese, McKee, & Grzywacz, 2000; Watama-
niuk, 2005). Also in this case, the detection of such features is performed at
the level of V1, where specialized cells show spatiotemporal behaviors opti-
mized for the detection of local velocities (DeAngelis, Ohzawa, & Freeman,
1995; Cocci, Barbieri, & Sarti, 2012).

The analysis of spatiotemporal properties and organization of cortical vi-
sual neurons, together with the indications given by experimental results on
visual spatial and motion integration, has recently led to extensions of the
SE(2) model that include local stimulus velocity. Barbieri, Citti, Cocci, and
Sarti (2014) introduced new classes of spatiotemporal connectivities, pro-
viding a geometric model of association fields in the five-dimensional con-
tact structure of cells’ positions and activation times, together with locally
detected features of orientations and velocities. Such a structure embeds
purely spatial geometry in a layered fashion and integrates the association
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mechanisms as extensions to a higher-dimensional space. Their capabilities
in the elaboration of trajectories and in the tasks of spatiotemporal image
completion showed good accordance with previous psychophysical and
physiological results.

The aim of this letter is to study the capabilities of such geometric spa-
tiotemporal connectivities with respect to the tasks of image segmentation
and grouping. Such tasks are addressed with spectral analysis; in particular,
we discuss and refine the proposed connectivity structures in order to de-
scribe them as operators on high-dimensional feature spaces. Our approach
represents a spatiotemporal stimulus as a data set in a feature space and
considers it as a weighted graph whose affinity matrix is determined by
geometric connectivity. The grouping mechanisms that we describe arise
from a spectral clustering of the associated graph Laplacian, making use of
the probabilistic framework introduced in Meila and Shi (2001) followed
by an adaptation of the simple and robust clustering technique proposed
in Kannan, Vempala, and Vetta (2004). When dealing with nonsymmetric
affinities, we followed the ideas introduced in Pentney and Meila (2005). We
have tried to stick with minimal hypotheses at the algorithmic level in or-
der to keep our focus on the role of the kernels. Our main results show that
the introduced spatiotemporal geometry provides connectivities suitable
for robustly grouping spatiotemporal stimuli, but also that a connectivity
pattern based on local stimulus velocity can enhance the spatial grouping
capabilities of a visual system.

With respect to the neural implementations of such principles, apart from
the study in Barbieri, Citti, Cocci et al. (2014), we can see that psychophysical
experiments such as those of Geisler, Perry, Super, and Gallogly (2001); Hess
and Ledgeway (2003); and Ledgeway, Hess, and Geisler (2005) addressed
the problems of the existence of association fields for local directions of
motion and their role in visual grouping, and of comparison of human
grouping with cocircular correlations in natural image statistics. Moreover,
the recent results of Sarti and Citti (2014) show how spectral analysis of the
spatial connectivity introduced in Citti and Sarti (2006), which is the more
basic one studied in this letter, is actually implemented by the neural pop-
ulation dynamics of primary visual cortex. This suggests a fundamental
role for spectral mechanisms in the phenomenology of perception, indi-
cating that they may be concretely performed by the visual system and,
hence, provide a stronger motivation for our detailed spectral analysis of
connectivities and their segmentation properties of visual stimuli.

Finally, we note that while cocircularity is naturally implemented in ker-
nels (see Sanguinetti, Citti, & Sarti, 2010), its use for the definition of affinity
matrices whose spectra could be suited for line grouping was suggested by
Perona and Freeman (1998).

The plan of this letter is as follows. In section 2, we describe the geom-
etry arising from the spatiotemporal functional architecture of the visual
cortex as introduced in Barbieri, Citti, and Sarti (2014); Barbieri, Citti, Cocci
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et al. (2014), providing more detailed arguments on how to construct and
implement the connectivity kernels we will use. In section 3 we recall the
notions of spectral analysis on graphs and introduce the basic clustering
principles that we adopt. Then we show how to construct affinity matrices
based on spatiotemporal cortical geometry, providing discussion on how to
deal with the different kinds of asymmetries present in the connectivities.
Or main results are in section 4, where we use the previously introduced
spectral clustering algorithm to automatically extract perceptual informa-
tion from artificial stimuli living in the cortical feature spaces. In particular,
we propose two connectivity mechanisms to perform spatiotemporal seg-
mentation of motion contours and shapes, also providing parametric eval-
uations of the kernel performances, and we discuss the relationship with
neural processes studied in several psychophysiological experiments.

2 The Geometry of V1

In this section, we present a model of the functional architecture of the visual
cortex as a contact structure, where cortical connectivity is implemented as
a diffusion process along its admissible directions. This same approach
was taken in Barbieri, Citti, Cocci et al. (2014), where it was compared to
psychophysical and physiological behaviors of the visual system.

2.1 The Cortical Feature Space. It is well known since the fundamental
studies of Hubel and Wiesel (1977; Hubel, 1988) that the primary visual cor-
tex (V1) is one of the first physiological layers along the visual pathway in
carrying out geometrical measurements on the visual stimulus, decompos-
ing it in a series of local feature components. The development of suitable
electrophysiological techniques (Ringach & Shapley, 2004) has made it pos-
sible to reconstruct the linear filtering behavior of V1 simple and complex
cells, that is, their spatiotemporal receptive profiles (RPs).

The RPs of orientation-selective cells in V1 have classically been mod-
eled with two-dimensional Gabor functions (Jones & Palmer, 1987), which
compute a local approximation of the directional derivative of the visual
stimulus, minimizing the uncertainty between localization in position and
spatial frequency (Daugman, 1985). Spatiotemporal RPs of V1 simple cells
can be modeled by three-dimensional Gabor functions of the form (Cocci
et al., 2012)
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where q = (qx, qy, qt ) is the spatiotemporal center of the Gabor filter,

p = (px, py, pt ) is the spatiotemporal frequency, and σ = (σx, σy, σt ) is the
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Figure 1: (Left) Isolevel surfaces of a V1 inseparable receptive profile depicted
in space-time. Light and dark surfaces enclose, respectively, excitatory and in-
hibitory regions. The transversal line indicates the direction of the local vector
�X

θ,v
(see the text for details). (Right) Schematization of the feature-wise orga-

nization of the primary visual cortex. For each spatiotemporal point (x, y, t) of
the image hyperplane, there is a two-dimensional fiber of representing local
orientation θ and local velocity v.

spatiotemporal width. One of the crucial features of equation 2.1 is mini-
mization of the uncertainty of simultaneous measurements in space-time
and frequency. It is worth noting that this model strictly captures the fea-
tures of so-called inseparable RPs, tuned for position, orientation, and mo-
tion detection, depicted in Figure 1 (left). Separable RPs can be obtained as
linear superpositions.

Further analyses have also shown that the Gabor parameter distribution
found in cortical cells covers only a subset of the Gabor family. Such subsets
are optimized for the detection of the local features of orientation θ and
speed v (Cocci et al., 2012; Barbieri, Citti, & Sarti, 2014),

θ = arctan
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which can be interpreted as fundamental features of the visual stimulus. For
this reason, we will not deal with the dependence on the spatial frequency
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where κ and σ are considered fixed. This corresponds to a neural processing
stage where the visual stimulus is lifted from the spatiotemporal image
space R

2 × R
+ to the extended five-dimensional feature space,

MT = R
2 × R

+ × S1 × R
+ = {η = (qx, qy, qt, θ, v)},

where every point η ∈ MT corresponds to a filter, equation 2.2, as in Fig-
ure 1(right). The activity of V1 simple cells is then considered as modeled
by the map

f �→ Fσ,κ (q, θ, v)
.
= 〈gσ,κ

q,θ , f 〉L2(R3 ). (2.3)

2.2 Connectivity as a Differential Constraint. The functional behavior
of V1 simple cells modeled by equation 2.3 can be interpreted as a finite-
scale spatiotemporal directional derivative of the stimulus around position
q, performed along the direction

�Xθ,v = (cos θ, sin θ,−v)

expressed in the coordinates {êx, êy, êt}. Accordingly, this derivation is max-

imal along the direction of the gradient of f. This implies that the lifting to
MT of any smooth level set of f is always orthogonal to the vector field,

�X = (cos θ, sin θ,−v, 0, 0) ∈ TηMT ,

expressed in the coordinates {êq
x
, êq

y
, êq

t
, êθ , êv}, where TηMT stands for the

tangent space of MT at η = (qx, qy, qt, θ, v).

These constraints induce the consideration as admissible surfaces on MT

those whose tangent space at any point is spanned by the vector fields

�X1 = (− sin θ, cos θ, 0, 0, 0) �X2 = (0, 0, 0, 1, 0),

�X4 = (0, 0, 0, 0, 1) �X5 = (v cos θ, v sin θ, 1, 0, 0), (2.4)

defining the orthogonal complement to �X in T MT .
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The four-dimensional hyperplanes generated by {X1, X2, X4, X5} are
called contact planes, the whole structure is named the contact structure.
Contact structures have been used for modeling the functional architecture
of the visual cortex in other work (Petitot & Tondut, 1999; Citti & Sarti,
2006).

Due to this contact structure, the connectivity among V1 cells on MT can
be modeled geometrically as in Barbieri, Citti, Cocci et al. (2014) in terms
of advection-diffusion processes along the directions of the vector fields,
equation 2.4. Two corresponding stochastic processes were introduced in
order to provide concrete realizations of the mechanisms of propagation of
information along connections.

A first mechanism, aimed at modeling connectivity along lifted contours
of a spatial image at a fixed time, consists of propagation along the direction
�X1 forced by diffusion over �X2 and �X4. This will be used for a single-frame
segmentation out of a spatiotemporal streaming. It lives on a codimension
1 submanifold of MT at fixed time t0 that we will call M0 = R

2 × S1 × R
+ =

{ξ = (qx, qy, qt, θ, v) : qt = t0}. It can be formally described by the following

system of stochastic differential equations,

⎧
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dqx(s) = − sin θ (s) ds

dqy(s) = cos θ (s) ds

dθ (s) = κ dW1(s)

dv(s) = α dW2(s)

ξ (s = 0) = ξ0,

(2.5)

where W = (W1,W2) is a two-dimensional Brownian motion and (κ, α) are
the corresponding diffusion constants. The Fokker-Plank equation associ-
ated with this process, which provides a transition probability density ρ0,
is

(∂s − L0)ρ0(ξ , s|ξ0, 0) = δ(ξ − ξ0)δ(s), (2.6)

where the evolution operator is given by L0 = X1 − κ2X2
2 − α2X2

4 ; as cus-
tomary, we have denoted with Xi the directional derivative along the vector
field �Xi.

A second mechanism, aimed at modeling connectivity among moving
contours of a spatiotemporal stimulus, will be used for spatiotemporal
segmentation of apparent point trajectories. It consists of a propagation
along �X5, again forced by a diffusion over �X2 and �X4, and is described by
the stochastic process on MT :
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dqx(s) = v cos θ (s) ds

dqy(s) = v sin θ (s) ds

dqt (s) = ds

dθ (s) = κ dW1(s)

dv(s) = α dW2(s)

η(s = 0) = η0

. (2.7)

The Fokker-Plank equation associated with this process, which provides
transition probability density ρT , is

(∂s − L)ρT (η, s|η0, 0) = δ(η − η0)δ(s), (2.8)

where the evolution operator is given by L = X5 − κ2X2
2 − α2X2

4 .
The structure of these processes explicitly assigns different roles to the

spatiotemporal variables q, where the stimulus is defined, and to the en-
grafted variables (θ, v). More precisely, we have advection in the q variables,
while diffusion occurs in the (θ, v) variables. It is worth noting that this
construction naturally extends the process proposed by Mumford (1994)
for the case of static images, which consists of propagation along the direc-
tion �X1 forced by diffusion over �X2, on the three-dimensional submanifold
M3 = R

2 × S1 = {ζ = (qx, qy, θ )}:

⎧

⎪
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⎪
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dqx(s) = − sin θ (s) ds

dqy(s) = cos θ (s) ds

dθ (s) = κ dW1(s)

ζ (s = 0) = ξ0.

. (2.9)

The Fokker-Plank equation associated with this process, which provides a
transition probability density ρ3, is

(∂s − L3)ρ3(ζ , s|ζ0, 0) = δ(ζ − ζ0)δ(s), (2.10)

where the evolution operator is given by L3 = X1 − κ2X2
2 .

Each of equations 2.6, 2.8, and 2.10 is defined by a Markov generator
L of a stochastic process over a manifold X, with transition probability ̺

satisfying

(∂s − L)̺(x, s|x0, 0) = δ(x − x0)δ(s). (2.11)

Our aim is to use the density ̺ to define a connectivity kernel over the
manifold X, disregarding the dynamics over the evolution parameter s.
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This connectivity can be obtained by integrating ̺ over s, against some
appropriately chosen weight p, hence defining a connectivity kernel as

Ŵ(x, x0) =

∫ ∞

0

̺(x, s|x0, 0)p(s)ds.

When p is a positive weight normalized to 1, this kernel has the well-known
probabilistic interpretation of being the transition probability for a stochas-
tic process subordinated to a time process with independent increments
distributed with p (see Sato, 1999). One common choice for the weight p
is that of Mumford (1994) and Williams and Jacobs (1995): an exponen-
tial decay representing a decay of the signal during the propagation (for a
quantitative analysis, see Bosking et al., 1997), which amounts to replacing
̺ with its Laplace transform at a fixed timescale. Another possible choice is
the one used in Sanguinetti et al. (2010) and Barbieri, Citti, Cocci et al. (2014),
where p was identically set to 1, which amounts to considering the density
of points reached at any value of the evolution parameter. In this work,
we deal with an intermediate choice between these two: we will choose a
weight depending on an evolution scale parameter H as

p(s) =
1

H
χ[0,H](s) =

⎧

⎪

⎨

⎪

⎩

1

H
s ∈ [0, H]

0 otherwise

.

This choice amounts to assigning a uniform weight to all values of the
evolution parameter, but allows as to keep track of the evolution length
over which the stochastic paths are evaluated. Our notion of a connectivity
kernel will then be

ŴH(x, x0) =
1

H

∫ H

0

̺(x, s|x0, 0)ds. (2.12)

It is worth noting that both the diffusion parameter κ and the evolution scale
parameter H could be treated in principle as additional fiber variables of
the model, linking their different associated connectivities to some promi-
nent feature of the image detected by the visual cortex (e.g., curvature and
scale). For model simplicity, though, in this letter, we treat these variables
as parameters, addressing the extension of the model in future work.

2.3 Discrete Connectivity Kernels. In this section, we outline the nu-
merical method we have used to compute the connectivity kernels ŴH ,
which are needed due to the lack of analytic solutions. A notable exception
is the SE(2) case, equation 2.10, for which an analytic solution was ob-
tained in Duits and Van Almsick (2008) and compared in Zhang, Duits, and
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Romeny (2014) to several numerical approaches, all of them different from
ours. Our choice of numerics has privileged the robustness and flexibility
of the implementation, which has been applied to all three cases.

The differential equations of type 2.11 that we need to solve originate
from a stochastic process over X, M0, MT , or M3, that we can write in terms
of its sample paths γ : R

+ → X as

dγ (s) = A(γ )ds + B(γ )dW,

where A is a vector field and B is a matrix field over X representing, re-
spectively, equations 2.5, 2.7, and 2.9. A flexible and efficient numerical
technique is then that of Markov chain Monte Carlo methods (MCMC) (see
Graham & Talay, 2013), which was implemented as follows. We first fix a
discretization over the parameter s, using without loss of generality a step
�s = 1 so that the discrete evolution will be performed over N, and a dis-
crete covering grid {� j} j∈N

of X (i.e., a collection of subsets of X satisfying

�i ∩ � j = ∅ if i �= j and
⋃

� j = X). For a given γ0 ∈ X, we then simulate N

several discrete-time random paths over X with the recursive equation

γh+1 = γh + A(γh) + B(γh)δh, h ∈ N,

where {δh}h∈N
are (vector valued) independent and identically (i.i.d.) gaus-

sian random variables, and assign to each region � j a value between 0 and

1 corresponding to the number of paths that passed through it divided by
N. This provides a distribution over the cells � j that, up to a multiplica-

tive constant, for large values of N, gives a discrete approximation of the
solution to equation 2.11 that we will denote ̺(� j, h|γ0, 0). The resulting

discrete approximation of the connectivity kernel, equation 2.12, will then
be computed as

Ŵ̂H(� j|γ0) =
1

H

H
∑

h=0

̺(� j, h|γ0, 0). (2.13)

A deeper discussion of this kind of numerical approximation for stochastic
differential equations can be found in Platen (1999).

During the simulations of section 4, we vary the parameters that charac-
terize the kernels. In order to keep track of their dependency, we then use

the notation Ŵ̂H,κ,α
0 and Ŵ̂H,κ,α

T for the discrete approximations of the con-
nectivity kernels in the cases, respectively, of equations 2.5 and 2.7, where
κ and α stand for the diffusion coefficients over θ and v, and the notation
Ŵ̂H,κ

3 for the discrete approximation of the connectivity kernel in equation
2.9, where κ is the diffusion coefficient over θ .
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Figure 2: Marginal distributions over the (qx, qy) plane of the kernel Ŵ̂H,κ

3 com-

puted for different values of the parameters k and H.

The effect of the variation of the parameter κ on the shape of Ŵ̂H,κ
3 is shown

in Figure 2; in Figure 3, we show the isosurfaces of two projections of the

connectivity kernels Ŵ̂H,κ,α
0 and Ŵ̂H,κ,α

T together with the related horizontal
curves, that is, the curves obtained from systems 2.5 and 2.7 by substituting
noise with a constant and varying the parameters κ and α. These curves
were introduced in Barbieri, Citti, Cocci et al. (2014) as the geometric coun-
terpart, in the space-time contact structure, to the horizontal curves used
in Citti and Sarti (2006) to model the orientation association fields. They
provide a natural geometric extension of the notion of association fields
to spatiotemporal stimuli with orientation and velocity features. As can
be seen, the related kernels reach their maximum values in the proximity
of the fan of such curves originating from the same starting point, which
motivates their role as a model for a spatiotemporal neural connectivity.

3 Spectral Analysis of Connectivities

In this section, we recall the main notions to be used about clustering
with spectral analysis on graphs and how to use the previously introduced
geometric setting for these purposes. The task we address falls into the well-
known class of problems broadly referred to as dimensionality reduction,
which deals with the general problems of data partitioning and locality-
preserving embeddings of high-dimensional data sets. The literature on
these topics is huge, and we have chosen to refer only to work directly
related to the one we present here, referring readers to the references in
these other works.
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Figure 3: Stochastic kernels Ŵ̂H,κ,α

0 (top) and Ŵ̂H,κ,α
T (bottom) for N = 106 stochas-

tic paths, compared to the horizontal curves calculated as in Barbieri, Citti, Cocci
et al. (2014). (Left) Isosurface plot of the kernels. (Right) Kernel projections rel-

ative to the variables (qx, qy, θ ) for Ŵ̂H,κ,α

0 and (qx, qy, qt ) for Ŵ̂H,κ,α
T (gray), under

the projections of the horizontal curves (white).

The cognitive task of spatial or spatiotemporal visual grouping can be
interpreted as a form of clustering. Two examples of spatial visual stimuli
providing standard clustering problems are portrayed in Figure 4. On the
left, three dense gaussian distributions of two-dimensional points are em-
bedded within a sparser set of random points uniformly scattered through-
out the domain. The human visual system normally segregates the points
of the gaussian clouds into three separate groups of points (objects) lying
on a noisy environment. On the right, two dashed continuous lines are
embedded in a field of segments having random position and orientation.
In this case, stimulus collinearity gives rise to a pop-out effect that makes
the two lines easily distinguishable from the background, the phenomenon
quantified by the psychophysical experiments of Field et al. (1993).

Although these examples show two quite different grouping effects, a
common underlying mechanism can be formalized as follows. Given a data
set of n points S = {xi}

n
i=1 ⊂ X living in an arbitrary metric space (X, d), the

task of grouping together the points that—according to the distance d—are
closer, or more similar to each other (so that their ensemble forms an object),
amounts to identifying K disjoint subsets Si ⊂ S, with i ∈ {1, . . . , K}, where
K − 1 of them contain points relatively close to each other and relatively far
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Figure 4: Two sample spatial visual stimuli containing perceptual units embed-
ded in random point fields.

from the rest and one of them contains points that cannot be classified in
such a way and will be considered as noise.

It is widely known that this problem is not easily resolvable with purely
clustering algorithms like K-means (see Ng, Jordan, & Weiss, 2002). A major
branch of research has been recently been devoted to the development of
spectral techniques that allow addressing these issues in terms of the spec-
tral properties of symmetric positive semidefinite affinity matrices con-
structed from the input data set. The ensemble of these techniques can
generally be subdivided into two classes (Lafon & Lee, 2006): methods
for locality-preserving embeddings of large data sets that project the data
points onto the eigenspaces of the affinity matrices (Roweis & Saul, 2000;
Belkin & Niyogi, 2003; Coifman & Lafon, 2006) and methods for data seg-
regation and partitioning that basically perform an additional clustering
step, taking as input the projected data set (Perona & Freeman, 1998; Weiss,
1999; Shi & Malik, 2000; Meila & Shi, 2001).

In section 3.1, we describe the spectral clustering algorithm we use to
perform visual grouping, and in section 3.2, we show how to use the geo-
metric feature spaces and the cortical connectivities developed in section 2
for constructing affinity matrices associated with spatial and spatiotempo-
ral visual stimuli. We apply this method in section 4 to several stimuli.

3.1 Spectral Clustering. Let us consider the data set S = {xi}
n
i=1 in the

metric space (X, d) as the vertices of a weighted graph, where the edge
weights {ai j}

n
i,1=1 define an affinity matrix A. Perona and Freeman (1998)

showed that when A is a real symmetric matrix, its first eigenvector can
serve as an indicator vector for basic grouping purposes. They also proposed
a partitioning algorithm that recursively separates the foreground informa-
tion from the data set. While this algorithm’s implementation is straight-
forward and efficient, it can easily lead to clustering errors due to noise,
nonlinear distributions, or outliers (Weiss, 1999). Perona and Freeman’s
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argument was later improved, also in view of its relation to several other
problems such as that of minimal graph cuts (Shi & Malik, 2000), by per-
forming the spectral analysis of a suitably normalized affinity matrix (see
Von Luxburg, 2007). We use the normalization proposed in Meila and Shi
(2001), which turns a real symmetric affinity matrix A into the transition
matrix P of a reversible Markov chain via row-wise normalization. More
precisely, if D is the diagonal degree matrix, having elements

di =

n
∑

j=1

ai j,

the normalized affinity matrix P is given by

P = D−1A. (3.1)

This matrix in general will not be symmetric, but it can be shown that
its eigenvalues {λ j}

n
j=1 are real and satisfy 0 ≤ λ j ≤ 1, and its eigenvectors

{u j}
n
j=1 accordingly can be chosen with real components. The clustering

properties of the eigenvectors of P can be clearly understood in the following
ideal case. Suppose that the graph G = (S, A), with nodes given by S and
edge weights given by A, has K connected components {Gi}

K
i=1, and that

all the elements of each component have the same edge weight connecting
them. The resulting normalized affinity matrix P would then be a block
diagonal matrix, with only K nonnull eigenvalues {λi}

K
i=1, each of them

equal to 1, whose corresponding eigenvectors {ui}
K
i=1 are piece-wise constant

indicator functions of the partitions.
In real applications, the affinity matrices are perturbed versions of the

block diagonal ones and do not possess an ideal binary spectrum with
purely indicator eigenvalues, thus making the partitioning problem gen-
erally illposed. The best situation one can hope for is that of a good ap-
proximation of the ideal case, where the affinity on the data set is such
that there are clusters of points that are strongly connected mainly to their
cluster neighbors and only weakly connected to the rest. In general, several
authors demonstrated that the eigenvectors {ui}

K
i=1 of the normalized affin-

ity matrix P, corresponding to the K largest eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λK,
solve the relaxed optimization problem of normalized graph cuts and give
a nice probabilistic interpretation of the clustering problem.

A crucial step in real applications is that of choosing the value of K,
that is, deciding how many eigenvalues are worth taking into considera-
tion and consequently how many eigenvectors possess relevant clustering
information. Many authors have proposed different solutions, for exam-
ple, looking for the maximum eigengap or trying to minimize a particular
cost function (see Zelnik-Manor & Perona, 2004). We decided to adopt a
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Algorithm 1: Spectral Clustering Algorithm.

1. Build the affinity matrix A on an appropriate connectivity measure

2. Compute the normalized affinity matrix P = D−1A
3. Solve the eigenvalue problem Pui = λiui, where the order of indices

i = 1, . . . , n is such that {λi}
n
k=1

is decreasing

4. Fix a threshold ǫ and a diffusion parameter τ

5. Define q = q(P; ǫ, τ ) as the largest integer such that λτ
i > 1 − ǫ for all

i = 1 . . . q

6. Define the preclusters {Ĉk}
q

k=1
⊂ R

d so that for any i = 1, . . . , n, the point

xi belongs to Ĉk whenever

k = arg max
j∈{1,...,q}

{u j(i)}

7. Fix a minimum cluster size M, join together the preclusters with less

than M elements into the cluster C0, and order the remaining

preclusters so to obtain a partition of the data set into {Ck}
K
k=1

⊂ R
d ,

where K = K(P; ǫ, τ, M).

semisupervised solution consisting of fixing an a priori significance thresh-
old ǫ, and consider as clustering eigenvectors all those ui whose λi > 1 − ǫ.

Since the more P is far from being similar to a block diagonal matrix, the
more its spectrum will be far from being dichotomous, with the ordered λ’s
decreasing more smoothly (see Figure 5), the sensitivity to small changes on
the values of ǫ may become very high in the more ill-posed cases. In order
to facilitate this delicate passage, we have used a technique suggested by
the well-known diffusion map approach (Coifman, Maggioni, Zucker, &
Kevrekidis, 2005; Coifman & Lafon, 2006; Lafon & Lee, 2006): we have in-
troduced an auxiliary thresholding integer parameter τ and have evaluated
the exponentiated spectrum {λτ

i }
n
i=1, which for sufficiently large values of τ

is closer to dichotomy, against the threshold ǫ. This exponentiated spectrum
has an easy probabilistic interpretation, being the spectrum of the matrix Pτ .
Indeed, due to the normalization, equation 3.1, P can be seen as the Markov
transition matrix of a random walk over the graph, so that Pτ represents
the transition probability of the same random walk in τ steps.

Once the number K of eigenvectors to use has been selected, we have
used a variation of a simple clustering technique proposed in Kannan et al.
(2004) in order to extract the clustering information. It corresponds, in the
notation of these authors, to the clustering of the rows of P based on its

reduced matrix of eigenvectors Û = [u1, . . . , uq]. The main differences are

that once the thresholding parameters are fixed, this algorithm dynamically
assigns the number of (pre)clusters, and that a notion of background is
explicitly introduced in the last step. Algorithm 1 is our spectral clustering
algorithm.
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As a first application of algorithm 1, consider the two data sets presented
in Figure 4 as sets of points in R

2 endowed with the isotropic Euclidean
distance d(x, y) = ‖x − y‖, and define the affinity matrix

ai j = e−
d(x

i
,x

j
)2

2σ2 , (3.2)

where σ is a scale parameter that has to be chosen based on the characteris-
tics of the data set to be clustered. The result is two connected graphs where
the similarity between vertices decays as a gaussian with their Euclidean
distance. This is intuitively suitable to describe the visual clustering of the
first data set, but does not take into consideration the kind of similarity
that characterizes the visual grouping of the second one. The results of the
application of the spectral clustering algorithm with affinity given by equa-
tion 3.2 are shown in Figure 5. In the first case, the algorithm performs the
clustering process correctly, automatically finding the number of the main
perceptual units and assigning the remaining elements to the background
cluster. It is worth noting that the spectrum of the normalized affinity ma-
trix Pτ counts many eigenvalues that are close to 1, each representing only
a single perceptual unit, that are mostly composed of a few elements. The
segment data set was not clustered correctly; this was predictable, as these
kind of stimuli are characterized by a local feature of orientation and hence
should be better considered on the position-orientation domain R

2 × S1,
together with an anisotropic affinity.

3.1.1 On Possible Neural Implementations of the Algorithm. Besides the
purely computational presentation that we have given of our spectral clus-
tering algorithm, it may be relevant to consider whether plausible neural
computations exist that could be responsible for its implementation in the
visual cortex.

The discussion in section 2 and the work of Barbieri, Citti, Cocci et al.
(2014) on the psychophysical and physiological nature of the connectiv-
ity kernels constitute our main motivation to consider the first step of the
algorithm as a cortical implementation of affinities in the feature spaces. Re-
garding the anatomical implementation, these kernels may be implemented
via long-range connections in a single area, as in Ben-Shahar and Zucker
(2004). However, they may also be compatible with an effective connectivity
due to the integration of different areas (see Angelucci et al., 2002).

For what concerns the normalization step 2, we observe that this is
formally analogous to the one introduced in Tononi, Sporns, and Edelman
(1994), which is generally motivated by evidence that biological neural
systems tend to adjust the weight of afferent connections so that a neuron
with few incoming connections will weight those inputs more heavily than a
neuron with many incoming connections (see also the discussion in (Barnett,
Buckley, & Bullock, 2009)). However, these effects mainly refer to long-term
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learning processes and involve all afferent connections, while our step 2 is
related only to the ones that are activated by stimuli. Short-term adaptive
effects providing the remaining normalization could be due to dendritic
interactions (see Mel & Schiller, 2004, or London & Häusser, 2005).

With respect to step 3, previous work such as Bressloff, Cowan, Golubit-
sky, Thomas, and Wiener (2002) and Faugeras, Veltz, and Grimbert (2009)
describes a possible implementation of the spectral analysis as a mean field
neural computation, obtaining the emergence of eigenvectors of the con-
nectivity as a symmetry breaking in the evolution equation associated with
sufficiently high eigenvalues. An extension of this work can be found in
Sarti and Citti (2014), who show that in the presence of a visual input, the
emerging eigenvectors correspond to visual perceptual units, which are ob-
tained from a spectral clustering on excited connectivity kernels. According
to these models, when the magnitude of an eigenvalue trespasses a given
threshold, its corresponding eigenvector becomes a locally unstable solu-
tion, hence generating a distinguishable activity pattern. This threshold is
what we aim to reproduce with steps 4 and 5.

Coming to step 6, we first note that its combinatorial formulation rep-
resents a concrete implementation of the following principle: eigenvectors
with high eigenvalues represent perceptual units, and a point of the visual
stimulus is assigned the unit whose eigenvector component over such a
point has the higher magnitude. As we will discuss in detail, such a clus-
tering will perform better the more the affinity matrix is close to a block
diagonal matrix, since in such cases, the eigenvectors relative to high eigen-
values will be close to indicator functions of weakly overlapping regions
of the stimulus. In these situations, the concrete neural implementation of
steps 3, 4, and 5 already includes our step 6. Indeed, the computation of
an almost-indicator eigenvector that is an unstable solution to the neural
field equation means that the underlying cells have been selected and par-
ticipate in the associated activity pattern. We also observe at this point that
in this normalized model, all sufficiently high eigenvalues have very close
magnitudes that in the ideal case is 1 for all of them. If a neural field model
with two populations is considered, the magnitude of the eigenvalue is
associated with the frequency of oscillation of the neural population, which
in this situation is almost the same for all perceptual units. This aspect
marks a substantial difference with other nonnormalized models of spectral
neural computations. Indeed the binding process associated with percep-
tion (Gray & Singer, 1989) shows coherent activity in a single frequency
range (the gamma range), a behavior that can be reproduced by our model,
where all the eigenvualues associated with perceptual units are almost the
same.

The aim of step 7 is to measure the salience of the perceptual units and
introduce a thresholding on it. The notion of salience that we consider is pro-
portional to the total neural activity involved in the detection of a perceptual
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unit that, in the special artificial cases under consideration, corresponds to
the number of related elements of the data set.

3.2 Cortical Affinity Matrices. As we described in section 2, a spatial
or a spatiotemporal visual stimulus is represented by different classes of
V1 specialized neurons on different kinds of higher-dimensional feature
spaces, and we have focused on three of them that we have called M0, MT ,
and M3. The neural response, equation 2.3, is in general non-null on the
whole feature space, but according to the stronger or weaker presence of the
locally preferred feature, the magnitude of the response will be higher or
lower. Here we will adopt a great simplification and consider the response
magnitude to be allowed to take only value 0 or 1, so that the data sets we
will deal with will be purely point data sets embedded in a feature space.
The main advantage of this simplification is the possibility of testing the
grouping capabilities of the geometric connectivities in the feature spaces
without dealing with the many delicate questions related to the stimulus
representation itself. Only a few classes of stimuli can be represented in such
a way. For this reason, we work only with synthetic stimuli and generate the
corresponding data sets directly in the feature space. This seems to be the
safest way to separate the problems related to the geometric properties of
the proposed connectivity from the ones related to the good representation
of stimuli onto the feature space.

Let X be a feature space, such as M0, MT , or M3; {� j} j∈N
be a discrete

covering such as the one introduced in section 2.3; and S = {xi}
n
i=1 ⊂ X be the

data set representing the visual stimulus on this higher-dimensional space,
being of type S0 = {ξi}

n
i=1 ⊂ M0, ST = {ξi}

n
i=1 ⊂ MT or S3 = {ζi}

n
i=1 ⊂ M3.

Our aim is to define an affinity that makes two points xi and xj more similar

the higher is their geometric connectivity, computed as in equation 2.12

with Ŵ̂H(xi, x j). A necessary compatibility condition between the data set

and the discretization of the space is that each � j contains at most one point

xi of the data set. This indeed makes the kernels well defined on the data

set and allows us to write Ŵ̂H(xi, x j). However, since the associated Markov

generator L is not self-adjoint, this kernel is not symmetric. We then need to
construct symmetric affinities from these connectivities or, rather, adapt the
previously described theoretical setting to couple with this asymmetry. We
will choose one or the other way depending on the kernel and the geometry
of the information carried.

3.2.1 Reciprocal Connectivities for Spatially Distributed Features. A reason-
able neural assumption when modeling long-range horizontal connection
among V1 cells on M3 or on M0, which refer to the spatially distributed
features of local orientations and local velocities, is that these connections
are reciprocal (Kisvarday & Eysel, 1992). This means that two cells that are
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selective for the features (θ1, v1) and (θ2, v2) are assumed to be symmet-
rically connected. We then take as affinities AH = (aH

i j ) a symmetrization

of the corresponding connectivity kernels. The symmetrization we have
chosen consists of taking the Hermitian component of the kernels:

aH
i j =

Ŵ̂H(xi, x j) + Ŵ̂H(x j, xi)

2
. (3.3)

This symmetrization has a specific geometric meaning, which can be easily

understood for the kernel Ŵ̂H,κ
3 : it is equivalent to sum the fundamental so-

lution of equation 2.10 with the fundamental solution of the same operator
under an angular shift of 180 degrees in the variable θ . Such rotation turns
the drift term X1 into −X1, hence transforming the forward Kolmogorov
equation into the corresponding backward equation, so the sum of the two
solutions is clearly symmetric. That sum allows us to identify angles up
to 180 degrees, hence turning a process that was a priori defined over the
group SE(2) of positions and angles into a process properly defined on po-
sitions and orientations. For this reason, such symmetrization is customary
when dealing with such nuclei with the purpose of describing pure orien-
tation (see Sanguinetti et al., 2010). We observe that this symmetrization
does not modify the single cell response of modeled simple cells, which still
detect angles, but rather introduces a symmetry in their geometric connec-
tivities so that a cell having a preferred angle is considered to be long range
connected to other cells along the two angles corresponding to the asso-

ciated orientation. The same argument applies to the kernel Ŵ̂H,κ,α
0 , whose

Fokker-Planck operator differs only for an additional diffusion term on the
velocities.

Depending on the application to clustering with the kernels Ŵ̂H,κ,α
0 or

Ŵ̂H,κ
3 we will then obtain from equation 3.3 different affinity matrices over

data sets {ξ j} ⊂ M0 or {ζi} ⊂ M3. The associated spectral clustering will

then depend on the parameters (ǫ, τ ) and M from the algorithm and on the
parameters H, κ , and α from the kernels.

The grouping capabilities of such anisotropic affinities, and the role of

the parameters, may be first evaluated on the simplest connectivity Ŵ̂H,κ
3 .

In order to do so, we have applied the spectral clustering algorithm with
the cortical affinity to the second stimulus of Figure 4. Such stimulus was
indeed considered as a data set in M3 = R

2 × S1, each segment having a
position in R

2 determined by its center and a position in S1 corresponding
to its orientation. The results obtained are displayed in Figure 6 for different
sets of kernel parameters H and κ . The clustering parameters used here and
in the examples of the next sections were ǫ = 0.05, τ = 150, and M = 3. We
have kept those parameters fixed for all the tests in order to focus on the
differences in the grouping properties due to the connectivity kernels.
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Figure 6: Result of the proposed algorithm for the second example data set and

different parameters for the kernel Ŵ̂H,κ

3 . Columns and shadings organized as in
Figure 5. Different kernel parameters modify the look of the affinity matrix, its
spectrum, and the resulting data set partitioning.

As we can see, the presence of an affinity that is more semantically
and geometrically adapted to the data set with respect to equation 3.2
positively influences the grouping capabilities of the method. However,
this first simulation already shows the relevance of the kernel parameters
on the quality of the grouping.

For the top plots of Figure 6, we have used an evolution integration step
of H = 40 and an orientation diffusion coefficient κ = 0.014, which coin-
cides with the curvature of the semicircular object. The algorithm clearly
succeeds in distinguishing the two perceptual units from each other and
correctly assigns the remaining elements to the same background and noise
partition. For the middle plots, we have reduced the value of the diffusion
constant to κ = 0.0035: while the algorithm correctly retrieves the straight
contour and distinguishes the units from the background, the semicircle
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Figure 7: Affinity matrix (left) and grouping results (right) of a lemniscate with
random noise. The segments pertaining to the lemniscate are assigned to the
same group (shown in blue), while the others are assigned to the background
partition (shown in red).

gets overpartitioned. As in the previous case, the affinity matrix is close to
being a block diagonal matrix, but in this case, the partitioned connected
components of the subgraph containing the two objects are more than two.
Again setting the diffusion coefficient to the original value, for the bottom
plot, we have increased the evolution integration step value to H = 100. As
the stimulus domain is 200 × 200 pixels wide, this means that every seg-
ment in the example could potentially have a non-null connectivity value
with almost half of the other segments if the cocircularity conditions are

satisfied. Indeed, by observing the resulting affinity matrix AH=100,κ=0.014
3 ,

we can see high affinity values between the objects and the random noise
and in between the background elements. Again, even if the straight line is
correctly retrieved as a single object, two random elements, approximately
cocircular with the beginning of the line, are incorrectly interpeted as being
part of the object. Furthermore, the semicircular contour again gets over-
segmented, and many of the randomly collinear points, very far from each
other, are interpreted as being a perceptual unit.

We stress that these kernels do not prevent contours having multiple
orientations in the same spatial position to be recognized as one object. For
example, Figure 7 show, a lemniscate embedded in a field of randomly ori-
ented segments. On the lifted space where the kernel lives, this eight-figure
contour is indeed continuous and nonoverlapping, so that the grouping al-
gorithm will assign all of its elements to the same perceptual unit, as human
vision would tend to do.

3.2.2 Time Asymmetry: A Directed Graphs Approach. In order to set an
affinity over a space-time data set ST = {ηi}

n
i=1 ⊂ MT , one must consider
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the intrinsic notion of causality associated with the time component of
η, which, from the neural point of view, represents the mean activation

time of a V1 cell. This causality is reflected in the kernel Ŵ̂H,κ,α
T so that

any symmetrization would compromise the information content carried by
such kernels and negatively affect the efficiency of the grouping algorithm.
We then need to work with a nonsymmetric affinity matrix AH,κ,α

T , hence
defining a directed graph, given by

(

aH,κ,α
T

)

i j
= Ŵ̂H,κ,α

T (ηi, η j). (3.4)

In order to cope with this asymmetry, we modify some of the spectral clus-
tering criteria. We still first normalize the affinity matrix as in equation
3.1. This produces a transition probability matrix PT, which, however, is
associated with a random walk that does not satisfy the detailed balance
condition because the Markov chain is no longer reversible. Its eigenvalues
{λi}

n
i=1 and eigenvectors {ui}

n
i=1 will then in general be complex valued. In or-

der to perform spectral clustering in this situation, we follow the approach
introduced in Pentney and Meila (2005), which consists concretely in re-
placing the eigenvectors {ui} with vectors obtained by the sum of their real
and imaginary parts {u+

i = ℜui + ℑui} and defining their clustering strength
in terms of the square modulus of their eigenvalues, hence performing the
thresholding step 5 of algorithm 1 with respect to the set of real numbers
{|λi|

2}n
i=1.

This is by far not the only possible choice. In particular, this choice
will not preserve the interpretation of minimal graph cuts; rather, it will
produce clusters with the property of having elements with approximately
the same outward transition probability. Indeed, as Meila and Pentney
(2007) discussed, the minimal cuts clustering and the probabilistic clustering
in general have different solutions for directed graphs, which sets a marked
difference with the undirected case associated with symmetric affinities.

The choice of working with the couples {(u+
i , |λi|

2)}, which are not in
general eigenvalue-eigenvector pairs of a Hermitian matrix, can be better
understood as follows. We can see that the eigenvalue problem associated
with the real n × n matrix P = D−1A for a nonsymmetric affinity A can be
restated equivalently as an eigenvalue problem with real eigenvectors by

doubling the dimension of the space and replacing P by P̃ =

(

P 0

0 P

)

. In a

more formal way, let

Puλ = λuλ, Puλ = λ uλ, (3.5)

and call λ = x + iy. We introduce the following notation: set �uλ = (
u

λ

u
λ

) ∈ C
2n,

denote with P̃ =

(

P 0

0 P

)

= I2×2 ⊗ P, and also let �λ =

(

λ 0

0 λ

)

⊗ In×n,
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where ⊗ is the usual Kronecker product and In×n stands for the n × n iden-
tity matrix. Then solving problem 3.5 for uλ ∈ C

n is equivalent to solving

P̃�uλ = �λ�uλ (3.6)

for �uλ ∈ {(z1, z2) ∈ C
2n : z2 = z1}.

Consider now the auxiliary real vectors �vλ =

(

u+
λ

u−
λ

)

=

(

ℜuλ + ℑuλ

ℜuλ − ℑuλ

)

. If

we introduce the matrix B =

(

1−i
2

1+i
2

1+i
2

1−i
2

)

⊗ In×n, we have that�vλ = B�uλ, and

we can rewrite equation 3.6 as the real system for �vλ ∈ R
2n,

P̃�vλ = �λ�vλ, (3.7)

where �λ =

(

x y

−y x

)

⊗ In×n = B�λB−1 ∈ R
2n×2n. The magnitude of the ac-

tion of P̃ over �vλ is given by det �λ = |λ|2, which provides a natural cluster-

ing parameter to threshold. Moreover, since the matrix P̃ is a double copy
of the matrix P, in order to cluster its rows, it is sufficient to work on a
half-dimensional space and choose, without loss of information, only the
u+

λ component of �vλ.

4 Visual Grouping with Cortical Affinities

Several phenomenological findings indicate that the grouping properties
obtained by spatial collinearity can easily be broken if one associates a speed
and an orthogonal direction of movement to each oriented segment. Limits
have been found on the maximum rate of change of local speed along a con-
tour that makes possible the perception of boundaries and shapes. Indeed,
a random speed distribution over a dashed line could completely destroy
the perception of a single unit as a whole while enhancing the impression
of different segments pertaining to the random background field. These ob-
servations have led to the notion of motion contour in Rainville and Wilson
(2005), where it is shown by psychophysical experiments how the brain
groups features together while also relying on the local speed perpendicu-
lar to their orientation axis, with coherent velocities being represented by
velocity fields that vary smoothly over space. These authors expanded the
already known notions that local stimulus velocity is discernible (thus deter-
minant for grouping purposes) only when it is orthogonal to the perceived
contour or is not part of a trajectory (Hess & Ledgeway, 2003; Ledgeway
et al., 2005; Verghese & McKee, 2006). Coherently, the analysis carried out
in Cocci et al. (2012) over a data set of cortical neurons in the primary vi-
sual cortex showed how the spatiotemporal shape of their RPs is biased to
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optimally measure the local stimulus orthogonal velocity. Thus, it may be
inferred that stimulus local direction of movement and speed are additional
features driving the spatial integration involved in the perception of shapes
and contours.

The simulations performed in this section deal with the geometric con-
nectivities constructed in section 2, which aim to model the neural connec-
tions in the cortical area V1 of the visual cortex (Barbieri, Citti, Cocci et al.,
2014). These connectivities are defined in feature spaces that include the
local orthogonal velocities, which are detected by V1 specialized cells.

4.1 Grouping with Spatial Features. The perceptual bias toward
collinear stimuli has classically been associated with the long-range hor-
izontal connections linking cells in V1 having similar preferences in stim-
ulus orientation. This specialized form of intrastriate connectivity pattern
is found across many species, including cats (Kisvarday, Toth, Rausch, &
Eysel, 1997), tree shrews (Chisum, Mooser, & Fitzpatrick, 2003), and pri-
mates (Angelucci et al., 2002), the main difference being the specificity and
the spatial extent of the connections. Furthermore, axons seem to follow
the retinotopic cortical map anisotropically, with the axis of anisotropy be-
ing related to the orientation tuning of the originating cell (Bosking et al.,
1997). The clustering algorithm with the affinity matrix AH,κ

3 , constructed

as in equation 3.3 using the kernel Ŵ̂H,κ
3 , may then be neurally motivated by

the assumption that contour completion and visual grouping are strongly
influenced by the mutual position and local orientation of the elements in
the visual space. Other prominent features of the visual stimulus, namely,
its velocity and direction of motion, seem to play an important role in the
spatial integration of oriented elements (Rainville & Wilson, 2005). In ad-
dition to stimulus orientation, cells in the striate areas are selective for the
direction of motion orthogonal to the cell’s preferred orientation (DeAngelis
et al., 1995; Barbieri, Citti, & Sarti, 2014). These selectivities are also struc-
turally mapped in the cortical surface, with nearby neurons being tuned for
similar motion direction (Weliky, Bosking, & Fitzpatrick, 1996), and it has
been shown that excitatory horizontal connections in the V1 of the ferret
are strictly iso-direction-tuned (Roerig & Kao, 1999). In order to model the
grouping effect of these connectivities, we make use of the affinity matrix

AH,κ,α
0 constructed with the extended kernel Ŵ̂H,κ,α

0 .

4.1.1 The Stimuli. We have considered a data set made of n points {ζi}
n
i=1

in the feature space of positions and orientations M3 = R
2 × S1 having the

following structure. Two perceptual units consisting of segments aligned
along circle arcs with curvature k are embedded in a background environ-
ment of r segment having random positions and orientations. The data set
will be denoted as Sk

r and is depicted in Figure 8 (top).
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Figure 8: An instance of the data set Sk
r , where the left column shows the

corresponding visual stimulus, the middle column shows the data set in the
feature space, and the right column shows the perceptual units, which constitute
the target segmentation objects, which in this instance have curvature k = 0.023.
The top row shows the data set in the feature space M3 = R

2 × S1, and the
bottom row shows it in the feature space M0 = R

2 × S1 × R
+ with a velocity

assignment producing a shape deformation. The bottom left image contains the
spatial stimulus together with the magnitude of its instantaneous orthogonal
velocity (drawn as arrows).

By assigning to each point ζi an instantaneous orthogonal velocity vi,
the data set can be considered as n points {ξi = (ζi, vi)}

n
i=1 embedded in the

larger feature space M0 = R
2 × S1 × R

+. A velocity field that is constant on
each perceptual unit would describe a rigid motion, and the analysis of such
a case with affinity AH,κ,α

0 can be easily understood as a direct extension of
the static case, clearly providing grouping improvement. A more interesting
case is that of a velocity field that changes along each perceptual unit,
which represents shape deformation. We then generated a distribution of
the velocity feature in the following way: given a fixed maximal velocity V,
we assigned to points belonging to the perceptual units a velocity feature
vi that varies sinusoidally along the arc circle, passing from zero to V, and
assigned a random velocity between 0 and V to the background points. The
data set {ξi}

n
i=1 ⊂ M0 is depicted in Figure 8 (bottom).

4.1.2 The Numerical Experiments. We have applied the method described
in section 3 using the same spectral clustering parameters as for the exam-
ples of Figure 6—ǫ = 0.05, τ = 150, and M = 3—on a set of stimuli Sk

r for
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different values of k and r. We used both the affinity AH,κ
3 on M0 = R

2 × S1

and AH,κ,α
0 on M0 = R

2 × S1 × R
+, in this case setting the maximum veloc-

ity assignment to V = 5. We then evaluated the grouping performances for
various kernel parameter sets (H, κ ) and (H, κ, α) by computing, for each
iteration, a percentage error measure,

E =
E1 + E2 + E3

n
,

where n is the total number of points in the stimulus, E1 is the number of
points incorrectly assigned to the noise or background set, E2 is the number
of random points incorrectly recognized as part of a perceptual unit, and
E3 is the points pertaining to an over- or underpartitioned contour. In order
to correctly compare results obtained by partitioning the data set with a
different number of random points, we averaged E over 100 repetitions,
where at each repetition, we changed the random part of the stimulus and

calculated new kernels Ŵ̂H,κ
3 and Ŵ̂H,κ,α

0 . The resulting mean percentage error

measure Ê has been taken as a measure of the quality of the grouping.

4.1.3 The Results. The results of the experiments are shown in Figures 9
and 10.

In Figure 9a, we represent with a grayscale intensity the error Ê for the
spectral clustering of S0.056

120 with the affinity AH,κ
3 in R

2 × S1 by varying the
parameters (H, κ ) of the kernel. The parameters (k, r) = (0.056, 120) cor-
respond to the stimulus in the feature space of positions and orientations
composed of the perceptual units with the highest curvature and having the
highest number of random elements among all those tested in our analysis.
A first significant feature that emerged is that the set of kernel parameters
that gives the lowest grouping error value is κ = 0.056, H = 20, that is, the
same curvature value of the contours in the stimulus and short stochastic
path length. Moreover, we observe that by maintaining the kernel parameter
H set to its minimum value and decreasing the kernel diffusion coefficient κ ,

we have an approximately constant higher error value Ê, whose dominat-
ing components are E1 and E3. This indicates that a reduction in the width of
the fan of stochastic curves generating Ŵ3 impairs the connectivity between
high curvature contour elements, so that the algorithm perceives them as
separate units and assigns part or all of them to the background set. It is
also worth noting that regardless of the kernel diffusion coefficient, increas-
ing the parameter H has a negative impact on the quality of the grouping,
this time mainly because of the error component E2. This was predictable
because the longest stochastic path lengths can generate affinities between
elements very distant from each other. A high number of random elements
can in this case induce the algorithm to recognize them as part of a distant
contour. This gives worse effects when both κ and H have high values,
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Figure 9: Parametric analysis for visual grouping in R
2 × S1 and R

2 × S1 × R
+.

The intensity of the shading each region is proportional to the percentage
of misinterpreted points averaged over 100 repetitions. (a) Grouping results
for the stimulus S0.056

120 in R
2 × S1 by varying the kernel parameters (κ, H).

(b) Grouping results as in panel a for the stimuli Sk
r in R

2 × S1 by varying the
stimulus parameters (k, r). (c) Grouping results for the stimuli Sk

r in R
2 × S1 × R

+

with nonuniform velocity assignments. (d) Comparison of the grouping perfor-
mances in position-orientation versus position-orientation-velocity with sepa-
rated analysis of the three error sources.

because with the associated kernel, a point in M3 can potentially be con-
nected to distant elements having a very different orientation. In such cases,
the error component E3 makes a contribution, as the two perceptual units
can be underpartitioned and interpreted as one unique object, each one
having reciprocally affine contour elements.

Figure 9b resumes the same kind of grouping analysis carried out with
30 different stimuli Sk

r ∈ M3 by varying the parameters k and r. We notice
a positive correlation between the stimulus contour curvature k and the
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smallest value of the kernel diffusion coefficient κ that provides optimal
grouping. Smaller values of κ mostly lead to overpartitioned or unrec-
ognized contours, while higher κ’s generally do not impair the contour
grouping capability of the algorithm, even if we have observed that the
error component E2 tends to grow together with the number of random
elements in the space r and the length of the stochastic paths H. In gen-
eral, thus, in order to correctly identify contour-like objects, the algorithm
should be based on a connectivity whose diffusion coefficient is above the
contour’s curvature.

These results suggest that for a successful grouping, the parameters κ

and H could be associated with some property of the image detected by the
visual cortex. In the discrete case, for example, the model could be extended
by adding two fiber variables, local stimulus curvature and scale, governing
the numerical value taken by the two connectivity parameters (August &
Zucker, 2003). One could also argue—and our results are consistent with this
view—that curvature and scale are very close concepts, strongly influencing
each other, so that κ and H should not be independent. A deeper study of
these aspects will be addressed in a future paper.

In Figure 9c, we show the grouping results obtained by analyzing the
stimuli Sk

r embedded in M0, with the described nonuniform velocity as-

signment, using the connectivity Ŵ̂H,κ,α
0 . From a first visual inspection, we

can see that the correlation constraint between the contour curvature k and
the orientation diffusion coefficient κ is still present. However, the error at
the highest values of κ and H is significantly reduced, if not almost com-
pletely eliminated, for the stimuli having fewer random elements due to
the influence on the algorithm of correlations on the direction of motion. We
have not presented the detailed analysis on the parameter α, which is very
similar to the one related to κ . We limit ourselves to the observation that
the best results were obtained for values of α close to α =

π

L
V , where L is

the length of the perceptual unit (circle arc) and V is the maximum velocity
assigned, which was set to V = 5. The reason can be explained in terms of
the velocity assignment, which we chose to be sinusoidally varying along
the contour, namely,

v(φ) = V sin

(

πφ

L

)

+ const.,

where φ ∈ [0, L] is the arc parameter of the circular curves. Then α = max |v̇|,
which is a diffusion constant that ensures that grouping capabilities will be
preserved even at the maximum local speed change rate along the contour.
In particular, the results shown refer to clustering with the parameter α set
to α.

A comparison of the grouping quality obtained with the orientation con-

nectivity Ŵ̂H,κ
3 and the orientation and velocity connectivity Ŵ̂H,κ,α

0 , with
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Figure 10: Results of the proposed algorithm for a data set with perceptual
units with different curvatures. (Left column) Results obtained by using the
position-orientation connectivity given by Ŵ3. (Right column) Results obtained
by using the position-orientation-velocity connectivity given by Ŵ0. Affinity
matrices built with Ŵ0 are cleaner than those built with Ŵ3; they generally avoid
spurious affinities between perceptual units and noise while maintaining the
approximate object block diagonal structure.

separate presentation of the three error sources considered, is shown in
Figure 9d. The histograms correspond to the average of the three error
components E1, E2, and E3 over all stimuli, the kernel parameters, and the
repetitions. The analysis of E1 shows that both kernels tend to confuse the
perceptual units with noise in approximately the same way. However, from
the analysis of E2, we can see that information on local velocity signifi-
cantly enhances the performance of the algorithm in the presence of noise,
improving the assignment of the random elements to the background. Also,

the analysis of E3 shows that the connectivity Ŵ̂H,κ,α
0 reduces the underpar-

titioning effect of the stimulus, which typically occurs when the parameters

(κ, H) make Ŵ̂H,κ
3 too long range and widespread.

Finally, some particular cases of the discussed grouping simulations are

shown in Figure 10, where the use of Ŵ̂H,κ,α
0 instead of Ŵ̂H,κ

3 concurs in
reducing different kinds of grouping errors of the algorithm.
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4.2 Spatiotemporal Grouping. In this section, we consider grouping
performed in space and time. Similar to what happens for the integration of
spatial visual information, our visual system is capable of easily predicting
stimulus trajectories and grouping together elements having similar motion
or apparent motion paths. At the psychophysical level, the facilitation in
detecting moving stimuli, given a previous cue with a coherent trajectory,
is found to be significantly higher than the one expected from the temporal
response summation given by the onset and offset dynamics of classical RPs
(Verghese et al., 1999). One possible explanation could be the existence of a
specialized facilitatory network linking cells anisotropically and coherently
with their direction of motion.

Ledgeway and Hess (2002) studied the perception of spatial contours
defined by nonoriented stimuli moving coherently and tangentially along a
path. They suggested rules similar to the ones driving facilitation in position
and orientation and hinted a possible role played by a trajectory-specialized
network. More possible evidence of a trajectory-driven connectivity comes
from a recent study of the dynamics of neural population response to a
sudden change of motion direction, where it is shown that for low angular
changes, a nonlinear part of the response provides a sort of spatiotemporal
interpolation (Wu, Tiesinga, Tucker, Mitroff, & Fitzpatrick, 2011).

We recall also that at the physiological level, although the basic mech-
anisms of velocity detection are already present in V1, the estimation of
stimulus motion has been classically associated with neurons in visual area
MT/V5. There, cells with high selectivity in direction of movement and ex-
tended sensitivities to a wide range of stimulus velocities are indeed present
(Maunsell & Van Essen, 1983; Rodman & Albright, 1987). Extrastriate areas
are retinotopically organized, with anisotropic and asymmetric connectiv-
ity bundles reaching columns of cells tuned for similar orientation and
direction preference (Malach, Schirman, Harel, Tootell, & Malonek, 1997).

On the other hand, the important role played by V1 collinear horizontal
connectivity in motion perception has been suggested by Series, Georges,
Lorenceau, and Frégnac (2002), after showing that perception of speed is
biased by the direction of motion. Also, recent results in Pavan et al. (2011)
showed how trajectories of oriented segments are significantly more de-
tectable for orientations orthogonal to the path of motion, thus supporting
the hypothesis of two different facilitatory mechanisms (Hess & Ledgeway,
2003).

4.2.1 The Stimulus. The data set we used in this simulation is depicted
in Figure 11. We created a set of points ηi = (xi, yi, ti, θi, vi) ∈ MT = R

2 ×

R
+ × S1 × R

+, represented in the figures by segments moving in time for
nt = 32 frames. Three perceptual units, a circular shape of curvature k = 0.02
and two bars, move as rigid bodies, with the circle translating with speed
Vcirc = 7.5 spatial units/frame in the opposite direction to the bars, which
both move with speed Vbars = 3.75 spatial units/frame. We recall that
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the fiber coordinate of local velocities vi of each point represents just the
projection onto �X3, that is, orthogonal to the segment orientation, of the
real velocity vector. Similar to what we did in the previous example, these
perceptual units were embedded into a background consisting of a variable
number r of random elements, each having a uniform motion path along
its �X3 direction during all the stimulus frames.

4.2.2 The Numerical Experiment. The aim of the grouping algorithm that
we use for this experiment is to carry out a segmentation of the full spa-
tiotemporal surfaces representing the moving objects.

From the point of view of the structure of the stimulus that gives rise to
the data set, this represents a composite task. It consists of a visual grouping
at the spatial level, which identifies the objects, and a visual grouping at the
spatiotemporal level, where each previously identified cluster is recognized
as constituting the same object during its movement. It is then reasonable to

assume that the two connectivity mechanisms Ŵ̂H,κ,α
0 , modeling the interac-

tions between points of a motion contour, and Ŵ̂H,κ,α
T , which models motion

integration of point trajectories, combine in the clustering of spatiotemporal
perceptual units.

The presence of more than one grouping law governing the detection of
contours, with different underlying implementing structures, was experi-
mentally confirmed at the psychophysical level in Ledgeway et al. (2005).
Moreover, the composition of the different mechanisms that resulted is
compatible with a probabilistic summation.

Guided by such arguments, we then performed the spectral clustering on
this data set with a matrix P obtained as the sum of the transition probabil-
ity (normalized affinity) matrices obtained from the cortical connectivities

Ŵ̂H,κ,α
0 and Ŵ̂H,κ,α

T . More precisely, we constructed the symmetric matrix A0,

based on Ŵ̂H,κ,α
0 as in equation 3.3, with the additional condition of setting

zero affinity between points having different temporal coordinates, and

we have constructed the nonsymmetric matrix AT, based on Ŵ̂H,κ,α
0 as in

equation 3.4. We then normalized both of them as in equation 3.1, obtain-
ing the transition probabilities P0 and PT, and we defined the combined
spatiotemporal normalized affinity as

P =
P0 + PT

2
. (4.1)

From the neural point of view, we observe that by relying on the normal-
ized affinity, equation 4.1, we are implcitly assuming a much faster propa-

gation along the connectivity defined by Ŵ̂H,κ,α
0 with respect to the temporal

dynamics. More precisely, by assigning zero A0 affinity to temporally sepa-
rated points of the data set, we are considering spatial connections that fully
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operate at each single frame, which corresponds to an almost instantaneous
velocity detection and a high horizontal transmission speed.

Finally, in order to perform the spectral clustering over P, we use the
approach described in section 3.2.2. Indeed, since AT is not symmetric,
P in general will have complex eigenvalues and eigenvectors, but it was
constructed in such a way to keep a probabilistic structure.

4.2.3 The Results. The results obtained for various instances of the circle
and bars stimulus by varying the number of background elements r are
shown in Figure 12.

The parameters chosen to run the algorithm were ǫ = 0.01, τ = 150, and
M = 3, where a smaller threshold ǫ with respect to the previous experiments
is suggested by the presence of a semantically and geometrically sharper
affinity. The integration parameter was set to H = 40 for both Ŵ0 and ŴT ,
according to the quality indications of the previous experiment. Similarly,
we have set the angular diffusion parameters to the same value κ = 0.014
for both kernels.

With respect to the diffusion coefficient over velocities, we are showing
the results for values that for both kernels stay close to the optimal value

for the circle discussed in section 4.2.2, that is, α =
kV

circ

2
= 0.75. Namely, we

have set α = 0.5 for Ŵ0 and α = 1 for ŴT . In contrast to all other parameters,
which were chosen to be equal for both kernels, this one is indeed observed
to perform better when it is larger on the temporal connectivity. Such behav-
ior is coherent with the considerations made in Hess and Ledgeway (2003)
and Verghese and McKee (2006), where the effect of local changes in the
velocity of a motion contour over the perception of visual units is studied.
The results of this work show that such changes tend to weaken the visual
grouping, but this effect is much stronger when changes are orthogonal
to contours with respect to changes that are tangential to trajectories. We
are performing visual grouping at both the level of motion contours, with
Ŵ0, and of trajectories, with ŴT , describing two copresent connectivities,
and the parameter α describes the sensitivity of the corresponding kernel
to local changes in the velocity, so the different levels of α reflect a higher
sensitivity (lower diffusion) to velocity for the Ŵ0 connectivity and a lower
sensitivity (higher diffusion) for the ŴT connectivity.

From Figure 12 it is possible to see how spectral clustering with the
composite affinity, equation 4.1, performs in recognizing the spatiotemporal
surfaces relative to the moving circle and the bars with different noise levels.
It is successful in clustering the perceptual units, separating clearly their
boundaries from the background and between themselves, up to relatively
high noise levels. When the number r of random elements was lower than
about 50% of the total, we obtain correct clustering, but for higher noise
values, the algorithm began to give poor grouping results, as in the case
of r = 100 random segments, which correspond to about 64% of the total.
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Figure 12: Results obtained by using both connectivities Ŵ̂H,κ,α

0 and Ŵ̂H,κ,α
T si-

multaneously. Different groups are displayed in different colors; the segments
assigned to the background partition are drawn in black. The grouping is suc-
cessful for stimuli with noise levels up to 50%. At a higher noise level, the al-
gorithm fails by overpartitioning the countours of the moving circle. The third
row shows grouping results with r = 50 background elements, corresponding
to about 47% of the total. The fourth row shows grouping results with r = 100
background elements, corresponding to about 64% of the total.

It is worth noting that even at the higher noise values, the bars are always
correctly retrieved. The algorithm tends to fail in detecting contours with
high curvature, confusing them with the background segments and thus
leading to overpartitioning.
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In general, though, we show that the connectivity kernels defined by the
proposed cortical-inspired geometrical model applied to a simple spectral
clustering algorithm is able to carry out a nontrivial grouping task. To better
understand the powerful mechanics involved in the calculations, consider
that the only segments of the circle that present a positive affinity value
with their corresponding points at future temporal positions are the ones
having an orientation value near ±π

2
, as only for them the vector field �X5 of

connectivity propagation has the same direction of the global movement of
the shape.

In fact, while the ability and the reliability of visual neurons in areas
V1 and MT/V5 in measuring local stimulus orientation and speed have
been studied extensively, the majority of cells in those areas respond solely
to the local characteristics they are tuned for. In doing so, the measure-
ments available in the first stages of the visual cortex are subject to the
well-known aperture problem: with no information other than the local
direction of movement, not much can be said about the direction and speed
of the object to which that local measurement refers. For a continuously
moving contour, for example, classical orientation- and direction-selective
cortical cells measure, for each position along the contour, only the velocity
component that is orthogonal to the contour tangent direction at that point.
In the framework presented throughout this letter, this is modeled so that
the fiber variable of local velocity refers to movements in the �X3 direction.

5 Conclusion

In this work we have constructed a clustering algorithm for visual group-
ing of spatiotemporal stimuli in terms of geometric connectivity kernels
associated with the functional architecture of the visual cortex. The main
purpose was to test the segmentation capabilities of such a geometric model
of low-level vision areas with respect to spectral analysis mechanisms. Pre-
vious experimental investigations such as those of Ledgeway et al. (2005)
have already indicated that spatiotemporal perceptual associations play an
important role in visual recognition tasks. The recent results in Sarti and
Citti (2014) also suggest the presence of concrete cortical implementations
of a spectral analysis associated with lateral connection.

We used recent dimensionality reduction methods (Kannan et al., 2004),
chosen for their robustness and their relatively simple structure, which
allowed us to focus primarily on kernel properties. We then performed sev-
eral spectral clusterings on the introduced spatiotemporal cortical feature
space of position, time, orientation, and velocity by using anisotropic affini-
ties obtained by the models of cortical connections. Such affinities present a
structure that is geometrically adapted to the stimuli considered and proved
to be able to better extract the relevant information compared to more clas-
sical kernels such as the isotropic gaussian one. In particular, the proposed
algorithm is capable of grouping together elements belonging to a single
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contour or shape moving in time, forming a spatiotemporal surface, and
distinguishing them from a noisy background.

The first analysis that we carried out considered visual grouping when
the affinity between points of a visual stimulus is assigned in the cortical
feature space of positions and local orientations R

2 × S1 and in the feature
space R

2 × S1 × R
+ taking locally detected velocities into account. The al-

gorithm showed generally higher segmentation capabilities with respect to
isotropic affinities defined only on the visual stimulus. Moreover, perfor-
mance analyses showed that when the additional velocity feature is used,
the results are less affected by the influence of random elements and had a
significantly lower percentage of grouping errors due to over- or underpar-
titioning, thus allowing the horizontal connectivity to be spatially extended
without suffering noise, as happens in the visual cortex (Bosking et al.,
1997).

A second analysis considered grouping in space and time and produced
an algorithm that is able to identify spatial perceptual units and follow them
during their motion. This is done by extending the previous approach, com-
bining the affinity over R

2 × S1 × R
+, here treated as an instantaneous con-

nectivity, with an affinity in the cortical feature space of positions, activation
times, local orientations, and locally detected velocities R

2 × R
+ × S1 × R

+.
In order to cope with the intrinsic causality of time evolution, we have
worked directly on asymmetric affinities and used probabilistic cluster-
ing arguments (Pentney & Meila, 2005). The copresence of more than
one connectivity mechanism in the segmentation of spatiotemporal stim-
uli is a realistic assumption of visual cortex behavior (Hess & Ledgeway,
2003).

Modeling the neural dynamical aspects of visual perception is a very
delicate task. Indeed, many open questions remain to be addressed regard-
ing, in particular how mean field equations in space-time can be compatible
with the fast timescales of visual processing, or how the delays introduced
by the neural dynamics influence the functionalities of cortical architec-
tures. This first model of functional architecture in space-time does not take
into account the integration time constants for neurons, as well as other
biophysical phenemona, which certainly matter and deserve future study.
These aspects are also strictly related to the general problem of understand-
ing the timescale of mean field dynamics at the physical level. We observe,
however, that this model of connectivity is able to implement a preactivation
mechanism induced by spatiotemporal stimuli, whose biological plausibil-
ity was discussed and compared with neurophysiological measurement in
Barbieri, Citti, Cocci et al. (2014), showing good accordance.

Our investigation has thus provided a geometric framework to per-
form clustering in feature spaces, following principles of extensions that
can be generalized to higher-dimensional detected features. Possible exten-
sions could be achieved by the inclusion of features such as color, three-
dimensional stereo, or scale as additionaly detected features. Depending
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on the geometry of the stimuli and the psychophysiological indications,
such extensions can lead to the definition of connectivities of higher com-
plexity or the addition of copresent association mechanisms, following the
two modalities that we discussed. This approach provides a way to design
artificial perceptual algorithms adapted to the geometry of the information
and a tool to propose new models of connections in the visual cortex, also
suggesting further psychophysical or physiological experiments to com-
pare and tune the model’s parameters in order to fit visual perception and
cognition behaviors. A natural future step will be the inclusion of realistic
feature detection mechanisms, allowing the application of this methodol-
ogy to real stimuli.
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